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APERTURE SYNTHESIS

G. H. Macdonald

Aperture synthesis is an elegant technique in which two antennas

of variable separation up to some maximum baseline r are used to map the
m

structure of radio sources with a resolution equivalent to that of a single

dish antenna of diameter r . Since the :engineering problems in building

a fully steerable dish antenna of more than %400 ft diameter are formidable,

aperture synthesis offers an alternative, extremely powerful and economical

means of attaining very high angular resolution. The detailed mapping of

radio sources with resolution approaching that of optical telescopes should

bring a much better understanding of the complex physical processes occur-

ring within them.

Let us begin by recalling some of the results derived at the end

of the previous lecture ("Interferometry"). The response of an interferom-

eter to an extended source with intensity distribution I(x,y), where x and

y are sky coordinates, was expressed by the function R(u,v), where u and

v are the coordinates of the interferometer baseline projected on the plane

at right angles to the direction of the source. If the hour angle and

declination of the centroid of the source are H and 6 and the components

of the baseline vector are BxBy ,B then u and v are given by equation (4).

It was found that R(u,v) may be expressed in terms of a complex function

(u,v)uv)

R(u,v) a Re[F(u,v)e (

ip(u,v)
(equation (15)). Rewriting F(u,v) as y(u,v)e we have

R(u,v) y(u,v) cos (c(u,v) + o uv))

If we assume a position for the centroid of the source, o(u,v) can be com-

puted and so fitting the amplitude and phase of the cosinusoidal fringe

output we can measure y(u,v) and p(u,v).



From equations (11), (12), (14), and (15),. we have

27ri (ux+vy)
i(uvei~( ) ff (x,y)e dx dy

(uv) = (uv)ff I(x,y) dx dy

This expression is known as the "Fourier Transform" of the intensity (or

"brightness") distribution of the source and the function )(u,v) is called

the "Complex Visibility Function". We have now derived one of the two funda-

mental results upon which the principle of Aperture Synthesis depends:

I The output of an interferometer measures the Fourier transform of the

brightness distribution of a source.

Let us now make a short digression into Fourier theory to get a feel

for this relationship between source brightness distribution and its visibility

function, and to derive a few important theorems that are relevant to aperture

synthesis. There are many texts on Fourier Transforms: two suitable ones

(both written by radio astronomers!) are:

Bracewell - "The Fourier Transform and Its Applications"

Jennison - "Fourier Transforms and Convolutions for the Experimentalist"

Here we shall for simplicity consider only one-dimensional transforms.

The results may readily be extended to the two-dimensional case.

Basic Fourier Transform Theory

The Fourier Transform >'(u) of the function I(x) is defined by

27ii ux
.. (u) = I (x)e dx

-COO

It can be shown that the transformation can be "inverted", i.e.,

+°° +, [ + 2nriux -2riuxf r(u)e u = 7 l(x)e dx e du

-00o.

= I(x) .
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This result is known as "Fourier's integral theorem". The proof is

given in texts on Fourier theory. This is the second fundamental result on

which Aperture Synthesis depends:

The source brightness distribution may be recovered by inverse Fourier

transformation of the complex visibility function.

Several symmetry relations between a function and its transform can be

demonstrated. In our case we have the condition that I(x), the source

brightness distribution, is a real function of x. Let us see what symmetry

condition this implies on F(u).

Writing F(u) = F (u) + iF.(u), we have
r 1

I(x) = I (r (u) + iF.u)) (cos 2 rux - i sin 2rux) du

+00

= (i cos 2nux + F. sin 2nux) du
J r 1
-CoO

+00

- i J (1' sin 2nux - F. cos 2nlux) du.
-0 r 1

We require that the imaginary term be zero for all x. By change of

variable we have, for this term:

00

§ (Fr(u) r (-u)) sin 2nux du
r r.

O

-J' (r.(u) + r.(-u)) cos 2iux du.
o 1 1

The condition that each term separately be zero for all x is

r (u) = r (-u)
r r

F.(u) = -F.(-u)

or (-u) = (u)



where the asterisk denotes the complex conjugate. This type of function is

said to be "Hermitian". The importance of this result in Aperture Synthesis

is that the complex visibility function r need only be determined over one

half-plane. The function in the other half-plane can be constructed by

means of the symmetry relation above, i.e., reflect through the origin and

take the complex conjugate.

We now consider the transforms of some simple functions which we may

regard as models of a source brightness distribution. Figure 1 is a pictorial

display of the model I(x) and its transform r(u).

(a) Point source at origin.

We can represent a point source by the delta function 6(x) which has

the properties:

+00 +CO

6(x) dx = 1 and S G(x-xo) f(x) dx = f(x).
-CO -00

Setting i l(x) = 6(x) gives

6(x) e2Triux
F(u) = 6r( x ) e dx = 1 (Fig. 1(a))

(b) Point source at x o

Putting I(x) = 6(x-x ) gives

F(u) = (x-x) dx = e uxo
-- OO

= cos (2rruxo) + i sin (2wuxo) (Fig. 1(b))

This result is a simple example of the "Shift Theorem" which states

that if I(x) has a transform of r(u), then I(x-xo ) has a transform

e 0 F(u). That is, the amplitude of the visibility function is the

same as for the unshifted source but there is now a "phase gradient" 4 = 2nux

linearly increasing with u.



(c) Gaussian source at origin:

An extended source may conveniently be represented by the Gaussian

function- (x) -= e(x/a)2

1u =+ -(x/a)2 + 2niux dxr(u) = / e dx
_00

= a i/ e u (Fig. l(c))

We have shown that the, transform of a Gaussian is itself a Gaussian;

if its half-width at the e- point of I(x) is a, the half-width at e of

r(u) is /Ira.

(d) Gaussian source at x
O

2

x-x 2

F(u) = e du

- 2a2 u 2  27riux
- a/e e (Fig.l(d))

This result could of-course have been derived immediately by appli-

cation of the shift theorem.

(e) Double point source

A double point source may be represented by two delta functions,

centered on + x and - *
o o

I(x) = 6(x-x ) + 6(x+x )
0 0

00

C2 ' 2niux
F(x) = [6(x-x ) + 6(x+x )1 e dx

0 .0O

27riux o +e-2niuxo= e 
0
+e'

= cos 2Trux 0 (Fig.1(e) )



(f) Double Gaussian source

(x-x 2 (x+x 2a o
For I(x)= e +e we have.

-2a2u2

F(u) = aie e cos 2ux (Fig. 1(f))

by a combination of results (d) and (e).

We may consider this result as a special example of the "Convolution

Theorem" which gives useful insight into the relationship between equivalent

operations in the u-v and x-y planes.

The " onvolution" ,of function f(x) by g(x) is denoted by f(x)*g(x)

and defined by the integral

h(x) = f(x) g(x) = )f() g(x-C) d(

A practical example from Radio Astronomy of how this integral can arise

is afforded by the output from the receiver of a radio telescope with beam

pattern B( ) centered on point x on the sky and observing asource with

brightness distribution I(c). By inspection of Fig. 2 the output can be

written as

R(x) « I(E) B(x- ) dC.

I(S)

. .. , . ,( - x

R(x)

SR(x)

Fig. 2



That is, the output of the receiver is proportional to the convolution

of the source brightness distribution with the telescope beam pattern.

Denote the Fourier transforms of f(x), g(x), and h(x) by F(u), G(u),

and H(u). Then

H(u) =j [ f() g(x-g) dC] e dx
-00 00

= f( ) [ g(x-5) e dx] d(
--00CO0

= f(C) ein G(u) d
_00

= F(u)G(u).

This is the.f!Convolution Theorem." Denoting the transform operation

now by a bar, we have

f(x)*g(x) = F(u)G(u)

In words: "The Fourier transform of the convolution of two functions is

equal to the product of their transforms."

To continue with the example above, we can use this theorem to see the

relation between Aperture Synthesis and radio astronomy with single-dish

telescopes.

In practice, the interferometer will sample the visibility function

F(u) in some discrete way.. Let us define a "sampling function" S(u) so that

the observations we have are of F(u)S(u). Taking the transform gives us

a map of the source

R' () = TP(u)S(u) = f(u)*S(u)

= I(x)*S(u)
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In the single-dish case, we had

R(x). =-I(x)*B(x)

so that our "synthesized.map" R' (x) is the same as the map R(x) we would get

with a single-dish telescope having a.beam pattern of S(u), the transform

of our sampling function.

This brings us to the topic of sampling and the important "Sampling

Theorem". Again, considering only the one-dimensional case, it is convenient

to define a.sampling function denoted by III(u) which is a row of delta

functions of separation Au:

00

III(u) =
n= oo

The Fourier

6(u-nAu). (Fig. 3(a))

transform of III(u) is given by

27iux

III(u) - J(6(u-nAu) e. du

oo

S e

n=oo

00oo

n= oocos 2rr fAux

00

h i Zsin 2nAux

n=- 0

The second term vanishes by symmetry. The first term can be shown by the

theory of Fourier series to be a row of delta functions with separation Ax

given by Ax = 1/Au. That is, the Fourier transform.of, III(u) is itself a

III function III(x) (Fig. 3(b)).



Now suppose we have a source of brightness distribution I(x), falling

to zero for x > xm, and with transform F(u) (Figs. 3(c)?and (d)). Sampling

of F(u) at intervals of Au is equivalent to taking the product of III(u)

and 1(u) (Fig. 3(e)). By the convolution theorem, taking the transform

of this product is the same as convolving I(x) with III(x) (Fig. 3(f)).

We see that I(x) may be completely restored if AW > 2x , or Au < 2- This
m 2x

result is known as the "Sampling Theorem." We have shown that the sampling

interval A in the guplane determines the "field of view" x to which the
m

source distribution maybe mapped before repetition occurs and information

is lost. In practice, the visibility function F(u) can only be sampled to

some maximum um set by the largest interferometer baseline available. By

application of the sampling theorem, we see that the map derived need only
1

be sampled at intervals Ax = -u. This is loosely equivalent to saying2um
that we have independent samples at intervals on the sky of about one-half

a beamwidth. Putting both results together, we have the number of samples

of F(u) observed

2u m ( _ 2x
---- = 2 =

which is the number of independent samples of I(x) we can take.

The effect of sampling only to a maximum u = u is to multiply III(u)
m

by a "box function.",. (Fig. 4(a)). Its transform (exercise for the student!)
sin 27rumx

is given by 2 4i sin 2mx) (Fig, 4(b)). We saw earlier that the "synthesized
S2Tumx

beam" is the transform of the sampling function, so that Fig. 4(b) repre-

sents the beam which repeats at intervals of I/Au. The beam has negative

sidelobes which are undesirable since they introduce physically unrealistic

negative brightness into, the map. This problem is reduced by "weighting"

the observations with some function which reduces the amplitude of the

higher spatial frequencies. A Gaussian weighting function which falls to

zero at u = um, for example, would reduce the negative sidelobes to zero

but now the beam is a Gaussian which is much broader than the unweighted

beam. In practice, a weighting function is chosen which gives an acceptable

compromise between increase of beamwidth and decrease of negative sidelobe

level.
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Observing Time and Sensitivity

(a) Observing time

It might be thought that much more observing time is required to map

a given area of sky by the method of aperture synthesis than formapping with

a single dish. That this is not so may quite easily be demonstrated.

Suppose we wish to synthesize a square antenna of side D using two

small square elements A and B of side d. We have to make observations with

A and B in all relative positions within the square area to completely

sample the visibility function over that area. If we keep A fixed in one

corner we would have to move B to all positions in the larger area shown

in Fig. 5, about 2D2 /d2 positions in all. If we observe for a time T (the

integration time of the receiver used) at each position, the total time

(2D2?
T = T.

However, we may now map (by Fourier inversion) an area of sky '(A/d)2.

If we had a single ~ae dish of. side D we would have to observe points

separated by 2D on the sky, each for a time T. The number of points within

this area of sky.is (A/dj2 /(A/2D)2 = (2D/d)2 so that the total time required

D2
is T' = - T.

From this argument we see that the total observing time in the two

cases is very similar.

(b) Sensitivity

Similarly, it might be thought that since much smaller antennae are

used in the aperture synthesis case, thesignal/noise ratio in the map would

be much worse than in the single dish case. This assumption too is in-

correct, as the following argument shows. The signal/noise ratio for an

individual arrangement is proportional to the collecting area, 2d
2 . In

synthesizing the map, 2D2 /d2 (=N) observations are combined in such a way

that the signal at each point on the map is . N and the noise is >/N so

that the final signal/noise ratio is proportional to 2d 2 v/ = 2/2 dD. In

the single dish case, the signal/noise ratio is e aD 2 so that the effective

collecting area for synthesis is intermediate between that of the single

dish and the individual elements of the interferometer.
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In practice, it is much easier to obtain high sensitivity in a radio

telescope than high resolving power, so in designing a synthesis telescope

we may choose the size of the elements - d so that the sensitivity achieved

"matches" the resolving power. That is, in the synthesized map we are

able to detect as many sources as we can separately resolve.

Brief Survey of Synthesis Telescopes and Results

(a) Early Cambridge systems

The synthesis technique has been exploited by the Cambridge group for

many years.' Some of the important early results are sky surveys, each made

with a specially constructed instrument. For example, the 4C survey

(Gower, Scott, and Wills, Mem. R.A.S., 71, 49, 1967), the 38 MHz survey

(Williams, Kenderdine and Baldwin, Mem. R.A.S., 7.0, 33, 1966) and the Ryle-

Neville North Pole survey (Ryle and Neville, Mon. Not. R.A.S., 125, 39,

1962))

(b) Cambridge one-mile telescope

Comprises three 60-ft dishes on an E-W line. Two fixed and one movable

on a half-mile railway track. With this telescope several "5C" surveys

have been made (for example, 5Cl: Kenderdine, Ryle and Pooley, Mon. Not.

R.A.S., 134, 189, 1966) and many strong sources have been mapped in con-

siderable detail (e.g., Ryle and Neville, Nature, 205, 1259, 1965, Macdonald,

Kenderdine and Neville, Mon. Not. R.A.S., 138, 259.

(c) CalTech interferometer

One-dimensional synthesis of many sources has been performed, both of

unpolarized (Fomalont, Ap.J. Suppl. No.138) and polarized (Seielstad and

Weiler, Ap.J. Suppl. No.15B) radiation.

(d) NRAO interferometer

The NRAO interferometer has recently been used to synthesize maps of

seven bright extragalactic sources and several H II regions.

Future synthesis telescopes

Large arrays to be used as aperture synthesis instruments are under

construction in Holland (Westerbork), England (Cambridge), and Australia.

There are arrays being planned by CalTech (8-element E-W) and NRAO (the VLA,

27-element Y-shaped configuration).
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