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ABSTRACT

Note: This memo derives from a paper of the same title and authors appearing in the Astronomical Journal,
volume 155, issue 4, April 2018, c© 2018 American Astronomical Society. It is included by permission in
the NRAO ngVLA Memo Series.

Radio Frequency Interference (RFI) is a major problem for observations in Radio Astronomy (RA). Adaptive spatial filtering
techniques such as subspace projection are promising candidates for RFI mitigation, but for radio interferometric imaging arrays
these have primarily been used in engineering demonstration experiments rather than mainstream scientific observations. This
paper considers one reason that adoption of such algorithms is limited: RFI decorrelates across the interferometric array because
of long baseline lengths. This occurs when the relative RFI time delay along a baseline is large compared to the frequency
channel inverse bandwidth used in the processing chain. Maximum achievable excision of the RFI is limited by covariance matrix
estimation error when identifying interference subspace parameters, and decorrelation of the RFI introduces error which corrupts
the subspace estimate, rendering subspace projection ineffective over the entire array. In this work, we present an algorithm which
overcomes this challenge of decorrelation by applying subspace projection via subarray processing (SP-SAP). Each subarray is
designed to have a set of elements with high mutual correlation in the interferer for better estimation of subspace parameters. In
an RFI simulation scenario for a proposed ngVLA array configuration with 15 kHz channel bandwidth for correlator processing,
we show that compared to the former approach of applying subspace projection on the full array, SP-SAP improves mitigation
of the RFI on the order of 9 dB. An example of improved image synthesis and reduced RFI artifacts for a simulated image
“phantom” using the SP-SAP algorithm is presented.
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1. INTRODUCTION

In 2015 the National Radio Astronomy Observatory
(NRAO) announced that they would begin supporting an
effort for the initial concept, design, and development of
a large area radio instrument optimized for imaging ther-
mal emissions down to milliarcsecond scales. The current
Very Large Array (VLA) site in New Mexico is a possi-
ble location for the new interferometer and is know as the
Next Generation Very Large Array (ngVLA). A proposed
array design uses 300 telescopes operating from 1 GHz to
115 GHz configured with a dense core and longest distance
between an antenna pair (baseline) spanning 300 km (Carilli
2015, 2016). The Square Kilometre Array (SKA) (Davidson
2012) is another, even more mature, example of a major new
radio interferometer project which plans significant leaps in
numbers of antenna, increased baseline lengths, and wider
operating bandwidths, all with the aim of achieving improved
resolution and sensitivity over their predecessors.

This paper presents a new algorithm to improve perfor-
mance of array processing spatial filtering methods which
cancel radio frequency interference (RFI) in large interfer-
ometric synthesis imaging arrays. The algorithm is suitable
for many existing arrays, (e.g., VLA, MEERKAT, ASKAP,
WSRT) but will be particularly beneficial with the extremely
long baselines of the ngVLA and SKA.

Even when such arrays are sited in radio quiet zones, RFI
will pose a major threat to some of the science goals for these
and other instruments. Satellite radio downlinks are prob-
lematic all over the world, and observatories and institutes
are reporting damaging levels of RFI to the extent that data
corruption occurs in up to 100% of their observations for
a given frequency band (Hoppmann et al. 2015; Otto et al.
2016; Sokolowski et al. 2015; Offringa, A. R. et al. 2012).
For example, important frequency bands for observing mod-
erately red-shifted HI (neutral hydrogen) emissions are now
almost entirely blocked by strong RFI due to downlinks from
the GPS, GLONASS, Galileo, and COMPASS navigation
satellites, and IRIDIUM communication satellites (Ellingson
et al. 2001, 2000; Vine et al. 2016; Indermuehle et al. 2016).

Adaptive linear-subspace-projection-based spatial filtering
involves estimating interfering array spatial signatures (gain
and phase responses toward the RFI) and then using this in-
formation to form deep cancellation nulls on the interferer by
applying a projection into the sensor vector subspace orthog-
onal to the interferer. This provides the capability to observe
through strong RFI conditions rather than just discarding cor-
rupted data by flagging or blanking, or merely avoiding it by
observing in other frequency channels (Anonymous 2013).

Subspace projection techniques for interferometric arrays
were first proposed in Leshem et al. (2000); Leshem & van
der Veen (2000). While spatial filtering methods are promis-
ing in simulation, adoption by astronomers in active science

observations has been very slow. This is partially due to some
poor canceling performance in several practical observation
scenarios. For example, i) when the interference-to-noise
power ratio (INR) is low, or ii) when RFI motion is fast rel-
ative to the maximum array aperture dimension and the cor-
relator integration dump interval, or iii) when correlation of
the RFI is weak because of long baselines coupled with in-
sufficiently narrow correlator processing channel bandwidths
(Black et al. 2015; Black 2017).

In these situations, accurate estimation of interference sub-
space parameters is difficult, and conventional adaptive can-
celers perform poorly. However, some effective solutions
have been proposed. RFI motion can be overcome with sub-
space models and tracking techniques as in Landon et al.
(2012); Black (2017); Ellingson & Hampson (2002); Hell-
bourg (2015). Use of auxiliary antennas that track and mea-
sure RFI to provide a high INR copy of the undesired sig-
nal has been shown to improve mitigation (Jeffs et al. 2003,
2005). But to date, no method has been proposed to address
decorrelation of the RFI.

In this work, we address the problem of decorrelation and
present an algorithm for applying subspace projection on
subsets of array elements (or subarrays) where there is guar-
anteed high RFI mutual correlation. This enables better sub-
space parameter estimates and subsequently improves RFI
excision.

The paper is organized as follows. Section 2 presents our
signal model for imaging array systems. In Section 3 we sup-
plement and extend the analysis given in Thompson (1982)
to show the effects of interference decorrelation across large
interferometric baselines. In Section 4 we review prior sub-
space projection work and show how RFI decorrelation cor-
rupts interference subspace estimates. Section 5 presents the
new algorithm for implementing subspace projection via sub-
array processing (SP-SAP) on large interferometry arrays to
overcome RFI decorrelation. Results for simulation scenar-
ios are given in Section 6 to demonstrate performance. We
conclude in Section 7 with a discussion about future work
and applications to current array systems.

2. SIGNAL MODEL AND SYNTHESIS IMAGING
EQUATIONS

This section defines only the relevant geometry, notation
and signal models needed to provide a foundation for our
discussion on spatial filtering, and to develop the proposed
algorithm. For additional detail on the theory and practice
of radio synthesis imaging we refer the reader to Thompson
et al. (2001) and Taylor et al. (1999). A tutorial reference
using the same notation as in the following development is
found in Swindlehurst et al. (2013). Figure 1 depicts a sim-
ple imaging scenario for an interferometry array system as
explained in the following discussion.
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Figure 1. Simple imaging scenario for a synthesis imaging array.
Given azimuth and elevation angles direction cosines can be used
to calculate a propagation vector ρ for a signal of interest (SOI)
and interferer(s). The array has been co-phased with inserted time
delays to image a celestial SOI. Interferers corrupt the visibilities
for the SOI and introduce artifacts in the resulting radio image.

Consider imaging a celestial signal of interest (SOI) with
an M-element radio interferometric array. The position of a
particular array element is specified in the (u,v,w) rectilin-
ear coordinate system in units of wavelength (λ) at a nar-
rowband source observation frequency fc. Broadband SOIs
are observed using many such narrowband channels. Vector
rm = (um,vm,wm) describes the position of the mth element
relative to an arbitrary coordinate axis origin. The SOI ob-
servation is projected onto the celestial sphere, on which the
imaging coordinate axis (p,q) is defined to be aligned with
and parallel to the (u,v) axes from the (u,v,w) coordinate
system at the array. A radio image is formed by estimat-
ing the intensity distribution I(ρ) of the electric field arriving
from the direction described by unit-length propagation vec-
tors ρ = (uρ,vρ,wρ) for each pixel within the imaging field
of view. A different ρp,q vector points to each distinct pixel,
(p,q). Since ρp,q is unit length and (p,q) is aligned and par-
allel to (u,v), ρp,q may also be expressed in terms of (p,q);
ρp,q = ( p,q,

√
1 − p2 − q2 ). Wavefronts from each pixel in the

celestial SOI are perpendicular to the propagation vector, and
travel along the vector.

For notational convenience, we drop the subscript notation
on ρp,q denote ρs to represent the vector that points to the
origin in the imaging coordinate plane. Thus ρs= (0,0,1).
This is the source reference position, and has at times been
referred to as the phase center of the image. Also, the array
element most distant from the SOI is arbitrarily designated
as a reference element and is indexed as m = 0. Relative to
this reference element, the time difference of arrival for the
SOI wavefront at the mth element is denoted as τ s

m. This

geometric delay term is a function of the distance between
the two elements, and may be expressed as

τ s
m =

(rm − r0)Tρs

c
, (1)

where c is the speed of light. For the reference element,
τ0 = 0. In the interferometric image synthesis processing
chain, time delays are first applied to receiver outputs to com-
pensate for this geometric delay and co-phase the array to the
phase center of the image.

Let the passband receiver output for the mth array ele-
ment (antenna) be represented by its complex-valued base-
band equivalent signal xm(t), (i.e., the narrowband channel
is mixed down to d.c. with an image rejection mixer to pro-
duce a representation using in-phase, real, and quadrature,
imaginary, components). Gather these xm(t) from all array
elements to form the signal vector x(t). The system output
vector time signal is modeled as a narrowband channel and
is the linear combination of signal, interference, and noise
given by

x(t) = [x1(t),x2(t), · · · ,xM(t)]T

= a(θs)s(t) + a(θi)i(t) + z(t). (2)

The vectors a(θs) and a(θi) represent the previously men-
tioned array spatial signatures (A.K.A. steering vector) in the
direction of the SOI and interferer respectively. For an ex-
tended SOI, we consider θs to be the direction to a single
pixel in the image for the SOI. All θ values are two dimen-
sional spherical angles. The mth entry in a(θ) is the narrow-
band complex magnitude and phase response of the array
to a unit amplitude signal arriving from direction angle θ.
Signals s(t), i(t), and z(t) are modeled as zero-mean proper
Gaussian complex-valued random processes and represent
the SOI, man-made interfering signal, and noise respectively.
The term “proper” denotes that the real and imaginary parts
of a random process are mutually uncorrelated.

For the limited field of view in this imaging scenario, the
fundamental quantity used to estimate the intensity image of
the electric field distribution, I(ρ), from receiver outputs is
known as the visibility function (Thompson et al. 2001). In
the absence of noise and interference the visibility function
is approximately given by

V (rl ,rm) = E
[
xl(t)x∗m(t)

]

=
∫ ∫

|A(ρ)|2I(ρ)e− j2π(ρ−ρs)T (rl −rm) dρ, (3)

where E [·] is the expectation operator and ∗ denotes com-
plex conjugate. The function A(ρ) represents the antenna re-
sponse pattern for each array element, and is assumed to be
identical across elements. The difference vector rl − rm is re-
ferred to as a baseline between elements l and m. Expressing



4 BURNETT ET AL.

these baselines in (u,v) coordinates and assuming a continu-
ous range of all possible baseline vectors are available leads
to the visibility function form:

V (u,v) =
∫ ∫

|A(p,q)|2I(p,q)e− j2π(up+vq) d pdq. (4)

An intuitive interpretation of (4) is that the imaging informa-
tion is related to the spatial cross-correlation of antenna pairs
(baselines) through a Fourier transform relationship.

However, since the available baselines are limited to the
discrete set of antenna pairs (l,m), we observe only an irreg-
ularly sampled version, V (ul,m,vl,m), of the visibility function
of (4). These pairs may be collected into a single matrix

R = E
[
x(t)xH(t)

]
=




V (r0,r0) . . . V (r0,rM−1)
...

. . .
...

V (rM−1,r0) . . . V (rM−1,rM−1)


 ,

(5)
where H is matrix conjugate transpose. This matrix is rec-
ognized as the array autocorrelation matrix (or covariance
matrix since x(t) is zero mean) and the entries are known
as visibilities. In general, RFI and noise are present and are
statistically independent from each other and the SOI. There-
fore, the visibility matrix can be expressed as

R = E
[
x(t)xH(t)

]

= Rs + Ri + Rz, (6)

where Rs, Ri, and Rz are the individual covariance matri-
ces for SOI, interferer, and noise respectively. The true co-
variances are not known, therefore Rs can only be observed
through a sample estimate, R̂ (where ̂ indicates an esti-
mated quantity), which includes the undesired contributions
from Ri and Rz, and sample estimation error E.

Most RFI cancelling array-based spatial filtering algo-
rithms use the sample spatial covariance matrix R̂ to estimate
the array response of the interferer in order to subsequently
remove interference (Anonymous 2013) (Sec. 5), (Leshem
et al. 2000; Fridman & Baan 2001; Ellingson & Hampson
2002; Jeffs et al. 2005, 2008; Hellbourg et al. 2012; Hell-
bourg 2015; Ford & Buch 2014; van der Veen et al. 2005;
Black et al. 2015).

These estimates are computed by the correlator of a dig-
ital back end processing system for a range of narrowband
channels across the full processing bandwidth. For a single
frequency channel, the output of the correlator is given by

R̂ j =
1
N

( j+1)N−1∑

n= jN

x[n]xH[n], 0≤ j ≤ J − 1

= Rs + Ri, j + Rz + E j, (7)

where due to RFI motion the sample covariances must be re-
computed frequently using a relatively small number, N, of
samples over J periods, on ms time-scales. These are called
short-term integrations (STIs). Over the period of one STI
the spatial signature of the interferer is assumed to be sta-
tionary. The STIs are combined over a long-term integration
(LTI) period of JN samples, on the order of 10 s, as the over-
all LTI estimate R̂ used for image synthesis. The estimates
of Rs and Rz are also assumed to be stationary over both long
and short-term integrations.

In practice, imaging arrays take advantage of the Earth’s
rotation by recomputing the visibility matrix on medium
time-scales. Each new computed set of visibilities has a
unique rotated set of baselines, further filling in the (u,v)
sample space in (4). An RFI cancelling projection operator
would be computed and applied separately for each new set
of baseline orientations.

3. RFI DECORRELATION

Long baseline arrays like the ngVLA and SKA are prob-
lematic for projection-based RFI cancellation. Indeed any
adaptive cancelling algorithm based on covariance estimates
(multiple sidelobe canceler, MMSE array filter, etc.) would
suffer similar limitations. This is because the RFI, even if
visible in all elements, is decorrelated over the longer base-
lines. This makes it difficult to estimate RFI spatial parame-
ters needed for effective projection cancellation.

Figure 2 presents the proposed ngVLA configuration of
300 elements with longest baselines of 300 km we will use
throughout this work to illustrate the effects of RFI decorre-
lation on projection cancellation. Also shown is a magnifica-
tion of the core at 15 km, 5 km, and 3 km radius views.

Large synthesis arrays such as the ngVLA are less sen-
sitive to interference than single-dish telescopes (Thompson
1982). In his analysis, Thompson presented threshold levels
for which RFI is detrimental to observations on the VLA, as
well as how similar levels could be computed to extend to
other arrays. While it is true that threshold levels are higher
due to RFI decorrelation in these long baseline arrays, inter-
ference is still clearly present in resulting maps and images.

There are two effects that Thompson investigated which re-
duce the response of the array to an interferer. The first is the
averaging effect. The argument is that relative to the earth, a
ground-based interferer is stationary, and as the array tracks
the SOI there is a slight change in relative phase. This rela-
tive phase difference is known as the fringe frequency (Taylor
et al. 1999). At the time of image formation, due to the sig-
nificantly large number of (u,v) samples that are interpolated
onto a rectangular grid for an FFT-based Fourier inversion of
(4), the averaging of these relative phase differences at in-
dividual points over the entire grid reduces interferer signal
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Figure 2. (a) One proposed ngVLA configuration consists of 300
antennas with the longest baselines extending to 300 km. This
configuration also includes a dense core with 20% of the elements
inside the radius of 0.6 km. (b)-(d) Magnified into the core at 15
km, 5 km and 3 km radius scales respectively.

levels due to destructive cancelling of the RFI terms being
summed out of phase.

The second effect is a result of the phase propagation that
occurs due to the geometric delay of the interferer across the
array. The geometric delay for the interferer is similar to the
definition of (1) but is now dependent on the propagation vec-
tor ρi. Let this delay be specified as τ i

m. Before applying the
co-phasing time delays which compensate for the geometric
delay due to the SOI, the output of the mth element in re-
sponse to a wave originating from a point source at the phase
reference location (p = 0,q = 0) in the presence of single in-
terfering source is

xm(t) = am(θs)s(t + τ s
m) + am(θi)i(t + τ i

m) + zm(t). (8)

Subsequently, applying the co-phasing time delay yields,

xm(t − τ s
m) = am(θs)s(t) + am(θi)i(t + τ i

m − τ s
m) + z′m(t). (9)

Because the noise process zm(t) is an independent and iden-
tically distributed wide sense stationary process, the co-
phasing delay does not affect the statistics of the process and
we can consider it as if no delay had been added to the noise.
We see that for the phase reference location in the imaging
plane, the output at time t across the entire array will not de-
pend on the propagation path of the SOI. Or, in other words,

when the correlator produces the visibility matrix it will com-
pare the signal between elements as if it had coherently sam-
pled the entire time aligned wavefront for the SOI.

However, the same cannot be said of the interfering source.
The time series for the interferer is affected by the geomet-
ric delay as it propagates across the array, as well as the co-
phasing time delay resulting in an effective bulk geometric
delay of τ b

m = τ i
m − τ s

m. For a given processing bandwidth β,
this bulk geometric delay results in phase propagation across
the array given by

ψm = 2π(τ i
m − τ s

m)β

= 2πτ b
mβ. (10)

This phase propagation results in incoherence of the inter-
ferer at the correlator and is characterized by the correlation
function

γ(τ b
m ; β) =

sin(πτ b
mβ)

πτ b
mβ

= sinc(τ b
mβ), (11)

where the sinc function is defined as

sinc(x) =
sin(πx)
πx

.

Note that we can manipulate (10) to express (11) in terms of
the phase propagation

γ(ψm) = sinc
(
ψm

2π

)
. (12)

These correlation functions manifest a fundamental trade-off
between baseline length, processing bandwidth, and the ef-
fects on correlation of the RFI in the visibilities. For narrow
processing bandwidths on the order of a few Hz to a few kHz,
which would be used for example in the processing of nar-
rowband galactic emissions, the correlations vary slowly and
significant decorrelation would only begin to occur at a few
hundred kilometers. As the processing bandwidth increases
for the observation of more continuum sources, the correla-
tions decay more rapidly as the effective projected baseline
length for the bulk geometry delay increases. Figure 3 de-
picts the decorrelation of an interferer for an antenna pair on
the ngVLA for various processing bandwidths and baseline
lengths. The interferer is arriving endfire to the baseline vec-
tor for a maximum, worst case, effective projected baseline
length.

We can see that in general, correlations do decay, however,
only in the limit are they zero. For most practical processing
bandwidths there will be significant correlations at several
elements because of compact core configurations. This sug-
gests that RFI may pose a threat to some observations and
that RFI mitigation techniques can be used to ease that bur-
den.
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Figure 3. Extent of RFI decorrelation for an antenna pair at differ-
ent processing bandwidths. The signal is arriving endfire for a max-
imum projected baseline length. In general, the correlation varies
slowly for narrowband channel processing. As the bandwidth in-
creases the correlations decreases more rapidly. With a dense core
on the ngVLA, there will be significant correlation potentially cor-
rupting images without mitigation.

In theory, equation (11) suggests that one could always op-
erate on sufficiently narrow channel bandwidths to support
subspace projection (see Section 4) involving arbitrarily long
baselines with negligible RFI decorrelation. However, prac-
tical real-time correlator implementation constraints make
this impossible. For example, halving the processor channel
bandwidth at the correlator doubles the data rate for trans-
port and storage of correlator visibility outputs. Twice as
many visibility matrices (of the same size as the original)
are produced. For long baseline arrays, when imaging over
a fixed total bandwidth, a limit is soon reached where the
instrument computing hardware/software/storage units can-
not support the data rate needed to maintain RFI correlation
across a sufficient number of baselines to yield effective sub-
space projection RFI canceling. The algorithm presented in
Section 5 eases these constraints.

4. SUBSPACE PROJECTION

In the presence of Q interferers, subspace projection is a
null-forming algorithm that cancels interferers by applying
projection operator P j to the M×M estimated sample co-
variance matrix R̂ j for a given STI interval. In the analysis
that follows we drop the subscript j, and it is implied that the
calculation of a projection matrix is done for each STI. The
projection is designed to be approximately orthogonal to the
subspace that spans the spatial signature of the Q interferers.
To design the projection matrix a dominant eigenvector anal-
ysis is performed on the sample covariances. The eigenvector
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Figure 4. Illustration of the effectiveness of subspace projection
on the ngVLA at a center frequency of 2.6 GHz and a processing
bandwidth of 20 kHz. Increasing the number of elements included
in the subspace estimation process also increases the number of el-
ements at longer effective projected baseline. With a large number
of elements at longer baselines subspace projection becomes less
effective at providing cancellation to the RFI.

decomposition of the sample covariance matrix is

R̂ = UΛUH , (13)

where the columns of U are the eigenvectors of R̂ and the
diagonal entries of Λ are the corresponding eigenvalues. As-
suming the interferers are much stronger than the SOI and
system noise, the resulting eigenvector matrix U can be
sorted and partitioned as U = [Ui |Us+z ], where Ui repre-
sents the eigenvectors corresponding to the Q largest eigen-
values. The conventional subspace projection matrix PSP is
then formed as

PSP = I − Ui(UH
i Ui)−1UH

i . (14)

The projection is applied to R̂ by left and right multiplication,

R̃ = PSPR̂PH
SP, (15)

resulting in the filtered visibility matrix R̃, where the Q in-
terferers have been largely eliminated. Using the estimated
subspace, the projections will only be approximately orthog-
onal to the RFI and therefore introduce a slight bias in Rs.
This can be corrected on average as show in Leshem & van
der Veen (2000); Jeffs et al. (2005); Raza et al. (2002).

A metric used to measure performance of a mitigation al-
gorithm is the signal-to-interference power ratio (SIR) at the
filter output given by

SIR =
Tr
{

PRsPH
}

Tr{PRiPH } , (16)
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where Tr{·} is the matrix trace operation. This metric com-
pares the performance of the level to which P attenuates the
interference relative to attenuation in the signal.

Figure 4 illustrates how SIR is affected by baseline length
for the ngVLA configuration. The abscissa of this plot is
the INR at the element antenna terminals. This detailed sim-
ulation computes the visibility matrix and applies subspace
projection across M elements starting from the central core
and extending outward. Included is a curve labeled “no-
mitigation,” which is the resulting SIR had no projection
been applied. Shown by (12), the level of correlation for the
interferer is well-defined in terms of the phase propagation
due to the processing bandwidth and bulk geometric time de-
lay. Small M yields a dense set of elements in the central
core over baselines where the geometric delay results in a
significant measure of coherence in the interferer. Figure 4
shows that the greatest attenuation to the interferer relative to
the SOI is achieved for a compact array with small M, and
that the effectiveness of subspace projection decreases with
larger M across baselines where larger geometric time delays
results in less correlation between array elements.

There are two factors which contribute to the decreased ef-
fectiveness of subspace projection across large baselines as
seen in Figure 4. The first factor is that the underlying as-
sumption of RFI subspace estimation has been violated by
using weak coherence levels in the sample estimate. The de-
sign of PSP had assumed interference is the strongest compo-
nent present in the sample covariances. On the far baselines
the dominant component in the covariance is now the SOI
or noise, preventing accurate estimation of the interferer sub-
space. This issue would arise even if an exact R was avail-
able with no estimation error, and is related to the partitioning
step to select Ui from U. The second factor is that the level
of sample estimation error due to E in (7) has contributions
from not only Ri but Rs and Rz as well. The contributions
to E are proportional to the scale of the entries in the esti-
mated covariances and inversely proportional to the number
of samples N (Kaveh & Barabell 1986; Kot et al. 1995). On
long baselines where entries in Ri are small, these small val-
ues can be overwhelmed by the proportionally larger entries
in E due to Rs and Rz (Jeffs et al. 2005).

5. SUBSPACE PROJECTION VIA SUBARRAY
PROCESSING (SP-SAP)

Due to considerations discussed in section 4, achieving
an adequate estimate of the interferer subspace is not pos-
sible using the entire array covariance matrix R directly. In
the proposed subarray processing method, modifications are
made to the subspace projection algorithm to improve esti-
mates of the RFI spatial signature. This allows spatial fil-
tering to be a viable option on large interferometers in the
growing presence of RFI.

The expression in (9) for bulk geometric time delay of the
interferer can be expanded using definitions of delays for the
SOI and interferer to become

τ b
m = τ i

m − τ s
m

=
(rm − r0)Tρi

c
−

(rm − r0)Tρs

c

=
(rm − r0)T (ρi −ρs)

c
. (17)

Substitution into (10) yields the phase change for RFI across
the array relative to the reference antenna r0:

ψm = 2π
(rm − r0)T (ρi −ρs)

c
β. (18)

The difference between the SOI and interference propagation
vectors can be thought of as the effective propagation vector
(after inserted time delays to co-phase the array to the SOI)
for the interference. Planes perpendicular to this vector rep-
resent regions of constant RFI phase across the array.

SP-SAP uses ψm as a metric to partition the full M-element
array into K subarrays. The kth subarray is denoted as Lk and
is the set of elements satisfying

Lk = {m : ζk−1 ≤ ψm < ζk} ∀ m, (19)

where ζk = ζk−1 +ψthresh with ζ0 = 0, and ψthresh is a user de-
fined parameter. Any two elements within a subarray have a
phase propagation difference less than ψthresh. Grouping the
elements in this way creates a set of smaller subarrays with
elements aligned perpendicular to the effective propagation
vector, thus placing elements in the planes of constant phase.
Therefore, each subarray is designed to guarantee high mu-
tual RFI correlation among its own elements to better esti-
mate the interference subspace and project out RFI in its local
group.

The algorithm for partitioning subarrays is shown in Ta-
ble 1 and described in the following example. Results show-
ing the positioned subarrays when applied to the ngVLA are
shown in Figure 5.

1. Select a phase threshold, ψthresh.

2. Compute ψm using (18) for each element
of the full array and sort in ascending or-
der. Zero relative phase is assigned arbi-
trarily to the reference element m = 0.

3. Initialize k = 1 and the range of allowed
phase in (19) with ζ0 = 0 and ζ1 = ψthresh.

4. Using (19) for subarray L1, compare en-
tries in the sorted array of ψm to the range
of allowed phase and group elements into
L1 until no other element satisfies the cur-
rent range condition.
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Table 1. Subarray Formation

Algorithm:

Given ψthresh and the set of M array elements

Compute ψm = 2π (rm−r0)T (ρi
−ρs)

c β, for m = 0,1, . . . ,M − 1

Sort the ψm values

k = 1,ζ0 = 0

while array elements remain unassigned to a subarray:

ζk = ζk−1 +ψthresh

Lk = {m : ζk−1 ≤ ψm < ζk} ∀ m

k = k + 1

NOTE—Subarrays are subsets of the entire set of elements. Any
two elements within a subarray have a phase propagation difference
less than ψthresh.

5. Increment k and update ζk.

6. Continue to use (19) to compare remaining
entries of the sorted array of ψm and group
elements into subarray Lk.

7. Repeat steps 5 and 6 until all elements in
the sorted array of ψm have been assigned
to a subarray.

The projection matrix formed from the resulting subarrays
will better project out RFI in the local grouped elements. To
apply subspace projection to the visibility matrix, Pk is com-
puted for each subarray and combined to form the block di-
agonal matrix PSAP,

PSAP =




P1 0 0 0

0 P2 0 0

0 0
. . . 0

0 0 0 PK



. (20)

Any projection matrix must satisfy the condition that it is
symmetric and idempotent (i.e. PP = P). Note that PSAP sat-
isfies both of these properties.

In the process of assigning subarrays, the array elements
have gone from an arbitrarily indexed set to an ordered set.
Elements of vector x(t) must then be reordered to be com-
patible with new projection matrix PSAP. This is quickly
achieved using a selection matrix S. Sparse matrix S has a
single non-zero entry of one in each row and column. For
example, if array element n in x(t) is to be moved to the mth
element location in the reordered vector x′(t), then S has a
one in row m and column n. The transformation is reversed
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Figure 5. Resulting subarrays after being organized based on the
phase propagation metric. This metric orients the subarrays per-
pendicular to the effective propagation vector ρi

−ρs. To form the
subarrays shown, the phase threshold was chosen to be high to exag-
gerate the illustration of the subarrays and their orientation. A small
phase threshold will result in more subarrays with less elements per
subarray. Conversely, a high threshold results in less subarrays with
more elements per subarray.

with left multiplication by ST :

x′(t) = Sx(t)

x(t) = ST x′(t). (21)

The reordered covariance matrix is computed as

R′ = E
[
x′(t)x′H(t)

]

= E
[
Sx(t)xH(t)ST ]

= SRST , (22)

and projecting out RFI is now straightforward by applying
PSAP to the reordered sample covariance matrix,

R̃′ = PSAPSR̂ST PH
SAP. (23)

This matrix is then transformed back to the original order,

R̃ = ST PSAPSR̂ST PH
SAPS, (24)

resulting in the final filtered visibility matrix. Defining
P′SAP = ST PSAPS, it is easy to see that SP-SAP takes on the
familiar form of subspace projection,

R̃ = P′SAPR̂P′HSAP. (25)

6. SIMULATION RESULTS
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Figure 6. Comparison of SIR post-mitigation at the correlator out-
put. SP-SAP is able to mitigate the RFI at lower INRs and consis-
tently improves the SIR as compared to subspace projection over
the entire array.

In this section we compare simulation results for SP-SAP
and the conventional approach of applying subspace projec-
tion directly over the entire array. In both simulations, the
full array for the ngVLA configuration of Figure 2 is used.
The SOI is a hypothetical galactic signal at 2800 MHz with
a single interferer. Processing bandwidth is 15 kHz to sat-
isfy the narrowband assumption with respect to the interferer.
In these simulations we assume short integration periods are
used therefore the interferer can be approximated as station-
ary relative to the array.

Another performance metric for an interference mitigation
algorithm is the normalized mean square error in R̃s given by

ε2
s =

∥∥∥R̃s − Rs

∥∥∥
2

F

‖Rs‖2
F

, (26)

where R̃s = PRsPH and || · ||F is the Frobenius norm. This
metric measures post-mitigation bias introduced by P in Rs.
Also, we define the attenuation levels for interference and
SOI respectively as

αi =
Tr{Ri }

Tr{PRiPH } ,

αs =
Tr{Rs }

Tr{PRsPH } . (27)

Metrics αi and αs show the overall effectiveness of removing
power from the interferer as well as undesired SOI attenua-
tion.

Figure 6 compares output SIR for subspace projection and
SP-SAP across the whole array. Consistent with Figure 4,
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Figure 7. Post-mitigation attenuation to the SOI (top) and RFI (bot-
tom). Subspace projection achieves a modest level of attenuation to
the RFI while SP-SAP increases the overall mitigation by 9 dB. SP-
SAP does introduce a slight 1 dB of attenuation to the SOI, however,
bias corrections can be applied on a per subarray basis to restore the
SOI.

due to sample estimation error, subspace projection using the
full array does not a achieve a satisfactory level of interfer-
ence cancellation. However, SP-SAP is able to begin can-
celling RFI at weaker INR levels and achieves better overall
cancellation.

Attenuation factors αs and αi are shown in Figure 7. Com-
pared to SP-SAP, subspace projection does better at prevent-
ing bias to the SOI. However, examination of the interferer
attenuation shows that the 1 dB SOI attenuation results in
more than a 9 dB improvement in interference cancellation.
No bias correction has been made and so any losses in the
SOI could still be recovered while achieving the same level
of RFI attenuation (Leshem et al. 2000; Leshem & van der
Veen 2000; Jeffs et al. 2005; Raza et al. 2002).
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Figure 8. Post-mitigation mean square error in the visibility matrix.
Both subspace projection and SP-SAP perform well for low INRs.
However, the error in subspace projection begins to diverge at a
low INR while SP-SAP achieves lower, stable residuals for a larger
range of INRs.

Figure 8 presents the results of the mean squared error de-
termined by (26). This metric is relevant for synthetic imag-
ing because in the absence of RFI and noise Rs represents
the true visibility matrix. Therefore, the mean square error
measures how close the filtered signal covariance matrix is
to the desired visibility matrix. Over the simulated range
of INRs, SP-SAP achieves approximately the same residual
level. Subspace projection applied directly across the entire
array does slightly out-perform SP-SAP for a small range of
INR values. However, there quickly comes a point where as
INR increases, so do the residuals, implying that subspace
projection is no longer effective. The point at which the
residuals for SP-SAP begin to increase is beyond practical
INR levels. At that stage, other issues such as non-linearity
of the LNAs or saturation in the ADCs become more rele-
vant. Thus we may claim that SP-SAP delivers effective RFI
cancellation over a wider INR range than conventional sub-
space projection.

Figure 9 shows a comprehensive simulated imaging exam-
ple comparing the two algorithms, and illustrates the success
of SP-SAP at better recovering the desired image. The sim-
ulation shows a 12-hour observation with 30-minute updates
and is the same imaging scenario and array geometry as pre-
viously described with an INR of 10 dB. The image forma-
tion process is a brute-force approach using a direct com-
putation of the inverse 2-D Fourier transform to recover the
intensity values I(ρ) in (4). There is therefore no u-v cell
averaging or re-binning to interpolate visibilities onto a rect-
angular grid, nor is deconvolution used to remove the effects
of the dirty beam.

Figure 9(a) shows the original true image phantom used
to compute the visibilities along all array baselines. The
modeled angular field of view extent for the image was keep
very small to push the resolution limits of the array’s dirty
beam. As a comparable example of the best achievable result
with this array – source geometry and source image scale,
(b) shows the computed image with no RFI or noise. Sub-
figure (c) shows the resulting image with both noise and RFI
present. Using projection-based RFI mitigation the goal is to
remove the interferer artifacts seen in (c) to produce an im-
age similar to (b). Applying PSP and PSAP to the signal–plus–
noise–plus RFI covariance matrix results in Figures 9(d) and
(e) respectively. Figure (d) shows that conventional subspace
projection removes some interference since faint characteris-
tics of the desired image are beginning to appear. However,
SP-SAP results in (e) and more fully recovers the image with
no apparent evidence of RFI artifacts or corruption to the de-
sired signal. It is a close match to (b).

The mean squared reconstructed image error, with respect
to signal–only Figure 9(b), was computed for the RFI–plus–
noise imaging cases. When no RFI canceling was used as
in image (c), mean squared error per pixel was ε2

(c) = 190.9.
With the conventional subspace projection of image (d), ε2

(d) =
64.5. With the proposed SP-SAP algorithm, error in image
(e) dropped dramatically to ε2

(e) = 0.372.

7. CONCLUSIONS

In the growing presence of RFI, sensitive synthesis array
instruments will need to rely on methods other than flag-
ging. The simulations presented above show that SP-SAP on
large synthesis arrays can improve RFI mitigation on the or-
der of 9 dB as compared to conventional subspace projection
across the entire array. Future work could show that other
array-based spatial filtering algorithms such as oblique pro-
jection (Behrens & Scharf 1994; Hellbourg et al. 2012) and
cross subspace projection (CSP) (Jeffs et al. 2005) can bene-
fit from subarray processing. For example, in CSP, auxiliary
antennas improve INR levels and help achieve better RFI mit-
igation because there is a more accurate representation of the
interference parameters (Jeffs et al. 2005; Sardarabadi et al.
2016). CSP can then benefit by using subarray processing
and designating one of the array elements in a subarray as
the auxiliary to improve RFI cancellation.

Assumptions made in this work, such as known arrival an-
gles for interferers and correlator dump abilities for STIs are
not unrealistic. The interference arrival angle θi is only used
to determine the propagation vector that determines the ef-
fective phase propagation ψm for subarray formation. For
any satellite or fixed ground-based signal, the arrival angle
θi is known to high accuracy. Even modest errors in θi still
yield effective cancellation. Unless the angle of arrival for
the interferer is geostationary θi will need to be updated reg-
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Figure 9. Synthetic imaging simulation comparing subspace pro-
jection and SP-SAP. (a) Original image phantom used to generate
the observed visibilities (covariance matrices). (b) Image recon-
struction with no noise or RFI. Artifacts are due only to the “dirty
beam” response of the array sample pattern in the (u,v) plane. (c)
Reconstruction in the presence of noise and a strong interferer with
INR of 10 dB. (d) Filtered image after applying conventional sub-
space projection to the entire array. (e) Filtered image after applying
SP-SAP to sub arrays. Interference is still very prominent in (d) as
only faint characteristics of the SOI are visible. SP-SAP better re-
covers the image in the presence of RFI.

ularly for each STI along with the calculation of subarray
partitions. In the past decade, hardware for correlator de-
signs have advanced such that many observatories can now
support dump intervals on ms time scales. This is valuable to
mitigate the effect of interferer motion. A correlator which
can support rapid integration dumps is already operational in
the VLA receiver. We recommend that a comparable system
be considered in the design of the ngVLA so that spatial in-
terference mitigation techniques such as SP-SAP can be uti-
lized. Projection-based RFI mitigation algorithms rely on an
eigenvalue decomposition, therefore, in the design of the cor-
relator, it is also important that the antenna self-power terms,
or the diagonal entries of R j be saved out by the correlator.

Spatial filtering techniques such as SP-SAP can be per-
formed offline as part of post-correlation image forming pro-
cesses. As has been shown, subspace projection techniques
can introduce a bias as part of the estimation process, how-
ever, that can be corrected for with known bias correction
methods (Leshem et al. 2000; Leshem & van der Veen 2000;
Raza et al. 2002; Jeffs et al. 2005). There is no risk of data
corruption with post-correlation processes because projec-
tions can be applied after raw visibilities have been saved.

ACKNOWLEDGEMENTS

This work was funded by the National Science Foundation
award AST-1519126 with support from the National Radio
Astronomy Observatory as part of the technical community
studies program for developing the ngVLA.

REFERENCES

Anonymous. 2013, Techniques for mitigation of radio frequency
interference in radio astronomy, Tech. Rep. ITU–R RA.2126,
International Telecommunications Union (ITU), https:
//www.itu.int/pub/R-REP-RA.2126-1-2013

Behrens, R. T., & Scharf, L. L. 1994, IEEE Transactions on Signal
Processing, 42, 1413

Black, R. A. 2017, PhD thesis, Brigham Young University
Black, R. A., Jeffs, B. D., Warnick, K. F., Hellbourg, G., &

Chippendale, A. 2015, in 2015 IEEE Signal Processing and
Signal Processing Education Workshop (SP/SPE), 261

Carilli, C. L. 2015, Next Generation Very Large Array Memo
Series, 1

—. 2016, Next Generation Very Large Array Memo Series, 1
Davidson, D. B. 2012, in ISAPE2012, 1279

Ellingson, S. W., Bunton, J. D., & Bell, J. F. 2000, in Proc. SPIE,
Vol. 4015, 400

Ellingson, S. W., Bunton, J. D., & Bell, J. F. 2001, The
Astrophysical Journal Supplement Series, 135, 87

Ellingson, S. W., & Hampson, G. A. 2002, IEEE Transactions on
Antennas and Propagation, 50, 25

Ford, J. M., & Buch, K. D. 2014, in 2014 IEEE Geoscience and
Remote Sensing Symposium, 231

Fridman, P. A., & Baan, W. A. 2001, Astronomy and Astrophysics,
378, 327

Hellbourg, G. 2015, in 2015 IEEE Signal Processing and Signal
Processing Education Workshop (SP/SPE), 278

Hellbourg, G., Weber, R., Capdessus, C., & Boonstra, A. J. 2012,
in 2012 IEEE Statistical Signal Processing Workshop (SSP), 93

https://www.itu.int/pub/R-REP-RA.2126-1-2013
https://www.itu.int/pub/R-REP-RA.2126-1-2013
http://dx.doi.org/10.1109/78.286957
http://dx.doi.org/10.1109/78.286957
http://dx.doi.org/10.1109/DSP-SPE.2015.7369563
http://dx.doi.org/10.1109/DSP-SPE.2015.7369563
http://dx.doi.org/10.1109/ISAPE.2012.6409014
http://dx.doi.org/10.1117/12.390468
http://dx.doi.org/10.1117/12.390468
http://dx.doi.org/10.1109/8.992558
http://dx.doi.org/10.1109/8.992558
http://dx.doi.org/10.1109/IGARSS.2014.6946399
http://dx.doi.org/10.1109/IGARSS.2014.6946399
http://dx.doi.org/10.1051/0004-6361:20011166
http://dx.doi.org/10.1051/0004-6361:20011166
http://dx.doi.org/10.1109/DSP-SPE.2015.7369566
http://dx.doi.org/10.1109/DSP-SPE.2015.7369566
http://dx.doi.org/10.1109/SSP.2012.6319860


12 BURNETT ET AL.

Hoppmann, L., Staveley-Smith, L., Freudling, W., et al. 2015,
Monthly Notices of the Royal Astronomical Society, 452, 3726

Indermuehle, B. T., Harvey-Smith, L., Wilson, C., & Chow, K.
2016, in 2016 Radio Frequency Interference (RFI), 43

Jeffs, B., Warnick, K., Landon, J., et al. 2008, IEEE Journal of
Selected Topics in Signal Processing, 2, 635

Jeffs, B. D., Li, L., & Warnick, K. F. 2005, IEEE Transactions on
Signal Processing, 53, 439

Jeffs, B. D., Warnick, K., & Li, L. 2003, in Acoustics, Speech, and
Signal Processing, 2003. Proceedings. (ICASSP ’03). 2003
IEEE International Conference on, Vol. 5, V

Kaveh, M., & Barabell, A. 1986, IEEE Transactions on Acoustics,
Speech, and Signal Processing, 34, 331

Kot, A. C., Lee, Y. D., & Babri, H. 1995, IEE Proceedings - Vision,
Image and Signal Processing, 142, 247

Landon, J., Jeffs, B. D., & Warnick, K. F. 2012, IEEE Transactions
on Signal Processing, 60, 1215

Leshem, A., & van der Veen, A.-J. 2000, IEEE Transactions on
Information Theory, 46, 1730

Leshem, A., van der Veen, A.-J., & Boonstra, A.-J. 2000,
Astrophysical Journal Supplements, 131, 355

Offringa, A. R., de Bruyn, A. G., Zaroubi, S., et al. 2012,
Astronomy and Astrophysics, 549, A11

Otto, A. J., Millenaar, R. P., & van der Merwe, P. S. 2016, in 2016
Radio Frequency Interference (RFI), 81

Raza, J., Boonstra, A. J., & van der Veen, A. J. 2002, IEEE Signal

Processing Letters, 9, 64

Sardarabadi, A. M., van der Veen, A. J., & Boonstra, A. J. 2016,

IEEE Transactions on Signal Processing, 64, 432

Sokolowski, M., Wayth, R. B., & Lewis, M. 2015, in 2015 IEEE

Global Electromagnetic Compatibility Conference

(GEMCCON), 1

Swindlehurst, A., Jeffs, B., Seco-Grenados, G., & Li, J. 2013, in

Academic Press Library in Signal Processing, 1st Edition., ed.

R. Chellappa & S. Theodoridis (Academic Press)

Taylor, G. B., Carilli, C. L., & Perley, R. A., eds. 1999, Synthesis

imaging in radio astronomy II (Astronomical Society of the

Pacific, San Francisco, Calif.)

Thompson, A. 1982, IEEE Transactions on Antennas and

Propagation, 30, 450

Thompson, A., Moran, J., & Jr., G. S. 2001, Interferometry and

synthesis in radio astronomy, 2nd edn. (Wiley, New York)

van der Veen, A. J., Leshem, A., & Boonstra, A. J. 2005, in The

Square Kilometre Array: An Engineering Perspective, ed. P. Hall

(Springer Netherlands, Dordrecht), 231

Vine, D. M. L., Johnson, J. T., & Piepmeier, J. 2016, in 2016 Radio

Frequency Interference (RFI), 49

http://dx.doi.org/10.1093/mnras/stv1084
http://dx.doi.org/10.1109/RFINT.2016.7833529
http://dx.doi.org/10.1109/TSP.2004.840787
http://dx.doi.org/10.1109/TSP.2004.840787
http://dx.doi.org/10.1109/ICASSP.2003.1199872
http://dx.doi.org/10.1109/ICASSP.2003.1199872
http://dx.doi.org/10.1109/ICASSP.2003.1199872
http://dx.doi.org/10.1109/TASSP.1986.1164815
http://dx.doi.org/10.1109/TASSP.1986.1164815
http://dx.doi.org/10.1049/ip-vis:19951849
http://dx.doi.org/10.1049/ip-vis:19951849
http://dx.doi.org/10.1109/TSP.2011.2177825
http://dx.doi.org/10.1109/TSP.2011.2177825
http://dx.doi.org/10.1051/0004-6361/201220293
http://dx.doi.org/10.1109/RFINT.2016.7833536
http://dx.doi.org/10.1109/RFINT.2016.7833536
http://dx.doi.org/10.1109/97.991140
http://dx.doi.org/10.1109/97.991140
http://dx.doi.org/10.1109/TSP.2015.2483481
http://dx.doi.org/10.1109/GEMCCON.2015.7386856
http://dx.doi.org/10.1109/GEMCCON.2015.7386856
http://dx.doi.org/10.1109/GEMCCON.2015.7386856
http://dx.doi.org/10.1109/TAP.1982.1142799
http://dx.doi.org/10.1109/TAP.1982.1142799
https://search.lib.byu.edu/byu/record/elee.978-1-4020-3798-6
https://search.lib.byu.edu/byu/record/elee.978-1-4020-3798-6
http://dx.doi.org/10.1109/RFINT.2016.7833530
http://dx.doi.org/10.1109/RFINT.2016.7833530

