
Oct 29 12:16 1985 DEFINITION OF THE NRAO TELESCOPE COMMAND LANGUAGE Page 1

DATE OCTOBER 30, 1985

TO NRAO TCUS COMMITTEE

FROM ALLEN FARRIS

SUBJECT: FORMAL DEFINITION OF THE COMMAND LANGUAGE

The following document is a first attempt to formally define
the grammar of the command language we have discussed in
past meetings. I have tried to remain faithful to the intent
of the discussions and decisions we have reached. I have
also attempted to define the language without giving very
much thought to details of implementation. At some points
I have given remarks in the comments to clarify certain
issues but these are pretty brief.

I am aware that this is a long document and it is a tedious
process to wade through it. However, I know of no other
mechanism to precisely pin these issues down. I won't
guarantee that this is the simplest or the shortest form
the definition can take, but I have tried to make it
intelligible.

Please carefully review this language definition and search
for any errors and points of ambiguity. This formal
definition is only the first step in implementation. If
this definition adequately captures the intent of the
language, then we can proceed to further implementation
details. At this stage, the grammar has not been verified
using any compiler development tools, such as YACC under
UNIX. This will be one of the next tasks to be
accomplished. Finally, this document only defines the
language. It discusses neither its interactive nature nor
its implementation.

Oct 29 12:16 1985 DEFINITION OF THE NRAO TELESCOPE COMMAND LANGUAGE Page 2

/*

** *

** SYNTAX DEFINITION OF *
** *

** NRAO COMMAND LANGUAGE FOR TELESCOPE CONTROL *
** *

** DRAFT WORKING VERSION 2.0 *
** *

*/

METALANGUAGE DESCRIPTION

:= means 'is defined to be'

| means 'alternatives' (one and only one choice
can be made

[] means 'optional'

means previous syntax unit can be repeated
one or more times

< > means groupings of syntax units

1 1 represents a character string — if the character
• is in the string it is represented by \'

'x'..'y' means one of the ascii characters between the
ascii characters x and y

/* */ means a comment and does not indicate the syntax
of the language

Each statement defining a syntax unit begins:
name : =

where name is the name of the syntax unit. Such a statement
may be continued onto subsequent lines and is terminated by
a blank line.

It is frequently desirable to state rules which have
syntatical and semantic importance in English sentences
rather than a formal notation. Such rules are written as

RULE rule_name —> English language sentences
These sentences may be continued onto subsequent lines and
are terminated be a blank line.

END OF METALANGUAGE DESCRIPTION

Oct 29 12:16 1985 DEFINITION OF THE NRAO TELESCOPE COMMAND LANGUAGE Page 3

/*
** DEFINITION OF BASIC LANGUAGE ENTITIES
*/

RULE case_insensitivity —>
In any context upper and lower case characters for
the letters 'a'..1z1 have the same meaning. For
example 'a' and 'A' mean the same thing.

digit :=
' 0'..19'

hexadecimal_digit :=
»0•..19• | 'a'..'f•

octal_digit :=
•0'..'71

blank :=
/* ASCII code for space (32 in decimal) */

tab :=
/* ASCII code for horizontal tab (9 in decimal) */

form_feed :=
/* ASCII code for form feed (12 in decimal) */

line_feed :=
/* ASCII code for line feed (10 in decimal) */

carriage_return :=
/* ASCII code for carriage return (13 in decimal) */

ascii :=
111..1-1 | blank | tab | form_feed | line_feed |
carriage_return

** ascii is the subset of printable ASCII characters
** (33 - 126 in decimal) plus blank, tab, form_feed,
** line_feed, and carriage return
*/

/*
** end of text
*/
eot :=

/* The text is assumed to be read from a system file.
The end of text is represented by the end of file
condition. */

/*
** end of line
*/

Oct 29 12:16 1985 DEFINITION OF THE NRAO TELESCOPE COMMAND LANGUAGE Page 4

eol : =
line_feed carriage_return |
line feed |
carrTage_return line_feed |
carriage_return

/*
** end of statement
*/
eos : =

eol | ';' | end_of_line_comment

end_of_line_comment :=
<'//' [ascii...] eol

RULE comment_restriction_l —>
The sequence of ascii characters making up an end of
line comment may not contain the syntax unit eol.

/*
** white space
*/
ws : =

< blank | tab | f orm_f eed | <' \' eol> | comment >...

comment :=
'/*• [ascii...] •*/'

RULE comment_restriction_2 —>
The sequence of ascii characters making up a comment
may not contain the combination 1*/•.

name :=
first_letter [<subsequent_letter>...]

first_letter :=
•a'..«z' | 'A'..'Z1 | '#• | '$' | •§' | | '?•

subsequent_letter :=
first_letter | 10 •..19'

list_of_names :=
name [[ws] <list_separator [ws] name>...]

list_separator :=
< ',1 [ws] eol > | ',1

/*
** This definition of list separator allows a list to be
** continued onto a subsequent line by placing a comma after
** the last item on a given line. Thus,
** namel, name2, name3,
** name4, name5
** would comprise one list, while
** namel, name2, name3
** name4, names

Oct 29 12:16 1985 DEFINITION OF THE NRAO TELESCOPE COMMAND LANGUAGE Page 5

** would comprise two lists.
*/

constant :=
character_string | numeric_constant

character_string :=
»\" [ascii...] 'V

RULE character_string_formation —>
The beginning and ending single quote mark is not
part of the string. If the sequence of ascii
characters must contain the ascii character for
single quote then that single quote character must
be preceded by the ascii character '\1. The
character 'V is not part of the string. A
character_string is continued onto another line by
the sequence <1* eol>. The sequence <'V eol> is
not part of the string.

numeric_constant :=
basic_constant | basel6_constant | base8_constant |
converted_constant | angle_constant | date_constant

basic_constant :=
integer_constant | real_constant

integer_constant :=
digit...

basel6_constant :=
'0' <'X' | 'x'> hexadecimal_digit...

base8_constant :=
•01 <'O' | 'o'> octal_digit...

real_constant :=
basic_real |
<basic_real [ws] real_exponent> |
<integer_constant [ws] real_exponent>

basic_real :=
<integer_constant [integer_constant]> |
< 1.1 integer_constant> i

real_exponent :=
<'E1 | 'e'> [ws] [<•+• | '-'>] [ws]

integer_constant

/* This definition of real constants differs slightly from
** the FORTRAN definition. The definition here allows no
** spaces between the integer part and the fractional part
** of a basic_real. It also does away with the distinction
** between single and double precision constants and allows
** either upper or lower case for the exponent indicator.

Oct 29 12:16 1985 DEFINITION OF THE NRAO TELESCOPE COMMAND LANGUAGE Page 6

** Real constants are stored as double precision.
*/

converted_constant :=
basic_constant converted_constant_identifier

converted_constant_identifier :=
'cm' | 'day' | 'dB' | 'dBm' | 'C« | 'K' | 'GHz' |
'Hz' | 'Jy.' | 'kHz' I 'km' | 'km/s' | 'MHz' I'm' |
'urn' j 'uW' j 'mm' | 'mmHg1 | 'ms' | 'mV' | 'mW1 j
'ran' j 'ns' j 'nW' j *r' | 't' | 'V' | 'W1 | 'yr'

/*
** These are the unit identifiers taken from
** TCUS Memo No. 18.
*/

angle_constant :=
< [[integer_constant degrees_delimiter_2]

integer_constant minutes_of_arc_delimiter_2]
basic_constant seconds_of arc_delimiter > |

< [integer_constant degrees_delimiter_2]
basic_constant minutes_of_arc_delimiter_l > |

< basic_constant degrees_delimiter_l >

degrees_delimiter_l :=
[ws] 'd' [ws]

degrees_delimiter_2 :=
<[ws] <'d' | [ws]> | <ws>

minutes_of_arc_delimiter_l :=
[ws] "X" [ws]

minutes_of _arc_delimiter_2 :=
<[ws] c'X'1 | •:'> [ws]> | <ws>

seconds_of_arc_delimiter :=
[ws] MM [ws]

RULE angle_validity —>
Angle constants must conform to the general rules for
forming valid angle expressions.

time_constant :=
< [[integer_constant hours_delimiter 2]

integer_constant minutes_of time_delimiter_2]
basic_constant seconds_of_tTme_delimiter > |

< [integer_constant hours_delimiter_i_2]
basic_constant minutes_of_tTme_delimiter_l >

< basic_constant hours_delimiter_l >

hours_delimiter_l :=
[ws] 'h' [ws]

hours delimiter 2 :=

Oct 29 12:16 1985 DEFINITION OF THE NRAO TELESCOPE COMMAND LANGUAGE Page 7

<[ws] <'h' | [ws]> | <ws>

minutes_of_time_delimiter_l :=
[ws] 'm' [ws]

minutes_of_time_delimiter_2 :=
<[ws] •Om* | ':•> [ws]> | <ws>

seconds_of_time_delimiter :=
[ws] 's' [ws]

RULE time validity —>
Time constants must conform to the general rules for
forming valid time expressions.

date_constant :=
year_constant [ws] month_constant
[ws] day_constant

year_constant :=
integer_constant

month_constant :=
'jan' | 'feb' | 'mar' | 'apr* | 'may' | 'jun1 |
'jul' j 'aug' j 'sep' j 'oct' j 'nov' j 'dec'

day_constant :=
integer_constant

RULE date_validity —>
Date constants must conform to the general rules for
forming valid dates.

RULE year_convention —>
If the year_constant is a two digit number x, the
following conversions are applied:

if 50 <= x <= 99
year_constant = 1900 + x

if 0 <= x <= 49
year_constant = 2000 + x

signed_numeric_constant :=
[] ws numeric_constant

signed_integer_constant :=
[] ws integer_constant

/*
** These definitions allow constants to have a prefix minus
** sign to indicate negative numbers. A prefix plus sign is
** unnecessary. The prefix minus sign applies only to
** constants.
*/

/*
** types of variables

Oct 29 12:16 1985 DEFINITION OF THE NRAO TELESCOPE COMMAND LANGUAGE Page 8

*/
variable_types :=

string_type | short_type | int_type | real_type |
double_type j angle_type | time_type | date_type

string_type :=
•string1

short_type :=
• short'

int_type :=
'int'

real_type :=
1 real'

double_type :=
1 double1

angle_type :=
'angle'

time_type :=
•time*

date_type :=
•date1

/*
** The purpose of introducing the types angle, time, and date
** is to tell the interactive processor how to format the
** output of a 'show' command. In addition, the types angle
** and time allow the proper conversion of input constants
** without trailing delimiters.
*/

Oct 29 12:16 1985 DEFINITION OF THE NRAO TELESCOPE COMMAND LANGUAGE Page 9

/*
** DEFINITION OF BLOCK STRUCTURE OF THE COMMAND LANGUAGE
*/

RULE optional_white_space —>
In the following presentation of syntax, any syntax
unit may optionally be preceeded by ws. If ws must
be present, it is stated explicitly.

observingjprogram : =
< block >...

block :=
< pgm_block | func_block | proc_block |

system_block >

RULE system_block_first —>
If a system block is present, it must be the first
block of the program.

RULE pgm_block__presence —>
At least one block must be a pgm_block.

/*
** Execution begins at the first pgm_block. If a program
** block is not present, the source text is compiled but
** marked as not executable.

*/

system_block :=
•system' ws eos
[<system_statement_group>...]
•endsystem' eos

pgm_block :=
<• program' | 'pgm'> ws pgm_name eos
[<statement_group>...]
<1endprogram' | 'endpgm'> eos

pgm_name : =
name

func__block : =
function_type <'func' | 'function'> ws

func_name •(' [parameter_list] ')' eos
[<statement_group>...]
<1endfunction' | 'endfunc'> eos

function^type :=
Tntegerjtype | short_type | real_type | double_type
angle_type | time_type | date_type

func_name :=
name

Oct 29 12:16 1985 DEFINITION OF THE NRAO TELESCOPE COMMAND LANGUAGE Page 10

parameter list :=
lTst_of_names

/*
** The function type indicates the type of variable returned
** by the function. Functions may only return numeric
** variables.
*/

proc_block :=
<•procedure' | 'proc'> ws proc name

1 (• proc_parameter_lTst ') 1 eos
[<statement_group>...]
<'endprocedure1 | 'endproc'> eos

proc_name :=
name

procjparameter_list :=
[input_parameter_list] [';' output_parameter_list]

input__parameter_list : =
1ist_of _names

output_parameter_list :=
1ist_of _names

statement_group :=
if_group |
loop_group |
null_statement |
break_statement |
return_statement |
assignment_statement |
variable_declaration_statement |
procedure_reference_statement |
function_reference_statement |
catalog_statement |
pause_statement |
show_statement |
resume_statement

system_statement_group :=
variable_declaration_statement |
func_block |
proc_block j
external_global_variable_declaration_statement |
external_procedure_declaration_statement

/*
** All entities defined in the system block are, from the
** user's point of view, pre-defined entities belonging to
** the system. The user cannot change these definitions.
** All variables defined in the system block are globally
** accessible from any other block. These are the only
** globally defined variables it is possible to define.

Oct 29 12:16 1985 DEFINITION OF THE NRAO TELESCOPE COMMAND LANGUAGE Page 11

*/

c

external_global_variable_declaration_statement : =
'external' ws variable_declaration_statement

external_procedure_declaration_statement :=
'external' ws procedure_declaration_statement

/*
** External variables and procedures are those which are
** external to the command language and which "belong to"
** the specific control system but which are accessible via
** the command language.
*/

RULE scope_of_names —>
All variables defined within the system_block are
global in scope, i.e., they are known and may be
referenced in any block of the observing program.
All variables declared outside the system_block are
local in scope, e.i., they are known only in the
block in which they are declared.

/*
** The following is a
** built-in functions,

proposed list of pre-defined or

L

** abs absolute value
** mod modulo function
** int convert to int
** real convert to real
** double convert to double
** exp exponential function
** pow x to the y power
** sqrt square root
** log natural log
** loglO base 10 log
** sin trig functions, etc.
** cos
** tan
** as in
** acos
** atan
** sinh
** cosh
** tanh
** and bitwise and function
** or bitwise or function
** xor bitwise exclusive-or function
** not bitwise not function
** lshift bitwise left shift
** rshift bitwise right shift

first dimension of an array ** dim maximum
right shift
first dimension of an array

** dim2 maximum second dimension of an array
** dim3 maximum third dimension of an array
*/

third dimension of an array

Oct 29 12:16 1985 DEFINITION OF THE NRAO TELESCOPE COMMAND LANGUAGE Page 12

c /*
** The following is a
** built-in constants.
** constants.

Pi
twopi
halfpi
pisq
e
esq
sqrt2
sqrt3
c
esq

**

**

**

**

**

**

**

**

**

**

*/

proposed list of pre-defined or
These names function exactly like

3.141592653589793
2 * pi
pi / 2
pi * pi
2.718281828459045
e * e
1.414213562373095
1.732050807568877
299792458 (speed of light in m/sec)
c * c

(

c

Oct 29 12:16 1985 DEFINITION OF THE NRAO TELESCOPE COMMAND LANGUAGE Page 13

/*
** DECLARATION OF VARIABLES
*/

variable_declaration_statement :=
string_declaration |
numeric_declaration |
set_declaration |
default_declaration

string_declaration :=
string_type ws string_variable '(• string_length 1)1
< list_separator

string_variable '(• string_length ')• >...
eos

string_variable := _
name

string_length :=
integer_constant

numeric_declaration : =
< short_type | int_type | real_type | double_type |

angle_type | time_type | date_type >
ws numeric_variable

[< list_separator numeric_variable >...] eos >

numeric_variable :=
array_variable | simple_numeric_variable

s imple_numeric_variable : =
name

array_variable : =
array_name '(1 dimensionJList 1)1

dimension_list :=
integer_constant [list_separator integer_constant

[list_separator integer_constant]]

RULE array_dimension limits —>
Arrays are limited to three dimensions. Dimensions
vary from 1 to integer_constant.

set_declaration :=
1 set' ws set_name [ws 1 catalog1 ws

1(1 string_variable ')1] eos
set_member_speci f ication
'endset1 eos

/*
** The catalog option on the set declaration specifies that
** the values to be assigned to this set come from a catalog
** which is indexed by the variable specified by

Oct 29 12:16 1985 DEFINITION OF THE NRAO TELESCOPE COMMAND LANGUAGE Page 14

c

c

(

** string_variable. This is how source data will be assigned
** from a source catalog. More on this later. Thus, sets
** divide into catalogued and non-catalogued sets.
*/

RULE set_membership —>
The variable specified by string_variable is the
first member of the set.

set_name :=
name

set_member_specification :=
set_member_item
[< list_separator set_member_item >...]

set_member_item :=
< string_variable | simple_numeric_variable
| array_name | set_name >

default_declaration :=
<•default' | 'def'> ws default_name

ws 'of' ws set_name eos
default_specification_list

[< ';' default_specification_list>...] eos
<'enddefault1 | 'enddef'> eos

/*
** If a set is a non-catalogued set, the series of
** default_specification_lists (separated by semicolons)
** are accessed like arrays of one dimension and the 'dim*
** function works on them as well. Thus, if a default is
** declared as:
** def LO_setup of LO_settings
** LI, L2, L3;
** Ml, M2, M3;
** Nl, N2, N3?
** endef
** The vaules LI, L2, L3 are assigned by the statement:
** LO_settings = LO_setup(l)
** The values Ml, M2, M3 are assigned by the statement:
** LO_settings = L0_setup(2)

** If a set is a catalogued set, the specific
** default_specification_list is referenced by the value of
** its index. For example, if 'source' is a catalogued set
** indexed by 'source_name' and 3c277 is an entry in the
** catalog, the assignment statement
** source = 3c277
** assigns all the data belonging to 3c277 to the proper
** items in the set.
*/

default_name :=
name

Oct 29 12:16 1985 DEFINITION OF THE NRAO TELESCOPE COMMAND LANGUAGE Page 15

default_specification_list :=
default_specification_type_l |
default_specif ication_type_2

default_specification_type_l :=
default_item_type_l
[< list_separator default_item_type_l >...]

default_item type_l :=
< < Tnteger_constant 1(' default_item_type_l •)' > |
constant | 'null' >

/*
** The integer_constant is a repetition factor and repeats
** the item in parentheses the number of times specified
** by integer constant.
*/

RULE null_constant —>
The keyword 'null* assigns a constant whose meaning
is that the variable has no value.

default_specification_type_2 :=
default_item_type_2
[< list_separator default_item_type_2 >...]

default_itern type_2 :=
<strTng_variable 1=1 string_constant > |
< simple_numeric_variable •=•

signed_numeric_constant > |
< set_name '=' < default_name | 'null' > |
< array_name '='

< integer_constant '(1 array_init_item 1)1 |
array_init_item > >

< restricted_array_reference '=' array_init_item >

array_init_item :=
signed_numeric_constant | 'null'

restricted_array_reference :=
array_name •(' integer_constant
[list_separator integer_constant

[list_separator integer_constant]] •)1

RULE order_of_default_items —>
If the default specification is of type 1, the items
must be in the same order in which they were declared
in the set. If the default specification is of type
2, the items can appear in any order.

Oct 29 12:16 1985 DEFINITION OF THE NRAO TELESCOPE COMMAND LANGUAGE Page 16

/*
** EXPRESSIONS
*/

arithmetic_expression :=
< '(• arithmetic_expression ')' > |
function_reference |
array_reference |
< arithmetic^expression a_op arithmetic_expression > |
simple_numerTc_variable |
signed_numeric_constant

a_op :=
| | | •+»

logical_expression :=
< '(• logical_expression ')' > |
< l_op_l 1(' logical_expression 1)' > |
< logical_expression l_op_2 logical_expression > |
< arithmetic_expression c_op arithmetic expression > |
< string_expression s_op string_expressTon >

1 op 1 :=
1! 1

l_op_2 :=
'&• | T

c_op :=
'=' | '!=• | •>• | •>=• | »<• | '<=•

s_op : =
'=' | •!='

string_expression :=
string_variable | string_constant

function_reference :=
function_name 1 (' function_argument_list 1) •

function_argument_list :=
function_argument_item
[< list_seperator function_argument_item >...]

function_argument_item :=
arithmetic_expression '

/*
** Functions cannot return strings, arrays, sets, or
** defaults, nor can they take them as arguments.
*/

array_reference :=
array_name 1(1 array_item_specification ')1

Oct 29 12:16 1985 DEFINITION OF THE NRAO TELESCOPE COMMAND LANGUAGE -Page 17

array_item specification :=
arxthmetic_expression
[list_separator arithmetic expression

[list_separator arTthmetic_expression]]

RULE array_dimension expression -->
The arithmetic expression in array references is
converted to type integer.

Oct 29 12:16 1985 DEFINITION OF THE NRAO TELESCOPE COMMAND LANGUAGE Page 18

/*
** ASSIGNMENT STATEMENTS
*/

assignment_statement : =
< string_variable '=' string_expression eos> |
< < simple numeric_variable | array_reference > ' = '

arithmetic_expression eos > |
< < simple_numeric_variable | array_reference > ' = •

special_angle_time_constant eos > |
< set_name '='

< < default_name
[1(1 arithmetic_expression 1)'] > |

< string_expression |
<[ws] special_ascii_string [ws]> > |

'null'
eos >

special_angle_time_constant :=
t [integer_constant ws] integer_constant ws]

bas ic_constant

RULE special_constant_validity —>
The angle or time notation must conform to valid
rules forming angle or time expressions.

special_ascii_string :=
< » M t-,1 s.
> • • • ^ •

/*
** This definition allows, as an option, the assignment to
** a set of any sequence of printable ascii characters
** without enclosing them in quotes. The string is formed
** by stripping off the leading and trailing blanks. No
** blanks are allowed in the string.
*/

RULE as s ignment_rule_l —>
The form 'name = special_angle_time_constant' applies
only to variables of type angle or time.

RULE assignment_rule_2 —>
The form 'set_name = default_name1 can be applied to
both catalogued and non-catalogued sets. The right
side of the assignment statement is first checked
for a match on a proper default name. If none is
found, then an index search is performed.

RULE assignment_rule_3 —>
The form 'set_name = ascii_string' applies
only to cataloged sets.

RULE assignment_rule_4 —>
The form 'set_name = null1 applies to both catalogued
and non-catalogued sets and assigns null values to

Oct 29 12:16 1985 DEFINITION OF THE NRAO TELESCOPE COMMAND LANGUAGE Page

all members of the set.

c-

c

Oct 29 12:16 1985 DEFINITION OF THE NRAO TELESCOPE COMMAND LANGUAGE Page 20

/*
** CONTROL FLOW STATEMENTS
*/

if_group :=
1 if1 ' (' logical_expression ')1 eos

[statement_group]
[< 'elseif' '(' logical_expression ')' eos

[statement_group] >...]
[< 'else' eos

[statement_group] >]
'endif• eos

loop_group :=
while_group | for_group | repeat_group

while_group :=
'while' '(' logical_expression ')' eos

[statement_group]
'endwhile• eos

repeat_group :=
• repeat' eos

[statement group]
'until' '(' logical_expression ')' eos

for_group :=
'for' index_variable '=' initial expression ','

terminating_expression [',' Tncrement_amount] eos
[statement_group]

'endfor' eos

index_variable :=
integer_variable

RULE integer_variable_def —>
An integer variable is a variable declared in a
variable declaration beginning with int_type.

initial_expression :=
arithmetic_expres s ion

terminating_expression :=
arithmetic_expression

increment amount :=
sTgned_integer_constant

RULE default_increment_amount —>
If increment_amount is not specified it is taken
to be 1.

/*
** The while_group has the following meaning:

Oct 29 12:16 1985 DEFINITION OF THE NRAO TELESCOPE COMMAND LANGUAGE Page 21

** LI: if (not logical_expression)
** go to L2
** statement_group
** go to LI
** L2:
**

** The repeat_group has the following meaning:
** LI: statement_group
** if (not logical_expression)
** go to LI
**

** The for_group is derived from the while_group and has the
** following meaning:
** if increment_amount is positive
** index_variable = initial_expression
** while (index_variable <= terminating_expression)
** statement group
** index_varTable = index_variable +
** increment_amount
** endwhile
** if increment_amount is negative
** index_variable = initial_expression
** while (index_variable >= terminating_expression)
** statement group
** index_varTable = index_variable -
* * abs (increment_amoTant)
** endwhile
*/

break_statement :=
'break1 eos

RULE break_interpretation —>
The break statement only has a function inside a
loop_group. It terminates the loop and resumes
execution at the end of the loop.

Oct 29 12:16 1985 DEFINITION OF THE NRAO TELESCOPE COMMAND LANGUAGE Page 22

/*
** OTHER STATEMENTS
*/

procedure_reference_statement :=
proc_name •(• procedure_argument_list •)' eos

procedure_argument_list :=
[input_argument_l ist] ['; • output_argument_list]

input_argument_list := input_argument_list_item
[< list_separator input_argument_list_item >...]

input_argument_list_item : =
string_expression | arithmetic_expression | set_name
default_name

output_argument_list := output_argument_list item
[< list_separator output_argument_lTst_item >...]

output_argument_list_item :=
string_variable | numeric_variable | set_name

function_reference_statement :=
function_reference eos

RULE funct ion_return —>
If a function is not used in an expression but merely
in a stand-alone statement, any arithmetic value it
may return is ignored.

null_statement :=
eos

return_statement :=
'return' [arithmetic_expression] eos

catalog_statement :=
'catalog' '=' default_name

[<list_separator default_name>...] eos

RULE catalog_statement_restriction —>
The default names in the list must all be defaults
of the same set.

/*
** The catalog statement specifies the order in which catalogs
** are to be searched to satisfy set assignment statements for
** catalogued sets. Such a statement is necessary only if
** more than one catalog exists which applies to a given set
** and those catalogs might contain different entries for
** same index string.
*/

pause_statement :=

Oct 29 12:16 1985 DEFINITION OF THE NRAO TELESCOPE COMMAND LANGUAGE Page 23

'pause1 [ws 'until' '(' logical_expression ')'] eos

/*
** The pause statements halts execution until receipt of a
** resume statement or until the optional logical condition
** is true.
*/

resume_statement :=
• resume • eos

show_statement :=
•show' [show_item

[<list_seperator show_item>...]] eos

show_item :=
string_expression | numeric_variable | set_name

/*
** If the 'show' statement has no list of items, the
** currently executing position is displayed.
*/

/*
** Here, I will give a example of the use of catalogued sets.
**
** Suppose we have the following sets:
** set source catalog (source name)
** ra, dec, epoch, gain
** endset
** set spectral_line catalog (frequency_name)
** rest_frequency
** endset
**

** Then suppose we have the following defaults:
** def system_sourcelist of source
** 3c277, ral, decl, epochl, gainl;
** 3c218, ra2, dec2, epoch2, gain2;
**
** enddef
** def user_sourcelist of source
** NGC7027, ural, udecl, uepochl, ugainl;
**
** enddef
** def system_linelist of spectral_line
** HI, rest_freq_hl;
** OH, rest_freq_oh;
** ...
** enddef
** def user_linelist of spectral_line
** NH3, rest_freqjnh3;
**
** enddef
**

** Then a sequence of statements might be the following:
** catalog = user_sourcelist, system_sourcelist

Oct 29 12:16 1985 DEFINITION OF THE NRAO TELESCOPE COMMAND LANGUAGE Page 24

** catalog = user_linelist, system_linelist
** ...
** spectral_line = HI
**
** source = 3c277
**
** spectral_line = NH3
^ A • • •

** source = NGC7027
**

** Expanding the example a bit, we can add the following to
** create a list of sources to be used in conjuction with
** some observing procedure in a looping construct. Suppose
** we add the following set definitions:
** set sources
** source
** endset
** and the default definition
** def actionlist of sources
** 3C277; 3c218; NGC7027;
** enddef
** Then, we can write the following:
** for i = 1, dim(actionlist)
** sources = actionlist(i)
* * observing^procedure()
** endfor
** Note that we can still use the following statements:
** source = 3c218
* * observing_procedure()
*/

