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Summer Lecture Series - 1966

Theory of Interferometers and Aperture Synthesis

W. C. Tyler

1; Intérferometer.Response to a Point Source

Considgr a simple interferometer of the type shown in Figure 1. The
two anfennas cdmpris@ng the inferfeiometer‘areiseparafed by a baseiihe distance
D/A (in Waveléngths)‘ The antennas havg,effective afeas A, and A,, and

associated with each antenna is electronic equipment having power gains G1

~and G, respectively.: The common bandwidth of the receivers is AF,

4(9\ o N . : ‘ _ Z

Figure 1. - = - : o
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We now wish to determine the response of the interferometer to a point
source of flux density S. Thé iine joining the phase centerébof the antennas
makes an angle © wifh the direction to the source. The powefs available
Aatvthe (polarized) antenn; feed terminals aré, respectively, |

L

S Ay SAE

and _
LA, sof
2
The volfages at points A and B, neglecting impedance factors, are

(approximately, for small Af)
v —;7;‘\/AG ES sin [2E (ct = D cos 6)]
A 14 = (¢ cos
21D
= ;érv AGq 0fS sin (ot - =" cos 0)

Vg 517%-V A,G, AfS siq (wt)

We have neglected here any instrumental phase differences up to points A and

B.

- The output of the multiplier and iow pass filter is then seen. to be

A*G*Af*S*cos [232 cos 0]

£(8) = -

S

where A =\ AjA,, G =V G;G, and 0 is a slowly varying function of time (due
to motion of the source), The term cos © will now be developed in more useful

terms.



-3

2. Source - Baseline Geometry;-Ffingé Frequency
In Figure 2, we dépict that portion of the celestial sphere above the

local horizon. The source position will be given in terms of hour angle H

and declination 8. - The projection along the baseline to the celestial sphere

establishes a point which werdesignate'as the instrumental pole I, This

point has a fixed hour angle h,ahdfdeclination d.

Equatorial
plane.” - —~—u. 5™

Figure 2.

The basic spherical tfianglé formed by‘the~source <S); the north
'éelestial~pélé (N) and thelnorthAinstrumenfai pole'(I)~allow$ us¥to.express
cos é in‘terﬁslof the more fundamental source (H, ) and baseline (h, d)
coordinates. From theAlaw of'cosi5es we have

cos © = sin d sin & + cés d cos 8 cos (H=h)

.
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Thus the interferometer response to a point source of flux density S at

(H,8) is

£f(H,8) = z'A-G‘Af‘S'cos (g%g{sin d sin & + cos d cos & cos (H-h)}]

This equation determines the output fringe frequency and phase as a
function of source position (H,0), baseline orientation (h,d) and baseline
length (D/A). For a given sourcg; the only time dependent term is H. There-

fore the fringe frequency R is obtained from

3 D ~
R(H,0) = lSﬁ (5 cos 0)] - %%

21 .
R(H,8) = (55700 % cos d cos & sin (H-h) cycles/sider. sec.

.3. Projected Baseline = Length and Orientation
From Figures 1 and 2 it is seen that the projection of the baseline in
..D .. . - . |

- direction of the source is T sin € and lies at a position angle p. The

East-West and North-South components of the projected baseline are then

U = 3 sin‘efsin P

NS D
V. = ¥ sin @ cos p

Using the:law of 'sines’'and the:previous relation for cos 8 we obtain .

U = = cos d sin (H=-h)
v

>l >lo

= ([ sin d cos. 6 = cos d sin & cos (H=h)]
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Note that these relations are-given directly by -

1 3

D
= et (2 6
cos B 3 x °s ¥
vV = ' é%-(% cos ©)

It is seen from the previous expression for the fringe frequency

R(H,®) and the above expression for U that

U cos & '
R(H,8) = =7375357 cycles/sidereal second

and is independent of V, the North-South component of the projected baseline.

4, Response to an Extended Source

We have developed the expression for the response of the;interferometer v

to a point source at (H,®) having flux density S:
- ' 1. 27D o
£(H,0) = 7 GALMS cos (= cos 0

where

cos 6 = sin d sin 8 + cos d cos & cos (H~h)

Now consider an extended source as shown in Figure 3. The source dimensions °

are generally considered to be small compared to the beam width of the
individual antennas compfising the interferometer. The source~-centered

coordinate system (x, y) is defined in terms of the astronomical co=~

—
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ordinates (H,8) by
x = (H-H,) cos b

‘ (radians)
(o=64)

i

y .
We now consider the elemental solid angle aQ = dxdy located at (H,8) or
(x,y), hdving brightness B(x,y). This solid angle contributes a flux density

dS = B(x,y)dxdy from the source. If the effective area of the (assumed

identical) primary beams is A(x,y) then the response of the interferometer

to this small portion of the source is

\ 1 D .
dzf(H;é) = 7 GAf B(x,y)+Alx,y) cos (3%2 cos 8) dxdy

(Note:"If the effective areas are not identical, A(x,y) must be replaced by

v A'1<x,y> Az(x,y) D
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We now expand cos © about the origin of source coordinatesﬂ (Hy,84), using a

Taylor series expansion and retaining only the first order terms.

62 cos 6o + —E . 2 (cos 8) +x + 2 0y -
cos cos Tos § B (cog )) X ¥ = (cos ©) * y

. From the previous expressions for U and V we may write this as

I

D D '
T cos 9‘-‘=‘Icos 9°+(Ux+Vy)
Therefore

cos (E.%Q cos 0) = cos [2—;2 (cos 6,) + 2n(Ux + vy) ]

Expanding this and substituting it in the equation for dzf(H,O)A, we obtain

dszH,B) = al-GAf {cos (2—/\@- cos 96)' B(x,y) A(x,y) cos [2n(Ux + Vy)] '

P

~ sin (2—;:—1-)- cos 90) « B(x,y)*A(x,y) *sin [2n(Ux*Vy)]}c}xdy

We now define the normalized antenna response as

[l

a(x,?), = é‘%’l)

where A = A(0,0). We also use thev'Ra‘yleigh-Jeans’ approximation to relate

brightness B(x,y) to brightness temperature TB(x,y)‘

A2 4 . : V

where k is Boltzmann's constant. Therefore

2KA - :
B(x,y)'A(x,y) = "%‘ +alx,y) Tglx,y)
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Uéing this and integrating over the brightness'distribution we obtain

£(8,0) = % s+ 0[C(U,V) cos (222 cos 6) - SW,V) sin (22 cos 6)]
where ‘
| ou,vy = J S alx,y) Tglx,y) cos [2n(ux + Vy)] dxdy
- v TB(X,y)’dxdy
S(U,V) = // a(xiy) TB(X,Y) sin [ZTI(Ux + Vy)] d)(dy

ff TB<X:Y) daxdy .
and where we have used the expreséion for flux density S

s =2k [ [ Tp(x,y) dxdy
A2 B

We may'qxpress f(H,d) in yet another form which may be more iilustrative‘-

£(H,0) = G*A-S+Af« A(U,V) cos [§£2 cos 6o + &(U, V)]

B

where A(U,V) = c2U,V) + S°(U,V)

~1.5(U, V)
tan (g )

-

1IN

&(U,V)

A(U,V) and ®(U,V) define the complex‘visibility of the source brightness

temperature distribution

SRR
YW,V = AWV e

Thus it is seen that the output of'thekinterferometer £(H,8) is a
sinusoid whose'amplitude and phase determine the complex visibility function,

It is easily shown that;X(U,V)‘is the Fourier transform of the source
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- Q.
brightness temperature distribution, weighted by the antenna pattern and

normalized by the integral ovef the temperature distribution:

S [ oalx,y) Tp(x,y) e—J2ﬂ(Ux vy dxdy

S J Tglx,y) dxdy

yu,v) =

5. Aperture Synthesis
Given the value of Y(U,V) for all values of U,V, one could then obtain

‘the brightness temperature distribution Tg(x,y) by a Fourier inversion:

2ka(x,y) Tg(x,y) dxdy

A3

+j21(Ux + Vy)

= YA ){,‘(U,‘V) e

The practical 1imitation is, of course, that the value of X(U,V) is not

available for all values of U and V. ‘The‘maximgm values of U and V are

limited.by the maxgmum separation D/N of the elements of fhe interferomgter.
It is useful to see which values of U and V are avdilable‘if a source

at declination © is tracked over the full hour angle range of the telescopes.

We have from section 3:
D )
U =73 cos d sin (H-h)

D . , . :
vV =7 [sin d cos & - cos d sin & cos (H-h)]
These equat%ons are ;h the form

U

a sin (H-h)

V.= V_ +Dbcos (H-h)

which are the parametric equations of an ellipse in the U,V plane:

_ |
o, (v-v°>2__ 1
a2 TR
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~where
semi-major axis a = D/\ cos d

D/\ cos d sin O -

semi-minor axis b
center of ellipsg_(O, vy) = (0, - % sin d cos o)
eccentricity € = cos &
Thus, the interferémeter, in tracking a source through the sky, samples
the Fourier transform of the source brightness temperature distribution

at points along an ellipse in the U,V plane. By changing the separation D/A\,
, , ;

a different elliptical track is sampled. This procedure can then be repeafed‘

until a large number of samples at different values of U and V are obtained.
fhe question is, how many are needed and what must the‘diétribution of points
be? |

ngeral conéidera%ions simplify the problem. First we note that since

.Tgx,y) is real then the complex visibility function must be Hermitian, i.e.
BGOSR

"Thus, half the information in the U,lelane isigedundanf. Next ‘the source

 dimensions are finite (in any case we are limited by the antenna beamwidth). -

"Then the sampling theorem states that we only have to sample points which
are separated by no more than

1
bu, &V < 33, 3%

-where X is th¢ largest dimension.of the SOurcé. Thus only discrete boints
need be sampled, the spacing being dependént on the source size.

In addition, practical.considegatiéns limit the resolution Ax and Aly
which must be attained in the sourcé'recénstructions;- This allows us to

sample points only out to a maximum U and V given by

e



Umax = 2Bx

: 1
Viax = 24y

Thus we need sahple only a number of points N given by

= XY
N = .
bx+ Ay
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