
System Considerations for ngVLA Data Processing, Transport

and Storage Systems

ngVLA Computing Memo 12

Rafael Hiriart

September 4, 2024

1 Introduction

We develop in this memo a parametric model of the ngVLA data processing, transport and
storage systems, with the intention of identifying and quantifying (where possible) several
system design tradeoffs and areas of technical risk. We define this model as implementation-
agnostic as possible, to avoid unnecessarily constraining the design space being evaluated
by DMS, who is responsible for the design of this part of the system. We provide several
quantitative examples to develop an understanding of the orders of magnitude involved on
these system parameters, and as a sanity check for the parametric model. These examples
shouldn’t be considered as estimations to be used for budgetting purposes. They depend
on design choices, implementation details, and market trends that are not in the scope of
this memo. The detailed design, along with a carefully developed budget for the transport,
processing and archiving systems is DMS responsibility. The goal of this parametric model
is to identify technical risks, helping to guide the prioritization of design activities for this
part of the system.

2 System Model

We model the system as shown in Figure 1, adopting the notation and a few results from
basic queue theory to characterize some important system parameters, such as the size of
the storage buffers and the number of processors required to process the observed data.
The basic terminology is shown in the upper left corner. A queue can be characterized by
an input rate λ, service time S and throughput X = 1/S. The total number of requests
in the queue, including the one being serviced in the server is Q, while the total time or
latency that it takes for a single request to pass through the entire queue is R. This is a
stochastic model, so all these parametes are random variables.

The final system will probably be more complicated than shown here, once all design
requirements are considered. Usually storage systems adopt a hierarchical design. It would
be very expensive to provide a high-bandwidth and high-capacity system at the same time,
so it is common for high-performance storage systems to integrate a fast but relatively low-
capacity “scratch” area, backed by high-capacity but low-bandwidth “work” area. Similarly,
very big archives commonly use a relatively cheap but slow tape system for massive storage
(a must in our case due to the electrical power operational expense that a disk-based
system would impose), which works with a disk-based front buffer to read files into and

1

Transport

CSP CBE

Archiving

Processing

Science

Archive

WAN

Replication,

access and

retrieval

λraw

λsdc

λres = (Niter − 1)(λsdc + λrep)

λrep

λprod

λproc CL

Qtransp

Qproc

Qarch

Nproc

Queue Terminology:

λ: input rate X : throughput

R: residence time or latency

Q: number of requests in the system

S: service time

Vis
sec → FLOPs

sec

Figure 1: A simple system model.

write files out of the tapes. We don’t consider all these details, which will need to be
designed/optimized by technical experts in DMS.

The CSP will generate raw interferometric data that will be received by the CSP Back-
end computer cluster, which formats the data and performs the last steps of processing (e.g.
averaging, frequency stitching, and RFI flagging) before dumping the raw-data datasets into
the “Transport” buffer, from where it will be transmitted to the Science Data Center (SDC)
across a Wide Area Network (WAN). The data rate flowing into this storage buffer is λraw,
and the data rate flowing out of the storage buffer is λsdc. This is the input data rate
into the SDC, and it will depend on the network connectivity available from the Central
Electronics Building to the SDC.

The data flowing into the SDC is both processed and archived. The exact configuration
of how this happen is not important for the purposes of calculating the parameters of
interest. We could archive the data first and then process, or archive and process the data
in parallel, or some hybrid combination. Either way both the processing system and the
archiving system receive the same input data flow λsdc. We measure this data flow either
in GVis/sec or GBytes/sec.

Before entering the processor pool, we perform a “unit” conversion (represented by the
amp in Figure 1), transforming the input data rates in GVis/sec to FLOPs/sec, as this is the
proper unit to characterize the processing server throughput. As described in [2], this is not
just a multiplication by a constant, like the transformation from GVis/sec to GBytes/sec,
but the conversion will depend on the algorithmic requirements of the datasets to process
(in other words, the gain of the amp is variable). The data rate λproc is converted into the
computing load CL. This computing load is serviced by a number of processors Nproc. At
this point we just talk of these servers as processors. Their exact nature is a design detail
left to be decided by DMS experts. We conform ourselves by pointing out that they will
probably be composed by GPUs, given the current trends in $/FLOP and Watt/FLOP,
and the fast pace of improvement of these systems, due to the intense competition fueled

2

by recent AI developments. Likewise, the processing buffer could be constituted by a large
parallel filesystem, or distributed as local storage attached to the processing nodes, or a
combination of both.

Given the iterative nature of the imaging algorithms, the same visibilities are processed
several times. We represent this as a feedback loop from the output of this multi-queue
system back to its input, with a data rate λres (for “resident”). We can think that the
input data rate is partitioned in “chunks” of visibilities that go through the major cycle
calculations several times before exiting. What exactly is a “chunk” is another detail left
to be defined by the DMS experts. It will probably depend on how the parallelization axes
(time/scans, frequency, polarization, etc.) should be partitioned to optimize the utilization
of the server cluster, taking into account their memory restrictions, I/O bandwidth, etc. A
multi-processor server can be modeled simply as a single processor system with a service
time S′ = S/Nproc.

We also consider as input to the processing system the re-processing data rate λrep (in
Vis/sec) coming from the Science Archive. This has been nominally set to 20% in the
system requirements. The output of the processing system is a stream of high-level data
products that is sent to the Science Archive, which from [2], should be less than 10% of
λsdc.

All the queues in Figure 1 need to comply with the stability condition

λ ≤ X (1)

in the average, otherwise their length becames unbounded. When a queue is stable, the
average output data rate is equal to the average input data rate.

A general relation, valid for any probability distribution on the input data rate and
service time is Little’s Law:

Q = λ ·R (2)

that is, the average number of requests in the queue is equal to the product of the expected
value of the input data rate and the expected value of the latency.

The fraction of time that a server is busy is the server utilization, defined as ρ = λ/X.
For a stable queue, 0 ≤ ρ < 1.

3 The transport system

For the transport system, the throughput is determined by how much network bandwidth
it will be procured between the Central Electronics Building and the Science Data Center.
The location of the Science Data Center hasn’t been defined yet, so we cannot provide a
firm estimation of this cost. Notionally we assume the cost of a 100 Gbps WAN connection
to be around $5,700 per month, based on [5].

It is possible to show[1, 3] that the average number of requests (bytes) waiting in a
queue to be serviced (transported) is

Q =
ρ

1− ρ
. (3)

This allow us to calculate the average utilization of the transport buffer. However, this is
the average buffer utilization, not the maximum buffer utilization when the fluctuations of
the input data rate — determined by the differences in the ROP/EOP use cases — are

3

taken into account. The transport buffer needs to be sized to the maximum queue length
plus some margin, as we cannot afford to lose science data due to the buffer overflows.

One option would be to procure network connectivity to match the peak data rate,
which from [2] is 323.6 GBytes/sec for the EOP. This would be quite expensive, at $1.7MM
per year, given the characteristics of the input data rate distribution. Note that most of the
time this large networking bandwidth would sit unused, so this is clearly not an cost-efficient
solution. On the other hand, if we size the transport bandwidth for less than the peak data
rate, then the transport buffer needs to be sized so it will never overflow, and it becomes
necessary to define for how much time the system needs to stand the peak data rate in this
condition of unstability. This parameter will determine the cost of the storage buffer, which
can be quite substantial if we need to stand that the observations that generate extreme
data rates are observed close to each other.

An important characteristic of the system is that we can control the input data rate
through observation scheduling. In other words, the scheduling system can estimate the
data rate that the candidate SBs will produce and knowing the status of the storage buffer,
schedule only observations that will not overflow the system, allowing the system to recover
its capacity by observing relativey low data rate observations for some time.

If a system observes at λpeak for a time Tpeak, with a queue being initially at the average
value Qavg, then it will reach a maximum queue size of

Qmax = Qavg + (λpeak −Xsdc) · Tpeak (4)

where Xsdc is the WAN bandwidth to the Science Data Center. Then if, after reaching the
value Qmax, the system observes low rate cases which generate a rate λlow, then the recovey
time is

Trec =
Qmax −Qavg

Xsdc − λlow
. (5)

We define Cstor as the cost of storage in $/GByte, and Cnet as the cost of WAN network-
ing in $/GByte/sec. As the networking connectivity is a service that it is payed monthly
(or annually), not a construction cost, for the purpose of comparing costs we define Cnet as
the Present Value (PV) of all these monthly payments for the lifelong of the project.

With this, the cost of this part of the system is

C = Cnet ·Xsdc + Cstor ·Qmax (6)

= Cnet ·Xsdc + Cstor ·
(

λavg

Xsdc − λavg
+ (λpeak −Xsdc) · Tpeak

)
(7)

where we have used equation 3 to replace Qavg noticing that ρ = λavg/Xsdc. Rearranging
this equation:

C = (Cnet − Cstor · Tpeak)Xsdc + Cstor

(
λavg

Xsdc − λavg
+ λpeak

)
(8)

Deriving this equation with respect to Xsdc and equating it to zero:

d

dXsdc
C = Cnet − Cstor · Tpeak − Cstor ·

λavg

(Xsdc − λavg)2
= 0 (9)

we find an optimum for the network bandwidth that should be procured:

Xsdc = λavg +

√
Cstor · λavg

Cnet − Cstor · Tpeak
(10)

4

Note that if Cnet −Cstor · Tpeak > 0 then we can find an optimal value for Xsdc. If not, it is
apparent from equation 8 that the cost always decreases when Xsdc increases, so in this case
the optimal solution is for the network bandwidth to be as large as λpeak, with Qmax = 0.

Let’s see an example. Assume that the cost of networking is $5,700 per month per 100
Gbps, or an annual cost of $68,400. With a return rate of 6%, this gives a PV for 20 years
of $852,942 for 100 Gbps, and Cnet = 68, 235 $/GBytes/sec. Let’s assume Cstor = 0.4
$/GByte, λavg = 21.0 GBytes/sec (which is the case for the EOP), and Tpeak = 4 hours.
This produces an optimal value Xsdc = 21.01 GBytes/sec and Qmax = 4.36 PBytes with a
cost of $1.74MM. The cost of networking is $1.4MM, and the total cost is $3.2MM.

In this example, the networking bandwith is very close to the average input data rate,
because of the cost structure expressed in the second term in the right hand side of equa-
tion 10. This function behaves almost like a step function: as long as Cstor < Cnet/Tpeak

the optimum bandwidth is close to λavg. When Cstor ≥ Cnet/Tpeak, the bandwidth should
be equal to λpeak and no storage buffer is necessary. If we neglect Qavg from equation 4, as
this term is relatively small, then the optimum Xsdc becomes a step function.

In practice, the size of the transport buffer will also need to be sized to stand outages
on the WAN connectivity service. If we assume a Mean Time To Repair (MTTR) of 3 days,
then the transport buffer need to be at least 3 × 24 × 3600 × 21.0 = 5.4 × 106 GBytes, or
5.4 PBytes, to allow observing to continue. This is in the same order of magnitude that the
value calculated before. We should use the maximum of these two values, although a trade
that should be evaluated is the possibility of contracting redundant network links instead.
Ideally these redundant links should be independent and follow different paths from each
other. An hybrid solution will probably be necessary, taking into account that the MTTR
could be higher than 3 days.

4 The processing system

We can calculate the value of λres using Little’s law. It is easier to visualize how the
processing system works if we think that a number of processors will be assigned to process
a “chunk” of visibilities, which will generate a number of FLOPs that need to be computed.
These chunks parallelize the computation of a major cycle. Little’s law estates that the
number of requests in the system Q is equal to the input data rate λ times the latency R,
that is:

Q = λ ·R (11)

Let’s say that after assigning a number of processors per chunk, the latency to process each
chunk is Rchunk, for each major cycle. The total latency of each chunk will be Rchunk times
the number of iterations Niter that the same visibilities circulate inside the system. So, the
total number of chunks being processed inside the system at any given time is

Qchunk = λchunk ·Niter ·Rchunk (12)

where λchunk would be the the sum of λsdc and λrep. This can be reorganized as

Qchunk = (λchunk + (Niter − 1) · λchunk) ·Rchunk, (13)

to obtain the resident data flow:

λres = (Niter − 1) · λchunk = (Niter − 1) · (λsdc + λrep). (14)

5

If the number of iterations is 1, then this flow is zero.
An important point to highlight is that the number of processors assigned to process

each chunk is not really significative for the total throughput, although it affects the latency
of processing each dataset. In fact, the total number of processors being used is the number
of chunks multiplied by the number of processors assigned to each chunk. If we decrease
the number of processors assigned to each chunk, the latency increases proportionally and
the number of concurrent chunks in the system increases proportionally as well, cancelling
any effect in the throughput. The total number of processors required stays the same.

However, this assumes a proportional reduction in the latency with the number of pro-
cessors, or in other words, a linear speedup. As we have seen before, the speedup doesn’t
necessarily improve linearly with the number of processors. This is an important factor to
consider in deciding the number of processors assigned to each chunk. In order to reduce the
latency, we want to parallelize as much as possible, but the degree of parallization will be
bounded by the saturation of the speedup. This fact may impose bounds in the achievable
latency.

The total aggregated bandwidth required by the Nproc processors at any given moment
is

BW

[
GBytes

sec

]
=

λ
[
PFLOPs

sec

]
· 106

AI
[
FLOPs
Byte

] (15)

For each floating point operation that the system needs to compute, a number equal to the
arithmetic intensity AI bytes need to be loaded. This is the aggregated bandwidth mea-
sured at the interface between the processor registers and the rest of the memory/storage
hierarchy (L1-L3 caches, main memory, disk storage). Because of the nature of the algo-
rithms (represented by factors Ke and Kc in [2]), the same visibility numbers are retrieved
multiple times to participate in the gridding operations, with the outcome that the aggre-
gated bandwidth at the processors ends up being much higher than the output bandwidth
from the CSP. For example, even with the system operating at a modest 2.0 PFLOPs/sec,
doing mostly standard gridding, which has an AI around 24.5, the required bandwidth is
81.6 TBytes/sec, roughly three orders of magnitude higher than the average CSP output.

Without efficient caching of the visibility data and other operands required to perform
gridding, 81.6 TBytes/sec of aggregated bandwidth will be difficult to achieve. The output
bandwidth of a single NVMe SSD is around 2 GBytes/sec, so 40,000 disks would be required
to achieve the required rate, and this is only at 2 PFLOPs/sec! On the other hand, if it
would be possible to cache all the visibilities for a major cycle without having to read them
again from disk, a reduction close to the number of iterations would be possible in the
bandwidth. For our example, this would mean reducing the bandwidth to 4.0 TBytes/sec,
which although still high, it looks more feasible. (At 1,000 parallel disks, it would be in the
same order that filesystems implemented in other supercomputing facilities. For example,
the “Fast Scratch” in Frontera supercomputer facility1 achieves 1.5 TBytes/sec.)

In order to perform a more careful estimation of the required bandwidth, it is necessary
to consider the dependency of the AI with the (w, ν)-plane, i.e., equation 15 would need
to be applied by w-plane and frequency, following the w-distribution for each science case,
as we did before to estimate the computing load in [2]. The aggregated bandwidth is a
critical parameter and depends on the implementation, so we suggest for DMS to specify
the required aggregated bandwidth empirically instead of relying on a theoretical estimation.

1According to https://tacc.utexas.edu/systems/frontera/.

6

As pointed out before, in order for the processing queue to be stable, the processing
system throughput needs to match the average incoming data rate. Considering the EOP
computational load as an example, if we specify the processing system to an utilization of
80%, the system should support an average throughput of 75 PFLOPs/sec, with the peak
being around 1350 PFLOPs/sec.

Given the difference in scale between the extreme cases in the EOP and the normal cases,
which is 3 orders of magnitude, the latency could be quite high for the most demanding cases.
Consider EOP case 51, which requires 991 PFLOPs/sec and has a fraction of 2%. Processing
this case, which was observed during 365×0.02 = 7.3 days, will require (991/75)×7.3 = 96.5
days, or roughly 3 months to be reduced in the ideal case. Taking into account efficiencies,
this could easily extend to years of processing.

This large latency may be a problem (although currently there is no latency requirements
for the system besides triggered observations), so it may be required to size the system above
the average (provided that it is possible to speed up the computation). This is an overprice
to pay for latency.

This takes us to consider on-demand (Cloud) computing resources an alternative to an
on-premises system. Even if the cost of on-demand resources is higher than on-premises,
it may be more cost effective to use on-demand resources in certain circunstances, because
on-premises resources are payed-for even if not used, while on-demand resources are only
payed when used. Given the characteristics of our demand (a relatively low base case with
extreme cases for a small time fraction), it will be almost certainly the case that these
additional resources needed to improve latency should be on-demand. We provide a simple
analysis below, based on [4].

Figure 2 shows the demand distribution for the EOP. The green area above the average
line (black horizonal line in the plot) fits into the white area below the average (these areas
don’t seem to match because of the log scale, but they do). We size the system for a
given utilization (ρ = 0.8 in the plot), which is represented by the blue line. If the cost
of on-demand resources is less than on-premises (and assuming that we can find a Cloud
provider that can guarantee the availability of the resources required, and that the system
complies with our technical requirements, which as we have seen demands a large number
of GPUs and a very high bandwidth), then all the system resources should be procured
on-demand. If, on the other hand, the on-premises cost is less than the on-demand cost for
these resources, it will be more cost-effective to build the system on-premises. The criteria
is simple in this case, but note that the cost comparison needs to include all the operational
costs (in other words, the Total Cost of Ownership). For resources with a high utilization
it is usually the case that it is less expensive to own the system. The rule of thumb is “own
your base but contract the peak”.

On the other hand, let’s assume that we decide to over-size the system to reduce the
maximum latency, and we explore the possibility of using Cloud resources for this over-
capacity. The red segmented line represents the level of over-capacity that we build on
premises. The green area above this line is the capacity that we allocate on on-demand
Cloud resources. The white area between the red segmented line and the blue line represents
FLOPs that are payed for if we build this over-capacity on premises, but that are not actually
used. It is this on-premises resource under-utilization that can make on-demand processing
atractive even if the on-demand cost is higher than on-premises, up to a certain extent.

Let’s simplify the demand distribution as shown in Figure 3 to understand what should
be the proportion of on-premises and on-demand resources. We define the cost of on-
premises resources as cr, the cost of on-demand resources as co and the premiun for using

7

0 20 40 60 80 100
time (% obs. year)

10 4

10 3

10 2

10 1

100

101

102

103
de

m
an

d
di

st
rib

ut
io

n
(P

FL
OP

s/
se

c)

Demand distribution for EOP

Average
(1/Util)*Average
Over Capacity

Figure 2: Demand distribution for the EOP.

on-demand resources as U = co/cr. Using the parameters defined in Figure 3 the total cost
is:

C = FTcr + V TpUcr

= (P − V)Tcr + V TpUcr

= PTcr + (TpU − T)V cr

If Tp/T > 1/U then it is more cost effective to contract all the over-capacity as Cloud
resources. If Tp/T < 1/U then the over-capacity should be built into the on-premises
system. Other solutions are possible depending on the demand distribution, in our case
the decision is either on-demand or on-premises without an intermediate level for V due to
the shape of our demand curve. Note that it is not necessary that U < 1 for on-demand
resources to be preferrable.

Estimating Qproc is complicated because it depends on several operational decisions and
parameters. In theory, we could use equation 3, but this relation would severely underes-
timate the required size of this buffer, as this relation is based on the assumption that the
visibilities leave the buffer as soon as a processor becomes available. In reality, the entire
dataset for an Execution Block remains in the buffer for the entire time that it takes to
process it and perform QA. This is an inefficient use of the processing buffer, as visibilities
may sit there for long periods of time without being read. The design should evaluate bet-
ter ways to use the processing buffer, as the cost of high-performance storage can be quite
substantial. The size of the processing buffer depends on the latency for each observation,
which as discussed before depends on the number of processing resources assigned to each
job. This in turn depends on the scalability curves.

Figure 4 illustrates the problem, which is just an application of Little’s law. (Little’s
law is stochastic though, and it’s valid for any distribution of input rates and service times.
Here we simplify things just looking at the problem deterministically.) These plots show
the cumulative resources used as a function of time. In plot (a) new jobs (e.g. SBs) arrive
with input rate λ to be processed. The yellow area can be thought to be all the FLOPs that

8

t

T

V

F

Tp

P

B

Figure 3: A simplification of the demand distribution from Figure 2.

need to be processed in time. We assign to each job all the capacity of the cluster, which in
average will match the input data rate in FLOPs/sec. Hence, the jobs are processed right
away, at the same rate that they are coming into the processing system. The total number
of concurrent jobs at any given time is 1 (or close to 1 once we factor in the fluctuations
in the data rate using equation 3). However, this doesn’t work at all for our case,
because the algorithms are iterative, so it is not possible to process all the FLOPs at once.
Some FLOPs need to wait for other FLOPs to be processed. Therefore, we cannot assign
all the cluster resources to one job, only a fraction of them. This is illustrated in plot
(b) as decreasing the height of each job yellow bar. However, given that the area of each
bar need to stay the same (all the FLOPs need to be processed anyhow), then the latency
increases proportionally to R′. Increasing the latency means that now there are more jobs
being processed concurrently, and as all the bytes of these jobs need to be on-disk for the
duration of the processing, the size of the processing buffer needs to be larger. If the bytes
for each job also need to stay in the processing buffer while quality assurance is performed,
then the latency increases even more. If the behaviour of the parallelization speedup is such
that it saturates at an even lower number of processors per job, then the latency increases
even more and the size of the processor buffer increases proportionally.

This can be a significative cost. Let’s see some numbers. Assuming that the length of
each SB is around 4 hours, in the ideal case (plot (a)) it would take 4 hours of processing
time to complete each job. However, assuming that the number of iterations is around 20,
and that it will take around 3 days to perform QA, which is 3× 24/4 = 18 ≈ 20 additional
SB durations in the latency, we assume that the latency is expanded by a factor of 40. We
now have 40 jobs that need to be processed concurrently in the processing system. At an
average data rate of 20 GBytes/sec, the volume of bytes is 40× 4× 3600× 20 = 11, 520, 000
GBytes, or 11.5 PBytes. At a cost of 0.4 $/Gbyte for SSD storage this is $4.6MM. If
the latency need to be expanded more, then the cost of the processing buffer increases
proportionally. The actual size of the buffer could be an order of magnitude more when
all details are taken into account (e.g., re-processing, high-data rate cases, extra processing

9

λ λ

λ ·R
λ ·R′

t t

Cum. Resources Cum. Resources

(a) (b)

Figure 4: Relationship between the size of the processing buffer Qproc and the latency.

space needed by each SB).

5 The archiving system

The archiving system is relatively simple, with one queue handling the incoming raw-data
and product streams, and a processor that “ingest” the data into the Science Archive. The
operations involved in this ingestion include gathering and writing the metadata into a
database, storing the files into their final repository, and managing the replication of data.
If λsdc is sized to be smaller than the peak value, then the fluctuations in the incoming data
rates to the archive are “dampened”, with the transport buffer absorving the fluctuations.
Streams out of the archive include the movement of data to the processing system, end-user
access and retrieval of the data products, and data replication. The detailed design of these
systems (the Science Data Archive (SDA) and the Science Interfaces and Tools systems
(SIT)) will probably incorporate their own additional internal buffers.

It can be assumed that newer datasets will be accessed more often than older datasets,
so a hierarchical storage system where fast but expensive storage is used to store a sliding
time window containing the most recent datasets, while older datasets are stored on slow
but cheaper storage technologies would be a cost-efficient solution. For example, the cost of
tape systems is around 0.008 $/GByte, while HDD storage is around 0.025 $/GByte. (These
prices change with time, of course, and the total cost of ownership should be estimated for
the ngVLA budget, not just the cost of the storage units. The cost projection should be
studied by the specialists, here I’m just doing a quick search in the Internet to get some
idea of the values.)

Maybe the most significant advantage of a tape system, besides being less expensive than
hard disks, is that it doesn’t consume power while the data is not being accessed. Estimating
the power consumption of active storage to be between 0.3 and 0.7 Watts/GByte, at a data
rate of 40.0 PetaBytes/month, the ngVLA would need to add between 12.0 and 28.0 MWatts
of power each month, which is unfeasible. Storing the data into passive storage is necessary
for ngVLA.

10

As noted before, all queues in the system need to comply with the basic stability criteria
where the throughput must be greater than the incoming data rate. This means that writing
to the tape system needs to sustain a data rate of 23 GBytes/sec (21 GBytes/sec for the
EOP plus 10% for the data products), which may be challenging for a single tape system
to achieve. A parallel tape system will probably be necessary.

In the case of the archiving system, the system can be modeled as a simple queue. Bytes
arrive to the buffer and can be deleted as soon as they have been written to tape. Under
this condition, equation 3 applies and the size of the buffer is relatively small. In addition,
if Xsdc is not sized to the peak data rate (so the size of the transport buffer is non-zero),
then fluctuations in the data rate are dampened by the transport buffer. If Xsdc is sized to
the peak data rate, then the archiving buffer plays a similar role than the transport buffer
when Xsdc is not sized to the peak, i.e., it needs to be sized as shown in section 3, with the
bandwidth to the tape system replacing Xsdc.

6 Conclusions

A parametric model was developed for the transport, processing, and archiving systems. For
the transport system we explored the tradeoff between the size of the transport buffer that
receives the visibilities from the CBE, and the bandwidth of the WAN connection between
the Central Electronics Building and the Science Data Center. The decision of whether
to procure a network connection sized to the peak, or enough storage to stand the peak
visibility data rate during a certain duration depends on the relative cost of networking
versus storage and the duration of time that the system must stand the peak data rate. We
develop a criteria that informs this decision.

We developed a simple model for the processing system, incorporating the iterative na-
ture of the imaging algorithm as a re-circulation of visibilities. We discussed the relationship
between the number of processing jobs in the system and their latency (Little’s law). If the
number of resources assigned to each job is decreased, then the latency and the number
of concurrent jobs increases proportionally, with the result that the number of resources
needed to process the input data rate stays constant. The same relationship indicates that
if the entire dataset for the execution blocks are held on disk for the entire duration of the
imaging and QA processes, the size of the processing buffer may need to be quite large
(tens to hundreds of PBytes). We suggest to look for design alternatives to optimize the
utilization of the processing buffer. We develop a relationship for the aggregated bandwidth
(equation 15) and find it to be very challenging, a technical risk that is discussed below. We
explored the possibility of using Cloud computing resources in the processing system and
found a simple expression to guide this decision, based on the processing demand curve for
the EOP. For the archiving system, we concluded that a tape system for long-term archival
is required, because of the cost of a disk-based system and the electrical power that it would
demand.

We identify the following technical risks:

• Extreme required aggregated bandwidth [Scope, Cost]. A very large band-
width will be required to feed into the computing processors the data operands needed
to perform their computations at the rate required to sustain the average throughput
(see equation 15). This problem can’t be solved by processing jobs “slowly”, because
as it has been shown, increasing the latency just increases the number of jobs that
need to be processed concurrently, with the result that the number of resources —

11

both the number of processors and the required bandwidth — stays the same. This
is why this is not a cost problem, but a feasibility problem. If the required average
bandwidth cannot be achieved, then the system won’t be able to match the required
processing throughput, and therefore not all science cases specified in the ROP/EOP
will be able to be processed. A combination of efficient caching and large numbers
of disks working on parallel (there’s no other way of achieving high bandwidths from
filesystems) could offer a feasible path. A high-bandwidth, high-capacity filesystem
of this magnitude may pose technical challenges and a very high cost. Increasing the
level of on-memory caching is not an easy problem either. We suggest as a mitigation
strategy that this technical challenge be thoroughly analyzed and a realistic technical
solution devised, incorporating algorithmic, infrastructural and architectural points
of view.

• Feasibility of avoiding the need to load CF from disk [Cost, Scope]. The
aggregated bandwidth mentioned above was estimated under the assumption that the
Convolution Functions are not loaded from disk storage. If they are, then the required
bandwidth becomes even higher. It is important to validate this assumption. The
feasibility of caching the CF, or computing them on-the-fly should be demonstrated.

• Excessive latency due to poor parallelization efficiency [Cost, Scope]. Be-
sides being an important cost driver, the parallelization efficiency could affect the
latency that it is possible to achieve when imaging observations, because it could
limit the number of processors that can be assigned to process each observation. If
this ends up being a low number, very high latencies could result for observations
that generate high computational loads (several months to process each observation).
This is another reason to prioritize obtaining a realistic estimate of the parallelization
efficiency. This could also affect the ability of the system to meet latency requirements
for triggered observations.

• High cost of processing buffer [Cost, Scope]. The size of the processing buffer
could end up being an important cost driver for the processing system, and even more
so if we require high bandwidth as well. The optimization of this system basically
requires avoiding that bytes buffered there are not accessed for long periods of time.

References

[1] Neil J. Gunther. Analyzing Computer System Performance with Perl: PDQ. Springer
Publishing Company, Incorporated, 2nd edition, 2011.

[2] R. Hiriart. ngVLA Computing Memo 11, ngvla Data Rates and Computational Loads
(Update). Technical report, NRAO ngVLA, 2024.

[3] K. Trivedi. Probability and Statistics with Reliability, Queuing, and Computer Science
Applications. Wiley, Chichester, 2001.

[4] Joe Weinman. Mathematical proof of the inevitability of cloud computing.
https://cloud-native-computing.de/materials/Joe_Weinman_Inevitability_

Of_Cloud.pdf, 2011. Accessed: 2024-05-29.

12

[5] Ginger Woolridge. Wide area networking 2022 pricing guide. https://lightyear.ai/
resources/wan-connectivity-pricing-guide-p2p-mpls-dark-fiber-and-more,
2021. Accessed: 2024-05-29.

13

