
Jun 3 08:25 1993 Software Design Page 1

OVLBI-ES MEMO NO 1c32---
SOFTWARE DESIGN REVIEW OF MAY 1993 AND DOCUMENTATION STATUS

L. D'Addario
2 June 1993

I. SUMMARY OF THE SOFTWARE DESIGN REVIEW

A comprehensive review of the software design of the Green
Bank OVLBI Earth Station was held in May 1993, including a meeting on
May 13 that was attended by JPL representatives and by NRAO staff from
outside the project. The review included both the real-time and
offline software components, as well as all external interfaces. Not
all of the design was complete, with the main omissions being in the
offline software for output data; the latter has not yet been given
much attention, in view . of the obvious need to give higher priority to
input data processing and real-time control.

A large amount of progress had occurred since the limited
internal review of December 1992 (see OVLBI-ES Memo No 37) and since
the Critidal Design Review of October 1992 (see "Report on the
Detailed Design Phase," 29 Oct 1992). The top level design of both
offline programs for input data processing (the orbit data converter
and the schedule converter) is now complete, and some algorithms have
been prototned. The stru cture of the real-time control software is
now clear, with all internal data structures designed and each of the
major components (schedule dispatcher, monitor/checker, antenna
control, MCB communication, and timing) existing in at least a
prototype form. The precise ways in which the VLBA code can be reused
have been decided, and methods of code control have been adopted.

The details of the current design have been described in a
series of design documents, the current versions of which are attached
to this memo. Further information about our system of documentation
is given in section II, below.

The agenda of the May 13 meeting is given in Appendix A, and a
list of attendees is given in Appendix B.

Most of the discussion during the meeting concerned
clarifications of small details of the design. There were a few major
points made on general issues:
(a) There is concern about the continued lack of precise definition of
some external interfaces, including the global schedule (input) file
and the correlator timing corrections (output) file. The overall
design attempts to isolate these definitions as much as possible, so
that work on most of the system can proceed, but we are getting close
to the point where final definitions will be needed. [Ulvestad]
(13) We have not shown convincingly that the project can be completed
on schedule with the available manpower, which seems lean compared
with other software projects of similar scope. [Petrie]
(c) It would be helpful to have quantitative measures for gauging
progress, such as a count of new C functions required and completed.
[Petrie]

I want to thank Ron Heald of the NRAO staff in Socorro for
spending several days in Green Bank including this meeting, resulting
in valuable advise about the use of the VLBA code and the
establishment of more organized methods of code sharing; and Ken
Sowinski, also of NRAO in Socorro, for providing written comments on
the design documents. I also thank Bob Petrie and Jim Ulvestad of JPL
for attending and providing useful comments.

Jun 3 08:25 1993 Software Design Page

II. DOCUMENTATION SYSTEM
Here I want to summarize the existing and planned

documentation of the OVLBI ES software, and to provide information on
its availability outside the OVLBI group in Green Bank. Some of this
information applies to hardware design documentation also.

There are several levels of documentation being maintained
during development, as described below. In addition, a set of
Technical Manuals will be produced at the end of the project to
describe the "as built" system and provide for its maintenance. The
ongoing documents have the following characteristics:
A. OVLBI-ES Memo Series. This series consists of informal,
unrefereed contributions from anyone on subjects related to the design
of earth stations for orbiting VLBI. Each contribution is distributed
to a world-wide mailing list of those who have requested to be on it.
Contributions from outside NRAO are accepted, and the contents need
not be specific to the Green Bank station. The Green Bank staff
attempts to include in this series discussions of those aspects of our
design that are likely to be of interest to people outside our group.
Generally, these memos are *not* definitive descriptions of design
decisions 'and may include tentative results. Each contribution is
numbered and indexed. A separate mailing list is maintained for the
index only; this is intended for those who want to be kept aware of
results and who may request copies of certain issues, but who do not
need every one. Finally, the current index and most of the memos
themselves are available over the Internet by anonymous ftp; this is
done by running the ftp program on your own computer and connecting to

sadira.gb .nrao.edu (192.33.116.115)
with username "anonymous" and any password. You should then change
directory to "ovlbi/memoseries" and get the file README for further
instructions.
B. Design Documents. This is a more formal series of documents which
do represent definitive design decisions. They are specific to the
Green Bank OVLBI Earth Station. At present they cover only software
designs, but some hardware designs may be included in the future.
Although they describe a definite design as of their issue dates, they
are subject to change during development. For this reason and because
of their specialized nature, they are not automatically distributed
outside our group. Interested persons may request copies by sending
e-mail to the responsible development team member or to me
(ldaddari@nrao.edu). In addition, we intend to make copies available
by anonymous ftp to sadira (as above) in ftp directory "ovlbi/doc."
At the end of development, the final versions of these documents will
be incorporated into the Technical Manuals.
C . Technical Notes. This is a very informal memo series of mostly
internal technical information that we want to have recorded for
reference. It may consist of laboratory notes, test results,
memoranda of discussions on technical issues, and planning papers.
Again, these documents will not be automatically distributed outside
the Green Bank group, but copies will be sent to interested persons
upon request. However, the items will be numbered and indexed, and
the index will be available by anonymous ftp (as above) in ftp
directory "ovlbi/notes." The text of some memos may also be available
there, but it is not likely to be as complete as the other on-line
document sets.
D. Source Code. The most definitive documentation of the software is
contained in the code itself, in the form of commentary. All of the
code is accessible over the Internet, but making it available by

mailto:ldaddari@nrao.edu

Jun 3 08:25 1993 Software Design Page 3

anonymous ftp is considered too much of a maintenance burden for now;
besides/ making significant use of it would require more computer
privileges than we are willing to grant anonymously. Anyone outside
NRAO who would like access to these files can be given an individual
user account on the Green Bank computers.

jun 3 08:25 1993 Software Design Page 4

APPENDIX A: Meeting Agenda
GREEN BANK OVLBI EARTH STATION

SOFTWARE DESIGN REVIEW, 6 MAY 1993
AGENDA

0830-0930 Design Overview D'Addario
1. Top level requirements
2. Separation into real-time and non-real-time components
3. External interfaces (non-real-time components)
4. Real time control system

4.1 Operating system and environment
4.2 Hardware configuration
4.3 Top level data flow; internal data structures
4.4 Operator interface
4.5 Re-use of VLBA code

5. General issues: code control; schedule; current status
0930-1030 Input Data Processing

1. Orbit geometry calculations
2. Schedule conversion (off line)
3. Command dispatcher (real time)

1030-1100 (Coffee Break)
1100-1200 Real Time Control System -- Part I

1. Initialization
1.1 Normal cold start
1.2 Emergency shutdown and automatic restart

2. Timekeeping and task synchronization
3. Control functions that run as separate tasks

3.1 Orbit geometry data handling task
3.2 Antenna pointing control task
3.3 Two-way timing control task

1200-1300 (Lunch Break)
1300-1430 Real Time Control System -- Part II

4. Control functions that run as Dispatcher subroutines
Varney
Varney
D'Addario
Varney/Escof f ier
Varney

Varney
Langston
Langston
D'Addario

1630-1730 Software Demonstrations (at 45 foot antenna)

3.1 Tape Formatter and Recorder control
3.2 Front ends and downconverters control
3.3 Two-way timing system setup
3.4 Demodulator and Decoder setup

5. Monitoring, checking, and logging task
1430-1500 Output Data Processing

1. Status File (near real time)
2. Timing Corrections File
3. Doppler File
4. Log Files

1500-1530 (Coffee Break)
1530-1630 Questions and Discussion

Meinfelder
Langston
Meinfelder/Langston

Varney

Varney
D'Addario
D'Addario
D'Addario

Jun 3 08:25 1993 Software Design Page

APPENDIX B: MEETING ATTENDEES

Dave Burgess, NRAO
Mike Balister, NRAO (Charlottesville)
Larry D'Addario, NRAO
Ron Heald, NRAO (Socorro)
Glen Langston, NRAO
Edmond Meinfelder, NRAO
Bob Petrie, JPL
Bill Shillue, NRAO
Jim Ulvestad, JPL
Doug Varney, NRAO

APPENDIX C: LIST OF CURRENT SOFTWARE DESIGN DOCUMENTS

Author(s)

D'Addario
Langston
Varney
Langston
Varney
D'Addario
D'Addario
D'Addario
D'Addario

Title

"Software Overview"
"Off-line Scheduling Software"
"Initialize Function"
"Real-Time Command Dispatcher"
"Monitor and Check Task"
"Log Writer Task"
"Geometry Task"
"Pointing Task"
"Two-Way Timing Control Task"

Varney, D'Addario "Status Task"
Escoffier "Interface Protocol Between Decoder and Station

Computer"

(Copies of all of these documents are attached to this report
immediately following this page.)

Jun 2 21:58 1993 overview.doc Page 1

File overview.doc, version 1.1, released 93/05/09 at 11:08:53

GREEN BANK OVLBI EARTH STATION: SOFTWARE OVERVIEW
L. D'Addario
6 May 1993

1.0 EARLIER WORK
The software design of the Green Bank OVLBI Earth Station was

described in the preliminary design report of July 1991 [1] and the
detailed design report of October 1992 [2]. While some significant
changes have been made since these reports were published, the overall
structure and top-level requirements have been stable. Therefore,
some familiarity with this earlier work will be assumed here.

2.0 TOP LEVEL REQUIREMENTS
The software system must implement automatic operation of the

station oil the basis of two externally supplied files, one giving the
ephemeris of a satellite to be tracked and the other giving a sequence
of events (schedule) to be followed. In principle it is sufficient if
the schedule merely specifies the starting and ending times of each
tracking pass, the name of the satellite, and (in some cases) a number
specifying the satellite's operating mode; but we expect the actual
schedules to contain much more detail than this. The station then
produces several external outputs: a wideband data tape of
astronomical signals downlinked from the satellite; processed log
files containing records of events that occurred during the pass and
needed by various other mission elements, including correlators; a
satellite time correction file, needed by correlators; a file
containing integrated Doppler tracking data, needed by orbit
determination centers; and file that summarizes the current status of
the station.

Some processing of the external input and output files is
allowed to occur in non-real-time before and after a scheduled
tracking pass, and this processing may involve some manual
intervention. But during a tracking pass operation should be
completely automatic except for the scheduled changing of tapes.
Nevertheless, an operator will be on duty to deal with emergencies, so
the real time software must provide him with current status
information and must activate alarms in the event of serious
difficulties.

The external inputs and outputs must conform to interface
specifications that have been agreed upon by the relevant providers
and users, respectively, of the data. At this point, not all details
of these agreements are in place. Our present understandings and
assumptions are given in a series of NRAO specifications [3]. In
particular, the formats of the global Schedule File and of the
Correlator Input Log are completely unspecified, although we have a
good understanding of their main logical contents. The other
interfaces are rather well defined.

If either the wideband data link or one of the timing links
fails or has its signal-to-noise ratio drop below a predefined
threshhold, we say that a link dropout has occurred. The station is
required to respond to this automatically by following fixed
algorithms; generally, data recording continues to the extent
possible. If the lost signal is later restored, the station must
respond by executing a fixed recovery algorithm based on the type and

Jun 2 21:58 1993 overview.doc Page 2

duration of the dropout.
If commercial external power to the station is lost,

spacecraft tracking and data recording cannot continue. Nevertheless,
sufficient power will be maintained on critical circuitry to effect a
quick and orderly recovery when external power is restored. This will
be done by a battery-based uninterruptible power supply connected to
the station computer, computer communication (LAN) hardware, and
station timekeeping hardware. Upon restoration of power, recovery is
required to be automatic (without operator assistance). The station
computer must execute a fixed restart algorithm which includes
initialization of all hardware subject to the power loss, establishing
the station in the new desired state (not necessarily the same state
as it was in when power was lost), and acquisition of signals from the
satellite being tracked (if any).

3.0 OFFLINE VS. REAL-TIME SOFTWARE
Figure 1 gives an overview of the software system. Except for

the wide-band data tape (not shown), all external interfaces will be
implemented as electronic transfers of files over the Internet. (A
backup mechanism is also specified; see A34300N001.) For several
reasons, including a desire to keep the design of the critical
real-time software independent of the interface specifications, most
of the interface files will not be directly read or written during a
tracking pass. Instead, the input files Schedule and Predicted_Orbit
are processed by the offline programs SchedCo and Geometry to produce
internal files that control the real-time operation; and the output
files TimeResiduals and LogFile are processed by other offline
programs to produce several files needed by the other mission elements.

In addition to keeping the real time system independent of the
interfaces, this reliance on offline software components allows
several simplifications. For example, the processing of the internal
command file can be purely sequential, with no need for loops or for
looking ahead; any actions needed in preparation for future events in
the Schedule File can be inserted into the Command File by SchedCo.
Also, some of the output file processing may require data that is not
readily available in real time, such as the results of ionosphere
monitoring measurements used as corrections to the timing residuals.

4.0 REAL-TIME CONTROL SYSTEM
Figure 2 is a top-level data flow diagram of the real time

software system. Omitted from this diagram are tasks that provide
interfaces for a human operator, since these run only when requested
and then they run in parallel with and independently from the automatic
tasks.

4.1 Hardware Configuration
The Station Computer consists of a single-board VME computer

(Motorola MVME147S) with a 68030 processor, floating point
coprocessor, 16MB of RAM, and various I/O controllers. Most of the
earth station electronics -- including the receivers, transmitter,
antenna servo, and recording system -- are connected to the Station
Computer by a fast serial bus known as the VLBA Monitor/Control Bus
(MCB). This is accomplished through a VME "intelligent controller"
board (Motorola MVME331) that resides in the same VME chassis as the
CPU board and is driven across the VME backplane. There is one major
hardware module that is not connected via the MCB; this is the
Decoder, which is a special purpose digital signal processor
constructed on two VME cards that are also installed in the same
chassis as the station computer. The Decoder is therefore controlled

Jun 2 21:58 1993 overview.doc Page 3

and monitored directly over the VME backplane. Finally, two rather
simple (from the software viewpoint) pieces of commercial hardware,
not yet acquired, must be connected to the Station Computer, probably
through RS232 serial lines; these are the GPS timing receiver and the
Uninteruptable Power Supply.

The computer has access to disk file systems on other
computers in Green Bank via the fiber optic ethernet LAN, using the
ethernet interface built into the MVME147S. During operation, the
required input and output files will reside on a local hard disk (not
yet acquired) connected to the MVME147S via its built-in SCSI bus controller.

Several of the major electronics modules contain imbedded
microcomputers that give them significant local "intelligence." These
are the Two Way Timing subsystem (which uses a Digital Signal
Processor), the Formatter, the Recorder, and the Decoder. The
internal software considerations for these devices will not be
considered here.

4.2 Operating System and Software Environment
The Station Computer runs the VxWorks real-time operating

system. A' description of the features and characteristics of this OS
is beyond the scope of the present report, but the major points are
these: It is a multi-tasking system with excellent real-time
performance and predictable timing. Extensive support of TCP/IP
network functions is included. The system is single-user and supports
few development utilities in the target computer, since it is intended
that development work will be done using cross-compilers and debuggers
on a remote workstation. Extensive libraries of C-callable functions
are provided, including functions that conform to standard C and UNIX
conventions. Although much VxWorks code is similar to UNIX, there are
some major differences. The chief one is that all static and external
variables in VxWorks are global and available to all tasks, as is all
of physical memory. This makes real-time programming more convenient
and efficient than in UNIX, but it demands more discipline to avoid surprises.

VxWorks also includes a user shell program, which runs as its
own task. From the shell, object modules can be loaded and any of
them can be called for execution either within the shell's environment
or spawned as separate tasks.

4.3 Organization by Tasks
As Figure 2 indicates, the real time system is organized into

several separate tasks. Once spawned, these all run independently.
Here we give a brief and simplified description of the initialization process and of each task.

Initialization: At power-up, a boot ROM causes the VxWorks
kernel and shell to be loaded and a startup shell script to be
executed. The shell script loads all of our application code and then
calls the initialize() function. Initialize sets up certain internal
data structures, spawns the major tasks that must run continuously, then exits.

Timekeeping task: The first task, tic, provides global
timekeeping, it is activated by the OS at each system clock
interrupt, normally 64 times per second. This runs from a crystal
oscillator on the CPU board, but it is kept synchronized to absolute
UTC by separate interrupts from the maser-driven 1 Hz pulses. Tic
does two things: it maintains precise date, UTC, and local sidereal
time in a global structure; and it broadcasts two semaphores for
synchronizing the execution of other tasks. The semaphores are called

Jun 2 21:58 1993 overview.doc Page 4

slowSem, nominally issued once per second, and fastSem, nominally 16
times per second.

Dispatch task: This is perhaps the most complex task/ in that
it forms the master controller of the station. Its job is to execute
commands from the Command File at their scheduled times. These
commands include the setting up of all station hardware for a
satellite tracking pass. As events occur due to command executions,
Dispatch keeps track of the currently intended state of the station in
an internal structure, stationState. It also causes each event to be
recorded in the Log File.

Geometry task: This task reads the internal Orbit File and
calculates geometrical parameters needed for pointing the antenna and
for controlling the up- and down-link synthesizers of the Two Way
Timing subsystem. It passes the results of these calculations to
other tasks via an internal structure. Geometry is spawned by
Dispatch in response to a TRACK command, and runs each time that
slowSem is given.

Point task: This task computes the actual pointing angles of
the antenna and sends them to the antenna's servo via the MCB. This
includes applying the pointing correction model, with refraction. It
is spawned by Dispatch under a TRACK command, and it runs each time
that fastSem is given (nominally 16 Hz). Frequent execution is needed
to ensure accurate tracking. The angles computed by Geometry at less
frequent intervals are interpolated.

TWTControl task: Here the synthesizer phases for the two
way timing are computed and sent to that system's local processor,
based on range and range rate data passed by Geometry. In addition,
the measured down link phase residuals are collected and written to
the Timing Residuals File. This task is also spawned by Dispatch and
runs each slowSem.

MonChk (Monitor and Check) task: This is a rather complex task
that handles all monitoring of the station hardware, verification of
proper operation, and routine logging of measurements. It operates by
referring to an internal structure, monchkList, that specifies a
sampling rate and logging rate for each quantity of interest, as well
as the address of a function that will obtain the measurements from
the hardware and verify their correctness. When an anomaly is
discovered, an entry in an internal Anomalies array is updated and a
record is written to the Log File. Anomalies can have several levels
of seriousness, from "warning” to "emergency"; the more serious ones
also generate alarms to the operator. When an "emergency" occurs,
MonChk calls the shutdown() function, which puts the station into a
safe state and discontinues operation; if the emergency is later
cleared, MonChk calls the restart() function, which causes automatic
resumption of operation.

LogWriter: The actual writing of records to the Log File
requires a separate task since only one task can open a given file.
The records are passed to it via a message queue. Time stamps are
added, and they are written to the file on a FIFO basis.

Status: This task provide a near-real-time interface to the
station monitoring for external users. It runs about every 5 to 10
minutes at low priority. Its job is to take a "snapshot" of the
station's status by examining the stationState, Anomalies, and Monitor
internal data structures and producing an annotated summary as a
human-readable ASCII file. The file is written first to the real time
system's disk and then copied to another file system on a
publically-accessible computer.

Jun 2 21:58 1993 overview.doc Page 5

5 . 0 OPERATOR INTERFACE
We have adopted a set of operator interface routines written

for the VLBA station control system called SCREENS. This allows the
display on any VTlOO-type terminal of several "windows" into the
operation of the real time system. Typically/ an individual "screen"
allows the display and sometimes the control of elements of a
particular hardware module. Several "screens" can be run at once.
Each runs as a separate task and does not disturb operation of the
automatic control system described above.

We are using without modification many VLBA software modules
that implement screens for the Recorder and Formatter, and we will
adapt others for which we have similar hardware (e.g., front ends and
cryogenics). We are also using the underlying support routines common
to all screens, and this allows us to create new screens to support
earth-station-specific hardware like the Decoder.

6.0 CODE RE-USE
In addition to use of the VLBA screens package, a large number

of monitor and control functions can be used without modification.
These include especially those associated with the Formatter and
Recorder. Others can be used with slight modifications.

PREDICTED
0F-B1T
f i i e

<MA1F»

CEOHCTRY

Orbit Data 1
Conversion
P r o g r M 1

< XHTERNAL)
CROII FILE

SPACE­
CRAFT

EARTH STATION
HARDWARE

— aj;-------------

REAL TIME
CONTROL
COMPUTER

(INTERNET A CONNECTIONSJ

Cr««n Bank. MV USA
OVLBX Earth Station frojict

lltl«
SOFTMARE SYSTEM OVERVIEW

Silt)oc(MMint Nu*4>tr ;rv
B Sorc«d\topJf.Wia

M.u 7. 199JSU««t of

STATION PARAMETERS
— .. fQiOtXftll

A w point.

DATA FLOW ___
CONTROL FLOW.

____ GEOMETRY.DISPATCH, screens.

FUNCTION (not a task)□
DATA STRUCTURE

7
L - J

r
STATUSHUE

. (MCB).. r
cu DtviCcS: Antonna Formattor
r> Recorders I Front Enas

J 8-Way Tlmlnc j □•modulator ■ Downconvortc { Sat Simulate I Cryogenics ' Woathor ato
I____

(VME)

SYS CLOCK ZNT Hz^ ' 1 .
*T)..

CHASER XMTD
TIMES _■ Ip~nhn1)
A.u«ori: DISPATCH. POINT. MONCHKISPATCH. POINT. MONCHK. /'--------- " X

------------------------ \ FA3T SEMAPHORE \
f IS Hs /uaera: POIMT. MONCHK.

1 TIMING 1 RF-SIUUALS , F Jl.E

____ \Ht.OW S
1
SHMAPHOntM

Hr Jumorm: DISPATCH, GEOMETRY, TWT.

MM When INITIALIZE la callod from SHUTDOWN, it run* as a sepsrate taak while awaiting clearance of ensrgsncy conditions.
1 Oparator Intorfacs taska not shown.

National Radio Aatronony Obaarvetory
6raan Sank. Moat Virginia. USA

----- QfleiXIN0_VLRI_RAaT»l.aT&TlQN PSOJeCT(Title
REAL TIME SOFTWARE SYSTEM - OATA FLOW

Sizebocumant Number "
B | ___ \orcad\dataflow.dla---Potfli— I— _H«y_4 lJTIaaafedaVtT̂ 7 "~or'Z

Off-line Scheduling Software Design Document

1

Glen Langston

Draft 93 May 7

Overview

This document summarizes the off-line scheduling conversion (SchedC o) software for
converting the global schedule into the local commands used by the OVLBI GB Earth
Station real-time system. The major function of SchedCo is to select the global schedule
requirements relevant to the GB Earth Station and expand them into sequences of timed
commands for the real-time system. SchedC o will determine on which wrap of the azimuth
mount the antenna should start the observations. SchedC o will calculate the satellite
range during the tracking pass in order to estimate the appropriate receiver gain settings.
SchedC o will also generate commands for all station operations that are not specified in the
schedule file, including tests. The ASCII command file format is specified in the Command
DISPATCH design document.

SchedC o will output to the tape inventory database the serial numbers of tapes to be used
during recording and the tape status at the end of tracking. Another output of SchedC o is
a list of all significant events during an observation, such as tape changes, etc. This output
will be used by the operator and station manager to schedule their activities.

Design Philosophy

The schedule file format has not yet been determined, so in order to progress, a schedule file
format must be assumed. It is assumed the global schedule will not specify the details of the
operation of the GB Earth Station beyond a) indicating which satellite will be tracked, B)
the start and stop times for tracking, transmitting and recording, c) satellite events (tone
transmission, changing observing frequency and data rates), and D) destination (and format)
of down-link data. It is also assumed that one global schedule file may be provided for all
mission elements (stations, satellites and correlators), and SchedCo will select schedule
events relevant for the GB Earth Station. The details of the schedule file format should not
be important for the overall design of SchedC o .

Determination of the current status is an important input for creating the proper sequence
of real-time system commands. A SchedC o design goal is to allow user input of all station,
satellite and tape states, but the normal mode of operation will be to determine these states
from local databases. The scheduled status database will be updated by SchedC o . The
actual status will updated by the the real-time system, the tape inventory system and the
station operator.

OVLBI: Schedule Conversion Draft 93 May 7 Page 2

Times

It is assumed that all tracking station parameters (slew times, etc) will be unknown to
the global scheduling process. This implies that schedule start and stop times should
correspond to the successful begin and end of the relevant tracking, transmitting and
recording operations. SchedC o must schedule initialization, tests, and other preparations
(ie. tape movement) before scheduled start times.

The GB Earth Station specification A34300N002 requires that events be recognized with a
resolution of 1.0 sec; that is, events less than 1.0 sec, apart may be treated as occurring at
the same time. Further, events will be implemented with an absolute accuracy (relative to
UTC) of 0.1 second. The SchedCo processing of commands will be accurate to at least 0.01
seconds, in order to avoid compromising the design goal. Internally, all times will consist
of two components 1) mjd, the Modified Julian Day number, and 2) utc, the UTC time, in
units of radians (range 0 to < 2x).

Inputs

It is expected that several global schedule files will be input to SchedCo , and that SchedCo
will parse all files to create commands for the requested time period. User inputs to
SchedC o are a) the range of times for which commands should be generated, B) state
of the GB Earth Station at command start (usually “stow”), c) (optionally) the schedule
directory where schedule files are kept; all files are examined to determine commands for the
relevant period, D) (optionally) the list of un-available tape drives, E) (optionally) the serial
number of the tape for recording data, and f) (optionally) the satellite tracking parameters
(Keplarian orbital parameters). The user inputs are discussed in term.

A The schedule files are anticipated to contain plans for observations for long periods, but
SchedCo will create command files for any desired time period.

B Besides the GB Earth Station “stow” state, other states include “tracking VSOP” and
“tracking ASTRON” , to allow switching between satellites.

C The schedule file will be placed in a central directory before execution. The central
directory will be named $GBES_H0ME/schedules , where $GBES_H0ME will be a directory
name defined in the unix environment.

D Either of the two GB Earth Station VLBA tape drives can be used in a recording
session, but if a tape drive is not functioning, the other may be used. If only one drive
is functioning, different procedures will be executed during tape changes.

E The serial number of the tape for data recording will normally be chosen via tape
inventory software. This software will determine what tapes are available and whether
data may be written onto a partially filled tape. The SchedCo user may over ride this
software and specify the tape and start position on the tape.

F In order to determine the optimum azimuth “wrap” to start tracking the satellite, the
satellite azimuth and elevation as functions of time must be available to SchedCo . In
normal operation, functions of the GB Earth Station geometry/orbit software will be
used to access the orbit data (which uses the NAIF package). Optionally, the Keplarian

OVLBI: Schedule Conversion Draft 98 May 7 Page 3

orbital parameters for the satellite may be entered by the user to calculate the azimuth
and elevation. The geometry/orbit software is discussed in a separate Orbit Conversion
(ORBITCO) design document. The range to the satellite will also be calculated in
order to determine appropriate receiver gains. Sc h e d C o will minimize the number of
receiver gain changes during tracking passes.

The input schedule file is assumed to be an ASCII human readable file written in free format
(blanks, tabs will be correctly parsed). The schedule file will contain items tagged by time,
tracking station pointing location (orbit). It is expected that the schedule file will be fairly
terse. The types of schedule items are: 1
Track Start: Start tracking pass for specified spacecraft: causes the antenna to be pointed

and receivers to be tuned so as to be ready to *receive* signals from the spacecraft at or before the
specified time. Thereafter, acquisition of down-link signals will occur automatically, and all signal
normal processing will occur * except* that the up-link transmitter will not be turned on and the tape
recorders will not be started.

Transmit Start: Turn on up-link transmitter, begin transmitting timing reference signal, verify
acquisition by spacecraft, and begin recording two-way time residuals. When this has been
accomplished, perform timing initialization sequence.

Record Start: Begin wide-band tape recording of down-link data. Recording will actually begin
when valid data is being acquired or at the specified time, whichever is later. Thereafter, recording
continues until a ’’ Record Stop” event is specified, even if the data becomes invalid. Gaps in recording
may be caused by tape reversals and tape changes; such tape management issues are regarded as
internal to the ES and not part of the schedule file (however, such events will be logged by the ES and
will be known post facto).

Spacecraft Mode: Specify a change in the operating mode of the spacecraft’s receivers, digitizers,
or other parts of the pay-load. It is primarily a direction to the spacecraft controllers, but if this
information is available at the GBES it will be used to check the status bits in the down-link headers
against the intended state; if they disagree, that fact will be logged.

Record Stop: This does not imply any particular tape management other than stopping the
tape motion. Tracking and transmission may continue.

Transmit Stop: All transmission to the spacecraft will cease, although tracking and recording may
continue.

Track Start: ES is no longer assigned to track this spacecraft, and may do something else until
the next relevant event in the schedule file (including maintenance, tape changing, or sitting idle). It
will force ’’Transmit Stop” and ’’ Record Stop” if these have not already occurred. If a new ’’Track
Start” occurs first, then ’’Track Stop” is done automatically before starting the new pass.

Event Tone Start: The satellite will transmit a tone at a specified frequency. The GB Earth Station
will change mode in order synchronously detect this tone.

Event Tone Stop: Signals an end to satellite tone transmission mode and requires transition back
to normal GB Earth Station data processing.

Event Freq. Set: The satellite will set it’s frequency of observation to a specified frequency.

Tape Format: Several possible tape recording modes are allowed. The global schedule file must
indicate which mode is appropriate for each observation.

A hypothetical format is shown in table 1.
1In the schedule items list, “reasonable” default states are assumed. For example a tape format default for VSOP will

b* assumed if not specified. Also certain actions will be assumed; if record start is scheduled, but transmit start h** not,
transmission will not start. However, if track stop is encountered before transmit and record stop, transmit stop record
stop will be scheduled.

OVLBI: Schedule Conversion Draft 98 May 1 Page 4

UTC Time Station(s) Satellite Action Parameter
1993 April 13 1:05 GBES VSOP Tape Format < Parameters >
1993 April 13 1:00 GBES VSOP Track Start
1993 April 13 1:05 GBES Transmit Start
1993 April 13 1:10 GBES Record Start
1993 April 13 1:15 GBES Event Tone Start < Event Parameters >

1:20 Event Tone Stop
2:00 Event Tone Start < Event Parameters >
2:05 Event Freq. Change < Event Parameters >
2:05 VSOP Event Tone Stop
2:40 GBES VSOP Event Tone Start < Event Parameters >
2:45 GBES VSOP Event Tone Stop
2:50 GBES VSOP Record Stop

1993 April 13 2:40 DSN-X VSOP Track Stop
1993 April 13 2:55 GBES VSOP Transmit Stop

2:55 DSN-X Transmit Start
1993 April 13 3:00 Record Start
1993 April 13 3:00 GBES VSOP Track Stop
1993 April 13 4:00 GBES ASTRON Track Start
1993 April 13 4:10 GBES ASTRON Transmit Start
1993 April 13 4:15 GBES ASTRON Record Start
1993 April 13 5:55 GBES Track Stop

8:55 DSN-X Track Stop

Table 1: Hypothetical Schedule file, showing example values for elements.

OVLBI: Schedule Conversion Draft 93 May 7 Page 5

The S c h e d C o design assumes that if an element of a schedule file item is not included (ie
satellite or station), then the previous value is assumed. For example, in the hypothetical
Schedule file, the first 12 items axe assumed to refer to GB Earth Station. The first 17 items
refer to satellite VSOP and the last 5 items refer to Radio Astron.

The components of the Event Parameters are not yet know, but are assumed to be a list of
a fixed number of numeric values.

Outputs

For each schedule file, one output command file will be placed in the directory
$GBESJiOME/commands and given the name commands .<UTC DATE> . The <UTC DATE>
part of the name will correspond to the earliest command time in the command file. This
will typically be earlier than the times in the schedule file.

Also an operator summary of significant tracking station events will be placed in the directory
$GBES_HOME/operator . The file name will be operator.<UTC DATE> . The <UTC DATE>
will match the command file <UTC DATE> . The operator summary will note tape changes
and other activities which may require human intervention.

The output command file will be in human readable ASCII format. The command file is
specified in the command dispatcher design document. Commands will be optionally tagged
by a start time for the operation, or the time tag for the previous command will be assumed.
The command lines will be sorted into increasing time order. It is assumed that no command
in the file will be executed until its appropriate start time and the previous commands in
the file have been executed.

Command Expansion

The expansion of each of the schedule file item into a command file commands will involve
three steps a) determining the current tracking station state, b) a table “look-up” of required
command expansions and c) determining the times required to execute each command.

For each schedule item, a list of real-time system commands will prepared for each possible
station status. Each real-time commands have an associated timing structure. The timing
structure will consist of two parts; 1) execution time, the time required for the function to be
full filled, and 2) advance time, the time between completing execution and the time before
the command must be complete. The execution time is needed to allow proper sequencing
of commands. The advance time will allow certain commands to be completed well before
required start time, in case problems are detected during execution.

An example of a command needing a significant advance time is the tape test command,
this test will take only a few minutes to execute, but should be done well before (~ 1 hour)
recording, so that if problems occur, they may be fixed.

Most of the real-time system commands need very short times (< 1 second) for execution.
Commands requiring longer timer are certain formatter commands needing (~ 7 seconds)
and telescope movement commands. The telescope slew rate is 40°/minute and the worst
case azimuth movement from one wrap to another can require 9 minutes. (This also shows

OVLBI: Schedule Conversion Draft 93 May 7 Page 6

the importance of being on the correct antenna warp at the start of a tracking pass.)

Antenna Wrap and Satellite Range

The antenna wrap will be determined by a simple modeling method. Upon finding a tracking
start command, a wrap will be chosen and the azimuth and elevation will be calculated until
tracking stop command is found. If a wrap condition is detected during the pass, the alternate
wrap for start of tracking will be chosen.

During the modeling process, the range to the satellite will be calculated. From the range,
the received power will be calculated as a function of time. If the receiver dynamic range
exceeds tolerances, Sc h e d C o will schedule commands to change gains during a tracking
pass. The number of scheduled gain changes will be minimized.

Appendix A: Naming convention

It is proposed that all control files be kept in directories in a central directory
called $GBES_H0ME. Upon receipt, the schedule files will be placed in the directory
$GBES.HOME/schedules, and given names with the format schedule. <UTC DATE>. The
<UTC DATE> format for file names will be YYMMMDD. hh: mm: ss , where YY is the calendar
year and YY < 50 implies 20YY, MMM is a three character month (ie JAN) and DD is day of
the month. The Time format is HH:MM:SS and consists of HH integer hours (range 0-23), MM
integer minutes (range 0-59) and SS seconds (range 0-59). The command file for April 13,
1993 at 1:00 UTC would be named command.93APR13.01:00:00.

Jun 2 21:58 1993 initdesign.doc Page 1

File initdesign.doc, version 1.1, released 93/05/12 at 19:21:46

INITIALIZE DESIGN DOCUMENT
D . Varney

10 May 1993

1.0 OVERVIEW
1.1 INITIALIZE must set the initial schedules for logging and
monitoring of station hardware. A critical element of this routine
will be to recover from power failures of various degrees of severity.
INITIALIZE is also responsible for setup of the STATION PARAMETERS
structure and spawning the tasks that rely on semaphores (TIC,
DISPATCH, MONCHK, LOG_WRITER and STATUS).

2.0 DEPENDANCIES
2.1 This function is dependent on the STATION_PARAMETERS input
file.
2.2 The INITIALIZE function will be called from the boot script
and the SHUTDOWN function.
2.3 INITIALIZE will be passed a start parameter, either WARM_START
from MONCHK or COLD_START from the boot script.

3.0 DESIGN CONSIDERATIONS
3.1 It will be necessary to distinguish the following starting
conditions:

a. cold start after normal shutdown,
b. cold start after computer failure,
c. or warm start (e.g., station computer on battery).

3.2 The function must initialize the STATI ON__P ARAMETERS structure
and spawn all normal tasks including TIC, DISPATCH, MONCHK, LOG_WRITER
and STATUS.
3.3 A method of automatically restarting the station after an
automatic shutdown must be provided.

4.0 ALGORITHM DESIGN
4.1 In COLD_START mode, INITIALIZE copies station specific data
(including pointing correction coefficients, tape recorder calibration
data, and similar paramters) from the Station Parameters file to the
STATION_PARAMETERS structure, and it copies the monitoring and logging
intervals from the Station Parameters file to the appropriate
elements of the M0NCHK_LIST array. Then it spawns each of the station
operation tasks in the order TIC, MONCHK, LOG_WRITER, DISPATCH, and
STATUS. (The order is important because of the interdependencies of
these tasks.)

4.1.1 The STATION__PARAMETERS structure is globally accessible
and contains information required by several tasks the real-time
system. It will contain substructures station and tapeparm[] that
comform as closely as possible to the corresponding VLBA structures in
order to facilitate the porting of some VLBA functions.
4.2 In WARMLSTART mode, INITIALIZE assumes that all

Jun 2 21:58 1993 initdesign.doc Page 2

initializations have already been performed but that tasks DISPATCH
and LOG_WRITER have been killed by the SHUTDOWN function (running
under the MONCHK task) in response to detection of an emergency-level
error. INITIALIZE then enters a loop that repeatedly scans the
ANOMALIES array until it finds that emergency-level errors no longer
exist. It then restarts LOG__WRITER and DISPATCH, passing the
WARM_START parameter to DISPATCH.
4.3 The functionality of the INITIALIZE routines is described below.

function INITIALIZE(startup_mode)
IF COLD_START start from boot scriptread STATION__PATAMETERS file read the file and initialize

the STATION_PARAMETERS
memory structurestart tasks spawn startup tasks

TIC,
DISPATCH(startup_mode),
MONCHK,
LOG_WRITER,
STATUS

OTHERWISE -- if a WARM_START; computer up
but other hardware down,read ANOMALIES data get current error condition

WHILE (EMERGENCY condition) if EMERGENCY, thendelay one second allow other tasks to runread ANOMALIES data repeat error checkENDWHILE
CALL RESTART -- restart station operations

function RESTART -- resume station operation
resume tasks

DISPATCH (startup_jiode), wake up suspended tasks
LOG_WRITER

1

Real-Time Command D is p a t c h Design Document

Glen Langston

Draft - 93 May 7

Overview

This document summarizes the command dispatcher (DISPATCH) for the GB Earth Station
real-time system. The major function of DISPATCH is to read commands from the command
file and execute them at the correct UTC time. DISPATCH is started by the INITIALIZE
function. DISPATCH initializes many of the real-time system functions. DISPATCH initiates
the G e o m e t r y . P o in t and T w o W a y T im e tasks as well as TAPE functions. D ispa tc h
directly activates the formatter and tape drives. The antenna motion is directed both by
DISPATCH and P o in t . D ispatch directly activates motion to STOW the antenna and set
the breaks, while normal antenna tracking is performed by the POINT task.

Only the DISPATCH task will update the STATION_STATE structure which describes the
commanded state of the GB Earth Station. The M onC hk task compares STATION JSTATE
with the actual state of the GB Earth Station and logs discrepancies.

DISPATCH will not perform any direct output to disk files. If DISPATCH error conditions are
found, these errors are recorded via the Log WRITER task.

Design Philosophy

The DISPATCH design philosophy assumes that no control loops should be closed; if an
error condition is detected, DISPATCH should only raise error conditions and log them, but
continue executing the commands. DISPATCH will run independently of any input other
than the command file.

Times

The current station time is maintained in a global structure by the TIC task, and this
structure is used by DISPATCH to control the actual time of execution of commands. 1

The INITIALIZE function ensures that TIC is running, but D ispa tc h also checks that the
TIC task is running before beginning command execution. Internally, all times will consist
of two components 1) mjd, the Modified Julian Day number, and 2) utc, the UTC time,
in units of radians (range 0 to < 27r). DISPATCH checks whether to execute commands
at 1 second intervals, by taking the 1 Hz semaphore. Upon taking a 1 Hz semaphore,
DISPATCH executes all commands whose time has come. DISPATCH continues execution
until encountering a command whose time has not yet come. If a future time command is

1 D ispatch uses « x t« r a s t r u c t tin e a t in t s to determine the current time. The values in this structure are maintained by
the TIC task.

OVLBI: Command Dispatcher Draft - 93 May 7 Page 2

encounter, DISPATCH waits for the next 1 Hz semaphore before again checking whether the
time has come for the next command. If the time for the next command has not come,
no commands are executed and DISPATCH again waits for the 1 Hz semaphore. Note the
reliance on the 1 Hz semaphore implies that the time resolution in DISPATCH is limited to
1 second.

Inputs

The inputs to DISPATCH axe via command-line arguments and a command file. At startup,
the default action of DISPATCH is to search a (hard-coded) file for the name of the command
file for the current time. This command file is opened and the commands are executed until
end of file is reached. In order to change the command file used by DISPATCH, DISPATCH
must be halted and re-started. DISPATCH also takes the command file name as an argument,
to allow overriding the default command file name. If necessary, the antenna operator will
change the command file name by halting the DISPATCH task and restarting DISPATCH with
a new file name. It will be possible to restart DISPATCH via the SCREEN package.

DISPATCH is designed to allow recovery from three types of fault conditions; Cold Start,
Warm Start and Hot Start. These types of starts are described in the INITIALIZE design
document.

Each DISPATCH command file line can be thought of as having four components; a) optional
Date, b) optional Time, c) the command Name, and d) command Parameters. The Date,
Time, Name and Parameters are separated by blanks. One and only one command is on
each command file line. The input Date, Time and Name are case-insensitive and extra
blanks between these items are ignored.

Upon encountering a command without a Time, DISPATCH executes it immediately. Until
DISPATCH encounters a command with a valid Date, the time of the command is interpreted
as the time on the command line plus the time when the command file was opened. (Ie. the
times commands are relative to the time execution began.) Upon encountering a valid Date,
DISPATCH executes that and all following commands assuming the time on the command
line is exactly the utc time when the command should be executed. (Ie, it is an absolute
time.)

If the command has a time but no date, the date of the previous command is assumed. A
sample command file is shown in table 1. This command file INCLUDES a second command
file shown in table 2.

D ispatch contains one set of subroutines which parse the Date, Time and Name of the
command. Because different commands have very different parameters, the parameters are
parsed by a function specific to each command.

OVLBI: Command Dispatcher Draft - 93 May 7 Page 3

RESET
STARTUP
INCLUDE ./command.macros
AUTOTEST
SATELLITE VSOP
TRACK ./ORbit.File

93aprl3 20:30:00 ACQUIRE 100
PEAKUP

93aprl3 20:35:13 TRANSMITTER 0.857
CALTONE ON 1,3456 2,888 3,333

93aprl3 20:35:15 MCBWRITE ADDRESS=10001 DATA=42
MCBWRITE ADDRESS=10002 DATA=-5

93aprl3 20:40:00 TAPE SPEED=135 HEADPOSN=42 WENABLE=1111 DRIVE=1
93aprl3 23:30:16 TAPE SPEED=0
93aprl3 23:30:16 STOW

Table 1: Sample of a simple command file.

MACRO RA-MODE
RFMODE RA
TWTMODE RA
DATAMODE RAO
AUTOTEST
END MACRO

Table 2: Example of a macro definition within a command file.

OVLBI: Command Dispatcher

Outputs

Draft - 98 May 7 Page 4

The fundamental outputs of DISPATCH are to the station hardware. This includes writing
to the Monitor Control Bus and directing the tape drives to record data. DISPATCH records
the intended results of command file instructions in the STATIONJSTATE structure.

The processing of each command is an event recorded in the station log. DISPATCH also logs
command file errors via the Log WRITER task. DISPATCH makes no direct output to any
file.

Command Groups

The commands can be put into 4 groups 1) Antenna Commands (move, stow), 2)
Satellite/electronics (frequencies etc), 3) Tape (position, change), 4) Meta-commands
(include, define, s macros). Normal antenna tracking commands are executed by the POINT
task. The satellite/electronics functions are executed by DISPATCH using OVLBI specific
functions. The tape functions are executed by DISPATCH, but are done mostly with VLB A
software modules. To make the Earth Station interface easier to use, three facilities are added
to the DISPATCH’s command syntax: DEFINE, MACRO and INCLUDE. DEFINEs allow
definition of strings in command parameters, for example a satellite type, a variable called
STYPE could be defined as RA or VSOP and used in MACRO definitions. MACROs are
sequences of commands which are executed as a single unit. INCLUDES are instructions to
start execution of another command file before execution of the rest of the current command
file. Control returns to the current command file when the end-of-file is reached in the
INCLUDE file.

Below the commands executed by DISPATCH are listed.
RESET: Reads the station parameters file and sets all station hardware to a default state. This

is also done automatically at boot-up.

RFM ODE: <RA| VSOP I te s t> Sets switches in receiver and transmitter to Radio-Astron or VSOP
or test positions; sets all tunable oscillators to appropriate frequencies.

TW TM O D E : <RA| VSOPl test> Sets two-way timing subsystem to appropriate mode.

DATAM ODE: <RAO IRA11RA21 VSOP I test> Sets up the demodulator and decoder. The three Radio-
Astron modes cover its three possible data rates: 144, 72, and 36 Mb/s, respectively.

SATELLITE: <RA|VSOP|other?> Combines RFMODE, TWTMODE, DATAMODE, and possibly
other commands to set up entire station for a particular satellite.

AU TOTEST: Performs station test sequence. Includes various subsystem tests, each of which also has
its own command. Results go to log file. Failures generate operator alarms.

SPA C E C R A FTM O D E xcode> Informs checker of switch settings on spacecraft, for comparison against
mode codes in down-link header.

PEAK U P: Causes antenna pointing to be scanned around the nominal position in order to peak
up on the satellite signal. Computes pointing error and applies appropriate pointing correction until
next PEAKUP or RESET.

ACQUIRE: <"tijneout> Begin attempt to automatically acquire down-link signals from satellite.
Includes execution of PEAKUP. Once adequate signal is being received, executes tracking pass
initialization sequence (mainly clock setting). If not accomplished within timeout seconds, send alarm
to operator.

OVLBI: Command Dispatcher Draft - 93 May 7 Page 5

TR A N SM ITTE R : <power, W> Turn on transmitter at specified power level. Frequency should have
been set up earlier. Zero or negative turns transmitter off.

CALTONE: <0N|0FF> [<channel,frequency>, <channel,frequency> . . .] CALTONE ON
signifies begin detection of test tones in specified channels at specified frequencies. CALTONE OFF
signifies end o f detection of test tones; write results to log.

STARTUP: Turn on power to antenna servo and cause computer to take control. Send position
commands equal to the present position. Ensure that brakes are set.

M C BW RITE : ADDRESS=<address#> DATA=<data#> Allows direct addressing of the monitor control
bus.

A LARM : <level> <message> Allows informing the antenna operator of significant events.

MESSAGE: <level> <message> Inserts a text string as an event record in the log file.

T R A C K : [FILEs<orbit file path>| RADEC=<right ascension,declination> I
KEPLER=<valuel,value2,vaTue3,value4,valueS,value6>I AZEL=<azimuth,elevation>] Drive
antenna according to the tracking mode. Normal operation uses the orbit file. D ispatch also
spawns the two way timing task to set the up/down-link synthesizers accordingly. Antenna must
have previously been given a STARTUP command, otherwise it won’t move. Antenna brakes must be
released before spawning P o in t.

STANDBY: Stop antenna at present position and set brakes. Tracking computations continue if
TRACK command has been executed.

STOW : Drive antenna to stow position and set brakes.

SHUTDOW N: Includes STOW, TRANSMITTER 0, and turning off power to antenna servo. May
include other things, like closing files and copying them to other computers.

TAPE: SPEED=<ips> HEADPOSH-<microns> WENABLE=<abcd> [DRIVE=<drive>] Sets
recording head-stack to given position, enables specified head groups for writing, and starts tape
motion at given speed. If SPEED <0, goes in reverse direction. If SPEED is 0, the tape motion is
stopped. If DRIVE is not specified, the drive from the previous TAPE command is assumed.

TAPE: MOVEs<f eet> [DRIVE=<drive>] Positions tape at specified distance from beginning
of supply reel.

FORM ATTER: <VS0P I RA> M0DE=<VLBA I MKIII> Setup Formatter.

INCLUDE: <iilenam e> include and executes a command file specified by <lilename>. (Note the
space between command and file name, not as is in the “Purple Book”)

M A CRO : <MACRO-NAME> defines all the following commands as a macro with name
<MACRO-NAME>. The macro is terminated with the END MACRO command. (Note the space between
command and macro name, not “= ” as is in the “Purple Book”)

END M ACRO: Terminates the macro defined by the previous MACRO command.

DEFINE: <nev variable>=<value> Allows definition of strings to be substituted into the
command parameter lists. The DEFINEd variable list is only used when determining values for
command parameters.

STARTTIM E: [CURRENT I <date> <time>] Indicates that all commands in the file should be skipped
until reaching commands starting after a specified time. By default the no commands are skipped. If
CURRENT is specified, then all commands are skipped until reaching a time after the current time. Then
D ispatch waits until that command and begins normal execution. This function is used to implement
selection of one command file out of several scheduled for future execution. Functions implementing
this command are also used to handle certain restart functions.

OVLBI: Command Dispatcher Draft - 93 May 7 Page 6

The file specified by the INCLUDE command can also contain INCLUDE commands, but
this recursion has a depth limit of 10. Upon starting execution of each command in the file,
the times of commands are interpreted in the manner described earlier. When returning
from the INCLUDE file, the interpretation of the time remains as it was before executing
the INCLUDEd file.

When encountering a MACRO command, DISPATCH stores the following command file lines
in dynamically allocated memory until reaching an END MACRO command. For simplicity
of implementation, the user is not allowed to re-define a macro. (Ie. once the command
MACRO FOO is encountered, an error will be raised if MACRO FOO is encountered again.)

Initialization

The INITIALIZE function spawns D ispa tc h with a parameter indicating one of four hardware
initialization modes:

A. Cold start after normal shutdown

B. Cold start after computer failure (e.g., loss of CPU power)

C. Warm start (CPU has been running, but station was shut down for some emergency,
e.g. external power loss)

D. Hot start, some observing parameter (such as the command file name) needs to be
changed, causing temporary suspension of function. It is assumed that Hot start requires
as rapid restart as possible, with relatively little change to the system.

For case A, DISPATCH automatically executes a RESET, which sets the hardware into its
default state, loads data from the station parameters file, and initializes STATIONJSTATE.
It then looks for a certain file (whose full path can be hard-coded) called TASKLIST that
contains a list of command files and the time range for which each is valid. If this file is
found, it is read and used to determine the command file appropriate to the current time; the
command file is then opened and commands axe executed from its beginning. If TASKLIST
is not found, then DISPATCH looks for a default command file (hard-coded path), and uses
it if found; if not, then DISPATCH exits, leaving the hardware in the default state.

During normal execution, information about the state of the system will be recorded to disk
at regular intervals. This state log should include a copy of STATION JSTATE, which will
include the name of the command file then in use, among other things. This ’’ checkpoint”
file will have a predetermined location, so for case B, DISPATCH can find it without any help.
DISPATCH will then call a special recovery procedure which attempts to put the station into
the state that it should have now. The exact algorithm for this recovery procedure is still to
be determined.

Startup Case C assumes some outside anomaly was gracefully handled and that DISPATCH is
required to only re-initialize a few hardware systems. The anomaly data structure includes a
severity parameter for each possible error; the severity can be NONE, WARNING, ERROR,
or EMERGENCY. Each anomaly entry has a parameter for each error. One of the things that
can cause an EMERGENCY condition is loss of external power, which should be reported to
the computer by the UPS. Another possible EMERGENCY error is very high wind speed.

0VLB1: Command Dispatcher Draft - 93 May 7 Page 7

When restarting, DISPATCH calls a recovery routine (in general different from the case B
recovery routine, but possibly the same). Once again, the exact algorithm is TBD, and it
could possibly be the same as a normal cold start (case A). But it is probably possible for it
to just undo the hardware commands executed by SHUTDOWN and then continue in the
command file from where it left off. If DISPATCH was tracking a satellite, it will also have
to execute ACQUIRE.

Case D occurs when a new command file is needed during a tracking pass. In this case, only
limited initialization is needed and the command file should be advanced to the current time
before starting command execution.

Appendix A. Date and Time input formats

The Date format is YYMMMDD, where YY is the calendar year and YY < 50 implies 20YY, MMM is
a three character month (ie JAN) and DD is day of the month. The Time format is HH:MM:SS
and consists of HH integer hours (range 0-23), MM integer minutes (range 0-59) and SS seconds
(range 0-59). The seconds field is optional, defaulting to 0 seconds. There must be no spaces
between components of the Date or Time. (ie. 93aPrl3 is a legal date, but 93 Apr 13 is
not.) 2

D ispatch uses the VLBA *tr2mjd and str2rad routines for converting date and time to internal values. These routines
somewhat “user friendly” concerning input formats. Many other formats are also accepted. The date could be the mjd as a
5-digit number, and the time could be in radians, since these are also accepted by str2mjd and str2rad.

Jun 2 21:58 1993 monchkdesign.doc Page 1

File monchkdesign.doc, version 1.1, released 93/05/09 at 11:08:52

MONITOR AND CHECK TASK DESIGN DOCUMENT
D . Varney
7 May 1993

1.0 OVERVIEW
The MONCHK task is responsible for acquiring all monitor point

data in the station according to a pre-set schedule, checking for
anomalous conditions and updating the anomaly data structure with the
results of such checks. It is also responsible for writing log file
records of routine measurements and of anomalies. If an emergency
condition is detected (e.g., high winds or power loss), it must
place the station in a safe state and notify the operator.

2.0 OMISSIONS
Log record formats have not yet been specified. The

procedures for monitoring the GPS receiver and UPS have not yet been
established.

3.0 DEPENDANCIES
The design of the computing section of this task is

independent of most task designs. However, the station state
structure, STATION^STATE, is accessed by MONCHK, and its design will
effect how MONCHK interacts with the state structure. The data
structures MONITOR data, MONCHK_LIST, and ANOMALY data, which will be
explained in this document, could affect the data consumer tasks
INITIALIZE, STATUS, and LOG.

4.0 DESIGN CONSIDERATIONS
4.1 The MONCHK task must be activated periodically to acquire data
for a set of monitor points. By using the fast semaphore from TIC, it
should be possible to run MONCHK at 16 Hz; this determines the fastest
available sampling rate. Most monitor points will be sampled musch
less frequently, and each will be assigned an interval in the range of
1/16sec to lhr.
4.2 The majority of monitoring requests will be via the Monitor
and Control Bus (MCB). NRAO Specification A55001N001, VLB Array Memo
682 and the VLBA Technical Report No. 5 explain the details and use of
this interface. Many functions to support MCB communication and
collection of monitor information via the MCB have been successfully
ported from the VLBA station control code; some details are given in
Appendix A.
4.3 The Decoder module is connected to the station computer across
the VME backplane. A draft communication protocol is given by R.
Escoffier in the report "Interface Protocol Between Decoder and
Station Computer" dated 30 April 1993.
4.4 A Global Positioning System (GPS) receiver and backup power
supply (UPS) are planned but not yet acquired. We assume that they
will each require monitoring via RS232 serial links, but the details
have not yet been established.

Jun 2 21:58 1993 monchkdesign.doc Page 2

5.0 ALGORITHM DESIGN
5.1 Operation of the MONCHK task is controlled by an array of
structures called the MONCHK_LIST. Each entry in this array describes
the monitoring, checking and logging of an elementary monitor point in
the hardware. The entry includes a pointer to a function that actually
acquires the necessary data from the hardware. Some functions are
quite simple and merely return the status value of a primitive monitor
point while others are more complex and make several primitive
measurements that are combined to derive a quantity of interest. Each
array entry (below) also includes a code giving the frequency with
which the monitor function is to be called and the frequency with
which the result is to be logged, along with several other parameters:
struct mp_functions
{

CFUNCPTR func
int unit,

MD_index

AD_index

BOOL sampled

int monitor,
log

float low,
high

Earth Station monitor point function list
pointer to the function (all return ptrs)
unit ID for subsystems with more than one
copy of a device (e.g., 2 recorders),
otherwise -1
the starting index into the MONITOR data array
for this monitor function...there may be
several data quantities returned.
the starting index into the ANOMALIES array
for this monitor function...there may be
several possible anomalies.
was this sampled last interval ?

0 no,
1 yes

monitoring interval,
logging interval.
lower and upper check limits; could be
used for bit checks by type casting.

A sample of the contents of the first element of mp_functions[] is
detailed below:
static struct mp_functions mon_points[number_of_monitor_pts] -

function unit sampled? log high
I I MD_index AD_index | monitor | low |
I I I I I I I I I{recrdenb, 24, 0, 0, FALSE, ONESEC, NOLOG, 0.1, 1.2},

}
5.2 MONCHK has a main loop which is executed once each time that
the fast semaphore is given by the timing task TIC (nominally 16 times
per second); this determines the maximum sampling rate for any monitor
point. For each such execution, all entries in MONCHK_LIST are
examined. For those whose sampling interval has elapsed, the
corresponding monitor function is called. Each function returns a
single numerical value which is then stored in the MONITOR data array,
detailed below
struct mon_list instantiated: monitorlist [number__MD_pts];

the size of this array may be larger than
the number_.of_.monitor._pts.

char vartype signifies the type of the returned variable
'f' for float,
'd' for double,

Jun 2 21:58 1993 monchkdesign.doc Page 3

'x' for hex long
union varsize provides a method to hold different data

types; machine and compiler independent.
long lval
float fval
double dval

5.3 Most functions also check the validity of the returned value
and return an error message pointer if there is any abnormality, in
that case, MONCHK's main loop updates the appropriate element of the
ANOMALIES array [see 5.6, below] and sends an ANOMALY record to the
LOGWRITER task. For those entries whose logging interval has also
elapsed (the logging interval must be a multiple of the sampling
interval), a MONITOR record containing the returned value is passed to the LOGWRITER task.
5.4 Many monitor points in the hardware (including all those
measured by the reused VLBA routines) are accessed through the VLBA
Monitor and Control Bus (MCB). We are also reusing the VLBA routines
that support MCB communication, and this imposes further restrictions
on the structure of MONCHK's code, including the need to call each
monitor function twice. (Details are explained in Appendix A.)
5.5 Most of the MONCHK_LIST array is initialized at compile time,
but the sampling and logging intervals for each entry are read in from a
file when the MONCHK task is first spawned.
5.6 The applied test will flag suspicious values in the ANOMALIES
array (below), where each element will have a time of the occurrence,
a status indicator to denote the severity of the error, the returned
value and some messages regarding the error type for use by other tasks.
struct anomaly
{

int
char

int
time

instantiated:
anomalies[number_of_unique_errors]

status; Status for this error type
*errcode, Short pneumonic describing error
♦message; One-line error message for use in screens

and status file
val; returned value for mcb transactions
firsttime, Time of first occurrence:

time CHECK first discovered the error
lasttime; Time of most recent occurrence: this is the

last time that CHECK discovered the error

5.6.1 The time of an error will be recorded according to the
following set of rules.

T

time 1 2 3 4 5
In the diagram above, let F[alse] indicate that no error is being
detected and T[rue] that there is currently an error. Then at the
indicated times (1..5),

1 initialization; no errors have occurred and the time variables

Jun 2 21:58 1993 monchkdesign.doc Page 4

'firsttime' and 'lasttime' are set to NEVER and undefined,
respectively;

2 an error for this monitor point has just been noted; 'firsttime'
and 'lasttime' are set to the current time;

3 the error has been removed; 'lasttime' retains the time of
correction. From t2 to t3, 'lasttime' will be updated to
contain the time of the sample until t3;

4 the error has reoccurred, see [2];
5 the error has been corrected, see [3].

5.7 The current state of the station, contained in the STATE data
structure, will be read by the chk[...] functions to determine what the
state should be with respect to the monitor data. As major equipment will
have some entry in the station state, it is required that the appropriate
checking function compare the state with the returned data for compliance
and flag appropriately in the ANOMALIES data array.
5.8 The sequence of actions for the MONCHK task to operate is outlined
below.

task MONCHK
set task priority
allocate structures and initialize
read monitor and logging schedules
LOOP (indefinitely)

-- high priority task
-- init variables for MCB comm.
-- get monitor pt. skeds
-- task loop, spin indef.

wait indefinitely on semaphore:fastSem-- wait for next 1/N sec sem
CALL check(sixteenHzTic+1)

ENDLOOP
pass interval
increment tic count

function CHECK ::
LOOP (pass:0..1)

if pass 1
if message_count > 0

send message string to MVME331
otherwise done

LOOP (0..number_of_monitor_points)
set unit,message_count,mcb_message

if function's interval
CALL FP(*function,index)
if pass > 0

CALL chk[...]
if error

enter into ANOMALY__DATA
message_count + nMCBmessages

otherwise
function not sampled

ENDLOOP
ENDLOOP

-- if second pass,
if messages to send

transfer string to '331
- - n o messages, return to caller
-- for each sampled point
-- init some variables

set flag; this mp sampled
pass a function pointer and
index into function list
for this group of points,
check for error conditions
an error occurred

write results to anomaly
add nMCB this func to count
no sampling

clear flag in func list

Jun 2 21:58 1993 monchkdesign.doc Page 5

Appendix A: CODE REUSE
This design hides the details of the hardware in the low level

monitoring functions, while providing a uniform infrastructure for
their execution. Changes to individual hardware modules can be
accommodated by changing only the corresponding access function. In
particular, it allows reuse of code written for the VLBA for the
monitoring of the Formatter and Recorder, which are particularly
complex [ref 4.1.3]. The design does place certain restrictions on
the monitoring functions: they must all use the same parameter list
(i.e., [unit,] returned value), and they must all have the same
function-return type. However, there is no restriction on how a
monitor function behaves internally; for example, it can make
additional entries in the MONITOR and ANOMALIES arrays and pass
additional records to the LOGWRITER before returning.

The useage of the GET functions requires that the calling
function actually reference the GET function twice. A value in the
MONCHK task variable is set to either zero or one. Before each call
the MCB message pointer must be set to the location the function is to
use for its MCB message string. On exit this pointer is incremented by
the number of locations used, leaving it ready for the next function
call. This organization allows creation of long strings containing
many MCB messages which can be processed more efficiently by MCBIO.
The task variable for MONCHK points to the following structure for
access to STATE and related MCB information,
struct mcbmsg
{

long tic
int pass

char *pfirstmsg,
*pmsg

struct observ *pobs;

used by MCB "get" and "check" functions
monitor time; tics since start of monitoring
GET function parameter (extern),

0-build message,
1-process monitor data

pointer to first byte in MCB message string
pointer to current byte in MCB message string
pointer to STATION_STATE structure, included
only for VLBA compatibility.

On the first function call (pass - 0), the function places the
necessary monitor point addresses in the message. Before the second
call (pass - 1), the caller should use MCBIO to send the message on
the MCB. This reads the requested data into the message. Inside each
GET function, a check of the MCB status byte returned with each
monitor point is made. Function-specific code then extracts the data
and converts it to appropriate units. In some cases this code also
checks the value for correct range and/or compares it against the
value given in the STATE structure.

Jun 2 21:58 1993 logwriterdesign.doc Page 1

File logwriterdesign.doc/ version 1.1, released 93/05/09 at 11:08:51

LOG WRITER TASK DESIGN DOCUMENT
L. D'Addario
6 May 1993

1.0 OVERVIEW
The Log Writer task handles the creation of records in the log

file of the real time control system. A separate task is necessary in
order to allow several other tasks to generate log records. Log
Writer merely accepts log record strings from each of the other tasks,
attaches a date/time stamp, and writes the resulting string to a
previously-opened disk file. The records are handled on a first-in,
first-out basis.

At present, three types of log records are envisioned
(although the design does not preclude additional types being defined
later). These are

1.1 Monitor Records, containing processed monitor data that is
logged according to a pre-determined schedule, generated by the MONCHK
task;

1.2 Anomaly Records, containing data on the first occurrence or
discontinuance of a detected abnormality, generated by the MONCHK
task; and

1.3 Event Records, containing information on a commanded change in
the station state, generated by the DISPATCH task.

2.0 DEPENDANCES
The syntax and content of each type of record is determined by

the design of the originating task. LogWriter should be able to be
implemented independently. Starting an stopping of LogWriter is
controlled by the Initialize, Shutdown, and Restart functions.

3.0 ALGORITHM DESIGN
LogWriter is spawned at system startup by the Initialize

function, and thereafter runs continuously. If an emergency level
error occurs, Log Writer might be suspended by the Shutdown function
in order to avoid filling the log with large numbers of unnecessary
Anomaly Records; it would then be resumed by the Restart function when
the error condition is cleared.

When first spawned, LogWriter opens the log file. The path
and file name can be passed by Initialize, but normally it will use a
default directory and will construct a default file name from the
current date. If the file exists already, it is positioned for
appending to its end; otherwise a new file is created. It then
creates a message queue for receiving log records from other tasks and
drops into a continuous loop that reads messages from this queue. For
each message read, the date (times.mjd from the global times
structure), time (times.utc) and the contents of the message are
written to the log file. When the message queue is empty, LogWriter
is automatically suspended by the operating system until a new message
is placed in the queue by another task.

If LogWriter is suspended by another task (such as MonChk via

Jun 2 21:58 1993 logwriterdesign.doc Page 2

Shutdown), then the message queue may become full. Additional
messages are then lost.

A provision is also needed to terminate LogWriter completely
when performing a complete shutdown, such as at the end of a tracking
pass or during a more serious emergency (like imminent loss of all
power). This is implemented using vxWorks signals. If SIGUSR1 is
raised, then control is passed to a signal handler within LogWriter;
it will close the current log file and delete the message queue before
finally deleting the LogWriter task.

Jun 2 21:58 1993 geomdesign.doc Page 1

File geomdesign.doc, version 1.2, released 93/05/12 at 19:18:28

GEOMETRY TASK DESIGN DOCUMENT
L . D 'Addario

93/03/19, revised 93/05/07

OVERVIEW
This document describes the GEOMETRY task in the real time

control system, its purpose is to compute, periodically, the data
needed by the antenna pointing task (POINT) and the two-way timing
control task (TWT) and to pass this data to those tasks. To do this,
it needs access to the orbit data file. See the top level data flow
diagram, Figure 1.* The GEOMETRY task may be regarded as a server to
the client tasks POINT and TWT.

OMISSIONS
The present version of this design does not specify the

content oi* format of the orbit file, nor does it specify the
calculations needed to transform data in the orbit file to that needed
by the client tasks. It is possible that the orbit file will contain
exactly the required data, so no calculations are needed in GEOMETRY;
in that case, the transformations from the external orbit file (NAIF)
will have been done by an offline program. It is also possible that
the orbit file accessed by GEOMETRY will be the unmodified external
file; in that case, all calculations are done in real time and
GEOMETRY will need an extensive set of routines to accomplish this,
including some ported from NAIF. It is likely that the final design
will split the calculations between the offline and real time systems.

This document specifies the logical structure, data paths, and
timing for GEOMETRY, leaving the above issues to be decided later.

DEP ENDANCIES
This design has strong implications for the designs of the

POINT and TWT tasks.

DESIGN CONSIDERATIONS
The GEOMETRY task must run periodically so as to provide

data to its clients at fine enough time resolution to allow them to
interpolate to sufficient accuracy. At present it appears that an
interval of T-5sec will be adequate, so that value is assumed here.
But nothing in the design (aside from CPU loading) prevents the
interval from being changed.

The output required are:
to TWT: T1

Tldot
T2
T2dot

to POINT: az
el

predicted uplink delay
derivative of T1
predicted downlink delay
derivative of T2
antenna's true azimuth angle
antenna true elevation angle

Since the client tasks will be interpolating these values between
updates from GEOMETRY, results must be supplied somewhat ahead of the
current time.

F" ax I

Jun 2 21:58 1993 geomdesign.doc Page 2

ALGORITHM DESIGN
1. Data will be passed to the client tasks via shared memory

structures, as follows.
struct geom_data

{
double updelay; /* uplink delay */
double updelayDot; /* uplink delay derivative */
double downdelay; /* downlink delay */
double downdelayDot; /* downlink delay derivative */
float azimuth; /* true azimuth */
float elevation; /* true elevation */
In­

struct geom {
struct geonudata *pgeom_start;
struct geom_data *pgeom_end;
int geont_data_interval; /*interval between updates */
int geom_start_time; /*time of data at start of interval *
/* pgeom_start is a pointer to data for the last update

preceding the current time,
pgeom_end is a pointer to data for the next update

following the current time,
geom_data_interval and geom_start time are measured in

system clock ticks.
*/
} geometry;

It is the responsibility of the GEOMETRY task to ensure that the two
pointers always point to data that brackets the current time. The
client tasks will rely on this and will interpolate between the data
in the two structures.

Internally, GEOMETRY maintains three data structures as a
circular buffer, and exports pointers to two of them to the clients
while it is working on filling the third with new data. At the end of
the interval, the pointers are updated so that they always point to
structures that bracket the present time.

During the very brief time that GEOMETRY is updating the
pointers, the client tasks must not access them; yet the client tasks
must not be delayed, because they actually update the hardware and
must do so on time. Note that the client tasks also run periodically;
the POINT task, at least, runs much more often than GEOMETRY (every
1/16 sec in the present design). To provide proper synchronization,
we use two semaphores:

geomSem - semBcreate(...)
/* Created by the CLOCK task and passed to the GEOMETRY task.

Given by tic routine inside CLOCK every update interval
(5 sec), and taken by GEOMETRY. */

geomSyncSem - semCcreate(...)
/* Created by GEOMETRY (during its initialization) with an

initial count of 2 and passed
to GEOMETRY, POINT, and TWT tasks. POINT and TWT each
take/give this semaphore when executing code that accesses
geom__data. GEOMETRY takes it *twice* before updating the
array, and then gives it twice. */

This method of mutual exclusion ensures that if tic releases GEOMETRY
(via geomSem) and also POINT and TWT (via other semaphores) all on the
same clock tic, then POINT and TWT will both complete their accesses
to the structures before GEOMETRY updates them. It is then necessary

Jun 2 21:58 1993 geomdesign.doc Page 3

for GEOMETRY to complete its update before the next activation of
POINT and TWT, else the clients will be late. Priority tuning might
be needed to ensure this. Just in case, POINT and TWT should include
checks that they are on time.

Having completed the pointer update at the beginning of its
activation, GEOMETRY then continues by working on calculating the new
data. It has until its next activation (5 sec) to complete this. It
involves reading the orbit file for data associated with the time two
intervals from now (current time + 10 sec, rounded down to a multiple
of 5 sec), and possibly doing extensive calculations. (If the
geometrical calculations are all done in the real time system, then
multiple accesses to the orbit file are likely to be needed to get the
satellite position at the uplink and downlink times.) Since the orbit
file is accessed sequentially, a large buffer should be allocated (and
possibly a double buffer) to ensure that physical access to the disk
does not delay the completion of GEOMETRY.

Jun 2 21:58 1993 pointdesign.doc Page 1

File pointdesign.doc, version 1.1, released 93/05/09 at 11:08:54

POINTING TASK DESIGN DOCUMENT
L. D'Addario

22 March 1993
(rev. 29 April 1993)

OVERVIEW
The POINT task is the one that directly drives the antenna

during automatic operation. (The only other way to drive the antenna
from the station computer is manually via the operator screen "ACU,"
which must disable POINT before allowing manual control.) It is
activated by the DISPATCHER task in response to a command in the
command file. In normal satellite tracking operation, it determines
where to point the antenna from data passed to it by the GEOMETRY
task; but to support testing, two special modes are also provided. In
one mode, the antenna is caused to track fixed celestial coordinates
(ra and dec) given in the command; and in the other it tracks a
satellite whose Keplerian orbit parameters are given in the command.
POINT performs a linear interpolation between updates of the position
by GEOMETRY. POINT also computes the pointing corrections according
to the coefficients in the pointing_parameters structure and the
meteorological data in the monitor structure, sending the corrected
coordinates to the antenna. POINT must run periodically and at
precisely known times in order to update the antenna control unit with
sufficient accuracy.

DEPENDENCIES
This design affects the design of the GEOMETRY, DISPATCH,

MONCHK, and INITIALIZE tasks.

DESIGN CONSIDERATIONS
POINT is the most time-critical task in the control system

because the antenna is the only time-critical hardware that does not
have some buffering of its commands and hardware-determined timing.
(For example, the Formatter and the Two Way Timing hardware each
receive a precise 1 Hz timing reference, so control signals from the
station computer can be executed at precise times if they arrive any
time within the right 1-sec window, but the antenna has no such
capability.) The antenna control unit (ACU) accepts only position
commands, and it includes a Type II servo loop to keep the antenna at
the commanded position. The servo has a bandwidth of about 1 Hz, so
position updates at a rate of 5 to 10 Hz should be adequate. The
fastest drive rate of the antenna is 40 deg/min in each axis, and
sometimes the satellite motion is this fast (or faster, but then we
cannot track it). The beamwidth at 15 GHz is about 0.1 deg, so at
the fastest drive rate the position will move through one beamwidth in
0.15 sec. Therefore, to stay pointed within 1/10 beamwidth (a
reasonable criterion), we must send each update to the antenna within
.015 sec of the correct time. These minimum specifications -- update
at > 5 Hz with a timing error of < 15 msec -- should be substantially
exceeded if possible.

We cannot allow two copies of POINT to be running at once,
else the antenna would get confused. Thus we must guard against the
possibility that the command file inadvertantly contains two commands
to activate tracking without an intervening command to terminate
tracking.

Jun 2 21:58 1993 pointdesign.doc Page 2

We cannot allow manual control of the antenna by an operator
while point is running, for the same reason. Thus, we need an
interlock mechanism that disables POINT while the antenna is in manual
control and allows it to resume when the operator releases the antenna
from manual control.

DESIGN SPECIFICATIONS
1. Activation and mutual exclusion. POINT will be spawned as

a task in response to a TRACK command to the DISPATCHER. The track
command will specify a "mode" argument, which will be passed to POINT
to specify one of the three available sources of pointing data:
GEOMETRY task output, fixed celestial coordinates (right ascension and
declination), or fixed Keplerian orbit parameters. In the latter two
cases, the values must be included in the command and passed to POINT
when it is spawned. In the first case, DISPATCHER must also spawn the
GEOMETRY task.

POINT begins by attempting to take a mutual-exclusion
semaphore that is designed to prevent multiple copies from running.
If the semaphore is not available, POINT does not block but returns
immediately with an error code. The semaphore should have been
created in INITIALIZE, and should have the option SEM_DELETE_SAFE to
prevent task deletion while it owns the semaphore. If it is necessary
to change the mode of POINT or to terminate its operation entirely,
the task must be deleted and (possibly) re-spawned. To support this,
POINT will have a signal handler that, when triggered by a calling
task, gives back the mutual exclusion semaphore and then taskDelete's
itself. (It is a design decision within DISPATCH, not covered here,
whether to include an UNTRACK command that does this, or always to
begin a TRACK command by killing any POINT that might be running.)

2. Timing. After initialization, POINT falls into a FOREVER
loop that begins by taking a binary semaphore that is given 16 times
per second by tic. This is the time-critical point, and priorities
must be set so that POINT actually runs within a few milliseconds of
the system clock tick that resulted in the semaphore being given.
POINT then proceeds to send the position commands to the antenna that
were pre-computed during its previous activation. It does this by
calls to the appropriate routines in setacu.c, which in turn queue MCB
commands through mcbio(). It then begins computation of the pointing
commands that will be used next time, branching to the appropriate one
of three cases, depending on its mode.

3. RA-DEC mode. This is the simplest mode. POINT obtains
the current local sidereal time from the global times structure,
subtracts it from the ra to get hour angle, and then transforms to
true az-el using the station latitude from the station_parameters
structure. Finally, it drops into the pointing corrections routine
common to all modes.

4. Keplerian orbit parameters mode. Here POINT will get the
current mjd and UTC from times and pass them to a routine (stolen
from somewhere TBD) that returns true az and el. It then drops into
the pointing corrections routine.

5. GEOMETRY structure mode. Here POINT interpolates linearly
between the positions in the two structures pointed to by the pointers
from GEOMETRY, it reads the system clock to see how much time has
elapsed since the beginning of the update interval. The interpolated
values are the true azimuth and elevation, which are passed to the
pointing corrections routine.

6. Pointing corrections. POINT evaluates the pointing

Jun 2 21:58 1993 pointdesign.doc Page 3

correction formulas for az and el using coefficients in the
pointing_parameters structure and (for the refraction term in the
elevation correction) data from the weather station in the monitor
data structure. It is important to know if the weather data is valid;
if it is not, then POINT will use an a priori model for the
meteorological parameters. The validity will be checked by reference
to the appropriate element of the anomolies[] array. Finally, the
computed corrections are added to the true az and el, and the results
are stored for sending to the ACU at the beginning of the next loop.

7. Manual control. A global flag word:
int antenna_manual_jmode;

will be set to TRUE by any task other than POINT that wishes to take
control of the antenna. Only the "ACU" screen is expected to need
this capability. POINT will check this flag immediately before
sending the corrected az and el to the ACU, and will actually send the
data only if the flag is FALSE. Except for this, POINT continues to
run normally. It is the responsibility of the check routine in the
MONCHK task to compare the flag against data in the station_state
structure; if DISPATCHER has put the antenna into a tracking mode but
someone else has taken manual control, then this is an error that
MONCHK must record in the log file and in the anomolies[] array.

Jun 2 21:58 1993 twtdesign.doc Page 1

File twtdesign.doc, version 1.2, released 93/05/12 at 19:21:05

TWO WAY TIMING CONTROL TASK DESIGN DOCUMENT
L. D'Addario
11 May 1993

1.0 OVERVIEW
The Two-Way Timing System includes the uplink reference

transmitter, which requires continuous and precise tuning of its fine
synthesizer in order to effect accurate Doppler compensation; and the
downlink reference phase detector, which also requires continuous and
precise tuning of its reference generator as well as the acquisition
of filtered samples of the measured residual phase. The hardware is
under the control of a local digital signal processor (DSP); this
device handles the high-speed control of the two synthesizers (several
thousand updates per second), the rapid sampling of raw phase
measurements (about 5000 samples/sec), and the processing and
filtering of those samples to a lower rate (10/sec). The design of
the DSP code will be covered in separate reports. The station
computer task described here must provide updates of the parameters
used for synthesizer control about every 5 sec, and it must collect
all of the filtered phase samples and write them to a disk file.

2.0 DEPENDENCIES
This task is dependent on the geometrical data supplied by the

GEOMETRY task, which in turn is based on data in the Orbit File.

3.0 OMISSIONS
Some details of the number formats and units in which

synthesizer control data is to be supplied are not yet determined.
The format of the timing residuals file is not yet specified.

4.0 ALGORITHM DESIGN
4.1 Synthesizer Control
From the predicted orbit, the GEOMETRY task will periodically

provide values of the predicted delays on the uplink and downlink
paths, as well as the derivatives of these delays. The TWT_CONTROL
task will convert these to phases and phase rates at the uplink and
downlink frequencies, then add the nominal uplink and downlink
synthesizer frequencies to the phase rates, giving the instantaneous
phase and phase rate (frequency) for each synthesizer at each update
time. For the interval between two such updates, the TWT hardware's
DSP will evaluate a cubic polynomial in the phase. The TWT_CONTROL
task computes the four coefficients of this polynomial from the two
phases and two rates at the ends of the interval, and sends the
resulting coefficients to the DSP prior to the start of the interval.

Tests have shown that an update interval of about 5 sec will
provide accuracy less than 1 psec, and this is considered adquate. To
allow precise timing of the updates in the hardware, the DSP will
receive a 1 Hz interrupt that is accurately tied to UTC. Therefore,
each update must apply to an integral UTC second mark. The
DSP_CONTROL task will signal this by sending a command to the DSP
during the 1 sec prior to the 1 Hz interrupt that marks the next

Jun 2 21:58 1993 twtdesign.doc Page 2

update. Thus, absolute timing for execution of TWT_CONTROL must be
accurate to well under one second. If necessary, the update interval
could be shortened from 5 sec to 1 sec.

4.2 Residual Phase Recording
There will be 10 filtered phase residual measurements per

second, but these can be buffered in the DSP. TWT_CONTROL will run
once per second, collecting the 10 measurements of the preceding 1-sec
interval. The DSP code will be arranged so that the first measurement
in the buffer corresponds to a sampling time precisely on the UTC
second mark, and that succeeding samples are at 0.1 sec intervals.
TWT_CONTROL will obtain the full date and time from the global "times"
structure (maintained by the TIC task) and construct a record of the
form

struct phaserecord {
long date - times.mjd;
double time - times.utc - 2.0;
long phases[10];

}
These records are then written to the disk file in binary form, using
the buffered I/O facilities of the operating system to avoid actual
disk accesses each second. Note that the residual phase numbers are
32-bit fixed point; they are likely to be in the form s23.8, although
this is not finally decided.

4.3 Initialization
When TWT_CONTROL is first spawned, it sets up the two way

timing system hardware according to data in the Station State
structure. This includes the transmitter nominal frequency, transmitter
power level, phase detector input switch (X or Ku band), and second LO
synthesizer frequency (conversion from IF to baseband). It then
forces a reset of the DSP, which causes it to load its firmware from
ROM and do its own internal initializations. When this is complete,
it drops into a continuous loop that is executed once each time that
the slow (1 Hz) semaphore is given by the TIC task.

4.4 Procedure Details
Spawn TWT_TASK:

set transmitter band switch and coarse tuning bits
set transmitter power level
set phase detector input switch
set 2nd LO synthesizer
reset DSP
FOREVER {

wait for 1 Hz semaphore
if synthesizer update is due {

get data from geometry structure
convert to synthesizer units
send to DSP

}
read 10 measured phases from DSP
assemble phase residuals record and write to file

}
4.5 Other Considerations
The initialization routines will be available as separate

functions that are callable outside the TWTJTASK context. This will
manual control for test purposes, as well as the construction of
automatic test procedures run in the context of the DISPATCH task. It
will also allow DISPATCH to adjust parameters, such as transmitter

Jun 2 21:58 1993 twtdesign.doc Page 3

power, in response to commands that are executed after the start of a
tracking pass.

The TWT_TASK should be spawned only from DISPATCH as part of
its implementation of the ACQUIRE command. If the task is already
running, it should be killed and re-spawned.

All communication between the Station Computer and the TWT
system hardware is via the Monitor and Control Bus.

Jan 2 21:58 1993 statusdesign.doc Page 1

File statusdesign.doc, version 1.1, released 93/05/09 at 11:08:55

STATUS TASK DESIGN DOCUMENT
D. Varney and L. D'Addario

5 May 1993

1.0 OVERVIEW
STATUS is a program that creates a human-readable ASCII file

summarizing the present state of the station. It does so by examining
data stored by the MONCHK task in the ANOMALIES and MONITOR internal
data structures and by the DISPATCH task in the STATION_STATE internal
data structure. The summary file is first written to a disk drive
that is mounted on the real time control system; for security reasons,
this disk is not accessible to outside users. The file is then copied
via the Green Bank LAN to a separate file system on a publically
accessible computer, from which it is made available to all interested
persons over the Internet.

STATUS will be executed periodically, about every 5 to 10
minutes, as a low priority task of the real time system.

2.0 OMISSIONS
The exact contents of the status summary file are not

specified here. Indeed, they may be changed from time to time during
operation according to experience and the desires of users. An
example of a typical status file is given in Appendix A.

3.0 DEPENDANCES
This design is dependent on the designs of the internal data

structures ANOMALIES, MONITOR_DATA, and STATION_STATE. As this is
strictly a consumer task, it is dependent on the producer tasks MONCHK
and DISPATCH.

Since the resulting file will be made publically available, it
is the subject of an interface specification, NRAO A34300N007.

4.0 DESIGN CONSIDERATIONS
4.1. The STATUS_FILE must be formatted for reading by humans. Thus,
whenever appropriate, the data displayed should be in physically
meaningful units and properly annotated.
4.2. The STATUS_FILE should be displayable on any 80-column text
terminal or printer. It should not be very long (a few screens), so
no attempt will be made to provide a complete set of monitor
information; it is a summary only.
4.3. To prevent the reporting of inconsistent data, some mutual
exculsion mechanism may be needed to ensure that STATUS does not
access the data structures while they are in the process of being
updated by MONCHK or DISPATCH.
4.4. The local copy of the STATUS_FILE is intended as a backup in
case of failure of the LAN. In the latter case, a mechanism is needed
to report the error without disrupting real time system operation.
4.5. In addition to running periodically, STATUS should be callable

jun 2 21:58 1993 statusdesign.doc Page 2

from DISPATCH in response to a WRITESTATUS command. This allows
taking a snapshot of the station at specific special times, such as
just before shutdown.

5.0 ALGORITHM DESIGN
task STATUS:
set task priority to low
set interval count
LOOP (indefinitely)

wait indefinately on semaphore:slowSem
increment status interval count
if interval to write status

open status

-- low priority task; will run only if
more critical tasks complete
-- init status writing interval
-- task semaphore wait loop

wait for the 1Hz sem release

write status
close status
copy status to public:status

ENDLOOP

-- if wait period over (5..10m)
-- open local file for status summary,
overwriting previous version
-- write local status file
-- close file
-- copy to publically accessible
computer

Appendix A: SAMPLE STATUS FILE

GREEN BANK OVLBI EARTH STATION STATUS updated 27Febl993 11:12UT
...-GENERAL-— — — — — — — — —
Station mode is TRACKING Satellite ID is 1 (Radioastron)
Acquisiton occurred at 27Febl993 01:07:19
Number of dropouts since acquisition 0
Received signal power X band -107.3 dBW
Received signal power Ku band -113.1 dBW............... ALARMS— '— — — — .— — — — ,..........................—
--none--
............... ANTENNA— '— — — — — —— — -
Position: Azimuth 135d07m32s Elevation 058d32ml7s
Tracking error: 0d00m09s OdOOmlls
— — — — — — TIMING t r a n s f e r — — — — — — — — — — — — —
Total residual phase since initialization 81935.127 cycles
Residual phase rate 78.2 Hz
Satellite 1Hz - ES 1Hz 0.29782312 sec
Transmitter power setting 0.5 W
-------- ----- — WIDEBAND DATA— — — — — — — — — — — — — —
Data rate mode 128 Mb/s
Parity error rate per bit 2.2E-05
Missed sync rate per frame 3.1E-03
Total re-syncs 3 Net bit slips -5
Total bad frames due to parity rate 31 sync loss 3
Recording: drive number 02 tape speed 90 ips

tracks enabled 32 head position 82 microns
direction FORWARD
time remaining on this tape pass 08 min
total time remaining on this tape 257 min

...............DOWNLINK HEADERS**"™"**-"-..............................
Last frame number 131
Total power by baseband channel 1 2045 2 2132 3 2001 4 2543
(in spacecraft units) 5 0071 6 0083 7 0091 8 0069
Receiver mode code 07 (expected from schedule: 07)
— — — a n o m o l i e s — — — — — — — — — — — — — —
0023 WARNING 2cm dewar temperature is high 20.1 K
0091 WARNING 500 MHz reference level is low 0.97 mW

Jun 2 21:58 1993 decoder-protocol.doc Page 1

File decoder-protocol.doc, version 1.1, released 93/05/09 at 11:08:48

INTERFACE PROTOCOL BETWEEN DECODER AND STATION COMPUTER
R. Escoffier

30 April 1993

I. HARDWARE DESCRIPTION
The Decoder has a local 87C51 microprocessor to support the

Decoder satellite frame recovery functions. The Decoder is housed in a
VME crate and the Decoder microprocessor interfaces with a VME station
computer via the VME bus.

The 87C51-VME computer interface is accomplished by providing
a common 16 Kilobyte memory. This common memory is mapped into both
parties memory space and the interface supports both byte and word
addressing by the VME station computer. Each party can read from or
write to the memory at will and no contention for access to the memory
will occur.

Only the lower 16-bits of the VME address space are decoded in
the Decoder-VME interface logic and hence the Decoder is intended for
use in the short addressing VME mode. Any 16K byte block of addresses
within the 64K byte range of the short address mode can be allocated
to the Decoder but present assumptions are that the Decoder VME common
memory will be mapped into VME addresses $0000 thru $3FFF.

Two blocks of 256 VME addresses within this address range are
allocated in the Decoder interface logic for special hardware
functions. Write operations by the station computer to memory
locations within the address space $3E00 to $3EFF will result in the
generation of an interrupt to the Decoder 87C51 (if the 87C51
interrupt is enabled). This feature will allow a one way interrupt
driven communication mode between the station computer and the Decoder
(the Decoder 87C51 cannot interrupt the station computer with the
present logic). Priority of the VME interrupt is selectable within the
87C51 to one of three levels.

The second special VME address block is the address space 3F00
to $3FFF. A write by the VME station computer to any word or byte
within this address range will cause the Decoder 87C51 microprocessor
to receive a hardware reset.

Communication between the VME station computer and the Decoder
87C51 microprocessor is done according to the detailed protocol
description below, in general, *commands* to the Decoder consist of a
single-byte code written to address $3E00. This will generate an
interrupt to the 87C51 microprocessor, provided that its interrupts
are enabled; otherwise, the 87C51 must poll address $3E00. The
microprocessor then acknowledges receipt of the command by writing -1
to $3E02, indicating that it is busy. When the command has been
completed, it writes zero to $3E02 and a return code to $3E04;
the latter will be zero for success, and non-zero in case of some
error. (Note that *reading* the special addresses $3E00--$3FFF will
not cause interrupts or resets.) The station computer should check
that $3E02 is zero (not busy) before issuing a new command; the
Decoder might be able to accept new commands while busy, but this is
not guaranteed.

Many commands also require the passing of numerical data to
the Decoder. In these cases, the appropriate data must have been
placed in the command buffer portion of the common memory before the
command code is written to $3E00. The command buffer consists of

Jun 2 21:58 1993 decoder-protocol.doc Page 2

addresses $2600--$3DFF (5,632 bytes). The format of this data depends
on the individual command, and is detailed below. In a few cases, the
command results in some returned data; that data will also be put into
the command buffer, overwriting anything that was placed there by the
station computer.

The Decoder also generates monitor data for the station
computer. This data is automatically placed in the monitor buffer
portion of the common memory, which is $0000--$25FF (9,984 bytes).
The detailed format is given below. Much of this information is
updated each downlink frame (minimum 2.5 msec), but some is updated at
slower rates. To prevent the station computer from reading an
inconsistent set of data (by attempting to read a block while the
Decoder is in the process of updating it), address $0000--$0001 is
reserved as a semaphore: the station computer must check that this
word contains zero, and if so write -1 to it, before reading the
monitor buffer; and the Decoder must do the same before updating any
information in the buffer. If the Decoder cannot wait, it will simply
skip the current update, in which case some monitor information may
not be reported.

II. COMMAND SYNTAX
Command Name Code -------- Parameters----------- Frequency

$3D00 $2600-$3DFF (up to 5632 bytes)
NOP 00 TEST
WRITE MEMORY 01 AA AA CC CC DD -- DD INIT/TEST
READ MEMORY 02 AA AA CC CC INIT/TEST
CHECKSUM REQUEST 03 AA AA CC CC (2 BYTES RET) TEST
PERFORM MEMORY TEST 04 OX TEST
LOAD XILINX PERSONALITY 10 XX DD -- DD (5544 BYTES) INIT
FILL FRAME SEQUENCER 11 ox DD -- DD (4096 BYTES/XFER) INIT
CHECKSUM REQUEST 12 (2 BYTES RETURNED) TEST
FILL TEST FRAME MEM 13 OX DD -- DD (4096 BYTES/XFER) INIT/TEST
CHECKSUM REQUEST 14 (2 BYTES RETURNED) TEST
SET DECODER MODE 15 XX INIT
SET TEST GENERATOR RATE 16 XX TEST
SET MISC BITS 17 XX TEST
RESET COUNTERS 18 XX RUN
SET UTC CLOCK 19 0T TT TT TT TT TT

Detailed Descriptions

1. NOP, MAIN MEMORY
NOP:
WRITE MEMORY:
READ MEMORY:
CALCULATE CHECKSUM:

where

00
01 AA AA CC CC DD -- DD
02 AA AA CC CC
03 AA AA CC CC [2 BYTES RETURNED]

AA AA is a 16-bit start address and CC CC is a number of bytes
with msbyte first.

The checksum returned is a 16-bit sum of all bytes in the
command range. The checksum need not be separately requested after a
write memory command since the checksum will automatically be written
to the first two bytes of the command buffer, but the function code is
provided for the verification of a multi-transfer memory write.

The results of a READ MEMORY command are written to the common
memory starting at $2604, leaving the starting address and length in

Jun 2 21:58 1993 decoder-protocol.doc Page 3

$2600--$2603. The maximum length of a MEMORY READ or MEMORY WRITE is
5,326 bytes; it is suggested that long transfers be done in 4096-byte blocks.

2. Pi
where

'ORM MEMORY TEST: 04 OX

OX - 1 microprocessor will test itsOX - 2 microprocessor will test theOX - 3 microproces sor will test theOX - 4 microprocessor will test theOX - 5 microprocessor will test the
In each case the Decoder microprocessor will loop 16 times testing the
target RAM. In each loop it will first fill the target with a pseudo
random sequence and then verify the contents. The total number of
errors found (saturating at a count of 65535) will be left for the
station computer at word location $2600. In the case of a frame buffer
test two 16-bit error counts are left for the station computer
starting at location $2600 for the I buffer and $2602 for the Q buffer.

3. LOAD XILINX PERSONALITY 10 XX DD -- DD (5544 BYTE XFER)
where

XX - 00 causes loading of Radioastron setup from ROM
XX - 01 causes loading of VSOP setup from ROM
XX - 02, . . . causes loading of special setup from ROM
XX - FF causes loading of the next 5544 bytes from command

buffer.

4. FILL FRAME SEQUENCER
FILL FRAME SEQUENCER: 11 XX DD----DD (4096 BYTES DATA)
FRAME SEQUENCER CHECKSUM: 12 [2 BYTES RETURNED]

where
XX goes from 00 to 07 for the 8 transactions required to

fill the frame sequencer RAM.
DD----DD indicates 4096 bytes of data per transaction. The

sequencer RAM is 4-bits wide and each DD byte
carries two nibbles. Total RAM locations filled is
8192 X 8 or 65536.

Check sum is made from stored information in the entire RAM.
XX - 10 causes loading of Radioastron sequence from ROM.
XX - 20 causes loading of VSOP sequence from ROM.

5. FILL TEST FRAME GENERATOR RAM
FILL TEST FRAME RAM: 13 OX DD----DD (4096 BYTES DATA)
TEST FRAME RAM CHECKSUM: 14 [2 BYTES RETURNED]

where
OX goes from 00 to 07 for the 8 transactions required to

fill the test frame RAM.
DD----DD indicates 4096 bytes of data per transaction. The

test frame RAM is 4-bits wide and each DD byte
carries two nibbles. Total RAM locations filled is
8192 X 8 or 65536.

Check sum is made from stored information in the entire RAM.

6. SET DECODER MODE: 15 XX

Jun 2 21:58 1993 decoder-protocol.doc Page 4

where
XX-00 sets decoder for Radioastron at 72 MHz,
XX*01 sets decoder for Radioastron at 36 MHz,
XX-02 sets decoder for Radioastron at 18 MHz,
XX*03 sets decoder for VSOP (64 MHz).
This is a high-level command that causes many things to be

initialized. The Xilinx personalities are loaded from ROM, the frame
sequencer is loaded from ROM, and the sync detection method and error
tolerance are set to appropriate defaults. Also, software switches
are set to call the appropriate header processing subroutine. It is
expected that this will be the command normally used during operation,
but low level commands are also provided to allow control of the
individual elements.

7. SET TEST GENERATOR RATE 16 XX
where

00 sets 72 MHz rate
01 sets 36 MHz rate
02 sets 18 MHz rate
lx sets 64 MHZ rate

8. SET MISC BITS 17 XX
where XX - abed edgh

a is input switch setting: 0 - input from receivers
1 - input from test generator

b - 0 for sync probation mode (delayed decision on validity)
1 for immediate validity decision (0 is normal)

c - 0 check parity in window (normal)
1 disable parity check during window

d - 0 sync valid only if detected in I and Q
1 sync valid if detected in I or Q

ef- {00|01|10} sync error tolerance, I channel
gh- {00j01j10} sync error tolerance, Q channel

9. RESET COUNTERS 18 XX
XX - abed efgh

a total frames processed counter
b number of re-syncs
c net bit slips
d invalid I frames
e invalid Q frames
f I channel parity errors
g Q channel parity errors
h (spare)

Causes those counters whose bits are set to 1 to be cleared so that
they will be zero at the start of the frame that begins with the next
satellite 1 Hz tick.

10. SET UTC CLOCK 19 0T TT TT TT TT TT
The UTC clock is set with the 44-bit binary time code supplied

by 0T--TT on the next ground one Hz tick.

Ill. MONITOR BUFFER

Jun 2 21:58 1993 decoder-protocol.doc Page 5

As stated above, the Decoder microprocessor keeps a number of
items in the common memory so the VME station computer can have ready
access to them. The syntax is given in the following table.

FUNCTION
Semaphore byte (see discussion in Section I).
Unused
Decoder status word (includes current mode, whether
in sync or not, etc. -- details TBS)
(32b) Total number of frames processed counter
(16b) Number of re-syncs counter
(16b, signed) Net number of bit slips
(16b) Number of invalid frames counter
Unused
(32b) Parity errors in I channel (Radioastron only)
(32b) Parity errors in Q channel (Radioastron only)
Frame RAM fullness
Unused
(6 bytes) UTC clock reading at last satellite 1 Hz tick
(50 bytes, 400 bits) Frame status bit map for
preceding satellite 1 sec period. Each bit that is
set to 1 indicates a frame that was out of sync and
hence was replaced by PRN, or whose parity error count
exceeded a pre-defined threshold.
Unused (for future assignment)
(32 bytes) Raw I channel header, latest frame.
(32 bytes) Raw Q channel header, latest frame.
[Radioastron uses the first 30 bytes and VSOP uses the
first 6 bytes of each of the two raw header blocks.]
Unused (for future assignment)
(9216 bytes) Processed header data. Format TBS,
different for each satellite.

LOC (hex)
0000
0001
0002 to 0003
0004 to 0007
0008 to 0009
000A to 000B
oooc to 000D
000E to 000F
0010 to 0013
0014 to 0017
0020
0021
0022 to 0027
0028 to 0059

005A to 00FF
0100 to 011F
0120 to 013F

0140 to 01FF
0200 to 25FF

