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1 Overview
The operation of the ngVLA as a collection of independently-targeted subarrays without mutual interference
is a key component of its observing strategy. The structure of the ngVLA’s Central Signal Processor (CSP)
has been informed by this requirement, and the CSP’s structure (as per the conceptual design phase) is
highly divisible as a result – once data enters the CSP Switched Fabric (CSF), as seen in Figure 1, the
inherently parallel structure of the CSP will permit the subdivision of processing resources to support flexible
and independent subarray observations. This document discusses the implementation of subarrays on the
X-Engine at a high level, with the intent of identifying and discussing both the impact that support for
subarray observation has on the X-Engine’s design and the aspects of the resulting design which provide this
capability.

1



Figure 1: An overview of the ngVLA CSP, displaying its main components and their connections.

Section 2 presents relevant terminology, both pre-existing and newly-defined, which is used elsewhere in
this document. Section 3 describes critical assumptions made about the ngVLA CSP and X-Engine in this
context. The overall flow of commands to and from the CSP is summarized, and the internal operation of an
X-Engine node is described; a modern tensor-core-equipped GPU is used as an illustrative example. Section 4
contains a selection of examples which display particular aspects of the desired subarray behavior. A few
concluding remarks and notes about further development constitute Section 5.

2 Terminology
The formally-defined terminology available to describe observations with subarrays has some shortcomings;
Table 1 contains relevant terms defined in the Project Lexicon (Doc # 020.10.10.10.00-0005-LIS), version B.
For the purposes of this document, the definition supplied for “subarray” has been taken to refer specifically
to the antennas, not including any of the processing resources.

There is also a set of concepts for which terms are not defined, or for which the terms in use are not
consistent. Table 2 contains some of these terms and definitions; this is intended to be descriptive rather
than normative, and feedback would be greatly appreciated. These terms are used freely elsewhere in this
document.

3 Model
The structure of the ngVLA CSP in general, and the X-Engine in particular, is assumed to have certain
features which both support and limit its ability to operate simultaneous subarrays. Notes:

• The CSF is assumed to be capable of routing any Subarray-Channel-Block pair to any X-Engine node,
as required.
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Term Lexicon Definition
Subarray A subarray is a set of resources (antennas) reserved for exclusive control

that may be allocated to one or more independent sets of processing
resources in order to produce one or more data product streams.

Functional Operating Mode A Functional Operating Mode encapsulate a set of functional and
performance requirements and produce corresponding data products
and can be one of the following:
Correlation modes: Interferometry, OTF Mapping
Phased Array modes: VLBI, Pulsar Timing, Pulsar Search

Scan An observation is divided in time intervals called scans, which have
associated intents. The intent differentiates scans performed for the
purpose of calibration from those performed over the astronomical
objects of scientific interest

Schedule Block “Scheduling block” is not intended to imply a specific structure to an
observation, it is intended to mean the minimum unit of a planned
observation that can be executed, completed, and gracefully exited.

Execution Block When an iteration of a schedule block gets queued for observation, a
time-specific instance is created known as an Execution Block.

Table 1: Relevant existing terminology taken from version B of the Project Lexicon.

• It is explicitly assumed that it is only reasonable to correlate antennas which are operating in the same
spectral configuration (e.g. observing band selection, spectral zoom, channel width).

• Communication between the CMC and each node is described as one-to-one; while it is possible that
multiple X-Engine nodes could share a management interface at the LRU level, this does not significantly
affect the behavior described here.

3.1 Generalized Command Flow
Commands for the configuration of subarrays are issued hierarchically; Figure 2 shows an overview of this
process focusing on the flow of instructions through the CSP and adjacent systems.

Observatory scheduling occurs at a much higher level than the CSP, with the primary interaction at this
stage being queries between the observatory management system and the CMC regarding the capacity and
utilization of CSP resources. In addition to hard limits on various parameters (channel counts, bit depths,
integration lengths, etc.) there are at least three dimensions (input data bandwidth, output data bandwidth,
and node processing power) in which the X-Engine resources have broadly cumulative limits. The viability of
any specific ngVLA Configuration will therefore depend on the sum of the Scan Processing Resources for
each of the subarrays in use. The specifics of the CMC interaction with observatory management are as yet
undetermined, but the ngVLA Configuration Schedule will be arranged through this process.

Once the ngVLA Configuration Schedule is determined, observatory management systems will issue
instructions to the CMC with the desired ngVLA Configuration and the set of Scan Timing Information, with
a specific time of application (which may be immediate or in the future). The CMC must then determine
which X-Engine hardware must be assigned or re-assigned in order to support this configuration and issue
the appropriate commands (complete with any parameters required) to the X-Engine hardware.

Many details of the node hardware’s behavior during the transition between configurations are not yet
defined. Configuration changes which are scheduled for a future time and which take place at the boundary
of an integration are uncontroversial, but interruptions of ongoing processing require further consideration.
The details of how Scan Configurations are generated and transferred, and how the CSP State is informed
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Term or Placeholder Approximate Definition
Observation [Implied by ‘Scan’ above but not defined]
Calibratable Scan Block (?)(*) A term used elsewhere without definition other than as ‘the small-

est unit of observation’, although one consisting of multiple scans.
[Scan](?) A placeholder term, for a specific sort of atomic unit of observation

like that of a schedule block. The definition of ‘Scan’ above
specifically only relates to time intervals, so another term must
be created.

[Scan] Processing Resources The set of processing resources required to produce a desired data
product stream for a particular Generic [Scan] Configuration.

Generic [Scan] Configuration The functional operating mode of a generic subarray and its
parameters (bandwidth, number of antennas, etc.) in sufficient
detail to determine the [Scan] Processing Resources required.

Specific [Scan] Information The timing, subarray, and spectral configuration information
required to turn a Generic [Scan] Configuration into a [Scan]
Configuration.

[Scan] Subarray Information The specific set of antennas comprising a subarray, as a component
of the Specific [Scan] Information.

[Scan] Timing Information The time-of-execution information component of the Specific
[Scan] Information.

[Scan] Spectral Information The spectral configuration (e.g. band selection, spectral zoom,
channel count) component of the Specific [Scan] Information.

[Scan] Configuration A particular instance of a Generic CSP [Scan] Configuration with a
specific subarray, frequency configuration, and timing information.

ngVLA System Configuration
(?)(*)

The complete configuration of the ngVLA - antennas, DBE, CSP,
etc. - at one specific moment; where the antennas are pointing,
what receivers are live, what the CSP is doing, where the data is
going, etc. up to the point where live products are recorded or
transmitted for future use.

ngVLA System Configuration
Schedule (?)(*)

The scheduled set of ngVLA Configurations over the forseeable
future.

CSP State The configuration of the entire ngVLA CSP at a specific moment.
Observation(?)(*) The event during which the ngVLA observes some target(s) with

a specific configuration and settings.
Channel Block A contiguous portion of an ngVLA subband; in the context of

subarray observations, that which assigned to a single X-Engine
node.

Table 2: Terminology not taken from the Project Lexicon. Those terms marked with (*) are outside the
CSP’s scope, and consultation with other groups will be required to arrive at consensus definitions. Those
terms marked with (?) are especially uncertain.
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• Creates an observation schedule informed by 
estimates of CSP capacity and utilization from the CMC

• Pursuant to that schedule, issues commands to the 
CMC indicating the composition and configuration of 
subarrays to be implemented at a particular time

• Identifies specific X-Engine LRU and node hardware to 
assign to each subarray (i) and channel block (j) in 
order to support the desired instrument configuration

• Identifies each (i, j) with a specific multicast group to 
which the corresponding node will be subscribed

• Issues commands to X-Engine hardware with the 
configuration required and the particular time of 
application

• Receives from the CMC a processing and network 
configuration to be applied at a specific time

• Performs corresponding signal processing 

Schedule Commands Status and Utilization Data

Configuration Updates Status

Figure 2: An overview of the command flow for X-Engine configuration.
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moment-to-moment, will be part of the greater set of Interface Control Documents (ICDs) which have not
yet been created.

This interrelates with the definition of Scan Timing Information arrived at by the system; the X-Engine
does not have a high-precision timing source, but incoming data will be associated with precise timestamps.
As such, the time at which the X-Engine node needs to change configurations can be defined in terms of
either the low-precision time (correct to within a few seconds) available to the node itself or the high-precision
time (sub-ns) present alongside the data – only available once the new data arrives for processing, necessarily
causing congestion while the node changes configuration. Further work on this issue is required.

3.2 X-Engine Node
Each node within the CSP X-Engine will be responsible for computing the time-integrated outer product of
all members of a specific subarray for each frequency channel within a particular portion of the observing
band (the ‘channel block’). More formally, within a given integration each node will be responsible for the
computation of the output visibilities V:

Vi,j,T,m,l =
∑

t

Ei,j,T,m,k,t ∗ Ei,j,T,m,k′,t (1)

where the variables and indices are as defined in Table 3.
For the purposes of performance modelling, it is assumed that each X-Engine node has some maximum

input data bandwidth, processing capability, and output data bandwidth; it also has onboard memory with
some limited size and access bandwidth. Within each X-Engine node are processing resources organized into
complex multiply-and-accumulate units, each of which is capable of performing the complex outer product of
nunit input values and appropriately accumulating the result. Each node contains Nunits of these CMAC
units.

Each node is responsible for computing the full outer product of all nsub,i antennas (from 1 to 526) in a
single subarray, over some specific bandwidth ∆νi,j (up to1 20 GHz) which has been divided into Nchan,i,j

frequency channels (between about 24 and 214). This outer product must occur once every ∆ti, generating
1
2 (nsub,i)(nsub,i + 1) output values per accumulation period ∆Ti.

The number of CMAC units NCU required to correlate a subarray with a total number of receivers nsub is

NCU = 1
2

(⌊
nsub

nunit

⌋)(⌊
nsub

nunit

⌋
+ 1
)

(2)

For subarray sizes where NCU is less than or equal to Nunits, the entire subarray may be correlated at once;
in the alternative case, some or all CMAC units will need to correlate multiple portions of the subarray and
track their accumulants separately. Figure 3 illustrates the redundant computations which result from this
model treating auto- and cross-correlation products identically; it is possible to eliminate this at the cost of
increased complexity in managing the computations.

3.2.1 Accumulation

Accumulation of the results is a notable complication in all cases where NCU 6= Nunits, as each CMAC unit
is responsible for a varying selection of receivers. The effect is compounded as the number of frequency
channels increases; each CMAC unit must handle an increasing number of distinct accumulants, including
readouts at the correct integration times. A solution to general accumulation is desired which would also
permit conditional accumulation based on either flags (e.g. RFI detection) or a time-dependent function (e.g.
phase-binned visibilities); additional comments on the latter use case may be found in Subsection 4.2.

1The maximum channel block bandwidth per node may be limited by the implementation, to an extent which has yet to be
determined. This would create a minimum node count per subarray, but not otherwise affect system performance.
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Quantity Name Description
i Subarray Index Identifies the subarray in question
j Channel Block Index Identifies the portion of each subband as-

signed to a specific node
(i, j) Node Index Identifies the specific node to which the

unique (i, j) is assigned.
ki Antenna Index Identifies a specific antenna within subarray

i
li = L(ki, k

′
i) Product Index Identifies the specific product (ki, k

′
i) within

subarray i
mi,j Channel Index Identifies a specific channel within the sub-

array i and channel block j
Ti Inter-Integration Time Index Identifies a specific X-Engine integration for

subarray i
ti Intra-Integration Time Index Identifies a specific time-sample within an

integration
pi = Pi(ti) Phase Bin Index Identifies the time-dependent accumulation

bin for subarray i
Ei,j,T,m,k,t Channelized Input Data Post-channelization antenna data; input to

the X-Engine
Vi,j,T,m,l Time-Integrated Visibilities The time-integrated visibilities as computed

by the X-Engine
Vi,j,T,m,p,l Phase-Integrated Visibilities Visibilities accumulated into phase bins by

the X-Engine
nsubi

Receivers per Subarray The distinct receivers in subarray i which
must be correlated

∆νi,j Channel Block Bandwidth The total signal bandwidth assigned to a
specific node (i, j)

Nchan,i,j Channel Block Channel Count The number of channels into which a channel
block is divided

∆Ti Integration Time The total integration time required for visi-
bilities in subarray i

∆ti Sample Cadence The time interval between successive in-
channel samples

nunit Inputs per CMAC Unit The number of inputs each CMAC unit may
compute

Nunits CMAC Units per Node The effective number of CMAC units in each
node

NCUi,j
Compute Units Required The number of notional CMAC units re-

quired to correlate (i, j)

Table 3: Variables and indices used in the model from Subsection 3.2 and in subsequent discussion.
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Figure 3: Redundant computations required by the subdivision of the computational task into homogeneous
units; the portions of the outer product containing auto-correlations are computed twice.

3.2.2 Example Node Structure

Figure 4 presents the internal structure of an NVIDIA ‘Hopper’ H100 GPU as an illustrative example of
the internal structure model assumed for an X-Engine Node. The node has one or more external interfaces
(here, PCIe v5.0 at top and NVLink at bottom), onboard memory (HBM, at the sides), and a number of
processing units (’streaming multiprocessors’ or SMs) each of which can perform independent computation.
In this example, the external PCIe interface would be paired with a PCIe Ethernet Network Interface Card
(NIC) to provide Ethernet connectivity for the node.

The preceding descriptions have presented correlation as a sample-by-sample procedure iterating over time
as the fastest-varying axis; in the case of tensor-core-equipped GPU nodes, this may instead be expressed as a
tensor contraction operation on the channelized voltage data tensors E . The NVIDIA-supported cuTENSOR
library provides a simplified interface via the cutensorCreateContraction and cutensorContract methods
to a general tensor contraction D = αAB + βC; experiments based on this formalism will begin in the
near future, although John Romein’s results with the Tensor-Core Correlator2 suggest that computational
performance will be significantly improved relative to the non-tensor methods.

3.3 Resource Requirement Scaling
Consider an X-Engine capable of receiving data from and correlating the entire 263-antenna array across a
full 20 GHz of bandwidth. Reallocating any antenna from the main subarray to a new subarray does not
change the total amount of data entering the system (which scales as the bandwidth multiplied by the number
of antennas across all subarrays) but reduces the total compute load (which scales as the sum of the squares
of the number of antennas in each subarray). The same argument applies for any change which moves an
antenna from one subarray to a smaller one - the total input data rate is unchanged but the total compute
load reduced.

It follows that resource allocation sufficient for any set of subarrays should always be possible provided
that the original resources are sufficient for the full array and the resources can be arbitrarily subdivided.
However, if it is not possible to split a single node between subarrays, there is a potential case in which
the processing or data transport requirements for an enlarged subarray just narrowly do not fit within the
number of nodes previously allocated. In this case, one node per possible excess subarray would be sufficient
to allow for continued operation.

2A&A v. 656 a. 52, 2021
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Figure 4: The internal structure of an NVIDIA H100 GPU, shown with the maximum complement of 144
Streaming Multiprocessors (SMs). The PCIe v5.0 x16 interface is shown at the top, HBM interfaces at each
side, and the NVLink interface at the bottom. The detailed structure of the SM is shown in detail in Figure 5.

4 Example Scenarios
In the absence of preliminary ICDs and an appropriate testing suite, it is difficult to have confidence in the
X-Engine’s ability to handle the span of all possible subarray configurations and the transitions between
configurations which may be required for the observation programme. The following examples are intended to
illustrate broad categories of subarray configurations and behaviors envisioned, so as to capture the general
behaviors of interest. Comments from the broader ngVLA community would be welcomed.

4.1 Adding or Reallocating a Subarray
It is desired that, wherever possible, reassigning subarrays should not interrupt the processing of other
subarrays. Once the CMC has determined the required node allocation and configuration, commands will be
issued to the nodes whose operational state will be updated. The nodes responsible for the new subarray, which
may have been processing other data previously, will apply their new network and processing configurations
at the time specified in the command.

Given the scaling properties described in Subsection 3.3, the existence of a sufficiently large and divisible
pool of X-Engine nodes should satisfy the processing and input data bandwidth needs of any subarray
configuration – provided it is possible to assign and distribute data to X-Engine nodes arbitrarily. An
unavoidable departure from the goal of full subarray independence is introduced by system constraint
CON104’s hard limit on CSP output data bandwidth; subarray observation scheduling must reflect this, and
subarrays may not be freely reassigned if this would violate this constraint.

The precise details of how the CSF routes data to the X-Engine nodes, and particularly the mechanisms
by which the nodes determine and implement their multicast address selection, are still to be determined.

4.1.1 Interruptions

Although the typical operations of the ngVLA are expected to give notice sufficient to gracefully end
observations before a change of configuration is applied, there may be cases in which a interruption of an
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Figure 5: The internal structure of an NVIDIA Hopper Streaming Multiprocessor (SM); each contains four
tensor cores, 128 32-bit floating-point (FP32) processing cores, 32 64-bit floating point (FP64) processing
cores, and 64 32-bit integer (INT32) processing cores as well as 64k 32-bit registers and a 256 kB L1 data
cache.
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ongoing observation is required. Handling of the data flow and change of configuration will require care to
avoid the introduction of invalid but non-flagged data.

4.1.2 Insufficient Resources

In the event that more subarray resources are allocated than are available, it is presumed that an error
will be raised at the level of the CMC’s response to observation management systems. Failing this, the
most immediate consequence would be the issuing of new commands to X-Engine nodes which are required
for observations which were previously scheduled and may already be in progress, essentially acting as an
unintentional interrupt. It seems undesirable that the X-Engine should reject interrupts, but permitting
arbitrary reassignment of in-use resources would risk a significant operational error; further consideration of
this case is required.

4.2 Binned Integration
In the event that phase- or time-binned integrations are called for, for example to align with pulsar observations
or noise diode tests, the summation formalism expressed in Equation 1 no longer holds. Instead of a single
sum along t, there will be multiple ‘phase bins’ into which the output visibilities will be accumulated:

Vi,j,T,m,p,l =
∑

t |Pi(t) = p

Ei,j,T,m,k,t ∗ Ei,j,T,m,k′,t (3)

This explicitly assumes that, within a single subarray, the mapping of time to phase bins is the same for each
channel block and frequency channel – that is, the period and desired phase resolution are constant across
the observing band.

4.3 Repeated Fast Switching: Paired Antenna Calibration
Based on ngVLA-internal discussions, one area in which subarrays may be applied is for paired antenna
calibration, in which a set of antennas is periodically all aimed at a calibrator and then split between that
calibrator and a science target. In this case, there would be two sets of subarrays comprised of the antennas
observing the same source. These subarrays would need to change whenever the antennas are re-targeted,
emphasizing that the subarray switching would need to be quick and minimally disruptive, and preferably
that the overhead involved in repeatedly changing between two subarray configurations be minimized.

4.4 Subarrays in Reverse: Partition
Another case to consider is one in which many antennas with the same timing and frequency configuration
are pointed at many different locations on the sky. Contingent on support from the downstream software,
the most effective way to handle this in the X-Engine would be to keep them all in a single subarray
during correlation and then re-partition the data at a later stage of processing. Although this would involve
calculating unnecessary inter-target correlations and consume limited output bandwidth, it would only require
the allocation of a single subarray and so could support many more simultaneous observations than if each
were required to form its own subarray.

This plan breaks down if frequency channelization and integration times need to differ between the antenna
sets; in this case, under the current X-Engine configuration paradigm, each group of identically-configured
antennas would have to be in a separate subarray.

4.5 Multiple Phase Centers in One Beam
Although outside of the formal requirements for the CSP, a use case of significant interest involves correlating
multiple phase centers within a single primary beam. For each observing antenna, each center location
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would be separately phase-corrected and then form a separate data stream into the X-Engine – essentially an
additional subarray.

Notably, this would invalidate the scaling principles described in Subsection 3.3 – it would be entirely
possible for an alternative set of subarrays to require far more X-Engine input bandwidth and processing
than the full-array full-bandwidth (but single-phase-center) case. This could be prevented if the multiple-
phase-center observation accepted proportionately reduced observing bandwidth, or if the other simultaneous
observations were such that there were sufficient unallocated X-Engine resources. Further consultation and
collaboration will be required to determine the range of desired parameters; at the very least, the X-Engine
can support this to the greatest extent possible within the existing performance envelope.

4.6 Synchronous Subarrays
Another desirable extension of capabilities involves coordinated observation by multiple sets of antennas
aimed at a single target – each set would have different spectral configurations but are additionally required to
have approximately aligned integration time boundaries. This requires a high degree of predictability in how
the X-Engine begins observations, and implies the CMC is able to precisely coordinate between subarrays; it
does not otherwise constrain the X-Engine’s behavior.

5 Conclusion
Subarray operation of the ngVLA is a key observational capability, one which permits efficient use of the
instrument’s immense potential. The ngVLA CSP as a whole, and the X-Engine in particular, benefits
greatly from the granularity inherent to its design. This allows easy subdivision and reallocation of resources
to support flexible subarray configurations while limiting the time and resource costs associated with each
transition.

Understandably for the preliminary design phase, there are a number of technical aspects of the X-Engine
design which are not yet determined. The details of the generation and application of new Scan Configurations
are of particular relevance to the subarray case, as are the interfaces between the X-Engine, CMC, and
observation management systems. The X-Engine, as described here and in its conceptual design, is expected
to be capable of supporting the full set of subarray functions required; further consideration of example
scenarios will take place alongside ongoing technical development to ensure that the breadth of subarray
applications is reflected in the final system.
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