
NATIONAL RADIO ASTRONOMY OBSERVATORY

Green Bank, West Virginia

TELESCOPE CONTROL USER STANDARDS MEMO NO. 22

A POSSIBLE ALTERNATIVE TO MIN-MATCHING FOR
SYSTEM DEFINE KEYWORDS AND) ALIASES

Mark H. Clark

September 4, 1985



COMPUTING

SPELLING CORRECTION
IN USER INTERFACES
IVOR DURHAM, DAVID A. LAMB, and JAMES B. SAXE Carnegie-Mellon University

Ivor Durham is currently 1. INTRODUCTION
working in the areas of The automatic detection and correction of spelling errors in

software reliability, human prose has received a considerable amount of attention (an
engineering, and personal

computing environments. He annotated bibliography is given by Peterson [7]). However,
is writing a thesis on a users spend a considerable amount of time typing commands

methodology for developing to the user interfaces of programs, and they make typographi-
fault-tolerant software. David cal errors similar to those made while entering prose. Al-

A. Lamb is involved in t,
software engineering, i though designing and implementing a well-engineered and

compilers. programming tolerant user interface requires considerable effort, it is possi-
languages, and electronic ble that some basic techniques, suchas correcting the spelling

mail. James B. Saxe is of keywords, can be applied at low cost. In discussing desira-
interested in computational

complexity and is working on ble attributes of good user interfaces, Hayes et al. [4] assert
a thesis dealing with that spelling correction in typical interactive programs is

transformations of algorithms straightforward, since usually an error is made in a context
and circuits, where only a limited of keywords (fewer than 100) are appli-

This research was sponsore d cable. If spelling correction is really "straightforward" thenin part by the Defense

Advanced Research Projects there is no reason why almost all user interfaces should not
Agency (DoD). ARPA Order provide such a facility, even to the extent of retrofitting a
3597. monitored by the Air corrector into existing programs. Morgan [6] describes a spell-
Founrce Avionics Laboratory ing corrector that was implemented in both an operating sys-

1539, and in part by the tem and a compiler, for which the statement of purpose was:
Office of Naval Research

under Contract N00014-76- The goal of the proposed spelling correction techniques is,
C-0370. I.B. Saxe was roughly stated, to achieve a proficiency comparable to that

supported in part by an IBM of a quick scan of the source program by an experienced
Graduate Fellowship. programmer who has no knowledge of the program, and

The views and conclusions who makes no attempt to understand its purpose.
contained in this document

are those of the authors and There seem to be very few systems that take advantage of
should not be interpreted as

representing the official such a facility. The most well known such facility is DWIM
policies, either expressed or (Do What I Mean) in Interlisp [9], whose statement of purpose

implied, of the Defense is almost the same as Morgan's.
Advanced Research Projects The purpose of our investigation was to learn what issues

Agency or the US
Government. distinguish spelling correction in user interface applications

Authors' Present Address: from the more general problem of manuscript spelling correc-
Computer Science tion and to learn how much of a contribution a spelling

Department. corrector could make in a user interface. We also wanted to
Carnegie-Mellon University. get a realistic picture of the errors users really make and to

Pittsburgh. PA 15213.
CMU-CS-A.ARPA supplement the data presented by Damerau in 1964 [1]. To

Permission to copy without this end we considered what characteristics of a spelling cor-
fee all or part of this material rector for an interactive program were desirable and devel-

is granted provided that the oped a variation on Damerau's algorithm meeting these re-
copies are not made or quirements. We incorporated the spelling corrector into thedistributed for direct qurmnsWeicroaethspligorcornote

commercial advantage, the command table module used by the RdMail electronic mail
ACM copyright notice and system [5], which is in heavy daily use by a community of
the title of the publication several hundred researchers. RdMail has a conventional ty-

and its date appear. and pescript-oriented command language, where most commands
notice is given that copying

is by permission of the consist of a verb followed by a sequence of arguments. Most
Association for Computing user terminals are low-bandwidth "glass teletypes," which can

Machinery. To copy display 24 lines of 80 characters each. To learn about the
otherwise, or to republish, issues and to find out what kinds of mistakes are made by

requires a te,. and/or specificpermissiond 1r83 ACM users, we collected data on the accuracy of the spelling of the
oo0001-0782/83 /1000-0764 75C keywords entered by users and on the ability of the program

ABSTRACT: The feasibility of
providing a spelling corrector as a
part of interactive user interfaces is
demonstrated. The issues involved
in using spelling correction in a
user interface are examined, and a
simple correction algorithm is
described. The results of an
experiment in which the corrector
is incorporated into a heavily used
interactive program are described.
More than one quarter of the errors
made by users during the
experiment were corrected using
the simple mechanisms presented
here. From this we have concluded
that there are considerable benefits
and few obstacles to providing a
spelling corrector in almost any
interactive user interface.

October 1983 Volume? F Numbr 1764 Communications of the ACM



to offer corrections when keywords were not recognized im-
Smediately. We collected general information about the use of
the command interface and recorded specific information
about the keywords that were not recognized and what cor-
rections were made.

Throughout the paper we illustrate issues with examples of
a user interacting with RdMail. Output appears in boldface
type to distinguish it from user type-in. The symbol I repre-
sents the carriage return key. Italics are our comments and
explanations. not part of the typescripts.

2. DESIGN ISSUES
We were prompted to look for a new correction algorithm
because of several differences between correcting spelling in
general manuscripts and correcting spelling in user interface
applications. Design considerations for the spelling corrector
fell into two categories: those affecting the design of the algo-
rithm, and those affecting its use in an interactive system.

2.1 Algorithm Design Issues
We chose the same set of assumptions about typographical
errors as Gorin did for the PDP-10 SPELL program ([3]; see
also [7]). We assume that there is exactly one error in the
symbol to be corrected and that the error arises from one of
the four causes that account for over 80 percent of spelling
errors [1]:

(1) transposition of two adjacent letters
(2) one letter wrong
(3) one extra letter
(4) one letter missing.

These errors are illustrated in Figure 1.
To minimize the difficulty of modifying programs to use the

new corrector, we decided to transparently replace a library
keyword lookup routine with a version that did spelling cor-
rection. The original symbol table module accepts as parame-
ters an unsorted vector of strings and a single probe string to
match against the elements of the vector. The lookup algo-
rithm allows the probe to be a unique initial substring of a
table entry and reports an error when the probe is ambiguous.

The specification of the original library module illustrates
three differences between spelling correction in manuscripts
and spelling correction in user interfaces:

(1) It is common to allow abbreviations in a user interface
to minimize typing.

(2) The probe being looked up in a table may match sev-
eral entries.

(3) Affix (suffix and prefix) analysis is not necessary since
the legal symbols come from a very limited vocabulary.

2.2 User Interaction Issues
A number of issues arise when a user interface is supple-
mented with a spelling corrector. These issues concern the
interactions with the user when spelling correction is at-
tempted and can interfere with the user's ability to work with
the interface.

If the user's symbol contains only one character, the "extra-
letter" test would omit this character from the dictionary
search and would therefore match all the words in the dic-
tionary (or none of them, depending on the semantics of an
empty string), which does not help the user. Similarly, the
"wrong-letter" test would match any word beginning with
any other character in the symbol alphabet. We chose to
report that no match had been found in this case.

COMPUTWNG P CT S

If the user's symbol contains only two characters, the var-
ious tests for diagnosing errors may still produce a substantial
number of possible matches. The "transposition" test and
"missing-letter" test are reasonable and behave the same for
both two-character symbols and longer symbols. However,
the extra-letter and wrong-letter tests can produce a large
number of possible matches. Suppose the user's symbol is xy;
then the extra-letter test would match all symbols beginning
with either x or with y. The wrong-letter test would match all
words beginning with x? and ?y, where ? matches any char-
acter. The designer must decide whether the size of the set of
possible matches is sufficiently small to permit the user to
choose one of them, or whether to behave as though no
match had been found. We initially chose to omit both the
extra-letter and wrong-letter tests for two-character symbols.
After a few months of operation we included the wrong-letter
test and received many complaints that the spelling corrector
offered too many choices, most of which were quite unex-
pected; this supports the original decision to omit the test.

Suppose that the correction algorithm finds exactly one
matching symbol. Is it safe to assume that the correction is
accurate? In general, the answer is no, because the user may
have made an error (or multiple errors) not detected by the
four tests. An example of this is to omit the space between
two keywords. The designer's decision must be based on the
consequences of using the symbol in error. The following
example is quite harmless:

<-hIep

% I assume you mean 'Help' instead of 'hlep'.
Help text is output here.

However, the consequences of assuming the accuracy of a
particular correction may be much more serious, as we dem-
onstrate in the following contrived example:

<-overwitea

% I assume you mean 'Overwrite' instead of 'overwite'.
Program proceeds to expunge deleted messages.

The unfortunate user did not mean "Overwrite"; he actually
meant

<-dover witem
Program sends file "WITE" to the Dover xerographic printer.

In RdMail this problem is avoided by requiring confirmation
before some irreversible action is taken, even if the user did
not make a spelling error; these mechanisms are entirely
outside the spelling corrector.

Dictionary Engia nd

User Er I aln.d

(a) Transposition.

Dictionary Am e ri c a

User Am e ic a

(b) Wrong Letter.

Dictionary an ad a Dictionary Co r ectio n

User Ca nad User Clorect

(c) Extra Letter. (d) Missing Letter in Abbreviation.

FIGURE 1. Keyword Matching Patterns.

October 1983 Volume 26 Number 10
Communications of the ACM 765



COMPUTNG PRAICES

Suppose next that the engineering decision is to require
confirmation of all spelling corrections. In a human-engi-
neered system, the actions taken by the system should re-
quire little effort by the user. For example, in offering particu-
lar default answers to questions, the common response to
accept the default is simply to hit one key, carriage return:

<-List AIf
onto file? [LPT: MAIL].m

Program lists all messages onto the line printer.

In the previous example we see that the user can still suffer
from prior training to hit in response to defaults offered by
the system:

<-overwitem
% Do you mean 'Overwrite' instead of 'overwite'? [Yes]:
Program proceeds to expunge deleted messages.

Clearly the default response when the user typed hiep in-
stead of Help could safely have been Yes,, while in the Over-
write example it wo.ld have been dangerous. It is important
that the default responses for spelling correction be consistent
to prevent serious mistakes. Although it might be more frus-
trating for the user to have to say y to accept Help for hiep, it
is certainly better than losing information in the Overwrite
example. Hence, the safe version of the previous example is

<-overwite
% Do you mean 'Overwrite' instead of 'overwite'? [No]:mt

No damage this time.
<-dover wite
System prints file WITE.

A reasonable compromise may be to assume the accuracy
of corrections for which the consequences are reversible (flag-
ging such dictionary entries, for example) and to request con-
firmation of those for which the consequences are not reversi-
ble. A simple variant of this last option is used in the current
version of RdMail. Confirmation is required for corrections
made in some dictionaries but not others. For example, main
command corrections are assumed to be accurate since all
actions are further confirmed or are reversible. However, con-
firmation is required when an error is made in naming a
program for RdMail to run as a subjob. To assume the wrong
program name could have irreversible consequences, such as
deleting files. A RdMail user may set an option to always
request confirmation of spelling corrections.

When the correction algorithm finds more than one match-
ing symbol in the symbol table, the designer must decide
whether or not the user should be given the opportunity to
select the correct symbol from the smaller set of matching
symbols. He must also decide whether to invest the effort in
further reducing the size of the set of matching symbols by
using heuristic factors, such as the relative positions of charac-
ters on the keyboard. We included no such heuristics and
simply offered the user all matching symbols. The data col-
lected during our experiment showed that between 2 and 10
aliernative corrections were offered, with the majority of
cases producing between 2 and 4 alternatives.

% 'ecx' could be any one of the following:
Echo, Exit
Which one do you mean? [None of the above]:m

An alternative strategy for handling common ambiguities is
to provide preferred disambiguations. For example, in RdMail

"A" is presumed to mean "Answer" instead of "Accept," "Al-
ias," or "Allocate." This is handled by a mechanism outside
the spelling corrector the single-character command A is
added to the command table as a synonym for Answer.

Finally, what should be done if there is a problem with the
symbol supplied by the user in response to the question,
"Which one do you mean?" Some of our users suggested that
spelling correction should be applied recursively, but others
wanted to be able to type in the name of the command they
had meant initially. For example, when a user typed de in-
stead of ed for Edit, the program offered as alternatives only
those commands for which de is an ambiguous abbreviation;
the user would probably prefer to respond with Edit even
though the symbol is not in the set offered by the program.
Clearly a combination of the two could be applied. For exam-
ple, if the program were to apply spelling correction first and
find that that still didn't produce an unambiguous symbol,
then it could look for the new symbol in the original symbol
table rather than in the set of possible corrections. On the
other hand, this would require the user to maintain a com-
plex model of what the corrector is doing. For our experi-
ment, we chose the simple expedient of forcing the user to get
the symbol right rather than making any attempt to correct
the correction. The program simply repeats the question:

<-de 201c

% 'de' could be any one of the following:
DeAllocate, Debug, DeClassify, Delete
Which one do you mean? [None of the above]: diem
% 'die' is not an option.
Which one do you mean? [None of the above]: delt
Program deletes message 201.

The action taken at a user interface when all attempts fail
to produce a unique symbol is not specific to those interfaces
that use spelling correction. However, a few simple actions
should be mentioned. First, the command containing the er-
roneous symbol may be aborted. Having tried our best to
make sense of the command, we must ultimately give up
since it will be much easier for the user to express himself
more accurately. This approach was used in RdMail.

<-Aaaarrgghh!m

? No such command as Aaaarrgghh. Type ? for help.

A slightly more sophisticated approach is to ask the user to
correct the symbol and then attempt to continue with the
command (notice that two errors are detected in the com-
mand):

<-haeders from Robertson intersect week "May 16"
c

% I assume you mean 'Headers' instead of 'haeders'.
? 'week' is not a Message Sequence keyword.
Message Sequence keyword [Abort command]: since'
Program lists headers of messages from Robertson since May

16.

This mechanism was added to RdMail after our experiment.

3. THE CORRECTION ALGORITHM
The comparison of two symbols (the user's and a dictionary
symbol) is done in three parts, as illustrated by the three
divisions of each example in Figure 1.

(1) Find the common initial substring (i.e., up to the first
difference). Case distinctions in letters may be ignored; the
algorithm must find all possible matches for the symbol not
found by the initial search.

766 Communications of the ACM



C~OMTIPRAl

(2) Examine the next pair of letters for a transposition er-
ror.

(3) Match the tail substrings. If the previous step suggested
that two characters had been transposed, omit two characters
from both symbols and match the remaining substrings. For
the wrong-letter test omit one character from each symbol
and match the tail substrings. For the extra-letter (missing-
letter) test, omit one letter from the user's (dictionary) symbol
and match the remaining tail substrings.

The matching steps are repeated for each symbol in the dic-
tionary. Each dictionary symbol that is matched is added to a
set of possible corrections for the user's symbol. If there is
only one member in the set when all of the symbols in the
dictionary have been examined, that symbol may be offered
as the correction. If there are several symbols in the set, the
user may be asked to select one.

We originally tried the SPELL program's strategy of search-
ing the symbol table for each string that could be transformed
into the user's symbol by one of the four kinds of errors. This
was far too slow with the original library lookup algorithm.

Using only the lengths of the user's symbol and the diction-
ary symbol, two optimizations can be made to avoid unneces-
sary string comparisons:

(1) If the length of the user's symbol exceeds the length of
the dictionary symbol by more than one character, no match
is possible with the above algorithm, so the "no match" result
can be returned immediately. (This assumes that the string
length is readily available.)

(2) If the first difference found is in the last character of the
user's symbol, the extra-letter test would discard the charac-
ter and therefore convert the user's symbol into a matching
initial substring of the dictionary symbol.

This algorithm requires no intermediate string construction.
The only additional storage required is for the set of matched
dictionary entries, which can be represented as a vector of
Booleans with one element per dictionary element. At the
end of the algorithm the set of matching symbols is identified
by all true elements in the set vector. The algorithm also has
the advantage of being trivial to implement. The most expen-
sive components are the low-level functions that locate the
first difference and match substrings. In our experimental
implementation both of these functions were written in as-
sembly code using straightforward character-by-character
comparisons.

An example implementation of this algorithm in Ada' is
given in the Appendix. This implementation exploits Ada's
facility for dynamically dimensioned arrays. In languages
which lack this facility, other data structures, such as linked
lists or large fixed-size arrays, can be used instead.

3.1 Implementation of the Corrector
The main spelling correction algorithm was implemented in
SAIL[8), an Algol-based language that provides strings as a
primitive data type. There is an extensive library of SAIL
functions at Carnegie-Mellon University that includes a com-
mand table abstraction and that uses a more primitive symbol
table abstraction. The command table module was changed to
call the spelling corrector when a keyword was not found
anywhere in the symbol table.

To handle multiple matching symbols, the corrector builds
a table (vector) of string pointers and calls a subroutine which

' Ada[2)is aoegistered trademark of the U.S. Department of Defense
(OUSDR1.-AlJPO).

asks the user to select the correct keyword. The subroutine
forces the user to be accurate in selecting one keyword from
the set offered. No attempt is made to correct the spelling of
the keyword selected.

3.2 Performance
The following informal analysis shows that the spelling cor-
rection algorithm is quite adequate for our requirements even
though it clearly is not optimal for the general correction
application in prose. What it lacks in performance is returned
in simplicity that facilitates its introduction in a wide variety
of applications.

To correct one symbol given a dictionary of N symbols, our
algorithm performs N initial substring matches and at most
4N tail substring matches. (The transposition tail match is
performed only if the "transposition" test succeeds.) At worst,
this is equivalent to 4N equality string matches, plus a small
constant overhead per dictionary element.

To get a more concrete measure of the cost of spelling
correction, we performed some measurements of the algo-
rithm's running time. Measurements were taken on a lightly
loaded DECsystem-10 KL-10 processor 2 (the same one used in
the RdMail experiment described in Section 4). In each case
the data were obtained by running 5000 tests in a loop, sub-
tracting the original value of the system clock from the final
value, subtracting loop overhead, and dividing by 5000. Look-
ups were done on a table of 66 entries, a subset of the main
command table from the RdMail program. The original com-
mand table had 77 entries; we eliminated 5 punctuation char-
acter commands and 6 commands where transposing the first
two letters results in an ambiguity. Measurements were taken
of

(1) the time taken by the original library module (without
spelling correction) and by the new module (with spelling
correction) to look up a correct entry.

(2) the time taken by each of the two modules to decide a
probe is not in the table. Five sources of failing keys were
chosen:

(a) character strings of the form aaaaa, bbbbb, and so on
(b) failing keywords collected during the experiment de-

scribed in Section 4; all keys longer than two charac-
ters were included

(c) the numeric keys from the experiment
(d) the alphabetic keys from the experiment
(e) strings of the form KEYxxx, where KEY is a com-

mand from the main table

These times do not include the time taken to print an
error message; printing times are reported separately. We
also report the difference between the new and the old
lookup times, which represents the time taken by the
spelling corrector, and this difference divided by the table
size, which roughly represents the cost per table entry.
The last number varies because of the optimizations
mentioned in Section 3, which can reject some symbols
quickly.

(3) the time taken to handle a transposition of the first two
characters of a command: a command was chosen and its
first two letters were transposed before calling the routine.
which resulted in a lookup failure for the original module;
the new module corrects this error

(4) the time taken to print a message of the form "I assume

'DECsystem-1O is a trademark of Digital Equipment Corporation.

October 1983 Volume 26 Number 10
Communications of the ACM 767



COMPUrfNG PRACTICES

TABLE I. Measurements of the Corrector

Time (ms)
Test Original New Per table

lookup lookup Difference entry

Succeeding 1.781 1.797
Failing

aaaaa, etc. 3.100 24.728 21.628 0.328
real data 3.123 22.060 18.937 0.287
real numeric 3.162 25.613 22.451 0.340
real alphabetic 3.122 21.943 18.821 0.285
KEY xxx 2.990 12.385 9.395 0.142

Transposition
failing 3.221 -
correcting error - 28.384

Print "I assume..." message 5.749
Print " .. not a command" message 4.594

you mean X instead of Y"
(5) the time taken to print a message of the form "X is not a

command."

The results are illustrated in Table I.
We conclude that the algorithm described above is a good

choice for those applications, such as user interfaces, in which
the size of the dictionary is quite small and abbreviations
must be handled. For the library symbol table module used in
the experiment, we cannot do much better since the specifi-
cation for the lookup routine does not require that the table
be sorted.

4. THE EXPERIMENT
The principal purpose of the informal experiment described
in this section was to learn how useful a spelling corrector
might be in an interactive user interface. In asking about the
errors made by users, our attention is confined to finding
symbols in the various symbol tables used by the program;
we explicitly exclude semantic and syntactic errors in com-
posing commands except as they are detected by failing to
find a symbol in a particular table. The efficacy of the correc-
tion facility depends on the variety of errors users make and
their respective frequencies. The rate of errors made deter-
mines the overall cost of the spelling correction facility. We
need to determine what proportion of those errors can be
attributed to typographical errors that may be recovered by
the corrector. Learning what other errors are made may sug-
gest other ways to improve the tolerance of the user interface
to user errors.

The RdMail Message Management System [5] was used for
the experiment. We describe the program and the informa-
tion we recorded from it in the next section. Then we present
the results of the experiment and offer a brief evaluation of
the effectiveness of our mechanisms in the light of those
results.

4.1 The RdMail System
RdMail is an interactive electronic-message management sys-
tem that provides facilities for the composition and transmis-
sion of messages among users of a network of computers.
Messages received can be classified, answered, and filed con-
veniently. RdMail commands are sequences of keywords and
parameters, where the parameters are usually numbers or
quoted strings. Users may operate on sets of messages by
specifying the particular messages by number, attribute (such
as date of arrival, name of originator, or subject), or user-
defined classification. For example,

<-headers meetngs intersect (since "Jan 1") intersect 50:175m
% Do you mean 'Meetings' instead of 'meetngs'? [No]: ycR

produces a brief identification of all messages between 50 and
175 that arrived since January 1 and were classified as "meet-
ings." Since the user defines the names of classifications, such
as "meetings," the set of symbols in the table used in the
parsing of message set specifications is dynamic.

The user leaves RdMail either temporarily to use an editor
to alter the composition of a message or permanently to re-
turn to the system's executive program. For the purposes of
the experiment, a session encompasses only those commands
that are given before the user leaves RdMail for any reason.
Hence one user session in which a message arrives, an an-
swer is composed and edited before being mailed, and new
mail is sent to other people would be considered two sessions
in the collected data: the first before entering the editor, the
second after returning from the editor and before leaving the
program permanently.

For the duration of the experiment, RdMail forced users to
confirm all corrections suggested by the program. This was
the only alteration made in the RdMail user interface.

4.2 The Data Collected
Because of the sensitive position of RdMail in communicating
between users we recorded no data that could be traced
directly to particular users. This anonymity was also impor-
tant in reducing the probability of users becoming self-con-
scious about making typographical errors and taking more
care than usual. We felt morally obliged to warn people that
we were performing an experiment and to give them the
option of running a different program to avoid participating in
the experiment. Warning users that the experiment was to be
conducted encouraged a few to entertain us with some color-
ful, if illegal, keywords. In some cases it was apparent that
users were probing the limits of RdMail's correction facility.
However, we cannot be sure of any particular user's intention
and have therefore included the apparently intentional errors
in our results.

The data recorded for each RdMail session were

(1) the number of commands given to RdMail (both from the
keyboard and from preexisting files)

(2) the number of keywords for which RdMail searched sym-
bol tables and the number of those keywords that were
not found or were ambiguous.

For each symbol that was not uniquely matched in a par-
ticular symbol table, a detailed record was made including

(1) the symbol the user provided
(2) the correct symbol, if any, as confirmed by the user
(3) the number of possible corrections for the symbol identi-

fied by the spelling corrector
(4) the identity of the symbol table
(5) the approximate execution time taken to identify the cor-

rections that could be made (rounded to the nearest milli-
second).

Gathering additional data. such as the entire command line
containing each unrecognized symbol, would have aided us
in determining the causes of uncorrected errors. We decided
not to do this because of our respect for privacy.

<-headers from Bovik intersect subejct "pay raise"

We shouldn't learn that Bovik is up for a pay raise just because
someone misspelled "subject."

768 Communications of the ACM
October 19W Volume 26 Number 10



COMnI G PRACTICES

Minimum 0
Maximum 563
Total keys 455811
Average keys/session 19.5
Mode keys/session 14
Standard deviation 17.87

0 20 40 60' 2 80 100 120 140 160 180 200

FIGURE 2. Keywords in a Session.

The reason we chose RdMail as our experimental vehicle in
spite of this inconvenience is that, with the possible exception
of various operating systems, RdMail has by far the most
heavily used "command line" style interface in our environ-
ment. The other heavily used programs are either compilers,
which are not interactive, or text editors, which use mostly
single-character commands.

4.3 Usage Statistics
The experiment ran for 41 days during which time a total of
23.361 RdMail sessions were recorded. RdMail processed a
total of 145,972 commands during the experiment; 140,038
from terminals and 5934 from command files. Data from
batch jobs were discarded because we were interested only in
human typographical errors, not in general RdMail use. Rd-
Mail handled a total of 455,811 keywords during the experi-
ment, averaging 3 per command. The distribution of numbers
of keywords in sessions is shown in Figure 2.

The running time for identifying the set of possible correc-
tions varied considerably, ranging up to 31 ms with an aver-
age of 9.5 ms, but with a relatively large standard deviation,
a = 9.5 ms.3 The total time used by the spelling corrector over
the 41 days of the experiment was 19.2 seconds, an average of
468 ms per day.

4.4 Results
During the 41 days of our experiment, RdMail encountered
2527 erroneous, i.e., not uniquely identifiable, keys (0.554 per-
cent of all symbols entered). Due to an oversight in the data-
collection routines, we cannot determine how many keys
came from command files. Four percent of commands came
from command files. Even if the number of keywords per file
command were an order of magnitude greater than the aver-
age number of keywords for all commands, the error rate for
manually entered keys would be only 0.934 percent, which is
still very small. Actual error rates may be higher, since we

'The average time spent in the spelling corrector tor the subset of the data
used as "real keys" in Section 3.2 was 19. 7 ms. This agrees well with the
spelling corrector cost (19.1 ms) shown in Figure 2 Many erroneous keys were
processed more quickly because they were shorter than three characters or
because they were looked up in small tables

cannot tell how often a user noticed an error and corrected it
manually (by backspacing over the error or deleting the input
line, and retyping) before hitting carriage return to enter the
command. The erroneous keywords were recorded in two
different classes: keywords not found in the symbol table and
keywords that were ambiguous. The distribution of these er-
rors is shown in Table II.

By examining the data collected for each erroneous key, we
arrived at the taxonomy of errors shown in Figure 3. The
percentage figure in parentheses after each class of error gives
the size of that class in relation to the entire class of 2527
recorded instances of erroneous keys.

Corrected Errors (27 percent). Transposition error corrected,
Missing letter restored, Wrong letter corrected, and Extra letter
removed (16 percent); Ambiguity resolved (11 percent). The
error recovery mechanism offered potential corrections (24
percent) or disambiguations (20 percent) for 44 percent of all
erroneous keys. However, users did not always accept correc-
tions and disambiguations when they were offered. Only 56

TABLE II. Keywords in Error

Unmatched keys Number of Ambiguous keys Number of
per session sessions per session sessions

0 21800 0 22905
1 1293 1 423
2 181 2 28
3 44 3 3
4 27 4 2
5 7
6 2
7 3
8 0
9 2

10 1
40 1

Total unmatched keys 2031
Total ambiguous keys 496

Octoirr 1983 Volume 26 NumiN'r 10

10000

CoC.)U,
0

0

1000
a,,

.)

o 100

10

(Over 192)

Communications of the ACM 769



COMPUTING PRACTICES

SAll erroneous keys (100%)
o Corrected/disambiguated keys (27%)

" * Ambiguity resolved (11%)
* Typographical (16%)

o Transposition error corrected (2.7%)
o Missing letter restored (4.8%)
* Wrong letter corrected (4.5%)
* Extra letter removed (4.0%)

* Uncorrected keys (73%)
* Alphabetic (46.6%)

o One character (10.4%)
* Two characters (9.9%)
o Three or more characters (26.3%)

* Typographical? (2.9%)
o Missing space?
o Missing carriage return?
o Missing slash?
* Control key?
* Typeahead?
o Multiple typo?
o Miscellaneous typo?

* Nontypographical? (23.4%)
* Intentional error? (3.2%)
o Good correction or disambiguation rejected?

(0.4%)
o Syntax or vocabulary error? (19.8%)

* Nonalphabetic (26.4%)
o Control character (12.9%)
o Number (4.6%)
o Punctuation (8.9%)

FIGURE 3. Taxonomy of Errors. Speculative classifications are marked
with "?,

percent of the ambiguities detected were resolved by the user
accepting one of the alternatives offered, and users accepted
spelling corrections in only 66 percent of the cases where one
or more potential corrections were offered. The errors thus
resolved accounted for 27 percent of all erroneous keys. For
13 percent of all erroneous keys, the corrector offered a single
correction that was accepted by the user.

In some cases, accurate disambiguations or corrections may
have been rejected accidentally. We are unable to say how
often this happened because the privacy constraints on our
experiment prevented us from recording sufficient informa-
tion to determine which rejected disambiguations and correc-
tions were in fact accurate.

Errors with two or more explanations were assigned to the
first of the above categories into which they fit. For example,
if the erroneous key die was corrected to Deleted, we ac-
counted for the error as the transposition of "l" and "e," rather
than as the omission of an "e" or the inclusion of a spurious
"1."

Uncorrected Alphabetic Keys (73 percent). Of the 1845 un-
corrected erroneous keys, 1179 (46.7 percent of all erroneous
keys) were "alphabetic," that is, consisted of a letter followed
by zero or more letters or digits. Of these, 264 (10.4 percent of
all erroneous keys) were single letters, 249 (9.9 percent) were
only two characters long, and 666 (26.4 percent) were 3 or
more characters long. We manually classified the 666 "multi-
character" (>2 character) uncorrected alphabetic keys. Since
we had to rely on educated guesswork for this classification, it
is possible that we incorrectly classified some of the keys. We

have indicated this possibility by placing question marks by
the names of the manually generated subclasses.

Typographical Errors (2.9 percent). Missing space, Missing
carriage return, Missing slash, Control key, Typeahead, Multi-
ple typo, Miscellaneous typo. We attributed 74 of the 666
erroneous multicharacter alphabetic keys (2.9 percent of all
erroneous keys) to typographical errors of sorts not corrected
by our algorithm. Perhaps the most obvious sort of error in
this category is the omission of a space between two key-
words (e.g., typing numnew instead of rum new to ask for the
message numbers of all new messages, or hdel instead of h del
to ask for the headers of all deleted messages). A similar kind
of error, but one whose existence we might not have guessed
without seeing some examples, is the missing carriage return.
An example is the key exitbb, almost surely typed by a user
who intended to type an Exit command to leave RdMail and
then type BB to the operating system to read an electronic
bulletin board. In one case we diagnosed an erroneous key as
resulting from a missing "/." On our system, the control char-
acter CTRL-S is used to suspend output to the terminal, an
action that is useful to prevent long messages from scrolling
off the screen faster than the user can read: typing a CTRL-Q
causes output to resume. If the CTRL key on a terminal is
'broken, or if the user doesn't have his finger on it-some of
our terminals have keyboards with REPEAT in the same
position where others have CTRL--the result may be an
erroneous key such as ssssty (instead of ty to type a message).
Another feature of our system is that terminals run in full
duplex mode, allowing the user to enter additional commands
while waiting for the machine to respond to earlier com-
mands. Since such "typeahead" may not be echoed immedi-
ately or may be echoed in the middle of a lot of output, it is
possible for a user to forget how far ahead he has typed. An
example of an erroneous key that is probably due to this
phenomenon is typetype. Presumably the user keyed in the
command Type while waiting for the previous command to
finish, then forgot that he had done so and keyed it in again.
We attributed eight erroneous keys to multiple typos. Two
examples are aner (instead of Answer to reply to a message)
and hbok (instead of h book to type the headers of all messages
in the user-defined message class book). Finally, there were
several erroneous keys which appeared to result from prob-
lems with the mechanics of keying in commands but for
which we could not confidently specify a most probable
cause. It is interesting to note that 353 of the corrected keys
(excluding disambiguated keys) were three or more characters
long, Assuming that our count of 74 typographical errors
among the uncorrected multicharacter alphabetic keys is ac-
curate, this means that 83 percent (353 out of 353 + 74 = 427)
of all typographical errors resulting in multicharacter alpha-
betic erroneous keys were in the four classes handled by the
corrector. This is an agreement with Damerau's [1] experi-
ence that these four classes account for over 80 percent of all
spelling errors.

Nontypographical Multicharacter Alphabetic Erroneous
Keys (23.4 percent). Intentional error, Good correction or dis-
ambiguotion rejected, Syntax or vocabulary error. In addition
to the 74 multicharacter alphabetic keys that we could diag-
nose as typographical errors, there were 80 keys (3.2 percent
of all erroneous keys) that appeared to be intentional errors
and 10 cases (0.4 percent) in which we were reasonably confi-
dent that accurate corrections or disambiguations were re-
jected by users. The intentional errors included messages to
the authors of the spelling corrector (e.g, hithere and

October 1983 Volume 26 Number 10770 Communications of the ACM



COW~iNG PRACTICES

doyoureallymeanyoucantfigureouthbok), strings which appeared to
result from use of the keyboard as a pacifier (e.g., kkklknikn),
and a sequence of 28 consecutive misspellings of the com-
mand Put (up, tup. tpu, sput, etc.)-presumably generated by a
user who was probing (i.e., playing with) the spelling correc-
tor. This leaves 502 (19.9 percent) legitimate multicharacter
alphabetic erroneous keys, which we must presume were due
to errors above the typographical level-i.e., syntax and vo-
cabulary errors. Broadly speaking in these cases the user
either forgot the appropriate keyword, used a keyword that
would have been recognized in some other context, or in-
duced a parsing error by omitting a symbol, thereby leaving
an operand keyword where an operator was expected (or vice
versa). The following examples are typical:

<-headers from Durham since 3-marm
? Illegal message sequence at "SINCE" - junk at end
FROM DURHAM SINCE 3-MART
<-headers from Durham intersect since 3-mar{
Program prints headers of messages from Durham dated later
than March 3.

<-kjob/acR

? No such command as kjob. Type ? for help.
<-exits

EXIT

.kjob/am

Logged off CMUA.

Nonalphabetic Erroneous Keys (26.4 percent). Control
character. Number, Punctuation. The nonalphabetic erroneous
keys included 325 control characters (12.9 percent of all erro-
neous keys), 116 numbers (4.6 percent), and 225 punctuation
marks (8.9 percent). Among the control characters, the most
common by far was CTRL-S, which occurred 181 times (7.2
percent of all erroneous keys). As we mentioned earlier, this
character is used on our system to suspend output to a termi-
nal temporarily. Normally. the user types CTRL-Q to cause
output to resume. However, typing a second CTRL-S while
output is suspended will cause output to resume, but the
operating system will pass the second CTRL-S to the pro-
gram's input stream. If a user types CTRL-S, but output
doesn't stop immediately (because the load on the system is
impairing response time), he or she may type a second CTRL-
S, thereby inadvertently sending a CTRL-S to RdMail. We
believe that this phenomenon accounts for all, or almost all,
the observed occurrences of CTRL-S as an erroneous key. In
some cases CTRL-S might have been intended as SHIFT-S,
but these cases alone can hardly account for the great fre-
quency of CTRL-S compared with other control characters.
Given RdMail's command syntax, we would have expected
numbers and punctuation marks to appear most frequently as
erroneous keys in the middle of long commands. Surprisingly,
84 percent of the numbers and 51 percent of the punctuation
marks, as well as 92 percent of the control characters other
than CTRL-S, occurred as the first symbols of the commands
in which they were detected as erroneous keys. We have no
solid explanation for this phenomenon.

4.5 Evaluation
Our mechanism handled 27 percent of the erroneous keys
entered during the experiment. Examination of the remaining
73 percent led us to wonder what other mechanisms might

permit further corrections while retaining the typescript-style
interface. Most of the other errors seemed specific to the
operating system (TOPS-10) or application (RdMail). Although
there does not seem to be a mechanism as general as the
spelling corrector for handling these errors, we believe that
developing an "expert" level of friendliness requires paying
attention to this sort of detail.

Since the ambiguous key "D" was almost always disambi-
guated into "Delete," adding D to the main command table as
a synonym for Delete would remove 3.7 percent of the errors.
Ignoring the character CTRL-S, or treating it as a space, could
eliminate 7.2 percent of the errors. Since we believe most of
these occur because of attempts to suspend typeout, this
seems reasonable. Ignoring all control characters could ac-
count for a further 5.7 percent, but further study is needed to
determine why these errors occur.

Errors caused by typeahead might be reduced by not echo-
ing characters until the application requests input, as is done
on TOPS-20. This might actually increase error rates. since
users would not be able to see their typeahead. Our data
indicate that typeahead errors are very infrequent.

A portion of the syntax and vocabulary errors (19.8 percent
of all erroneous keys) and numeric errors (4.6 percent) may be
due to omitted keywords, or to the user forgetting the context.
These errors may be amenable to the techniques described by
Hayes et al. [4]. Some syntactic errors might be handled by
the recovery techniques used in compilers, or might be elimi-
nated by modifications to the grammar. For example, after the
experiment we made a small modification to the grammar for
RdMail message sequences so that a user may omit the key-
word "intersect."

Finally, there are some errors that do not seem to admit
any reasonable automatic recovery. For example, if a user
tries to classify a message as "ICs" (a user-defined class for
messages regarding integrated circuits), when the name of the
class is actually "chips," the best that can be done is to allow
the user to choose among the names of all the classifications.

5. CONCLUSION
The spelling corrector offered a unique acceptable correction
for 13 percent of the keyword errors detected during the
experiment. In a further 3 percent of the cases it found multi-
ple possible corrections, one of which was accepted by the
user. Allowing the user to correct ambiguities manually fixed
a further 11 percent of the keyword errors.

The correction algorithm is very simple to implement and
costs us about half a second per day for a heavily used inter-
active system. The corrector was invoked about 50 times a
day at an average cost of about 10 ms. RdMail has since been
modified to use the spelling corrector when the user's key-
word is an ambiguous abbreviation, as well as when the
keyword is not in the symbol table at all. If we project with
our data, the invocation rate increases to about 60 times per
day. The data clearly support the premise that spelling correc-
tion is "straightforward" in user interface applications. The
most complex part of the engineering is selecting the behavior
of the system with the results of the correction algorithm.

It is interesting that, in response to repeated requests by
certain users, the RdMail maintainers have provided options
for suppressing all of the extra warnings and confirmations
normally produced when some irreversible action is about to
occur. Such users are vulnerable when the corrector changes
a typographical error into a valid, irreversible command. The
mistakes made by experts appear intuitively to be caused by

'rapid typing and extensive use of abbreviations, while less

October 19&3 Vnlum9 w Nmmher U in Communications of the ACM 771



j

COMaPUTI1NG PRACTICES

,experienced users tend to use full command names and make
. the more common typographical errors.

We have installed the command module that uses the
spelling corrector in the standard SAIL library at Carnegie-
Mellon University. As a consequence, any program that uses
the library module acquires the spelling correction facility the
next time that it is link-edited. The number of programs that
now routinely provide spelling correction without any action
at all on the part of their author or maintainer is growing
slowly.

We conjecture that the spelling correction facility and algo-
rithm described in this paper would be equally beneficial in
both operating system environments (interactive and batch)
and compiler applications, where computing resources might
be conserved by continuing computations that might other-
wise be aborted, only to be repeated later. In particular, we
are somewhat surprised that the work described by Morgan
in 1970[6] has not found wider application today. We foresee
no significant technical difficulties to implementing our algo-
rithm in a variety of languages. Perhaps our results can con-
vince programmers to provide this simple, cheapand effec- .
tive facility in new and even'existing user interfaces.

Acknowledgments. This work began in response to a sug-
gestion by Hayes et al. that spelling correction of keywords in
programs like RdMail ought to be easy [4].

RDMail was originally written by Philip Karlton at Carne-
gie-Mellon University. It was nursed through adolescence to
maturity by a series of dedicated people including Mark Saps-
ford, Craig Everhart, Philip Lehman, and David Lamb. We are
indebted to our user community at Carnegie-Mellon for al-
lowing us to conduct the experiment and for providing imme-
diate and high quality feedback on the improvements made
to RdMail. Craig Everhart shared with us his considerable
expertise to overcome some intricacies of our operating sys-
tem and gave us valuable advice on the design of the experi-
ment. Mark Sherman helped us to persuade the Intermetrics
Ada system that our example implementation of the corrector
was indeed good, legal, and operational Ada code. Comments
from Jon Bentley, Bob Chansler, Craig Everhart, Phil Hayes,
Anita Jones, Anne Rogers, and Mary Shaw helped us to im-
prove the clarity of this paper. Finally, we are indebted to
Gorin's SPELL program which did a fine job of correcting the
typographical errors in our manuscript.

APPENDIX.
Example Implementation of the Spelling Corrector
The following Ada implementation illustrates the functions
required for the spelling correction algorithm. The code was
compiled by the Intermetrics Ada Prototype Compiler and
executed on a DECsystem-20.4 This example uses the 1980
version of Ada, since a compiler for 1982 Ada was not avail-
able to us at the time of publication.
-- Example implementation of the Spelling Corrector in DoD Ada.
-- This code is operational. However, to improve the clarity of this
-- example, we have omitted the detailed interactions with the user.
-- We have excluded the routines that interact with the user (User-
-- Accepts, UserSelects) and have commented out their invocation.

package Spelling.Corrector is

NotCorrectable: exception; -- Raised if no corrections found.

type SymboLTable is array(integer range ()) of string(1..32);

-- The CorrectSpelling function delivers the index in the table of

* DECsystem-20 is a trademark ot Digital Equipment Corporation.

-- the corrected symbol or raises the Not_Correctable exception.

function CorrectSpelling
(ST: in Symbol_Table:
UserWord: in string:
Assume._Correct: in boolean) return integer

end Spelling.Corrector:
with text_io -- Need an 1/O package
use text_io;

package body Spelling..Corrector is

-- The SameCharacter function returns true if the two characters
-- are the same when case-differences are ignored.

function Same_Character (A. B: in character)
return boolean is

FoldedA, FoldedB: integer; -- Case folded character positions
CaseDifference: constant integer

:= character'POS('ao')-character'POS('A'):
begin

Folded..A := character'POS(A);
if A in 'A'.. 'Z' then -- Upper to Lower case conversion

FoldedA := Folded_A + CaseDifference;
S end if:

FoldedB := character'POS(B);
if B in 'A'.. 'Z' then -- Upper to Lower case conversion

Folded.B := FoldedB + CaseDifference:
end if:
return Folded_A = FoldedB:

end SameCharacter
-- The FirstDifference function locates the first character position at
-- which the two parameter strings differ (ignoring case distinctions).
-- Zero is returned if either string is empty.
function FirstDifference (A. B: in string) return integer is

LastIndex integer;
begin

if A'LENGTH <= B'LENGTH then -- Find shorter string
Last_Index := A'LENGTH:

else
LastIndex := B'LENGTH:

end if;
if Last_Index = 0 then -- One string is empty

return 0;
end if;
for i in 1 .. Last_Index loop

if not Same_Character(A(i), B(i)) then
return i;

end if;
end loop:
return Last _Index + 1;

end First _Difference;

-- Function Match _Substring returns true if the second string (B) is
-- an initial Substring of the first string (A). A is considered to begin at
-- index First_A and B is considered to begin at index FirstB.

function MatchSubstring
(A: in string: First_A: in natural:
B: in string FirstB: in natural) return boolean is
begin

if First_B > B'LENGTH then
return true; -- B is empty sub-string

elsif (FirstA > A'LENGTH) or
* ((B'LAST-FirstB) > (A'LAST-First_A)) then

return false: -- A is empty or B is too long
end if;

772 Communications of the ACM
Ortotwr 19a3 Vnlt i rnp WF 10



OMPU1G PRACTES

for i in 0 .. (B'LAST-First _B) loop
if not Same_Character(A(i + FirstA), B(i + FirstB)) then

return false;
end if:;

end loop;:

return true:
end MatchSubstring

-- Function PossibleCorrection returns true if one of the four tests
-- applied to the user word yields the dictionary word.

function PossibleCorrection
(DictionaryWord. User.Word: in string) return boolean is
Index: integer;
begin

-- Heuristic Can't match if symbol is more than one character
-- longer than dictionary word.

if(UserWord'LENGTH - 1)>
DictionaryWord'LENGTH then
return false;

end if.

-- Step 1: Find the index of the first different characters

Index := FirstDifference(Dictionary_Word, User-_Word);

-- Heuristic: Assume wrong letter if difference at end of word

if (Index = User_Word'LENGTH) and
(UserWVord'LENGTH > 2) then
return true:

end if:

-- Step 2: Check for transposed characters & tail match

if ((Dictionary3_Word'LAST > Index) and
(UserWord'LAST > Index)) and then
(Same Character(Dictionary_Word(lndex).

User_Word(Index + 1)) and
SameCharacter(Dictionary_Word(Index + 1),

User_Word(Index)) and
Match_,Substring(Dictionary_Word, (Index + 2),

User._Word, (Index + 2))) then
return true; -- Transposition.

end if;

-- Step 3: Apply remaining tail Substring matches

if Match_Substring(Dictionary_Word, (Index + 1),
User_.Word. Index) then

return true; -- Missing letter.
end if;

-- Policy: Don't try other tests on 2-character strings.

if User_Word'LENGTH =2 then
return false;

end if;

if MatchSubstring(DictionaryWord, Index,
UserWord. (Index + 1)) then

return true: -- Extra letter.
end if;

if Match_SubstringDictionaryWord. (Index + 1),
UserWord. (Index + 1)) then

return true; -- Wrong letter.
end if:

return false:
end Possible_ Correction:

function CorrectSpelling
(ST: in SymbolTable;
UserWord: in string:
AssumeCorrect: in boolean) return integer is
Match_Count, Last_Match: integer := 0;
Match_Flag array (ST'range) of boolean;
TestWord: string(1 .. UserWord' LENGTH):= UserWord;
begin

for i in ST'range loop
MatchFlag(i) := Possible_Correction(ST(i), Test Word);
if Match_Flag(i) then

MatchCount := MatchCount + 1:
LastMatch := i;

end if;
end loop;

if MatchCount = 1 then
if Assume_Correct then

Put_Line("% I assume you mean "& ST(Last_Match) &
"'instead of "'&Test _Word& "".'");

return Last_Match;
-- elsif UserAccepts(ST(Last_Match), TestWord) then
-- -- Ask Do you mean 'x' instead of 'y'? question.
-- return Last_Match;

end if;

elsifMatch_Count > 1 then
Put_Line("% '"& TestWord &

"' could be any one of: ");
-- return UserSelects(ST, TestWord, MatchFlags):

end if:

raise Not.Correctable;
end CorrectcSpelling

end Spelling._Corrector,

REFERENCES
1. Damerau. F. J. A technique for computer detection and correction of

spelling errors. Comm. ACM 7, 3 (March 1964). 171-176. Presents
data attributing over 80 percent of spelling errors to a single transpo-
sition, extra letter, missing letter, or wrong letter error.

2. United States Department of Defense. Reference Manual for the Ada
Programming Language. Government Printing Office, Washington.
D.C., Order L008-000-00354-8, 1980. The 1980 version of the official
Ada specification.

3. Gorin, R.E. SPELL: Spelling check and correction program. Online
documentation. 1971. Documentation online in file DOC:SPELL.DOC
at CMU-CS-A.ARPA. Describes operation of PDP-10 SPELL program.
A description of the basic algorithm is also given by Peterson [7].

4. Hayes. P., Ball, J.E.. and Reddy, D. R. Breaking the man-machine
communication barrier. IEEE Computer 14. 3 (March 1981). Discusses
desirable attributes of user interfaces.

5. Lamb. D.A. RdMail Message Management System: User's Guide and
Reference. Carnegie-Mellon University Computer Science Depart-
ment. Pittsburgh, Pa.. 1980.

6. Morgan, H.L. Spelling correction in systems programs. Comm. ACM
13, 2 (Feb. 1970), 90-94. Describes spelling correction techniques for
compiler and operating system applications.

7. Peterson, J.L. Computer programs for detecting and correcting spell-
ing errors. Comm. ACM 23. 12 (Dec. 1980). 676-687.

8. Reiser, ).IF. (Ed.) SAIL Manual. Stanford University Computer Science
Department. Palo Alto, Calif.. 1976.

9. Teitelman. W. lnterLisp Reference Manual. Xerox Research Center.
Palo Alto. Calif., 1978. Chapter 17 describes the DWIM (Do What I
Mean) facility, which corrects simple programmer errors, including
misspelled keywords.

CR Categories and Subject Descriptors: D.1.0 [Programming Tech-
niques]: General: D.2.2 (Software Engineering]: Tools and Techniques-
software libraries, User Interfaces: H.1.2 (Information Systems]: User/
Machine Systems-human factors.

General Terms: Algorithms. Human Factors
Additional Key Words and Phrases: spelling, spelling correction. typo-

graphical errors. user interfaces, interactive programs

Received 7/82. revised 12/82; accepted 12/82

October 1983 Volume 26 Number 10 Communications of the ACM 773


