VLA Electronics Memorandum No. 139

RESULTS OF EMI SURVEILLANCE

G. Bonebrake

May 26, 1976

A. INTRODUCTION

Over the past twelve months a considerable quantity of monitoring information has been compiled. It is the purpose of this report to present this data in a concise and realistic format to permit an understanding of the interference potential to the present and future operation of the VLA telescope.

B. BANDS OF INTEREST

EMI monitoring has been concentrated on the following bands:

1300 to 1700 MHz	(21 cm)
4500 to 5000 MHz	(6 cm)
100 to 1000 MHz	(UHF)

Total power measurements were made in these bands with the aid of calibrated receivers and preamplifiers, a spectrum analyzer, and a control and data acquisition computer.

Each band was monitored continuously from a few hours to several days. The <u>peak</u> level and approximate frequency of each detected signal were recorded on digital magnetic tape, with a time resolution of one hour, so that the necessary signal characteristics could later be evaluated.

Band	Total Hours of Observation Presented Herein
21 cm	1712
6 cm	885
UHF	325

On a short term basis, unidirectional horn antennas (21 cm and 6 cm) and a log periodic (UHF) were used to determine signal origins (compass bearings). Omnidirectional antennas were used to study amplitude and frequency variations and trends in signal activity.

C. DATA PRESENTATION AND ANALYSIS

The most useful of the present data presentations relates the percent probability of signal occurrence at a specific frequency in the band of observation (Figures 1 through 4). All signals above the surveillance receiver's minimum detectable level are counted here.

-1-

The minimum detectable level for all bands is approximately $10^{-1.3}$ watts/m². The weakest signal which will affect the VLA is probably between $10^{-1.4}$ and $10^{-1.3}$ watts/m² (Hogg and Dolan, 1973; Thompson, 1975; Napier, 1973). Thus this curve represents the probability, as a function of frequency, of the occurrence of an interfering signal that will produce a measurable effect on the data produced by the VLA. This is the absolute worst case, since the data recorded is actually the <u>peak</u> level of detected signals, in many cases pulsed radars and telemetry transmitters.

1. 1300 to 1800 MHz

For the 1300 to 1800 MHz band, ignoring the segment 1700 to 1800 MHz which is erroneous due to amplifier and filter roll-off, only two signals exceet a 10% probability. These are the Albuquerque FAA radar transmitters at 1310 and 1330 MHz. Several FAA radars are operational in the 1300 to 1350 MHz aeronautical radio location band. A few of them are as follows:

Albuquerque, New Mexico	1310,	1330	MHz
Silver City, New Mexico	1307,	1317	MHz
Washington Pass (Gallup, NM)	1307,	1317	MHz
El Paso, Texas	1307,	1317	MHz
Isleta, Texas	1307,	1317	MHz

Equipment used in the above radars is capable of tuning a very wide range of frequencies in the 1300-1350 MHz band at power levels near 2 megawatts ERP.

It is probable that these stations contribute to the overall increase in noise level (seen in Figure 1) in the 1300-1350 MHz band.

The segment 1350 to 1400 MHz is allocated to government radio locations. Apparently the only activity here is from army and air force radars operating at Kirtland AFB, Holloman AFB, and WSMR. Several notifications have been received from Mr. Hungate at WSMR of radars at Fort Bliss, Texas operating in this band.

A significant dip in the noise level can be seen only in the upper portion of the 1400 to 1427 MHz radio astronomy protected band. The exact reason for this is unclear. However, instances of army radars operating illegally in this segment have been reported by Mr. Hungate. Upon their detection, they have been ordered shut down, but there is no knowledge of how many similar operations have transpired in the past.

-2-

No operations are known in the New Mexico area with emissions in the 1427 to 1600 MHz band segment. U.S. allocations do exist for mobile and aeronautical satellite telemetry and communications, so that the potential does exist for sporadic signal detection.

Detected signals in the 1600 to 1650 MHz segment originate from radio altimeters aboard USAF aircraft flying continuously throughout the state. (F4 Phantom altimeters operate FM-CW swept over 1615 to 1645 MHz at a 30 to 1500 Hz rate depending on altitude.)

The remainder of the signals above 1650 MHz undoubtedly originate from meteorological balloons and related equipment. Several meteorological balloons are launched daily from White Sands Missile Range, and two daily at the Albuquerque Sunport by the National Weather Service. They are generally centered about 1680 MHz, but have been observed from 1676 to 1686 MHz.

There is a potential for a great number of interfering signals originating at Kirtland Air Force Base, Sandia Laboratories, White Sands Missile Range, and NMIMT. A list furnished by the DOD Area Frequency Coordinator, WSMR of government frequency allocations (current 27 May 1975) reveals the following facts:

Agency	Number of Allocations 1300-1700 MHz
Kirtland AFB	11
Sandia Laboratories	12
WSMR	64
FAA	5
NMIMT	1

These allocations are mostly for low powered telemetry operation, a few for communications, and a few for radio location (radar).

Few of them have been detected and identified by our surveillance equipment, either due to infrequent use or extremely low amplitude at the VLA.

Figure 5 relates the intensity distribution of detected signals over the 1300 to 1800 MHz band. The probability of a signal occurring above a given level is plotted for four discrete levels.

-3-

2. 4500 to 5000 MHz

There have been very few detectable signals in this band. Only one signal was present for more than a fraction of a percent of the total observation time. Figure 2 shows this signal at 4700 MHz with a probability of about 15%.

This signal has not been identified despite much investigation. It originates somewhere to the east and is very weak when detected.

The band 4400 to 4990 is allocated by the Office of Telecommunications Policy for Fixed and Mobile Operations, which covers a multitude of services and transmission modes.

3. 100 to 1000 MHz

Observations have been made in the 100 to 1000 MHz band to verify the expected high level UHF clutter associated with the metropolitan Albuquerque community. A determination of the feasibility for radio astronomy observations below 1000 MHz can be made from this data (see Figures 3 and 4).

Many signals are present from aeronautical-fixed radio communications services. Several television and FM broadcasting stations are very strong in our vicinity (channels 4, 5, 7 and 13 television). The measurements show that anywhere in the 100 to 500 MHz band, the VLA would receive significant interference at least 10% of the time. One television translator exists above 500 MHz (channel 74, 830-836 MHz). Above 725 MHz it should be possible to find observing bands virtually free from significant interference.

D. INTERFERENCE PREDICTIONS (21 cm)

As in forecasting the weather, it is difficult to predict the exact condition of the environment very far into the future. The goal for EMI surveillance has been to amass a large quantity of data over a long period of time on the characteristics of signals in the bands of interest. Thus reasonable extrapolations can be made into the future interference potential. They must be made with qualifications, however, because the potential exists for greatly increased activity at WSMR, ERDA in Albuquerque, and on Magdalena Mountain (NMIMT).

-4-

It should be possible to observe anywhere from 1350 to 1700 MHz with an interference potential of less than about 6%. Airborne radars and radiosondes give an interference of 5 to 6% in the bands 1615 to 1630 and 1660 to 1700 MHz.

The best area for continuum observation would be between 1400 and 1600 MHz, preferrably in the upper 100 MHz.

Any interference to observations in the 1400 to 1427 MHz radio astronomy band should be reported to Mr. G. Hungate (DOD Area Frequency Coordinator WSMR) for investigation. A greater potential exists for a mis-tuned military radar at WSMR or Holloman AFB than anything else. Several have been reported in the past. It is possible to request notification of meteorological radiosonde operation on Magdalena Mountain from NMIMT to coordinate observations in the OH band.

Since no quiet zone protected area exists in New Mexico as it does in West Virginia, it will be difficult to expect the many varied services to respect the needs of the VLA in observing outside the few radio astronomy bands.

It will be necessary to simply know what activity exists and work around it. Contact must be maintained with the nearby users so that they will bother to inform us of any operations they think might trouble our system.

E. FREQUENCY ALLOCATIONS

Figure 6 is included to reference the particular FCC allocations across the 1300 to 1800 MHz band with respect to our actual EMI observations.

Figure 7 is an extracted list of the OTP allocations for the same frequency band (to 1700 MHz).

GAB:cb

References:

D. Hogg and J. Dolan, February 1973; VLA Scientific Memo No. 104.
A. R. Thompson; January 1975; VLA Electronics Memo No. 129.
P. Napier, March 1973; VLA Electronics Memo No. 110.

YLA EMI SURVEILLANCE PROBABILITY YS PROBABILITY PROBABILITY PROBABILITY PROBABILITY <t< th=""><th>REPORT NCY T HRS. DEG.</th></t<>	REPORT NCY T HRS. DEG.
4502 TO 5020 MHZ TOTAL OBS. TIME - 88 FEED ORIENT 999	THR5.
TOTAL DBS. TIME - 881 FEED ORIENT 999	THRS. DEG.
FED DRIENT 999	DEG.
<u>а</u> зд -	
\sim	
2 - 1	
4500 4500 4500	5000

KIE 10 X 10 TO THE CENTIMETER KEUFFEL & ESSER CO. MADE IN U.S.A.

18 X 2

461510

Figure 3

KEUFFEL & ESSER CO. MADE IN USA

R 18

401510

Figure 4

461510

KIE 10 X 10 TO THE CENTIMETER KEUFFEL & ESSER CO. MADE IN U.S.A. 18 X 2

(PCT)	Aeronautical Radiolbcation	V 1350-1400 Fixed, Mobile Radiolocation	1400-1427Radio Astronomy1427-1429Space OperationTelecommand	1429-1525 Fixed, Mobile Telemetering 1525-1535 Mobile, Aero.	Istemetering 1535-1660 Maritime Mobile-Satellite Mobile-Satellite	1660-1700Met. AidsMet. AidsRadio Astronomy1670-1700Met. Aids, SatelliteMet. Sat., Space Research	I710-1790 Fixed, Mobile
PROBABILIT				1508	1500		

Figure 6

KEUFFEL & ESSER CO. MADE IN U.S.A.

401510

OFFICE OF TELECOMMUNICATIONS POLICY

FREQUENCY ALLOCATIONS

	INTERNATIONAL				UNI	TED STATES
Region 1 MHz	Region 2 Region 3 MHz MHz		Band MHz 1	National Provisions 2	Government Allocation 3	Non-Government Allocation 4
300-1350	50 AERONAUTICAL RADIONAVIGATION 346 Radiolocation 347 348		1300-1350	G, NG 346	AERONAUTICAL RADIONAVIGATION Radiolocation G2	AERONAUTICAL RADIONAVIGATION
1350-1400 FIXED HOBILE RADIOLOCATION	1350-1400 RADIOLOCATION		1350-1400	G	RADIOLOCATION Fixed Mobile	
400-1427	PADIO ASTRONOMY	-77.	1400-1427	G, NG	RADIO ASTRONOMY	RADIO ASTRONOMY
1427-1429	RADIO ASTRONOMY \$27-1429 FIXED MOBILE except aeronautical mobile SPACE OPERATION (Telecommand)		1427-1429	US 74 G, NG *US211	G45 FIXED MOBILE except aeronautical mobile SPACE OPERATION (Telecommand)	SPACE OPERATION (Telecommand) Land Mobile (Telemetering and tele- command) Fixed
1429-1525 ?IXED #DBILE except aeronautical mobile	1429-1435 FIXED MOBILE	1429-1525 FIXED MOBILE	1429-1435	G, NG	G30 FIXED MOBILE	(Telemetering) Land Mobile (Telemetering and tele- command) Fixed
	1435-1525 MOBILE Fixed		1435-1535	G, NG US78	G30 MOBILE (Aeronautical telemetering)	(Telemetering) MOBILE (Aeronautical telemetering)
.525-1535 VIXED 350B SPACE OPERATION (Telemetering) 350A fobile except aeronautical mobile 350C Carth Exploration- Satellite	1525-1535 SPACE OPERATION (Telemetering) 350A Fixed Mobile 350D Earth Exploration- Satellite	1525-1535 FIXED 350B SPACE OPERATION (Telemetering) 350A Mobile Earth Exploration- Satellite				
1535-1542.5	MARITIME MOBILE-S 352 352D 352E	SATELLITE	1535-1542.5	G, NG 352E US 39	MARITIME MOBILE SATELLITE	- MARITIME MOBILE- SATELLITE
1542.5-1543.5	43.5 AERONAUTICAL MOBILE-SATELLITE (R) MARITIME MOBILE-SATELLITE		1542.5-1543.5	G, NG 352F US 39	AERONAUTICAL MOBILE- SATELLITE (R) MARITIME MOBILE SATELLITE	AERONAUTICAL MOBILE- SATELLITE (R) MARITIME MOBILE- SATELLITE
1543.5-1558.5	AERONAUTICAL MOBILE-SATELLITE (R)		1543.5-1558.5	G, NG 352G US 39	AERONAUTICAL MOBILE-	AERONAUTICAL MOBILE-
1558.5-1636.5	AERONAUTICAL RADIONAVIGATION		1558.5-1636.5	G, NG 352A 352B US39 US39A US39A	AERONAUTICAL RADIONAVIGATIO	AERONAUTICAL N RADIONAVIGATION
1636.5-1644	MARITIME MOBILE-S 352 352D 352H	SATELLITE	1636.5-1644	G, NG 352H US 39	MARITIME MOBILE SATELLITE	- MARITIME MOBILE- SATELLITE
1644-1645	AERONAUTICAL MOBI MARITIME MOBILE-S	ILE-SATELLITE (R) SATELLITE	1644-1645	G, NG 3521 US39	AERONAUTICAL MOBILE- SATELLITE (R) MARITIME MOBILE	AERONAUTICAL MOBILE- SATELLITE (R) - MARITIME MOBILE-
1645-1660	352 352D 352I AERONAUTICAL MOB 352 352D 352J	ILE-SATELLITE (R)	1645-1660	G, NG 352J US 39	SATELLITE AERONAUTICAL MOBILE- SATELLITE (R)	SATELLITE AERONAUTICAL MOBILE- SATELLITE (P)

	INTERNATIONAL.	UNITED STATES				
Region 1 Maiz	Region 2 Region 3 Miz Miz		Band MHz 1	National Provisions 2	Government Allocation 3	Non-Government Allocation 4
1660-1670 M2 TEOROLOGICAL AIDS RADIO ASTRONOMY 353A 354A 354B			1660-1670	G, NG US74 US99 US100	METEOROLOGICAL AIDS (Radiosonde) RADIO ASTRONOMY	METEOROLOGICAL AIDS (Radiosonde) RADIO ASTRONOMY
1670-1690	METEOROLOGICAL AIDS FIXED METEOROLOGICAL-SATELLITE 324A (Space-to-Earth) MOBILE except aeronautical mobile 354		1670-1690	G, NG 324A	METEOROLOGICAL AIDS (Radiosonds) METEOROLOGICAL- SATELLITE (Space-to-Earth)	METEOROLOGICAL AIDS (Eadlosonde) METEOROLOGICAL- SATELLITE (Space-to-Earth)
1690-1700 METEOROLOGICAL AIDS METEOROLOGICAL- SATELLITE (Space-to-Earth) Fixed Mobile except aeronautical mobile 324B 354A	1690-1700 METEOROLOGICAL AIDS METEOROLOGICAL-SATELLITE (Space-to-Earth) 324B 354A 354C		1690-1700	G, NG 3248 US100	METEOROLOGICAL AIDS (Radiosonde) METEOROLOGICAL- SATELLITE (Space-to-Earth)	METEOROLOGICAL AIDS (Radiosonde) METEOROLOGICAL- SATELLITE (Space-to-Earth)
1700-1710 FIXED SPACE RESEARCH (Space-to-Earth) Hob11e 354D	1700-1710 FIXED MOBILE SPACE RE (Space- 354D	SEARCH to-Earth)	1700-1710	G, NG	FIXED METEOROLOGICAL- SATELLITE (Space-to-Earth) MDBILE SPACE RESEARCH (Space-to-Earth)	METEORCEOGICAL- SATELLITE (Space-to-Earth) SPACE RESEARCH (Space-to-Earth)