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When making measurements of the mechanical alignment of the 60 mra 
diameter helix waveguide used in the VLA transmission system, it has 
sometimes been found that the "mouse" has snagged one or both helix 
windings and stripped wire from a short length of guide. The 
investigation described here evaluates the effects on waveguide 
performance of this kind of non-uniformity.

The waveguide wall structure may be represented1 by an anisotropic 
impedance sheath, with impedances and defined, as shown in 
Figure 1, for directions parallel and normal to the helix windings:
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FIGURE 1: DEVELOPED VIEW OF WAVEGUIDE



For small the surface impedance components in the more 
conventional z directions are1:

Z = Z (l-if>2) + Z (ip2) - Zrz C n C

Z. = Z (l-ij>2) + Zfifi2) - Z 4> n C n

where approximations are valid if 

* « 1 .

The field components in a cylindrical coordinate system are then 
subject to the boundary conditions, at r = a

The solution of Maxwell's equations in the cylindrical coordinates 
of the waveguide are, in general, hybrid modes, except for the circular 
symmetrical modes of order p = 0.

TE inodes on h = E = E = 0<J> r z
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where K is the m***1 root ofm
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H = —--— r- I A ^m*^ + B cos 0 Ji' (K r) I sin 6r Z sxn 0 m — ----- m 1 m vK r in

where is determined by the boundary conditions

E = 0 Ez = -Z<t> -77- z

Hence A K a Ji' (K a) Z . Ji'(Ka) Bm _ _m_____ _____m o _ . j-__1____m m cos 0 -i
B cos 0 Ji (K a) ' Z *- sin 0 Ji (K a) + A K a  sin 0 Jm 1 m z 1 m m m

Let K_a = thenm

. Z0 ka , , fV „

For ka»l, as is the case in the present application, this characteristic 
equation reduces, in the limit, to

C s i T ^ r '  v P  -  *

The solutions correspond to the conditions

i) Am/Bm = 1' is aPProximately the mth root of = 0 (u0m) HElm mod|

ii) Am/Bm “ _1* ^  is approximately the mth root of J2(xm) = 0 {u^) EHlm mod^

By expanding the Bessel functions in equation (i) as Taylor series about the 
equatives UQm, u^; the following asymptotic series are derived for the xm

zo
HElm ^  ~ UQm (1 + *3j j-r- + ----- >---------  z

zo
EHlm 111030 ~ U2® (1 + ^  + ----} (b)z
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The propagation constants for the modes are given by

m2 = k2 - <-?)
V  2

For large ka (ka>>l), the expressions for the HEim modes and 
EHjjq modes simplifies to

HEi_ modes E ~ -j —  A J (K r) cos d> r J K m o m  ----------  m

E* ' j K~ Am J° (Kmr) sin *m
II  ̂ __r ZgK “m ”o '"m-A J (K r) sin $

m
. k•7 V Am J0 <Kmr) COS <t>ZqK m mm

. k
EHim modes Er ~  ̂K~ Am J2 *Kmr* COS  ̂----------  m

E<J)  ̂K A Jo (K r) sin m m  m

m
A  Jo (K r) sin T" m
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The normalization coefficients for the modes are

11  KTE modes - A = —  m on - /n Jo‘Vpm
1i K 1 mTM modes - B = —  ----- —— :---

- S S ------ m a  ^ “i2
“  K  *

HE,_, EH,_ modes - A_ = -  — ,
— — ----------  *  /v c r  * *•
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The surface impedances (equivalent) and Z^ can be approximated by

z  “ V - 106sn

where a is the bulk conductivity of the copper wires and 6 , thes
skin depth, is given by

*»z = i -------------C we (1-j tan 6) tan Qb-a) X^/aJi

Z (2) = -j -JL- (-i_ _C WC jd D-d TT

where e , 6 are the permittivity and loss tangent of the lossy dielectric
layer (e = eoer).

e this the m eigenvalue for the modes which must exist in the 
exterior region between helix and jacket. These modes are required to 
satisfy the boundary conditions at the helix wall^. When the boundary 
conditions are satisfied the impedance sheath approximation is reasonable, 

e i is the dielectric constant of the wire insulation 
d is the diameter of the copper helix wires 
D is the wire separation between centers 

The impedance Z^ is thus given by

A  -  1  ,  1z Z I1) Zc e c
Doubling the wire spacing, as in the case of stripping out one helix 

wire will result in

-3 we jd 2D-d(— _d _ ln 4}-l
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Removing the wire completely gives1*

(2) = 00

Z

Having defined the waveguide structure and propagation characteristics 
for modes of azimuthal orders p=0, 1, the coupling between modes at a

Consider a single mode (TEqi mode) to be incident from the left in 
normal helix waveguide on the plane z=0. To the right of the z=0 plane 
(z>0), the surface impedance undergoes a step discontinuous change due 
to the stripping of one or both helix wires from the waveguide. The 
stripping is assumed semi infinite in extent.

The transverse fields in the waveguide efc» h fc will be represented 
in terms of the modes which can propagate in the waveguide on either 
side of the z=0 junction.

step discontinuous change in the impedances Z^ and Z^ will be investigated.

For z<0 e ~t

where e., h. are the transverse field components of the i mode in ~jl -1
the waveguide for z<0.

Similarly, for z>0



thwhere e ', h ' are the transverse fields components of the i mode - i ~ i
in the waveguide to the right of the junction z>0.

Assume a normalization of the form

(e.,h ) = (e. x h* ) * u ds = 6.~i ~n JJ - n ~z in
S

and (e. ', h ') = 6. .~ l ~ n in
For continuity of the fields at z=0

ei + £ r.e. = E t.e.'. , i~i . , i~i i=l i=l
OO 00

hi - I r.h. = E t.h.*. , i~i . i 1-1 1=1 1=1

Forming cross products and applying the orthogonality conditions, 
there results the system of equations defined by

(l+ri)(ei,h.') + r .(e.,h.') + E r (e,h.') = t.i l ~i ~i i, . n ~n ~l in+l,i
(l-riXe^.hj) - r^e.*, - | r <g • ,h ) = t

Wfl,l 
arr2ir

►Equation (X)

Now (ei,h2) = || (ej x h*2) * = II 0?lrH24> " E i<J>H2i*]rdrd^

Consider the case where the longitudinal impedance only changes. 
Further, assume that the circumferential impedance is negligible

i.e. changes to Z^+AZ^

Therefore, Z changes to Z+AZ from Z .
z C X> C

In this case, Z ~0 and the eigenvalues for the TE modes are <p on
simply the roots (real valued) of

J l<Xj = 0.
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The TEqj mode propagation is independent of changes in Z^. 
Equations (X) can be written in matrix form as

G • R = C

where

If c^=0 for all i, then (i) no solution exists if G is singular -
this will not be the case if the orthogonalization of the modes has 
been correctly implemented, (ii) r_j=0 for all i. Thus, for an 
incident TEqi mode the possibility of much coupling is determined

For coupling from TE to TM modesom on

(e ,h 1) = (e ' ,h ) = 0 because E =H =0 for TE inodes ~m ~n ~n ~m r <f> om
H =E =0 for TM inodes r $ on

For coupling from TE to HE , EH inodes (p>l)om pm pm —

since the azimuthal integral reduces to zero for all p>l

by the coefficients fc^/.
For coupling from TE to TE modesom onon

(e ,h ') = (e ',h ) = 0 if m 4= n~m ~n ~n ~m 1
-Tia)y3_a2
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a 2ir

1 1
0 0

F (r) °?S (p<J>) rdrd<J> = 0. s m

Hence, at a change in longitudinal impedance Zz, for the case where
Z = 0 and a TEni mode is incident from z<0 <P

Jc^/ = 0 for all modes

and no mode interaction occurs.
Consider now the case where Z^is non-zero and changes step 

discontinuously at the junction.
Typically, for the lossy backing layer2

at 50 GHz e/eg " 4-jl

Z^’ ~ 120 + j90fl

For close wound wires in the helix (D-l«ld), Z ^ 2  ̂ ~ -j332ft, 
for unifilar stripping (D'~2d), z ^ 2> ~ -j5680«. Therefore, for close 
wound helix, Z^ - 150 + j20ft; for unifilar stripped helix, Z^ - 123 + j68ft.

Single-wire stripping, therefore, alters the Z^ component of the 
surface impedance. However, provided

6 « d « a  s
D'+d«A

g

as is this case here, Z^ is essentially unchanged (Z^O.58(l+j)fl at 50 GHz). 
The pitch angle is also unaltered by unifilar stripping, remaining 
constant for 60 mm diameter waveguide, at

ift = 3*769 x 10~3 radians.

It is clear, therefore, that single-wire stripping affects
significantly the impedance component Z^. |ẑ | is changed by less 
than 0.1%.
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Where all wire is removed from the guide to the right of the z=0
plane, the discontinuity can be modelled by a waveguide of constant
diameter, but with both Z, and Z components of surface impedance9 z
changing at the discontinuity. In the region z<0, typically,

V  0

Zz ~ (150 + j20)Q

in the region z>0, typically,

Z^ - (160 + j93)«

Zz ~ (120 + j70)G

The coefficients fc.f are now non-zero for coupling between TE -TEJ ^  ̂ om on
inodes, but remain zero for coupling between TEni modes and TM , EH , HEon pn pn
inodes.

If a change in radius occurs at the discontinuity (concentric step)
then additional coupling to spurious TEQn inodes will occur. However,
provided the step is concentric, no coupling to TM , EH or HEon pn pn
inodes is possible, since for these modes 

/cj/ = 0 for all i

A change in impedance alone will be considered here.
For the TE to 1 om

defining the modes is
For the TE to TE mode coupling, the characteristic equation om on

-jam
K* Jo V

= z
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In the region, z<0, Z~0, and so for inodes in this region y is simply the 
th ♦ “ n root of the equation Jj(xm)=0. For z>0, the p^ be a root of Jj(p^)=0 

and assume ~ P^ + Ap^, where

Api
pi

<<1.

Z<&This assumption is valid here since <<1.cjp
Then expanding the Bessel function in a Taylor series about p.

JO’ (X±) = Jo’tPj+APi) -- ApiJ0(pi)
jK.Z -jp.(Z /up) 

Hence Ap. ~ - ----- ” -  -------- -----i a) p 1+j (Ẑ /oop)
-A A '27^0 '

NOW (em ,hn-) - Y k  ■ n Q k-T Tr ~^7(Kn 1 ̂ I  (Kma)J t ■ (Kn • a)
m n m n

-K aJx' (Kma)J1(K 'a)}l m m n

and since J\(Kma) = Jl(Xm) = 0 in z<0
2ira)iiaA A '

^ m ' ^ n *  * K ' (K Z- K  '2) Jl (Xm ) J l ( X n *  n m n

where 3 ' + knz = K n n

where y is the nth root of Ji(x ) = 0. n 1 n
2Tro)ii8 'a1* A A ', . ,v n m nSo (e ,h ') =~m'~n * (Xn+APn> iXmz“ (Xn+Apn)z) Jl X̂m^J°^Xn̂  Apn

2ir(uyB ’a1* A A 'n m n
J ‘' (xm)Jo(V  ap„
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where 3 '2 ~ -(x 2+2Ap x )“7“ + k02 n n n n a

pn ----- 5—
1+j (— )toy

Similarly, u ,“2iro)y$ aH A 'A

where $n2 = -(-“)2 + kg2

•’V w ’ 
m ------ 5“

1+j I-4-)0)JJ

For m=|=n, (e ,h '), (e ',h ) are both of order Ap and are small compared ~ m ~ n ~m ~ n m,n
with (e .h *), (e ',h ) provided ~m ~m ~m ~m

Ap• — m£jn|«i 
Pm,n

Under these conditions, since the r^ should also be of order
Ap^/ the mode coupling equations (X) can be simplified by the approximations 
to the solutions

(e1,hjL,)-(ei',h1) 
(e.,h ' ) + (e.',h )^1  ̂A

(ei,hi') + (ei' ,hi)

-2tt3. 'alf
Therefore, (e^h. • ) ----J t■ (XjL)J0(Xi> A±Ai *

-2tt3. a1*
‘V '- i *  = ~2j~7 ~  J i ' (xi )J °<xi ) A .A ^
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2ttS . 'a* AiA. '
(ejjh.') = --r~ — 2-- Z7Ta--?— T ~ i— ZT J1' * X1) Jo (X •) Ap.
~ ~1 X-(XI -X- )+Ap. (Xl ~3x. ) u a. jla * l l 

-2TT$ia^ AjA^'
(e . ', h j) = ---- 2---ZTTa--— 2---- ZT Jl' (Xi)J(){X*)Ap.
~i ~ X-IX- XI )+Ap. (3x- ~Xl ) 3l ii l l

and A.’ J i ’ (Xl)

r. =r^— — —-r 2Ap,x±2
i J i ’ (x±) i' "(ei'+ei)lxi(Xl^-XiZ)+Api(Xl/-3xiZj

(6i ’+e1) J 1 ' ( x i ) J 0 (Xi )Ap

t. = -irâ AjA. * --— 2---ZTTa--7— Z~̂ — Z\1
i i “ X, (XI -X, )+Ap, ( x r “ 3x.^)J

The common term (toy) has been eliminated from the above expressions,

3 l ’-8i A!*

For i=l r, - [ g ^ - D  ^

ira^
tl ~ JfiZ AlAi* (3i * + 3i) J r ( X l ) J 0 (Xl).

Typically,
at 50 GHz = (4*05 + j2-35) x 10“** ya) J

Thus Xl’ = 3*8326-jO*00155
3i' = 1*0393x103-jO*00635 
3i = 1* 0394x103 
rj ~ 10“7, tj ~ 1

Attenuation of TEqi mode in stripped waveguide is 0*00636 nepers/m 
or 0*055 dB/meters at 50 GHz.

At 20 GHz, typically

(l*013+j0*589)xl0”3ya) 

Xil = 3«8339-j3*88xl0~3

14



31 ' = 3* 989xl02-jO* 0414

Si = 3* 9835xl02

rj - 6*9i8xio~**L-4*2970 ti ~ 1.0

Attenuation of TEqi mode in stripped waveguide is 0*0414 nepers/m 
or 0*359 dB/meters at 20 GHz.

ApiFor i>l, provided J--! « !
Pi

Ai J l ' ( X l )  e i X ±

ri ' r 7 Api 3 y < ^ 7  <B7 - x)

( 3 . ' + 3 ! )

t. - -„a- A.A.- Ap. J jM X j) JotxJ <X ,(̂ _ X1V  

Substituting for the normalization coefficients

Jo(xi) „ *1 , x,2
~ Ap. {—— --—}2 / "o—  (75—  - 1) —  (— 2--- Ti

1  1  J 0 (Xi ) 3i • i  XI X 2 Xl2

J0(xi) o f * [  *1 , ,
= Ap. {——--r-}2 /  -g— (-g--1) -- {---- }*1 JofXi) \  XI \  XI

X-Xl (p . + ei) 

t.. - -Ap. — ---  t...2 '■ 2,x^txi x± )1
i

Xi 8, +Si 
= -Ap. (— 7--- r ) -------

1  / e n r

Typical coupling values from these formulae are, at 50 GHz 

TEn? mode r2 ~ -90*79 dB|_30*124°
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t2 - -62-74 dB[_ 30*124°

TEpq mode r 3 ~ -74*43 dB[_30-124°

t3 - -67-719 dB |_ 30*124°

TEqu mode ~ -64-34 dB(__30*124°

11* - -70*636 dB [_ 30* 124°

In order to confirm these results measurements have been made on 
short lengths of 60 mm diameter helix waveguide from which one or both 
helix wires have been removed. The measurements of attenuation were 
made over a range of frequencies from 27 GHz to 39 GHz using a swept 
oscillator and diode detectors connected to a data normalizer.

The system was calibrated with a standard length of normal helix 
guide. The test piece was then inserted in place of a normal guide 
section and the change in total attenuation plotted as a function of 
frequency. The minimum resolution was estimated to be ±0*025 dB, 
enabling (for a five meter long test piece) the change in total 
attenuation to be estimated to an accuracy of 5 dB/kilometer.

For one strand of wire stripped from the test length (5m), the 
change in attenuation was not measurable, implying an increase in 
attenuation of less than 0*0005 dB/meter. This behavior is predicted 
by the foregoing analysis (See Figure 2).

For both wires stripped from the test section (1 m) the change
in attenuation with frequency is as shown in Figure 3. Once again,
this general behavior is predicted by the analysis. The increased loss
is due primarily to TE mode loss at the walls and is not due to r J on
strong mode coupling to other TEon modes. The attenuation was measured 
to be 0*4 dB/meter at 27 GHz, decreasing to about 0*15 dB/meter at 
39 GHz.
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FIGURE 3


