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1. Interferometer Response to a Point Source

Consider a simple interferometer of the type shown in Figure 1. The

two antennas comprising the interferometer are separated by a baseline distance

D/A (in wavelengths). The antennas have effective areas Al and A2 , and

associated with each antenna is electronic equipment having power gains G1

and G2 respectively. The common bandwidth of the receivers is AP;
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Figure 1.
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We now wish to determine the response of the interferometer to a point

source of flux density S. The line joining the phase centers of the antennas

makes an angle 8 with the direction to the source. The powers available

at the (polarized) antenna feed terminals are, respectively,

SAl SAf2 1 S

and

A2 SAf
2

The voltages at points A and B, neglecting impedance factors, are

(approximately, for small Af)

VA rV A G £ sin [ (ct - Dcos 6)]

2nD

= 1 2GLS sin (at- cos b)

V8  - A2G2 AfS sin (&t)

We have neglected here any instrumental phase differences up to points A and

B.

The output of the multiplier and low pass filter is then seen.to be

£(6) = - A*G*Af'Scos [-- cos 0]

where A VAA2, G = VTGiG and.O is a slowly varying function of time (due

to motion of the source). The term cos 8 will now be developed in more useful

terms.
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2. Source - Baseline Geometry, Fringe Frequency

In Figure 2, we depict that portion of the celestial sphere above the

local horizon. The source position will be given in terms of hour angle H

and declination 6. The projection along the baseline to the celestial sphere

establishes a point which we designate as the instrumental pole I. This

point has a fixed hour angle h and declination d.

Equatorial. -
plane '

/ /

Figure 2.

The basic spherical triangle formed by the source (S), the north

celestial pole (N) and the north instrumental pole (I) -allows us to express

cos E in terms of the more fundamental source (H, 5) and baseline (h, d)

coordinates. PFrom the law of cosines we have

cos. 8 = sin d sin 5 + cos d cos 6 cos (H-h)



-4-

Thus the interferometer response to a point source of flux density S at

(H,6) is

f(H,8) = A*GAfScos [2Q{sin d sin 6 + cos d cos 6 cos (H-h)}]

This equation determines the output fringe frequency and phase as a

function of source position (H,b), baseline 'orientation (h,d) and baseline

length (D/A). For a given source, the only time dependent term is H. There-

fore the fringe frequency R is obtained from

a D dH
R(H, j (cos )Ij

2nD
r(H,6) = (6,400) cos d cos 8 sin (H-h) cycles/sider. sec

3. Projected Baseline - Length and Orientation

From Figures 1 and 2 it is seen that the projection of the baseline in

D
direction of the source is sin & and lies at a position angle p. The

East-West and North-South components of the projected baseline are then

EW--- DU. = sin 8*sin p

NS D
V' = sin 6 cos p

Using thetlaw of;sinesiand theeprevious relation for cos B we obtain

U = cos d sin (H-h)

V r sin d cos. 6- cos d sin 6 cos (H-h)]
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Note that these relations are :given directly by

U = 1 ( cos 6)
cos 6 a- X

d D
V = . ( cos 8)

It is seen from the previous expression for the fringe frequency

R(H, ) and the above expression for U that

U cos 6'
R(H,8) = 13,751 cycles/sidereal second

and is independent of V, the North-South component of the projected baseline.

4. Response to an Extended Source,

We have developed the expression for the response of the interferometer

to a point source at (H,6) having flux density S:

1 2nD

f(H., ) = GAfS cos - cos 8)4

where

cos 6 = sin d sin 6 + cos d cos 6 cos (H-h)

Now consider an extended source, as shown in Figure 3. The source dimensions

are generally considered to be small compared to the beam width of the

individual antennas comprising the interferometer. The source-centered

coordinate system (x, y) is defined in terms of the astronomical co-
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Primary Beam

A(x,y)

;ource Brightness
B(x,y)
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Figure 3.

ordinates (H,6) by

x = (H-H o ) cos &

y = (8-80 )

I(radians)

We now consider the elemental solid angle d~ = dxdy located at (H,6) or

(x,y), having brightness .B(x,y). This solid angle contributes a flux density

dS = B(x,y)dxdy from the source. If the effective area of the (assumed

identical) primary beams is A(x,y) then the response of the interferometer

to this small portion of the source is

2 1 2nD
d f(H,8) = GAf B(x,y)*A(x,y) cos ( -- cos 6) dxdy

(Note: If the effective areas are not identical, A(x,y) must be replaced by

Al(x,y)"A2(x,y) ).

= c -a
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We now expand cos 6 about the origin of source coordinates (Ho, 0), using a

Taylor series expansion and retaining only the first order terms.

cos 6 cos o + 1 4 (cos 6). x + (cos 0) y
cos 6 8H dB

From the previous expressions for U and V we may write this as

D Dcos 0 - cos 0 + ( Ux + Vy)

Therefore

cos (t2 cos ) = cos [-2 (cos Go) + 2n(Ux + Vy)]

Expanding this and substituting it in the equation for d2f(H,b), we obtain

d 2 f(H,6) GAf {cos ( cos 0 ) B(x,y) A(x,y) cos [2n(Ux + Vy)]
4 A o

Ssin ( cos 0 ) *B(x,y)*A(x,y)'sin [2(Ux +Vy)]}dxdy
A o

We now define the normalized antenna response as

a(x,y). - A

where A " A(O,0). We also use the Rayleigh-Jeans approximation to relate

brightness B(x,y) to brightness temperature TB (x,y)

B(x,y) 2k TB(x,y)
A2

where k is Boltzmann's constant. Therefore

2kA -
B(x,y)*A(x,y) = 2 "a(x,y) TB(x,y)



-8-

Using this and integrating over the brightness distribution we obtain

f(H,b) = -GAS. f[C(U,V) cos ( 2 cos o - S(U,V sin (2 cos )

where

c a(x,y) TB (x,y) cos [2n(Ux + Vy)] dxdy
c(U,V)

J TB(x,y) dxdy

S(UV)a(x,y) T (x,y) sin [2n(Ux + Vy)] dxdy
S(U,V) B

j' TB (x,y) dxdy.

and where we have used the expression for flux density S

S 2k T(x,y) dxdy
X

We may express f(H,6) in yet another form which may be more illustrative

f(Hb) = GASS.Af A(U,V) cos [ cos 0 + @(U,V)]
4 N

where A(U,V) = V 2 ( U,V) + S (U , V)

c(U,V) =-tan [v Is, v)

A(U,V) and t(U,V) define the complex visibility of the source brightness

temperature distribution

V(U,V) = A(U,V) e

Thus it is seen that the output of the interferometer f(H,6) is a

sinusoid whose amplitude and phase determine the complex visibility function.

It is easily shown that V(U,V) is the Fourier transform of the source



brightness temperature distribution, weighted by the antenna pattern and

normalized by the integral over the temperature distribution:

-j2n(Ux + Vy)v) / a(x,y) T(x,y) e dxdy

JJ TB(x,y) dxdy

5. Aperture Synthesis

Given the value of ,V(U,V) for all values of U,V, one could then obtain

the brightness temperature distribution TB(x,y) by a Fourier inversion:

2ka(x,y) TB (x,y) .+j2(Ux + Vy)2 - / (U,V) e dxdy

The practical limitation is, of course, that the value of \(U,V) is not

available for all values of U and V. The maximum values of U and V are

limited by the maximum separation D/X of the elements of the interferometer.

It is useful to see which values of U and V are available if a source

at declination 6 is tracked over the full hour angle range of the telescopes.

We have from section 3:

D
U = 7 cos d sin (H-h)

D
V = [sin d cos b - cos d sin 6 cos (H-h)]

These equations are in the form

U = a sin (H-h)

V = V + b cos (H-h)
0

which are the parametric equations of an ellipse in the U,V plane:

U +(V-V )

a2 2a b
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where

semi-major axis a = D/X cos d

semi-minor axis b D/X cos d sin b

center of ellipse (0, Vo ) = (0, - sin d cos 0)

eccentricity e = cos 6

Thus, the interferometer, in tracking a source through the sky, samples

the Fourier transform of the source brightness temperature distribution

at points along an ellipse in the U,V plane. By changing the separation D/X,

a different elliptical track is sampled. This procedure can then be repeated

until a large number of samples at different values of U and V are obtained.

The question is, how many are needed and what must the distribution of points

be?

Several considerations simplify the problem. First we note. that since

T x,y) is real then the complex visibility function must be 1ermitian, i.e.

v(-u,-v) = V*(u,V)

Thus, half the information in the U,V plane is redundant. Next the source

dimensions are finite (in any case we are limited by the antenna beamwidth).

Then the sampling theorem states that we only have to sample points which

are separated by no more than

1 1

where X is the largest dimension.of the source. Thus only discrete points

need be sampled, the spacing being dependent on the source size.

In addition, practical considerations limit the resolution Ax and By

which must be attained in the source reconstructions. This allows us to

sample points only out to a maximum U and V given by
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3-ZL

max < 2Ax

V 1max - 2Ay

Thus we need sample only a number of points N given by

X-Y
Ax, Ay
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