NATIONAL RADIO ASTRONOMY OBSERVATORY
Green Bank, West Virginia 24944

Spectral Processor Memo No. 27

MEMORANDUM May 24, 1985
To: Spectral Processor Project Group

From: R. Fisher

Subj: Dedispersion with an Accumulator Memory Address Generator

This note is a brief description of the dedispersion scheme
proposed for the spectral processor. This scheme is one of
several accumulator address generation modes which will be available.

There are two sections in the spectral processor, and each section
has 1its own accumulator as shown in Figure 1. Since the two
accumulators are identical the same description will apply to
both.

The input to the accumulator is a continuous series of 512-channel
power spectra arriving as fast as one spectrum every 12.8 us.
The output of the accumulator in the simple dedispersion mode is
a stream of power samples each of which contains the sum of all
of the frequency channels properly delayed to compensate for
differential arrival times across the spectrum. The accumulated
power samples could be averaged and dumped at any multiple of
12.8 us.

Suppose for the moment that the accumulator memory has an infinite
number of accumulation cells, and let successive cells (addresses)
represent successive time samples of pulsar radiation. In the
absence of dispersion all of the frequency channels in each
spectrum would be added together in the same cell, and the cell
address would be changed at a rate dictated by the required time
resolution. For example, if the time resolution were 128 us, all
channels from ten successive spectra would be added to the same
cell before moving on to the next cell. One cell address interval
could then represent 128 us of time.

Now, if the pulsar radiation is dispersed, not all channels 1in
one spectrum want to end up in the same cell. If we take the
convention that higher cell addresses represent later times, then
from any one spectrum the higher frequency channels would want to

2

be added to cells with higher addresses relative to the lower
frequency channels. This has the effect of delaying the high
frequency information with respect to that from lower frequencies.
One could say that the spectrum is mapped into the time domain
according to the dispersion function, and as time progresses this
map slides to higher cell addresses. From the point of view of
one cell, contributions to its sum begin arriving earlier from
the high frequency channels than from low frequencies.

Of course, the accumulator does not need to be infinitely long,
and it makes a lot of sense to break it into a limited amount of
fast memory and a lot of slow memory. For practical reasons only
one frequency channel can be added to one cell at a time and this
must happen in 25 ns. (Actually some parallelism can slow this
to 100 ns.) This high speed memory is expensive so as soon as a
cell has received all of its information from the lowest frequency
channel its contents can be dumped to cheaper low speed memory
(computer memory) and returned to the high speed pool. Hence,
the memory addresses commutate instead of increasing indefinitely.
Figure 2 shows a schematic representation of the dispersion
mapping in a finite memory. Not shown is the fact that when a
cell reaches the right-hand end of the accumulator its contents
are dumped. %

The size of the fast memory bank is pretty well determined by the
number of channels in the spectrum. There is a very little more
information to be gained from retaining a time resolution finer
than 1/4 or 1/8 of the traversal time of a dispersed pulse across
one frequency channel, so the number of cells need not be greater
than 4 to 8 times the number of channels. With wide bandwidths
and large dispersions each cell must be capable of holding the
sum of a large number of samples. We are planning 28-bit cell
sizes which should hold about 10 seconds worth of data before
overflow which is sufficient for a dispersion measure of about
2000 for a center frequency of 200 MHz, a bandwidth of 20 MHz,
and a time resolution of 1/8 of a single channel crossing time.

Almost any shape of dedispersion curve could be accommodated with
this scheme. If more than one cell can be dumped in a resolution
time the curve need not be monotonic. For instance, different
parts of the spectrum could be tuned to different dispersions.

Figure 3 shows the address generation scheme for the accumulator.
The numbers in this diagram assume that all 512 channels are
handled by the same accumulator, but, in practice, the accumulator
will be split four ways. The RAM contains the dedispersion map
with each location containing the address offset of an accumulator
cell. To this address is added the time dependent address counter
which increments at an interval which must be a multiple (< 8) of
the address RAM cycle time. Any overflow bit resulting from the
addition is discarded.

Figure 2 shows a "bad data counter" block. This auxiliary accumulator
keeps track of the amount of data that may not be added to the
main accumulator cells because of the detection of wideband noise
or because some frequency channels are dropped from the average.
Because time and frequency holes map into the time domain in a
complicated way, each accumulator cell must have a mate in the
"bad data counter" block to record its history until dump time.
Both use the same address.

JRF/cjd

Attachments:
Figures 1-3

SPECTRAL PROCESSEOR

/% ITFs
: A/D T
BASEBAND S DO
TO miz [/O0C0 Cj
Svo & ITFs
PASEBAND /9/17 S
e : WiNDO W
3O mHz rooo
W/ DERRAND
Ly
Puise DET:
wWipEBAND
Purseg DET
S SPECTRR /SEC
oR FORW sEC
1 SELES
Accumu L ATeR =
CROSS - —————— 3 CompuTER
> WUL'f_irf'LIE"Rs—___J MEMERY

FIGURE 1

TIME v~ FRERUENCY DEPENDENT ACCUMULAT/ION

- WAPPING WUNTTION
I ADPDRESS RAM

FREQR —>
lo6C CHAN SPECTRUM

) \
PELETED
e

" CHANWVELS

BAD
PATA

FLAG

v
o000 pCCyMUOLATION LOGATIONS
COMMUITBRTING PRDPRESSES <
BAD DARTH CoUNTERS W/TH SAME APDREsSSEs

FIGURE 2

Accomp,aToR ADDRESs GEVERAT2R

ccivmyl ATPR
ADDRES'S precome
, MEMoRY
MAF = ADPRESS

512X 12— 47 RAM|

T

ADDRESS .. ;
N ; J2=pir
SEQUENCE } =
COUNTER CovV7TER
| T
DiviDER

(Ne oF CHAN X l\/)

KXEomy ClrLock

FIGURE 3

