
NATIONAL RADIO ASTRONOMY OBSERVATORY
Green Bank, West Virginia

Spectral Processor Memo No. 33

June 23, 1 988

To: Sp ectral Processor Group
and Mailing List

From: J. Richard Fisher

Sub j : Caesar Keywords Associated with the Spectral Processor

The subject report follows.

JRF/cj d

Caesar Keywords Associated with the Spectral Processor

This document is a first cut at specifying the keywords needed in
the telescope control command language to set up the spectral processor.
Some of the words are new and some are old ones modified to handle more
than one value, i.e. turned into arrays. The keywords are listed in three
different ways. The first associates each keyword with its reference in
the data structures in the Caesar code and tells on which SODA screen (s)
that keyword should appear. The second gives a brief description of the
function of each keyword. The third specifies which keywords are needed
to determine the value of each setup parameter in the setup packet data
structures sent from the spectral processor MassComp to the rack
controller.

The following keywords are used to set up the spectral processor.
With each keyword are its reference in shared memory A, the SODA screens
on which it should be found, and legal values if there are a finite number
of them. String values may be any combination of upper and lower case and
may be shortened to a length that resolves all ambiguities but not shorter
than 3 characters. A few keywords will appear on screens not associated
with the spectral processor, but these are not listed here. New keywords
are marked with #, and old keywords that have been changed to arrays or to
different array indices are marked with $. The subscript N always has a
dimension of 2 and refers to racks A and B. A short description of the
keywords follows this table.

Keyword Shared Mem. A Ref. SODA Screens

clock, source
“Internal”,

Spectrom.clock source
"External”

Spectrometer

if.lo.source.N.M
”Internal”,

L0_tuning.if lo source[2][8]
External”

LO Tuning
Spectrometer

$ num.spectr.N
1, 2, 4, 8

Spectrom.numjspectr[2] Spectrometer

$ num.chan.N Spectrom.num chan[2]
[2, 4, 8, 16, 32, 64], 128, 256, 512, 1024
See keyword notes.

Spectrometer

taper.N.M Spectrom.taper[2][2]
(Available taper names)

Spectrometer

taper.select.N
1, 2

Spectrom.taper_select[2] Spectrometer

taper.offset
”Yes", "No”

Spectrom.taper_offset Spectrometer

max.pwr.N Spectrom. max_pwr [2] Spectrometer

atod. input. lev .N.M Spectrom. atod_input_lev [2] [8] Spectrometer

band, width. N
40, 20, 10,

Setup.band_width[2]
5, 2.5, 1.25, 0.625,

Setup
Spectrometer

0.3125, 0.15625, 0.078125 MHz

observ. mode Setup. observ_mode
"Line”, "Pulsar", among others for
other backends

multiplier.mode Spectrom.multiplier_mode
"Square", "Cross", "Sqr/Cross"

$ ifs.N.M L0_tuning.ifs[2][8]

if.sideband.N.M LOjtuning.if sideband[2] [8]
"Upper", "Lower"

clock.freq Spectrom.clock_freq

clock.freq.deriv Spectrom.clock_freq_deriv

$ num. phase. N Switch__ph. num_phase [2]

$ phase. N . M Switch_ph. phase [2] [8]
"Signal", "Reference", "On Cal", "Off Cal"

$ blank. time. N Switching. blank_time [2]

$ phase. time. N . M Switching. phase_time [2] [8]

$ sample. time. N Contin_back. sample_time [2]

excise.N.M Rfi.excise[21 [81
"Yes", "No"

f ast. time. const .N.M Rf i. fast_time_const [2] [8]
lus, 3us, lOus, 30us, lOOus,
300us, 1ms, 3ms, 10ms

slow. time. const .N.M Rfi. slow_t ime__const [2] [8]
lOOus, 300us, 1ms, 3ms, 10ms,
30ms, 100ms, 300ms, lsec

clip.level.N.M Rfi.clip__level[2] [8]

threshold.N.M Rfi.threshold[2] [8]

utc. start Data_cntl. utc_start

utc. stop Data_cntl. utc_stop

$ pulsar. period. N Pulsar. pulsarj>eriod [2]

pulsar.period.deriv.N #Pulsar.pulsar_period_deriv[2]

$ dispersion .measure. N Pulsar. dispersion_measure [2]

processor. mode. N Pulsar. processorjmode [2]
"DedispTimeSamples", "TimeSyncSpectra",
"SigAvgDedisp", "SpectraBurst",
"VoltageTimeSamples", "PowerTimeSamples",
"PulsePhaseSpectra", "SyncFreqTime"

Setup

Spectrometer

LO Tuning

LO Tuning
Spectrometer

Spectrometer

Spectrometer

Front-end Switching

Front-end Switching

Front-end Switching

Front-end Switching

Spectrometer

RFI

RFI

RFI

RFI

RFI

Data Control

Data Control

Pulsar

Pulsar

Pulsar

Pulsar

- 3 -

$ num.window.N

$ begin.window.N.M

$ end.window.N.M

Pulsar. num__window [2]

Pulsar.begin_window[2][8]

Pulsar.end_window[2][8]

Pulsar

Pulsar

Pulsar

Below is a rough description of the purpose of each keyword and
the units where applicable.

clock, source

if.lo.source.N.M

$ num.spectr.N

$ num.chan.N

taper.N.M

taper.select.N

taper, offset

Controls whether the spectral processor master clock
is driven from its internal 160 MHz oscillator or from
the external synthesizer.

Controls whether an IF drawer has its frequency set
by its internal synthesizer with 10 kHz resolution
or by the external synthesizer with 10 Hz resolution.

Number of IF inputs to each rack (1, 2, 4, or 8).

Number of spectral channels assigned to each IF input.
For normal operation this parameter is nearly redundant
with "nun^spectr", the exception being 2 IF's with
either 256 or 512 channels. The num_spectr/num_chan
selections are (8/128, 4/256, 2/256, 2/512,
and 1/1024). If a smaller number of channels than is
permitted by 'num_spectr' is specified, frequency
averaging will be done in the accumulator before
sending data to the MassComp. A smaller number of
channels could be chosen to get spectra more rapidly
since the data rate into the MassComp is a limiting
factor. The number must be a power of two.

Specifies the weighting function to be applied to
the A/D amplitude-vs-time series before it is
transformed. A small number of taper functions are
stored in the spectral processor and will be referred
to by name in this keyword. The index M may be 1 or 2
since two taper functions may be loaded into the
hardware to be selected from with the keyword
1taper.select.N*. In spectral processor hardware memos
the taper function is called a window, but this name
is used in another keyword for a different purpose.

Selects one of two taper functions in hardware for
each rack. In other words, it tells which value of
M in 11 taper.N.M” is active. Values are either 1 or 2.

Selects whether the data sampling for the time series
to be transformed in racks A and B are started together
or are offset by half of a series length. If both
racks look at the same IF signal, the offset provides
inhanced sensitivity when spectra from the same IF are
added together. The penalty is that there are half as

- 4 -

max.pwr.N

atod.input.lev.N.M

band, width. N

observ.mode

multiplier.mode

$ ifs.N.M

if .sideband. N.M

many spectral channels to spread around the frequency
and polarization dimensions. A value of "Yes" puts
the offset into effect.

Specifies the largest signal that can be present in
the output spectrum without overflowing the 16-bit
accumulator input. The data from the square/cross
multiplier is a 32-bit word, but only the top 16 bits
are presented to the accumulator. This parameter sets
left-shifting of the two 16-bit input words to the
multiplier to between one and four bits. Greater shift
means a smaller maximum power. The unit for this
parameter is the fraction of total noise power in the
passband. This can be less than or greater than one.

Sets the noise level at the input to the flash A/D
convertors. The unit is fraction of noise rms voltage
per quantization interval, normally between about 1.0
and 4.0. Lower numbers give more large signal handling
room in the A/D but compromize sensitivity and
baseline stability because of quantization effects.
The IF attenuators will be set to produce an input
level within about 0.5 dB of the one specified.

Sets the total bandwidth in each IF passband. All
bandwidths within one rack must be the same. Legal
selections are 40, 20, 10, 5, 2.5, 1.25, 0.625, 0.3125,
0.15625, and 0.078125 MHz. The total bandwith for one
rack is 40 MHZ. In other words, the product of the
number of IF's (num.spectr) and the bandwidth of one
IF must be 40 MHZ or smaller.

Specifies the general type of observing to be done
with the spectral processor or any other back-end for
that matter. Only two types refer to the spectral
processor: "Line" and "Pulsar." "Line" specifies
straight spectrum averaging for fixed integration
periods possibly with cal and front-end switching.
All other accumulation modes fall under "Pulsar."

Sets the multiplier following the real correction to
square the output of each complex FFT, cross multiply
the outputs from racks A and B, or do both if the
bandwidth permits the multiplier to run twice as fast
as the FFT. Legal values are "Square", "Cross", and
"Sqr/Cross".

Center frequencies of IF passbands. After taking into
account the baseband offset and other conversions in
the IF drawer, these parameters set the synthesizer
frequencies in the IF drawers or the frequency of the
high resolution synthesizer if an external IF LO is
selected.

Selects the active single-sideband convertor sideband.
With "Upper" sideband, increasing frequency at the IF
corresponds to increasing frequency at baseband. With

- 5 -

clock, freq

clock.freq.deriv

$ num.phase.N

$ phase.N.M

$ blank.time.N

$ phase.time.N.M

$ sample.time.N

excise.N.M

fast.time.const.N.

slow.time.const.N.

"Lower" sideband, increasing IF produces decreasing
frequency at baseband.

Sets the high resolution synthesizer frequency when
it is being used to drive the spectral processor
master clock. The normal value is 160 MHz. and all
legal values are less than or equal to this frequency.

Sets the rate of change of clock.freq in typical
units of Hz/Sec. When this value is not zero,
’clock.freq* is the frequency at 'utc.start*.

Sets the number of phases in the front-end switch
cycle when observ.mode = "Line". The state of each
phase is given by 'phase.N.M', the length of each
phase is given by 'phase.time.N.M1, and the time
between phases is given by 'blank.time.N1. The number
of phases may be from 1 to 8.

Specifies the state of each front-end switching phase
when observ.mode = "Line". The number of active phases
is set by 'num.phas.N'. Legal values are "Signal",
"Reference", "On Cal", "Off Cal".

Specifies the time between phases when no spectra are
accumulated in observ.mode = "Line". The same blanking
time is used between all active phases.

Specifies thetaccumulation time on each front-end
switch phase in one switch cycle. The number of active
phases in a cycle is given by 'num.phase'.

Specifies the total accumulation time of one data dump
to the spectral processor MassComp. This time must be
an integral number of switch cycles in whatever
observing mode is being used.

Turns on or off automatic RFI excision based on total
power threshold pulse detection for each IF channel.
Legal values are "Yes", "No" where "Yes" means that
excision is active.

Specifies the response time of the total power pulsed
RFI threshold detector. The optimum value depends
on the nature of the RFI but is often roughly equal to
the characteristic pulse length of the interference.
Legal values are lus, 3us, lOus, 30us, lOOus, 300us,
lms, 3ms, and 10ms.

Specifies the response time of the baseline comparison
level for the total power pulsed RFI threshold
detector. The optimum value depends on the nature of
the RFI and is usually more than 10 times the
characteristic time scale of the pulsed interference.
RFI detection occurs when the fast-time-constant

- 6 -

clip.level.N.M

threshold.N.M

utc. start

utc.stop

$ pulsar.period.N

pulsar. period. deriv.

$ dispersion.measure.N

processor.mode.N

response exceeds the slow-time-constant response by
the •threshold.N.M* value. Legal values are lOOus,
300us, 1ms, 3ms, 10ms, 30ms, 100ms, 300ms, and lsec.

Sets the maximum level that can be instantaneously
applied to the input of the slow baseline integrator.
This clipping prevents severe over-charging and, hence,
slow recovery of this integrator. This parameter is
specified in fraction of the total IF power and must
be greater than 1.0.

Specifies the level difference between the outputs
of the fast and slow integrators that will flag an RFI
pulse. This is specified in fraction of total IF
power. It may be considerably less than unity, but it
should be greater than about five times the reciprocal
of the square root of the product of the IF bandwidth
and the fast time constant to reduce the chance of
flagging normal noise.

Determines the precise time of taking the first data
sample in the first time series to be sent through
the FFT pipeline at the beginning of a scan. The
minimum resolution of this time is 200 ns or the flash
A/D sample period for the bandwidth in use, whichever
is greater.

Sets the time to stop sending accumulated data to the
spectral processor MassComp to the nearest integer
second.

The period of the pulsar to be observed in UTC seconds
at the 'utc.start' time. This is used to set up
synchronous accumulation in some pulsar modes.

The derivative of the pulsar period at the 'utc.start1
time in UTC seconds per UTC second. This value may be
used to track a pulsar period in a long scan of
synchronous averaging by dividing the scan into
shorter integration intervals and updating the clock
rate between sub-integrations. The sub-integration
may need to be as short as 20 seconds depending on the
magnitude of the derivative, and the update time
between may be on the order of a couple of seconds.

Specifies the pulsar dispersion measure for
spectral processor modes associated with dedispersion.
The unit is parsecs/cm**3.

Specifies the configuration of the spectral processor
when observing.mode = "Pulsar" and, hence, sets the
context in which all other parameters are intrepreted.
"DedispTimeSamples": dedispersed intensity vs time
output
"TimeSyncSpectra": spectra accumulated at selected
phases of a pulse period for many pulses

- 7 -

"SigAvgDedisp": dedispersed intensity vs time folded
for many pulse periods - synchronous signal averaging
"SpectraBurst11: no averaging of spectra - data
collected in short bursts whose average rate can be
handled by the MassComp input
"VoltageTimeSamples": untransformed time samples - data
collected in short bursts whose average rate can be
handled by the MassComp input
"PowerTimeSamples": untransformed but squared and
averaged time samples - data may be collected in short
bursts whose average rate can be handled by the
MassComp input
"PulsePhaseSpectra": spectra accumulated at selected
phases of a pulse period - really just a hardware
variation on "TimeSyncSpectra"
"SyncFreqTime": accumulation of spectra at adjacent
and equal width time intervals over a full pulse
period for many pulses

$ num.window.N Sets the number of time windows in a pulse period
during which independent spectra are to be accumulated

$ begin.window.N.M Specifies the beginning of each of the 'num.window'
time windows in pulse phase (0.0-1.0, no units). Since
the time windows must be in increments of FFT cycles,
the nearest available beginning phase will be selected.

$ end.window.N.M Specifies the end of each of the 'num.window' time
time windows in pulse phase (0.0-1.0, no units). Since
the time windows must be in increments of FFT cycles,
the nearest available ending phase will be selected.

Below is the mapping from Command language keywords to spectral
processor setup fields. New keywords are marked with #, old keywords that
have been changed to arrays or to different array indices sure marked
with $, and fields that will probably want to be under interactive control
at the spectral processor are marked with an *. Spectral processor mode
numbers are called out in S.P. Memo 31, appendix C.

/* Clock source and board setup */

synth_route
clockjsource
timing_gen
ad_interface
input_buffer
window
fft[ll]

real_correct
square_cross
accum

Spectrom.clock_source, #Spectrom.if_lo_source[2][8]
Spectrom.clock_source
Normal, independent of keywords
Normal, independent of keywords
Normal, independent of keywords
Normal, independent of keywords
Setup.observ__mode, #Pulsar.processor_mode[2], usable FFT board
configuration set by engineers and remembered by MassComp and
rack controller
Setup.observ_mode, #Pulsar.processorjmode[2]
Setup.observjnode, #Pulsar.processorjmode[2]
Not used

/* Bandpass and intermod filters, sideband, and multiplier config. */

bandwidth_num Setup. band_width [2], $Spectrom. num_spectr [2],
$Spectrom.num_chan[2]

sqcross_mul t #Spectrom. multipl ier_mode
f£Tt_sideband $LO_tuning.ifs[2][8], #LO_tuning.if _sideband[2][8]

/* Attenuators */

atten__setting[8] #Spectrom.atten or #Spectrom.atod_input_lev

/* Intermediate frequency LO and clock synthesizer settings */

lo[8][2] $L0_tuning.ifs[2][8]
clock[2] #Spectrom.clock_freq and #Spectrom.clock_freq_deriv or

Pulsar. pulsar_period [2] and #Pulsar. pulsar__period_deriv [2]

/* Accumulator, Cal, Sig/Ref.... switching and integration times */

accum_mode Setup. observ_mode, #Pulsar.processor__mode [2]
modes 1, 3, 4, 5, 6, 8, & 10: The following parameters
do not affect the accumulator addressing. The
phase times are needed to make the total power
counters operate correctly.

* num_phases Setup. observ__mode, #Pulsar.processor_mode[2]
modes 1, 3, 4, 5, 6, 8, & 10: one t, two T's (cal on and off)
modes 2 & 9: $Pulsar.num window[2],

$Pulsar.begin window[2][3 2],
$Pulsar.end__window[2] [32]. Note that the keyword
1 window' has already been chosen for what we've
been calling phase. What we've called window uses
the keyword 'taper'.

mode 7: $Switch ph.num phase[2]
* t__mult Setup.observ_mode, #Pulsar.processor_mode[2]

modes 1, 3, 4, 5, 6, 8, & 10: Set to 4 to prescale "sm_t_len"
modes 2 & 9: $Pulsar.num window[2],

$Pulsar_begTn window[2][32],
$Pulsar.end_window[2][3 2]. Set as required to
make longest "t" phase length less them 2**16.
All "t's" scale together,

mode 7: $Switching.phase_time[2] [8]. Set as required to make
longest "t" phase length less than 2**16. All "t's"
scale together.

* sm_t_len[32] Setup.observ^mode, #Pulsar.processor_mode[2],
Setup.band_wTdth[2], $Spectrom.num spectr[2],
$Spectrom. num__chan [2], $Contin_back. sample_time [2]
modes 1, 3, 4, 5, 6, 8, & 10: Set roughly to the number of

spectra in 0.5 seconds / t_mult.
modes 2 & 9: $Pulsar__begin_|_window[2] [32],

$Pulsar.end_window[2] [32]. Use as many phases as
required to set time windows in the pulse period,

mode 7: $Switching.phase_time[2][8], $Switching.blank time[2].
Set one phase for longest period consistent with
required "T's."

- 9 -

* lg_t_len[32] Setup.observ mode, #Pulsar.processorjmode[2],
Setup.band_wTdth[2], $Spectrom.numjspectr[2],
$Spectrom.num_chan[2], $Contin_back.sample_time[2]
modes 1, 3, 4, 5, 6, 8, & 10: Set two phases to one t cycle
modes 2 & 9: $Pulsar_begin window[2][32],

$Pulsar.end_window[2][32]. If not enough "t"
phases, use as many phases as required to set time
windows in pulse period. Use at least two "T"
phases to drive cal on/off signal for power
counter.

mode 7: $Switching.phase_time[2] [8], $Switching.blank_time[2].
Set for Cal on/off, Sig/Ref, and blanking times.

* decode[32] Setup. observ_mode, #Pulsar.processor_mode[2]
modes 1, 3, 4, 5, 6, 8, & 10: T(0) to cal off, T(l) to cal on

The cal switch drives the total power integrators - need to
be sure that cal signal is not actually firing

modes 2 & 9: $Pulsar.num window[2],
$Pulsar_begTn window[2][3 2],
$Pulsar.end_window[2] [3 2]. Decode blanking t 1s
and T's into bits 7 and 15. Decode active t
windows into address bits 0-4. Decode active T
windows into address bits 8-12, and activate cal
bit on at least one T phase. The address is for
the timing generator map on the accumulator board,

mode 7: $Switch_ph.phase[2][8] All t's decode to zero. Decode
cal T to address bit 14, sig/ref T to bit 13, and
blanking T's to bit 15.

tp_cal_cycles Setup.observ_mode, #Pulsar.processor_mode[2]
modes 1, 3, 4, 5, 6, 8, & 10: Set to one
modes 2 & 9: $Pulsar.num window[2],

$Pulsar_begTn window[2][32],
$Pulsar.end_wIndow[2][32]. Set as required to get
a total power integration between 1 and 2 seconds,

mode 7: $Switchvph.phase[2] [8], $Switching.phase_time[2] [8],
$Switchmg. blank time [2], $Switch_ph. num_phase [2].
Set as required to get a total power integration
between 1 and 2 seconds,

integjtime Redundant to accumulator parameters, not used

/* Flash A/D offset control */

off set [8] Determined by examination of spectral channel zero or an
average of the untransformed time samples (mode 6). Can be
done manually or automatically by the spectral processor
MassComp.

/* Window and output data shift selection */

window_sel #Spectrom.taper_select[2]
data__shift #Spectrom.maxjpwr [2], #Spectrom. atod_input_lev[2] [8]

/* Setup start and stop times */

start_tick[2] Data_cntl.utc_start, #Spectrom.taper__offset (allows start
times offset by half of a taper window)

- 10 -

start_date
start_offset[2]
stop_tick[2]
stopjdate

" (inferred)
ii

Data cntl.utc_stop
17 (inferred)

/* Interference excision */

* select #Rfi.excise[2][8]
* time_const[8] #Rf i. f astjtime const[2][8], #Rfi.slow_time const[2][8]
* clip_level[8] #Rfi.clip_leveT[2][8]
* threshold[8] #Rfi.threshold[2] [8]

/* Window coefficients, this is for one rack only. */

Spectrom. taper [4]w_upper[256]
w_lower[256]
x_upper[256]
x_lower[256]
y_upper[256]
y_lower[256]
z_lower[256]
z_upper[256]

/* Accumulator addressing information */

alu_map_mod

frame format

da t a_cy c 1 e_num

error count

Setup.observjmode, #Pulsar.processor jmode[2]
#Spectrom.multiplier mode
mode 3: Setup. band_wTdth [2], $Contin__back. sample_time [2],

Pulsar.pulsar_period[2]
#Pulsar. pulsarj?eriod__deriv [2]

modes 1, 5, 8, 10: Set independent of keywords
modes 2, 4, 6, 7, 9: This parameter not used
Setup.observjmode, #Pulsar.processor jmode[2]
#Spectrom.multiplier_mode
modes 1, 3, & 8: Transmit all error data
modes 2, 5, 7, 9, & 10: Transmit "A upper" error word every

M cycles
modes 4 & 6: Do not transmit any error words
Setup.observ mode, #Pulsar.processor jmode[2]
#Spectrom. mult ipl ier jmode
mode 1: Convenient frame length
modes 2, 4, 5, 7, & 9: $Spectrom.num_spectr[2],

$Spectrom.num_chan[2]
modes 3 & 10: $Spectrom.num_spectr[2], $Spectrom.num_chan[2],

$Contin_back.sample time[2],
Pulsar. pul sar_j?er io5 [2]
#Pulsar.pulsar_period_deriv[2]

modes 6 & 8: $Contin back.sample_time[2],
$SwitchTng.blank_time[2]

Setup.observjmode, #Pulsar.processor jmode[2]
#Spectrom.multiplier jmode
modes 1, 3, 4, 6, & 8: This parameter not used
modes 2, 5, 7, & 9: $Spectrom.num_spectr[2],

$Spectrom.num chan[2]

mode 10: $Spectrom.nuin_spectr[2], $Spectrom.num chan[2]
$Contin_back. sample_time [2], Pul sar. puTsar_period [2]
#Pulsar. pulsar__per iod_deriv [2]

time__res_count Setup.observjnode, #Pulsar.processor_mode[2]
#Spectrom. mult ipl ier_mode
modes 1, 3, 5, & 10: Setup.band_width[2],

$Spectrom. num_spectr [2], $Spectrom. num_chan [2],
$Contin_back.sample_time[2]

modes 2 & 4: This parameter not used
modes 6 & 8: $Contin_back.sample_time[2]
modes 7 & 9: Set to OxFFFF independent of any keywords unless

buffer counter needs prescaling
offset_count Setup.observ mode, #Pulsar.processor_mode[2]

#Spectrom. muTtipl ier mode
mode 1: Set to zero Independent of keywords
modes 2 & 4: This parameter not used
modes 3 & 10: $Contin_back.sample_time[2],

Pulsar.pulse_period[2]
modes 5, 6, 7, 8, & 9: Set to OxFFFF independent of keywords

/* Timing generator address mapping information for only one rack */

map[1024] Setup.observ mode, #Pulsar.processor_mode[2]
#Spectrom. muTtiplier_mode
mode 7: $Switchjph.num_phase[2], $Switch_ph.phase[2][8]
modes 2 & 9: $Pulsar.num window[2],

$Pulsar JaegTn^window[2][3 2],
$Pulsar.end_wTndow[2][3 2]

modes 1, 3, 4, 5, 6, 8, & 10: This parameter array not used

/* Buffer counter count cycle lengths in the accumulator addressing scheme
for only one rack */

length[256][2] Setup.observjmode, #Pulsar.processor_mode[2]
#Spectrom. mult ipl ier mode

modes 2 & 9: $Contin_Eack.samplejtime[2], Setup.band_width[2],
$Pul sar. num window [2],
$Pulsar_begTn window[2][32],
$Pulsar.end window[2][3 2]

modes 3 & 7: $Contin_baclc.samplejt ime[2], Setup.band_width[2]
mode 10: $Contin_back.sample time[2], Setup.band_width[2],

Pulsar. pul sar_perioc[[2],
#Pulsar.pulsar_period_deriv[2]

modes 1, 4, 5, 6, & 8: This parameter array not used

/* Dedispersion map, for only one rack. */

* map_a[1024] Setup.observ_mode, #Pulsar.processor_mode[2]
#Spectrom. mult ipl ier_mode
modes 1 and 3: $Pulsar.dispersion_measure[2],

L0_tuning.observ_freq[2]
modes 2, 4, 5, 6, 7, 8, 9, and 10: independent of keywords

- 11 -

