
NOTES ON INTERNAL SOFTWARE DESIGN REVIEW MEETING
OF 18 DECEMBER 1992

Larry R. D'Addario
6 January 1993 OVLBI-ES MEMO

Attendees:
Ed Meinfelder, Doug Varney, Larry D'Addario, Bill Shillue (part

time), Dave Burgess -- Green Bank
Ron Heald, Ken Sowinski -- Socorro, by telephone

This was a very specialized review of certain critical
software design work done since the overal project CDR on October 15,
1992. It included the design of most internal data structures, the
station initialization code, the satellite geometry calculations, and
the schedule dispatcher.

The meeting followed fairly closely the agenda given in
Appendix A. Most materials presented as handouts or viewgraphs are
reproduced in Appendices B (Larry), C (Doug), D and E (Ed).
(Appendices are included only with hard copies of this report.)
Earlier drafts of these notes were reviewed by the participants.
Comments and explanations added by them after the meeting are given in
square brackets [...].

1. Development Plan and Schedule Larry

The overall structure of the control system was reviewed
briefly, with reference to a block diagram of the environment (Fig.
B-1) and the current top-level data flow diagram (B-2). The
development plan was presented as a Gantt chart (B-3), leading to
completion at the end of June 1993. It is expected that considerable
testing, debugging, and revision will be needed in the second half of
1993. Work to be reviewed at this meeting is restricted to that
scheduled to have been done since the CDR in October.

(Ken -- For the project as a whole, June of 1993 seems
optimistic, but possible if it is clear to all what is needed by that
date. I think the first two action items (see below) must be resolved
for this to be true.)

2. Internal Data Structures -- Doug

A. Monitor-related data.

Doug presented a design in which the monitor schedule, log
schedule, checking limits, and monitor data are combined into a single
structure rather than being separate. This structure is organized
first by module, then by MCB address within a module, then by
anomalies presently associated with a particular address (see vgl,
vg5, and Figure C-I in Appendix C).

The following concerns were raised during discussion.
(a) Ron - Does the monitoring/logging schedule need to be

dynamically changeable? [Reply by Larry: Probably not on short time
scales, but the whole thing will be kept in the Station Parameters
File, so different schedules could be loaded for different purposes,
e.g., test mode vs normal mode.]

(b) Ken - The plan to have the CHECK task and others access
previously-acquired monitor data is like the VIA, but not like VISA
(which allows each task to communicate on the MCB independently). The

Jan 12 08:58 1993 Software Design Review of 92/12/18 Page 2

plan to store monitor results as MCB data rather than in user units is
also unlike the VLBA.

(c) Larry - It is not clear how the checking limits can be
made to depend on the current station state. Also, the design does
not allow for interaction between the values at different MCB
addresses. (It was not clear during the meeting whether any need for
the latter exists, but the former is quite critical.)

[Ken - Some examples of error checks that require examining
more than one monitor point are: (1) For the VLA dewars, the quantity
(He supply pressure - He return pressure) should be within certain
limits. (2) Certain combinations of outdoor temperature and dewpoint
are interesting enough for checker to warn about it, like DP-temp and
temp.LE.O deg C. (3) In VLA terms, you might be interested in some
combination of Gated Total Power and Synch Detector voltages.]

(d) [Ken — The real issue here is discussed under E below:
whether to use the VLBA code or not. The answer to this answers the
first two action items and clearly sets what has to be done.]

B . Station Parameters
Straightforward structures were presented for the recorder

parameters, pointing correction parameters, and certain geometric
parameters like station coordinates and zones of avoidance.

Discussion:
(a) Ron - What utilities will be used to maintain the recorder

parameters? VLBA station software keeps copy of structure in binary
file, with a screen provided for loading, saving, editing. VLBA
correlator keeps data in ASCII file, using text editor to maintain.
[Doug - Our intention is to keep these in the same form as the VLBA,
so that the VLBA screen can be used to maintain them.]

C. Station State
Doug presented a design in which the state consists of file

position pointers for each of the two input files; an array of
integers representing the software state; and a linked-list of MCB
commands giving the last command sent to each valid address (vg3,
Figure C-2).

Discussion:
(a) Larry - It is not clear what would be recorded in the

"flags'* array.
(b) Larry - Which tasks will maintain this list? The DFD

shows it being maintained by DISPATCHER and INITIALIZE only. It is
important that the structure show the *desired* state of the station,
which is not necessarily the actual state.

(c) Larry - Some important information about the desired state
may not be expressible as values sent via the MCB, e.g. the overall
station mode, the orbit file in use, etc. These ought to be added to
the structure.

(d) Ed - The DISPATCHER should be able to specify the desired
state at a higher level than MCB commands.

(e) Ron - The design is not at all like the VLBA "observ"
structure, so it cannot be substituted for the latter in VLBA "set*"
and nget*" routines; thus, it seems that the latter routines must all
be re-written.

(f) [Ken - I almost wonder if it pays (in simplicity) to
include the full state for each line of the schedule file? By "line"
I mean a line in the ascii file representing the schedule. I am
suggesting a schedule format that allows you to know the full
station-state by examining one element in the schedule list. My
impression is that it takes very little information to characterize
the desired state of the station.] [Larry - I don't agree. The
command ("schedule") file needs to be flexible enough to allow

Jan 12 08:58 1993 Software Design Review of 92/12/18 Page 3

changing *parts* of the station, so we cannot specify the whole state
on one line. Nevertheless, the point that the station state structure
could be very simple may be valid.]

D . Access Rules
Doug plans that MONITOR will lock out access to the monitor

structure during updates by use of a semaphore (vg6). LOG and STATUS
will block on this semaphore, whereas CHECK will run only after being
triggered by MONITOR.

Discussion:
(a) Ken - Is it really necessary to control access in this

way? What harm will occur if, say, CHECK is running while MONITOR is
updating a value?

(b) Ken - If locking is needed, there are two other possible
methods: task priorities and time slicing. In the latter, each task
runs during an assigned interval so that access conflicts can't occur.

(c) Larry - What about the station state structure? For it,
an even more complicated specification is needed for exactly who can
modify it.

E. VLBA Code Affected
Doug presented a list of VLBA data structures and the VLBA

C-functions that depend on them (vg7). It appeared that nearly all of
this VLBA code would not be used in the present design. The idea of
the new design is to keep the executable code for monitoring and
station state maintenance completely generic (i.e., it does the same
thing for all modules and monitor points, and need not have detailed
knowledge of how anything works) and therefore simple, with all
necessary information about particular devices being kept in the data
structures. Thus, although large amounts of VLBA code would not be
used, the amount of new code required would be small. In spite of
this, Doug pointed out that most of the VLBA functions could still be
retained unchanged. [The idea here is that it would allow several
important "screen" programs to be kept for operator interfaces, using
the corresponding "get*" routines, even if the automatic system
operates completely differently and independently.]

Discussion:
(a) Larry - The design is more clean and elegant than that

used at the VLBA, but we have not really shown that the generic
organization and processing will be flexible enough for all the
hardware.

(b) Ron - Although it is admitted that the VLBA approach is in
some ways awkward, it has the advantage that it already exists and is
working.

(c) [Ken - I would suggest extending this so that MONITOR
consists of a collection of chk*() calls. Then CHECK is a byproduct
of MONITOR. The caller of the chk*() routines would then save the
stuff returned in any structure you choose for use by LOG, STATUS,
etc.] [Larry - CHECK could be a subprogram of MONITOR, as Doug has
planned, but not the other way around, as Ken suggests. We want the
flexibility to monitor and log things for which there is not presently
a checking algorithm.]

3. Initialization Task Design — Doug
The design involves copying station geometrical parameters,

recorder parameters, and pointing correction parameters from the
Station Parameters file to the appropriate structures; then copying a
list of MCB commands from the file to the station state structure;
then sending those MCB commands from the station state structure to

Jan 12 08:58 1993 Software Design Review of 92/12/18 Page 4

the hardware (vg2, vg2a).
Discussion:
(a) Larry - As noted earlier, it is not clear whether a set of

MCB commands can properly express the desired station state, so it may
also not be able to specify how to initialize the station.

(b) Larry - There needs to be a provision for recovery after
power failure. This needs a carefully crafted algorithm (see also
discussion under Schedule Dispatcher, below).

(c) [Larry - How do we know that the initialization was
successful? How are errors reported?]

(d) [Larry - Initialization of the addresses of MCB interfaces
has been omitted.]

4. Schedule Dispatcher Design — Ed
The design is described in Appendix D. The schedule file

[which should be called the "command file" in all our documentation
from now on, to distinguish it from the externally-supplied schedule]
is parsed according to a defined syntax, and then individual functions
are called to implement each command. The design allows for macros to
be defined and called, and for other command files to be referenced
for inclusion. The main use of the latter would be for the definition
of standard macros. The design includes provisions for special checks
for restart procedures when it is first activated.

Discussion:
(a) There was considerable discussion of the procedures for

restarting after a power failure. [Actually, this should be handled
within the INITIALIZE task rather than here.] The plan (from the
purple book) was to keep following the command file as long as UPS
power to the computer is retained, even though other hardware is off;
then to checkpoint the station state and file pointer just before
computer power is lost. Upon restart, station state and file pointer
are restored (if necessary), then the hardware is re-set into the
specified state, then (if necessary) the command file contents are
executed from the pointer to the present time.

Ken - Why not forget the checkpointing, just redo everything
from the beginning of file?

Larry - Maybe, but BOF may not be the beginning of a run, so the
state may not be well defined; it would be better to redo from the last
RESET, which might be BOF or might not.

We agreed to study this, and to implement whatever is
simplest, with the goal of achieving automatic recovery without
operator intervention.

(b) Larry - Which commands are primitive and which are
implemented as macros? In many cases, it could be done either way,
but some things *must* be primitive, and it would be good to have a
complete list of these.

(c) Ron - This seems to combine the functions of "ldsked" and
"newd" in the VLBA system.

5. Geometry Calculations — Ed
The design is described in Appendix E. Basically, a subset of

the JPL NAIF/SPICELIB software package will be used to read and
evaluate the satellite ephemeris file in real time. The satellite
position and velocity will then be transformed to local coordinates of
date using VLBA routines for precession, nutation and sidereal time,
plus knowledge of the geographical station location. This is then
transformed to the link delays and the pointing angles. Actually, the
link delays are needed for two slightly different positions at any
given earth station time, corresponding to the uplink and downlink,

Jan 12 08:58 1993 Software Design Review of 92/12/18 Page 5

and these must be found iteratively. Tests show that two iterations
are almost always enough, and that an accurate set of these
calculations should take only a few milliseconds. Furthermore, cubic
spline interpolation (in the two-way timing hardware) seems to be good
enough that the precise calculations are needed only every 10 sec or
so.

For extracting the satellite ephemeris, the plan is to port a
small portion of the JPL code from FORTRAN to C and to run it in real
time under VxWorks.

Discussion:
(a) Ken — Is it necessary to include corrections for polar

motion? Is it necessary to include diurnal abberation?
[I have looked into this a bit. The magnitude of polar motion

is only 9 meters. If you are happy lumping this in to a general
"station position error" than it need not be considered. The diurnal
aberration correction is not needed to point the antenna. I think I
have convinced myself that you do not need to consider this for the
distance calculation, so it too is not needed.]

(b) Ken — The plan to port some of NAIF from an interactive
to a real time environment, and from FORTRAN to C, seems similar to
the VLBA correlator's use of CALC. It might be valuable to learn the
details of how they did it.

(c) Ken — If the precise calculations are needed only every
5 to 10 sec, then perhaps they can be done off-line, avoiding the
problem of porting SPICELIB to the real time system. [If these
calculations are done in real time, then consider splitting them into
two tasks: a slow one to run every 10 sec, and a fast one to run at
16Hz (?) for interpolation.]

ACTION ITEMS:
1. Determine the additional effort required to implement code to
support the newly designed data structures. Note that the present
development plan assumes use of VLBA code for control of VLBA-type
devices, including recorder and formatter. Exactly which VLBA code
would need to be re-written? — Doug
2. Determine whether the Station State structure could be modeled
after the VLBA "observ" structure, and if so whether it could be close
enough to allow retaining of most hardware-specific VLBA code. — Doug
3. Create detailed plan for hardware initialization, including
default states of everything. — Doug
4. Decide algorithm for restart after power failure.
— Doug, Larry, Ed
5. Make a list of DISPATCHER commands that must be implemented as
primitives. — Ed
6. Study the VLBA correlator's porting of CALC to a real-time
environment, since there may be some useful parallels to our porting
of a portion of NAIF/SPICELIB. — Ed, Larry
7. Determine whether polar motion and/or diurnal abberation needs to
be included in the geometry calculations. — Larry

Dec 13 22:09 1992 reviewl.agenda Page 1 APiabix A
OVLBI Earth Station Project

Software Design Review Meeting, December 18, 1992

PREttaawaatf agenda:
(Times, in EST, are approximate and include discussion.)
1100-1110 Software Development Plan and Schedule L.
1110-1150 Internal Data Structures Design D.

A. Description of structure contents:
Station state
Monitor data
Monitor schedule
Logging schedule
Monitor limits
Poining parametrs
Recorder parameters

B. Rules for modifying and accessing by tasks
C. Implications for VLBA code porting:

— VLBA modules affected
— modifications required

1150-1215 Initialization task design D.
1215-1300 -- Lunch Break --
1300-1330 Geometry calculations E.

A. Satellite orbit processing: NAIF routines
— description
— timing tests
— accuracy tests

B. ES location: precession, etc.
C. Offline software design [if any]
D. Realtime software design

1330-1400 Schedule dispatcher design E.
A. Command file syntax
B. Initial command set description
C. Realtime dispatcher task design

D'Addario
Varney

Varney

Meinfelder

Meinfelder

NRAO OVLBI PROJECTS

6(lee.fJ 6A(J« 0\!XJSI EAfflU STATIO'J: hAoniTtft AtJb OOrSffUl 0\/ElZV\'QJ

To/p«*rt
Auc SfAJiatJ
fl/i/zi>u//i/ze

PEAL-TlMt
CorJTlUL
CartPifTe(Z_
(Obity.)

CD U>cAL*
COMS& lE
6441 *s7£MAiJGe OfiSCXJ

Cte&uSAt*!* FiSefi ofrtc LAiJ

Looiu
TH6K

TlLCS

5£fJ£DlA£) Mo^|T0& L06*j
0&6)T~ PUASZ flj&lbUALS

ofcn/rroft;5
£OlM£OLG

(<$g C&JT/lA l
CcnJT7U>\. faort)

\!A(L\bOS
C0rtfu7€(l£

fortfose
CortPirfEd

n

VJO&DUlBir
♦ JiJTEifZiOCr

SSJUEWE.OF EvGfî STATUS FILE tlJE^-RT)
D̂ filT l>ffrA TlMft Md.ti.Tl0M5")

Dolfteit b/TTA /

- L/2D ^02l<?

8
'K

Kj
tP

&y
v'

7*
«0'

7
'
d

Schedule Nate : Software — 6B earth stationResponsible : D’Addario £T - g „ 7
fls-of Date : 18-Dec-92 Schedule File : SOFTWARE $

End
Task Naae Resrc Stat Date
NAIF tests EH l2-Nov-92
Organize code DV 4-Nov-92
DSP conference OV 9-Nov-92
Finish ACU screens OV 20-Nov-92
Geoietry/D EM 7-Dec-92
Data structures DV C 4-Dec-92
Initialize Task/0 OV C 23-Dec-92
Dispatcher vl.O/D EM C 14-Dec-92
Decide oroit calc aetho EM, L0 7-Dec-92
Dispatcher vl.0/1 EM r 28-Jan-93
Monitor Task/0 OV C r 8-Jan-93
Design Review il L0 C 18-Dec-92
Initialize/I DV r 12-Feb-93
Decoder Screen/0 EM 12-Jan-S3
6eoaetry-tap/l EM r 11-Feb-93
Check Task/D DV C r 22-Jan-93
Clock task DV C r 5-Apr-93
Dispatcher full/I EM r 26-Apr-93
Pointing Task/0 DV C r 15-Jan-93
Doppler pga/D EH 22-Mar-93
TUT protocol specified L0 C 1-Mar-93
TWT Task/D LD 8-Mar-93
DeltaT interface LD C l-Har-93
Del taT pga/D DV C 22-Mar-93
Doppler interface LD C l-Har-93
Decoder protocol specif RH C 2-Mar-93
Decoder Control/D EM r 29-Mar-93
Software Review 12 C l-Apr-93
DeltaT pga/I DV C r 19-Apr-93
Doppler pga/I EM r 12-Apr-93
TWT Screen/D DV, LD r 25-f eb-93
Pointing Task/I OV r 22-Feb-93
6eoaetry/I EM r 26-Feb-93
Monitor Task/I DV C r 26-Apr-93
Log Tasks/D OV C r o-flay-93
Check Task/I DV C r 17-Hay-93
Sched interface LD C 3-May-93
Sched converter/D EM C 24-Hay-93
Log Tasks/I DV C r 1-Jun-S3
Sched converter/I EM C 8-Jun-93
TWT Task/I DV C r 15-Jun-33
Decoder/I EM C r 22-Jun-93
TWT Screen/I DV C r 22-Jun-93

92 93
Oct Nov Dec Jan Feb Mar Apr Nay Jun
26 9 23 7 21 11 25 8 22 1 15 29 12 26 10 24 7 14

ii
mi,
mum

mi
mi
in

Lh h

am.

■■i Detail Task ===== Suaaary Task ,MM Baseline
» ■ (Progress) ===== (Progress) »> Conflict
■■— (Slack) ===— (Slack) ..H29 Resource ael ay
Progress shows Percent Achieved on Actual M Milestone
---------- Scale: 2 flays per character -----------
TIME LlNc uantk Cnart Report. Scrip 1

Mon Dec 21 08:23:05 1992 vgl Page 1 A M & D M C

ViewGraph :: MONITOR DEPENDENT DATA

#define NULL 0
tdefine VALID_ID 1
#define ANALOG 0
#define DIGITAL 1
tdefine ACU_ID 0x00 /* antenna control unit */
#define X_RCVR_ID 0x05 /* X-band receiver */
tdefine Ku_RCVR_ID 0x07 /* Ku-band receiver */
#define PM<I 0x15 /* Round Trip cable phase monitor */
#define Maser_ID 0x16 /* H-maser */
#define Weather_ID 0x18 /* weather instruments (VLBA address)
#define Synthl_ID OxFO /* ES synthsizer : 7-16 GHz */
#define Synth2_ID OxFl /* : 8.6-9.4 GHz */
tdefine Recorder 1_ID 0x2A /* tape recorder 1 */
tdefine Recorder2_ID 0x3A /* 2 */
tdefine TWT ID 0xF2 /* two way timing unit */
tdefine FORMATTERl_ID 0x2C /* formatter 1 */
tdefine FORMATTER2_ID 0x3 C /* 2 */
tdefine MPts 13 /* number of monitor points */
tdefine MaxPts 0x7 F /* maximum available h/w units */

ID_list :: 'enumerated' list for hardware ids, used in monitor_set record
Devpts :: each device on the MCB has a number of monitor points, specified

in Devpts, for each device
Msked :: the monitoring schedule can be different for each monitor point

within a device, the data in Msked is for all points on the MCB
that will be monitored, and is loaded into the general list.

Lsked s: retains the logging interval for each monitor point specified
in Msked

Llimits :: all monitor points have a window of acceptability, the Llimits
are the lower bounds for a given point that returns an analog
value.

Ulimits :: is the upper bounds for the analog limits
Ptype :: contains the monitor point type, (analog:0)I(digital:!)

Mon Dec 21 08:23:05 1992 vg2 Page 1

ViewGraph :: INITIALIZATION TASK PDL#1

TASK Init — initialize the station, start tasks
task_list = {SCHEDULE_DISPATCHER,

SATELLITE_TRACKING,
MONITOR
LOG,
STATUS
TWO_WAY_TIMING }

SEQ : :
counter IS 0semXCreate Sem_lsec, Sen_16persec
LOOP

IF counter <> MAX_IDS
CALL fill__station__parms

OTHERWISE
EXIT END_LOOP

CALL fill_station_jnonitoring__pts
CALL setup_hardware
CALL spawn_tasks(task_list)

END_TASK Init

Mon Dec 21 08:23:06 1992 vg2a Page 1

ViewGraph :: INITIALIZATION TASK PDL#2---------------------------------

FUNCTION f i1l_stat ionjmonitor ing_pts — fill the monitor/log structure
— req : Amonitor__record, index i

SEQ : : offset_address IS offset.i
monitor_time IS iQ_sked.i
log_time IS l_sked.i
ON f irst_in_listnumber_monitor_points IS device_points.i
IF analog

type IS #analog upper_bounds IS upper.i
lower_bounds IS lower.i

OTHERWISEtype IS #digital
bit_map IS bits.i

terror IS #NULL
RETURN monitor.record

END_FUNCTION fi 1 l_stat ion_monitoring_pts

FUNCTION read_file_into_parameters — read the station params into mem
SEQ : :

LOOPREAD file(station_parameters)
WRITE TO_tape_recorder_parameters_record
WRITE TO_antenna_pointing_paramters_record
WRITE TO_station_state
IF EOF
EXIT END_LOOP

END_FUNCTION read_f ile_into_parameters
FUNCTION setup_hardware — initial hardware setup
SEQ : : LOOPFROM station_stateMCB (ID, command_.f ron^stat ion_state)

IF EOS
EXIT END_LOOP

Mon Dec 21 08:23:07 1992 vg3 Page 1

ViewGraph :: STATION STATE STRUCTURE

typedef struct reinstate
(int relative_address, /* offset from ID */

commanded__value; /* last command sent to the device */
struct hardware_state *next; /* next address and its 'state' */

} hardware__s tat e;

typedef struct state
£ int sked_filePosition, /* event rec pos in schedule file */

orbit_filePosition; /* event rec pos in orbit file */

int flags[]; /* flag settings */
struct hardware__state *list; /* list for current hardware settings */

} station_jstate;

Mon Dec 21 08:23:07 1992 vg4 Page 1

ViewGraph :: MONITOR | CHECK I LOG SETTUP

/* ACU_ID */
/* X_RCVR_ID */
/* Ku_RCVR_ID */
/* RdTripMON_ID */
/* Maser_ID */
/* Weather__ID */
/* Synthl__ID */
/* Synthl_ID */
/* Recorder1_ID */
/* Recorder2_ID */
/* TWT_ID */
/* FORMATTERl_ID */
/* FORMATTER2_ID */

int Lsked[] = (1,4,
6, 6,6,6,6,
2.2.2.3.4.4.2,
4.4.4.4.4.5.5.5.5.5.5.4,
5.2.4,
5, 6,6,3, 6,5,3, 6,3,2, 4,4, 5, 6,3,3,
1.3.4,
4,4,4,3,2,3,
4.4.5.5.5.3.3.3.4,
1,4.4.4.5.5.5.2,
5,7,8,9
)?

int RelAd[] = {1,2,
0,0,2,3,5,
1,3,4,6,7,8,10,
2,3,4,6,7,8,9,10,12,13,14,16,
0,1,2,
0,2,3,4,6,7,8,9,10,11,12,13,15,16,17,19,
0,1,2,
0.1.2.3.5.7,
1,2,3,4,5,6,7,8,9,
1,0,4,5,6,7,8,9,
1,2,3,4
};

int Msked[] = { 1 , 4 ,
5 ,
6 , 2 , 4 , 1 2 ,
4 , 5 , 6 , 2 , 6 , 8 , 8 ,
12 . 1 3 . 1 . 4 . 4 . 6 . 8 . 5 . 6 . 4 . 2 . 7 ,
1 , 3 , 2 ,
4 . 1 0 . 1 0 . 1 2 . 1 0 . 4 . 5 . 6 . 7 . 1 0 . 3 . 6 . 4 . 3 . 5 . 7 ,
5 , 3 , 1 ,
9 . 8 . 7 . 1 1 . 1 0 . 5 ,
2.6.1.8.7.2.7.4.7,
1 ,
1 . 7 . 2 . 4 . 2 . 7 . 6 ,
1 0 , 9 , 2 , 4

Mon Dec 21 08:23:08 1992 vg5 Page 1

ViewGraph :: MONITOR DATA STRUCTURE

typedef
{

struct error
long
int
struct

t ime__of_f ir s t_occurance error_value;
device_error *next;

7

} device_error;
typedef
{

struct spec
int NpointsPerDevice,

MonitorPointType,
relat ive_address,
monitor_schedu1e,
log__schedule;

/*
/*
/*
/*
/*

number addressable points, this ID
what is type of each point, AID?
relative address offset from ID
when to sample each point
and when to log it

float upper_limits,
lower_limits; /*

/*
monitor limits .. upper

.. lower
long bits; /* valid bit string
struct
struct

device_error *errnext;
device_spec *next; /*

/*
ptr to next anomaly record

} device_spec;
static struct
{ int

device_spec
device [MaxPts]; /* this point have an ID? (0:N, 1:Y)
p[MPts]; / ptr to device spec record

*/
//
*/
*/
*/
*/

*/
*/

*/
*/

} monitor_set;

Mon Dec 21 08:23:09 1992 vg6 Page 1

ViewGraph :: MONITOR

MONITOR TASK

CHECK TASK

LOG TASK

STATUS

concerns

DATA R/W ACCESS

— needs semTake, semGive

— can access after MONITOR which provides trigger
1. needs to have no updates in progress

— will require that no updates be in progress
1. can make a copy or
2. use semaphores

— same as log

1. no access during read-modify-write
2. no read-write update
3. no write update

Mon Dec 21 08:23:09 1992 vg7 Page 1

ViewGraph ::

MONITOR DATA
OBS BLOCK
FLAGER

CHECK

TAPE
WEATHER

VLBA AFFECTED MODULES & DATA

RECORD (monData)
(monitl)
(flager)

(loger, wrlog)
(wrlog}
(flager, loger, wrlog)

(checkfixed)(wrlog)
(checker) (checker, getfe, wrlog)
(checkmsg) (acu2, acuerr2, check, checkall, checker,

chkacustat2, chkclk, chkfmtstat, chkfrstat,
chkmic, chkrecstat, fmterr, fr, getacu2,
getcrut, cetfe, cetfmt, cdtfr, getmas,
getrec, getftm, getsw, getsyn, getwea,
recerr, setall, wrlog)

(tapevsn) (wrlog)
(weather) (check, chkmic, getwea, logboot, loger,

precip, rcmdd, screen, setrefr, setwea,
sn, wea, weamenu, weapwr, wrlog}

EQUIPMENT (equipm) (cfixEquipment, equisave, fecheck, recparm,
sta, usedisk, wrlog}

PtcoOE S-

BET

BTT"
prr

prr /
prr

spcr spcr spec spcr

F H

prr
prr—

spec- spet

F H

bpec

prr
prr

prr prr
n

spec spec spec spec

I

1

F U o f Z e &-Z.

1

APfotom 2>
II. Schedule Parser

A. Explanation of the Schedule Parser
The schedule parser is the driver for the user interface of the
Earth Station. The user writes command in a file called a schedule
file. The Schedule File’s first command must be time stamped with
a UTC time. All following records may or may not have an
associated time. This associated time is the time at which the
command must be executed. All following commands that do not have
an associated time are assumed to be executed at the last
associated time.

Now commands are read in one at a time, the time is checked. if
the time has not yet come to pass, then the schedule parser will
wait until that time comes about.
B. Data Structures
Two major data structures are used to implement to features of the
Schedule Parser.
The first is the defines table. The defines table stores static
definitions. Any parameter that begins with an alphabetic character
where an numeric character was expected, will be looked up in the
defines table, if not found and error will be reported.
Defines table structure:
struct def_tab_node {

char symbol[13];
double value;
struct def_tab_node *next;

The second data structure is the Macro Table. The Macro Table
stores the text to be executed upon invocation of the macro. All
commands that do not match any known command are checked to see if
they are macros. Macros can be a list of commands of any number.
Macro table structure:
struct macro_txt_node {

char *text;
struct macro_txt_node *next;

struct def_tab node *define_table[26];

}
struct macro_tab__node {

char
struct macro_txt_node

}

symbol[13];
*next;

struct macro_tab_node *macro._tablef 26 1 ;

C. Startup
Upon startup the Schedule parser checks for existence of backup
state file that will determine what the next action is performed.
Is this needed, are any functions the *MUST* be performed in
sequence? on the level of the schedule parser? As it will only
have access to the current schedule file. If it has access to
multiple schedule files then this implies that the Earth Station is
either processing the file or retrieving it. Either function is
silly for a real time computer to be performing. This is true if
we have other computers to perform the tasks available. I just
don’t know anymore. A RESTART__NO may be needed to discard
previously performed actions.
D. Command Syntax
[<time>] COMMAND [<parameters> [...]]
In the above example the time is shown as optional. This is true
for all cases except the first record. The first record must have
a time associated with it. If the first record fails this criteria
then an error will be reported and the pass aborted.
<macro name>
ACQUIRE <timeout>

AUTOTEST
CALTONEOFF

CALTONEOFF

DATAMODE <TYPE>

FORMATTER
LOAD=<file name)

will execute a macro command.
Begin to attempt to automatically acquire
downlink signals from the satellite.
Includes execution of PEAKUP. Once
adequate signal is being received,
executes tracking pass initialization
sequence. If not accomplished in timeout
seconds, send alarm to the operator.
Performs station test sequences
End detection of test tones; write
results to a log.
End detection of test tones; write
results to a log.
Sets up the demodulator and decoder for
the satellite data datamode. Types
are RAO-2, VSOP, & TEST.
Setup the formatter
will load in an include file consisting
of any number of commands.

MACRO=<macro naine> will read in a macro command and store it
for later use.

MCB <address>=<value>

PEAKUP

RESET

RFMODE (RA J VSOP J TEST)

STANDBY

STARTUP

STOW

TAPE <parm> = <value>

TRACK <orbit file>

TRANSMITTER <power>

TWTMODE (RA|VSOP!TEST)

will write a datavalue to a specific
address on the MCB
Causes antenna pointing to be scanned
around the nominal position in order to
peak up on the satellite signal.
Computes the pointing error and applies
appropriate pointing correction until
next PEAKUP or RESET
will reset the Earth Station w/ defaults
Set switches in receiver and transmitter
to Radioastron or VSOP or test.

will stop antenna at present position and
set the brakes
Turn on power to antenna servo and cause
computer to take control. Ensure that
the brakes are set.
will place the antenna in the stow
position and set the brakes, tracking
computations will still continue
Sets recording headstack to given
position enable specified head groups for
writing. Starts tape motion at a given
speed, if speed is <= 0 tape direction is
reversed. Settable parameters include
speed, head position, and wenable.
Antenna must have been given a STARTUP
command prior to this command. Code will
be executed that releases the antenna
brakes.

Turn on the transmitter at a specified
power level. Frequency should have been
set up earlier. Zero or negative turns
xmtr off.
will set the two-way timing mode to the
correct value

E. Real Time Software Design

main routine {
open schedule.file
/* check and see if we stopped in the middle */

if (get__num_read_done() > 0)
read get_name_read_done() records from schedule.file

/* now parse the schedule file */
do_parse_file(schedule.file)

/* do_parse_file() is the main loop that will process the
schedule file, one record at a time

*/
do__s&iS£u.e_f ile(FILE) {

/* while there are still records to be read from FILE */
While (FILE) {

read a RECORD from FILE
remove white space from record
get time for command

if (no time and first record) {
log error
quit

}
while (time of command < current time)

wait on 1HZ semaphore (signaled by timer process)
/* parse that command and execute it, checking return

value if there was an error log that error
*/

if ((error = command_parse_exec(cur_token)) < 0) {
sprintf(err_buf,"on line %i in the file %s\n",linenum

,SCHEDULE_FILE);
error_message(error,err_buf);

}
}

do_reset() will reset all default station parameters
syntax:

[<time>] RESET
*/
do_reset()
{

log command action
get default station parameters from default file
send out default parameters for TAPE DRIVES via MCB
send out default parameters for SYNTHESIZERS via MCB
send out default parameters for DEMODULATOR via backplane
send out default parameters for TWT via MCB
send out default parameters for DECODER via MCB
send out default parameters for ANTENNA via MCB

/*
do_load() will load in an include file consisting of any number
commands.
syntax:

[<time>] LOAD=<file name>
*/
do_load()
{

parse out filename argument
load_include(FILENAME);

}
load_include(FILENAME)
{

open (FILENAME)
do_parse_file(FILENAME)

}

do_macro() will execute a macro command.
syntax:

[<time>] <macro name>
*/
do_macro(MACRO_NAME)
{

lookup macro name in macro table
if (no such macro)

return an ERROR
retrieve MACRO BUFFER from macro table
mb_ptr points to MACRO BUFFER
l__ptr = line_buffer
while (*mb_prt != ’NO*) {

while (*mb_prt != (*\0 * OR *\n*))
l_ptr++ = *mb_prt++;

get command cur_token from line_buffer

/*

/* parse that command and execute it, checkins return
value if there was an error log that error */

if ((error = command_parse_exec(cur_token)) < 0) \
sprintf(err_buf,"on line %i in the file %s\n",linenum

,SCHEDULE_FILE);
error_message(error,err_buf);

}
}
log action

do__readmacro() will read in a macro command and store it for later
use.
syntax:

[<time>] MACRO=<macro name>
<macro text>
• • •

END MACRO
*/

do_readmacro()
{

parse out macro name
allocate an entry in the MACRO table
read a record of CURRENT FILE
while (record != "END MACRO") {

copy buffer to new record, hash_loc(macro name) in table
read CURRENT FILE record

}
log action

}
/*
do_twtmode() will set the two-way timing mode to the correct value
syntax:

[<time>] TWTMODE=(RA|VSOP{TEST)
*/
do_twtmode()
{

parse out mode argument
if (mode == "RA")

do whatever it takes;
else if (mode == VSOP)

again do what ever it takes
else

set test mode default parms
log action

/*

}

/*

do_autotest() Performs station test sequences
syntax:

[<time>] AUTOTEST
*/
do_autotest()
{

/* test diagnostics are as yet unspecified */
force checker to check all values now and report
log action and result

}
/*

do_standby() will stop antenna at present position and set the
brakes
syntax:

[<time>] STANDBY
*/
do_standby()
{

acu_BRAKES_ON();
disable satellite geometry module from sending out any
pointing commands
log action

}
/*

do_stow() will place the antenna in the stow position and set the
brakes,

tracking computations will still continue
syntax:

[<time>] STOW
*/

do_stow()
{

acuSTOW();
}

do—acquire() Beg to attempt to automatically acquire downlink
signals from the satellite. Includes execution of PEAKUP. Once
adequate signal is being received, executes tracking pass
initialization sequence. If not accomplished in timeout seconds,
send alarm to the operator.
syntax:

[<time>] ACQUIRE <timeout>
*/
do_acquire()
{

parse out TIMEOUT
convert to a time
fork off satellite geometry module
fork off acquire_signal(TIMEOUT)
log action

}

/*

acquire_signal(TIMEOUT)
{

signal.acquired = FALSE
while (!signal.acquired)

do_peakup()
log action

}
/*

do_peakup() Causes antenna pointing to be scanned around the
nominal position in order to peak up on the satellite signal.
Computes the pointing error and applies appropriate pointing
correction until next PEAKUP or RESET
syntax:

[<time>] PEAKUP
*/
do_peakup()
{

acuPEAKUP()
If (the signal was acquired)

signal.acquired = TRUE
log action

}

/*
do_mcb() will write a datavalue to a specific address on the MCB
syntax:

[<time>] MCB <address>=<value>
*/
do_mcb()
{

parse out ADDRESS
parse out VALUE
set up and MCB.message
mcbio(MCB.message, sizeof(MCB.message))
log action

}
/*
do_rfmode() Set switches in receiver and transmitter to Radioastron

or VSOP or test. Not too complex.
syntax:

[<time>] RFMODE (R A »VSOP|TEST)
*/
do_rfmode()
{

parse out MODE
set receiver, via MCB to MODE
set transmitter via MCB to MODE
update checker’s structure that tracks RF MODE settings
log action

}
/*
do__datamode() Sets up the demodulator and decoder for the satellite
data datamode
syntax:

[<time>] DATAMODE (RAO 1RA1!RA2!VSOP|TEST)
*/
do_datamode()
{

parse out DATAMODE
set demodulator to DATAMODE
set decoder to DATAMODE
update checker’s structure that tracks DATAMODE settings
log action

}

do_transmitter() Turn on the transmitter at a specified power
level.

Frequency should have been set up earlier. Zero or negative
turns xmtr off.

syntax:
[<time>] TRANSMITTER <power>

*/
do_transmitter()
{

parse out power
if (power < 0)

turn off transmitter via MCB
turn on transmitter at specified power via MCB
log action

}
/*
do_caltonon() End detection of test tones; write results to a log.
syntax:

[<time>] CALTONEOFF
*/
do_caltoneon()
{

parse out all channel-frequency pairs
write out value to the MCB to begin detection at for each pair
log action

}

/*

/*
do_caltoneoff() End detection of test tones; write results to a
log.
syntax:

[<time>] CALTONEOFF
*/
do__caltoneof f ()
{

write out the correct values to the MCB to end detection
log action

}

do_startup() Turn on power to antenna servo and cause computer to
take control. Ensure that the brakes are set.

/*

syntax:
[<time>] STARTUP

*/
do_startup()
{

if {antenna.control != COMPUTER) return;
acuSTARTUP()
log action

}
/*
do_track() Antenna must have been given a STARTUP command prior to
this command. Code will be executed that releases the antenna
brakes.
syntax:

[<time>] TRACK <orbit file name)
*/
do_track()
{

if (antenna.control != COMPUTER) return;
if (startup_done == TRUE)

exec brake release code by Doug Varney
log action

else
log error

}
/*
do_tape() Sets recording headstack to given position enable
specified head groups for writing. Starts tape motion at a given
speed, if speed is <= 0 tape direction is reversed.
syntax:

[<time>] TAPE SPEED=<ips> HEADPOSN=<microns> WENABLE=<abcd>
*/
do_tape()
{

parse arglname, arglval
parse arg2name, arg2val
parse arg3name, arg3val
get SPEED, HEADPOSN, WENABLE
call init_com() /* VLBA initial communications */
call speed(unit, SPEED) /* from VLBA code, set speed */
call rec__out() /* set headposn */
call rec_out() /* set WENABLE */

do__formatter() Setup the formatter
syntax:

[<time>] FORMATTER <?> [<?> ...]
*/
do_formatter()
{

/* ? */
>

/*

I. Satellite Geometry Software
A. Description

The satellite tracking software that runs on the Earth Station
tracks the spacecraft by accessing ephemeris data supplied by JPL.
The ephemeris data will be supplied in an SPK (Space Planet Kernel)
file. The SPK format is used by SPICELIB, a FORTRAN library that
is part of the software package called NAIF also supplied by JPL.
NAIF, given ephemeris data, can perform many different types of
calculations for the object of the ephemeris data. One such
calculation is the position and velocity of the target body
relative to another body.
The NAIF algorithms were not designed with real-time in mind. If
the NAIF software package was used as is, it would have to be as
offline software used before the pass producing a data file many
times larger than the original ephemeris data file. For this
reason, the iterative algorithms that determine the position and
velocity of the spacecraft will be rewritten in C and performed in
real time.
B. Timing Tests

Timing tests were performed with the NAIF software as shipped from
JPL. The software was run "as is" on a SPARC IPC that had a "low"
load average. A total-of one thousand calls were made to SPKPV(),
a SPICELIB routine that simply evaluates the ephemeris data for a
given ephemeris time. The average time for a call to SPKPV() was
0.1240E-02 seconds.
C. Accuracy Tests

Cubic spline interpolation was performed over the entire orbit
repeatedly to find the maximum interval at which approximation
could be performed using a cubic spline within IE-6 km (1mm).
Based in the sample data from JPL, the interval was found to be 13
seconds. The implication is that if the sample data is
representative of vsop’s orbit then, when tracking the satellite,
the NAIF evaluation algorithm for an SPK Modified Difference Array
File’s ephemeris data must be used at least once within a period of
13 seconds.

SPK File Format
File Header:

FILE ID: ’NAIF/DAF'
ND: 2 Double Percision Components
NI: 6 Integer Componenets

Record Header:
ET1: Begin time (1st DP Component)
ET2: End time (2nd DP Component)
TARGET: VSOP -71 (1st Int Compenent)
CENTER: EARTH 399 (2nd Int Compenent)
IRF: 4 (3rd Int Compenent)
TYPE: 1 (fixed) (4th Int Component)
BEGIN: Begin Adr (5th Int Component)
END: End Adr (6th Int Component)

Record Data:
a double percision array, 128 entries

E. Real Time Software design
Main Loop for Satellite Tracking
While (Tracking.On) {

wait on 16hz semaphore
for downlink & uplink time:

1- iteratively solve for time of Uplink/Downlink
2- get geocentric XYZ position of Satellite
3- get geocentric XYZ position of Earth Station
4- calc Azimuth & Elevation
5- add pointing corrections to Azimuth & Elevation

(from last peakup and station parameters)
/* point antenna to the spacecraft */
acuMOVE_TO(elevation, azimuth)
send Uplink, Downlink range & time to Two W a y Timing

(via pipe)
log Uplink, Downlink range & time to log file.

PDL for each of the 5 steps:

1 - iteratively solve for time of Uplink/Downlink
get current ephemeris time
get light time of current range, and use that

(+ for up/- for down) Tg
get position at Current time T (+/-) Tg
iterate until abs(T-Tg) < TOLERANCE

A - retrieve correct record from JPL SPK file by ephemeris
time

/* create index of end times */
/* done once at startup */
read file_header
i = 0
while not eof() {

read record_header
add 1 to i
time_index[iJ = record_header.end
read record_data
/* since we are initialing let’s clear the record cache
flag that is true iff we have the record in a cache */
record_cache[i] = FALSE
add 1 to num_recs

}
/* to retrieve the record */
target = <the desired time>
search time_index[] for TIMEi that is greater and return i-1
if record_cache[i-1] == FALSE

calculate record offset position in file
(header + recsize * (i-1))

read record header into ephem_buffer_struct
read data into ephem_data[]
record_cache[i-1] = TRUE

endif

B - evaluate record at ephemeris time (return XYZ & X*Y*Z*)
/* now we evaluate the double precision difference array

according to the black box by Fred Krogh @ JPL to return
the STATE vector. Here state, is defined: double state[6]
storing the position & velocity. The state is in the
J2000 coordinate system */

state = magic_black_box()

get geocentric XYZ position of Sat.

3- get geocentric XYZ position of Earth Station
/* Calculate the rotation matrix due to precession and

nutation using the prcesj2() and nutate() with slight
modifications the code. The code with modifications will
be in the function rotation_matrix(),
rot_pn will contain the new rotation matrix */

If (rotation matrix is old)
rot_pn[] = rotation_matrix()

/* s0[] contains the geocentric x,y,z position in J2000 */
/* v0[] contains the geocentric x,y,z velocity in J2000 */
sl[] = matrix_multiply(rot__pn[], s0[])
vl[] = matrix_multiply(rot_pn[], v0[])
/* sl[] will now contain the geocentric x,y,z position in local

coordinates */
/* vl [] will now contain the geocentric x,y,z velocity in local

coordinates */
/* now retrieve the local apparent sidereal time @ UTC

midnight */
t_las = times.1st.midnight
modify t_las to be local sidereal time

/* now convert Satellite State to geographical coordinates */
/* Let sl[] = (XI, Yl, Zl) and Let sg[] = (Xg, Yg, Zg) */
Xg = sg[0]; Yg = sg[1]; Zg = sg[2];
Xg = Xl*cos(t_las) + Yl*sin(t_las)
Yg =-Xl*sin(t_las) + Yl*cos(t_las)
Zg = Zl
sg[] = (Xg, Yg, Zg)
Xg = vg[0]; Yg = vg[1]; Zg = vg[2];
Xg = Xl*cos(t_las) + Yl*sin(t_las)
Yg =-Xl*sin(t_las) + Yl*cos(t_las)
Zg = Zl
vg[] = (Xg, Yg, Zg)
/* now lets calculate the vector from the Earth Station to the

Satellite. */
es[] = eg[] - sg[]
vr[] = 0 - (vg[])

4- calc Azimuth & Elevation

We have the Earth Station X1,Y1,Z1 & the Satellite X2,Y2,Z2
get the vector V = (X1-X2, Y1-Y2, Z1-Z2)
convert vector V from rectangular to polar coordinates

5- add pointing corrections to Azimuth & Elevation
(from last peakup and station parameters)
azimuth = azimuth + azimuth_correct
elevation = elevation + elevation correct

