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27 July 1976

MEMORANDUM TO: VIA Optical Processor File 
FROM: James R. Fienup
SUBJECT: Detected Signal

The purpose of this memo is to account for the various 
terms present, when two images are subtracted that were formed 
using reference wavefronts of relative phase zero and pi radians, 
respectively. Also discussed is the effect of reconstructing 
only half of the u-v plane.
CASE 1: Exact Fourier transform (input plane in front of 
transforming lens). The reference wavefront is given by a 
plane wave

Er(x,y) - rQeJkx

where rQ = rQ' + jr0" is a complex constant, with real 
and imaginary components■ r \ and r0", respectively.

The signal wavefront is given by

Es(x,y) » Eg'(x,y) + jEg"(x,y)

where E I and E " are the real and imaginary components,
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respectively. Eg* consists of tins desired brightness
distribution, B(x,y) a real-valued function plus the real part 
of the error due to system aberrations. Eg"(x,y) consists of 
the imaginary part of the error due to system aberrations. The 
detected intensity is

Ix(x.y) - |Er(x,y) + Es(x,y)|2

- Ir0ej k x + E s|2

s

E ' ) 1 e'i1“  I s' J

If the reference beam is shifted by pi radians, then
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I 2 ( x ,y )  "  l r 0 | 2+ l Es l 2 - 2 ( r i E^+ r 0Es> c o s t a - 2 ( r ; E ^ - r ^ ) s i n  k x

The difference, then, is

AI(x,y) = I1~I2 = ^(r;E;+röEs)cos +4(riEs_röEP  sin kx

For a reference wave adjusted to a relative phase of zero, 
r” = 0 and the equation above reduces to

AI(x,y) = 4 cos kx + 4 r^Eg sin kx

which should allow the separation of the term Eg from the 
desired term. For example, one might sample AI(x,y) only when 
sin kx = 0. For an on-axis plane wave reference beam, the 
above further simplifies to

A I( x , y )  9 4 W M  >o s I

However, E ' still containscompletely eliminating the term Eg.
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the real component of the error due to aberrations, which 
cannot be distinguished from B(x,y).

CASE 2: Fourier transform with quadratic phase (input plane 
behind transforming lens). In the paraxial case, a spherical 
reference wavefront offset in the x^direction is approximated
by

Er(x,y) “ expj j-^ [ (x-xQ)2 + y2]}

And the Fresnel transform gives the signal wavefront

j^(x2+y2) [E^(x,y) + j E's'(x,y)]

Then

+ Es(x,y)| 2e
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where the factor exp | «  |
^Xq

was absorbed into r and kQ = —
Thus, we see that to within the accuracy of the Fresnel approxi
mation, the quadratic phase terms drop out, leaving the same in
tensity as in Case 1.

CASE 3: Non-paraxial case (input plane behind transforming lens). 
In the non-paraxial case, a spherical reference wavefront is 
given by

The wavefront passing through a transparency of amplitude trans
mittance T(u,v) in the (u,v) plane illuminated by a converging 
spherical wavefront with the origin of the output plane as its 
center is, according to the Huygens-Fresnel principle (see 
Goodman, Introduction to Fourier Optics, p. 58).,

the obliquity factor, and W(u.v) includes aberrations in the

Er(x,y) =
V z 2 + (x-xQ)2 + y2

V x -y> 1 1

where r
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wavefront illuminating the transparency. Note that in this 
formulation, W(u,v) is independent of x and y. In this case, 
aberration terms having an x-y dependence arise from the ex
pansion of r . Rewriting r^, expanding about z, using the

expansion (l+x)n = 1 + nx + n ^  —  x2 + ..., we have

r = Vz2 +(u-x)2 + (v-y)2 - V z2 + (u2 + v2 - 2ux - 2vy) + (x2 + y2)
XXX

I  z/l+ 1 T (u2 + v2 1  2ux - 2vy) + (x2 + y2)l
* 2z2 L.

- -i- [(u2 + v2 -2ux - 2vy) + (x2 + y2)] + ...

and
r = V  z2 + u2 + v2 = z [l + -i- (u2 + v2) + ' • *]

L 2zz

The terms in (rux-r) that are independent of u and v that can £
be brought out of the integral are z £l + — 2 (x2+y^)- - V * 2+y2)

2z 8z
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That is, E (x,y) will have the phase of a spherical wavefront sassociated with it. As in Case 2, we-redefine Eg(x,y) to 
separate out this phase term in order to determine its effect 
on the detected image:

^(x.y)
rD exp \ 3j^z2H ^ 0)2+yl\

^ z 2+(x-x0)2+y2
+ exp

H
z2+x2+y2}Es(x,y)

+ (complex conjugate)

I lre |2/ [z2 + (Z-XQ)2 + y2 ] + | Es(x.y) |2
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2 ( ^ E;+roEs)
Vz2+(x-x )2+y2

COS H
2H , *2.2z +(x-xQ) +y y'z2+x2+y2 )]

2(r'E"-r"E')99 x o s O S 7 + — :...... ...... s m
^z2+(x-xo)2+y2

in[yi y  z2+x2+y2 ) ]

A reference beam shifted by ir radians causes the last two terms 
in the expression above to change sign. Taking the difference 
and adjusting the reference beam to a relative phase of zero 
(r£ = 0) yields

AI(x,y) B ^roEs(x»y)
z 2+ ( x - x q ) 2+y2

4r;E's'(x,y) 

z 2+ ( x - x q ) 2+ y 2

cos £ (y  z2+ (x -xq) 2+y2 - y  z2+x2+y2

s i n  £  y L  z 2+ ( x - x q ) 2+ y 2 -  V  z 2+ x 2+ y 2

which should allow the separation of the term E" from the term E*s s
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This separation, however, would be more difficult than the 
corresponding separation in Case 1, due to the more complicated 
argument of the sine and cosine terms. For an on-axis point- 
source reference wave, however, this simplifies to

' \.
AI(x,y) = 4r;E;(x,y)

completely eliminating the term E'̂ . However, E^ still con
tains not only the real component of the error due to aberrations 
of the illuminating wavefront and of the signal transparency, 
but also due to the discrepancy between the Fresnel approximation 
(Case 2) and the more exact formulation (Case 3).

Reconstruction of Half of the u-v Plane

Let B(x,y) = B'(x,y)+ j B"(x,y) be the Fourier transform of 
V(u,v) = V'(u,v) + j V"(u,v):

B(x,y) = B ’(x,y) + j BM(x,y) =

Equating the real parts and imaginary parts, we find that 

00

B'(x,y) - / /  [v'(u,v)cos |£(ux+vy)- V"(u,v)sin |j(ux+vy)] du dv

jjv(u, v) exp | j |j(ux+vy) j  du dv

•  00
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a n d

B"(x,y) = jj [  V"(u,v)cos |£(ux+vy)+ V'(u,v)sin |^(ux+vy)Jdu dv 
— 00

Therefore, if B"(x,y) = 0, then V"(u,v) must be odd and V ’ (u,v) 
even; that is, if B(x,y) is real, then V(u,v) is Hermetian:
V(-u, -v) = V*(u,v). Now suppose we reconstruct only half of the
u-v plane to obtain

Bh(x,y) = B^(x,y) + j B£(x,y)

oo H 00

■ u .  V (u,v)exp | j|j(ux+vy)j du dv

oo oo

J o [v' (u »v)cos |£(ux+vy)- V"(u,v)sin ||(ux+vy) J du dv

I  j J J t°[v"(u,v)cos |f(ux+vy)+V'(u,v)sin |f(ux+vy)] du dv

Since both terms in the first intergrand are even, the integral 
over only half the u-v plane is equal to one half of the integral 
over the entire u-v plane. Consequently, the first integral is 
equal to

Bh(x.y) = I B'(x,y) = \  B(x,y)
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The second integral equal to jBJJ(x,y), which is purely imaginary, 
can be considered to be noise. Another way of looking at the 
half-plane reconstruction is that we are multiplying V(u,v) by 
the step function jl, u>0;0, u<0|. Thus the image is convolved 
with the Fourier transform of the step function, i 6(x)-j/2irx, 
resulting in a complex amplitude that is ^ B(x,y) plus an 
imaginary-valued term. —

Note that if we can detect the real part of the image apart 
from the imaginary part, as described in Cases 1-3 above, then 
we can obtain the desired brightness distribution B(x,y) with 
no loss of resolution despite the fact that our aperture is only 
half the original width. This phenomena occurs only when the 
desired image is of constant phase (e.g., real-valued), so that 
the term arising from the convolution with -j/2nx can be separated 
.out from the term arising from the convolution with ^ (x);
equivalently, the data in the u-v plane must be Hermetian. A 
partial explanation of this phenomenon is that since the addition 
of the second half-plane of a Hermetian function adds no new in
formation that cannot be obtained from the first half-plane, then 
there also should be no additional information in the image (such 
as would be obtained if the resolution were doubled).

The desired image being obtainable with no loss in resolution, 
the reconstruction of only half the u-v plane is attractive since 
it reduces the space-bandwidth-product requirement on the optical 
recording device by a factor of two; however, signal-to-noise 
consideration reduce its attractiveness. Consider the aberration 
term W(u,v) in the integral equation for Eg(x,y) under Case 3 
above. For small aberrations, exp [jW(u,v)J - 1 + jW(u,v) . To 
within the limits of the-Fresnel approximation, the image B,(x,y)
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is convolved with 6(x,y) + j ^jw(u,v) \ , where 9  jw(u,v) 
the Fourier transform of W(u,v) . For W(u,v)even, j |w( 
is imaginary, and for W(u,v) odd, j ^¡W(u,v)jis real-valued. 
Thus, the desired image is convolved with an error term

¡W(u,v) \ that has both real and imaginary components. When 
the full u-v plane is used, the ideal, image B(x,y) is purely 
real, and the convolution of B(x,y) with the imaginary component 
of the error term is imaginary and can be separated from the 
desired term. Only the convolution of B(x,y) with the real part 
of the error term is kept. Thus the real-value detection pro
cess causes an increase in signal-to-noise ratio. When only 
half the u-v plane is used, then the ideal image has both a 
real component, B^(x,y) and an imaginary component, B^(x,y), 
and we would expect these two components to have approximately 
equal power. When these two terms are convolved with the 
error term, there result two real terms: the convolution of 
j$*(x,y) with the real component of the error term and the con
volution of B"(x,y) with the imaginary component of the error 
term. Thus, the signal-to-noise ratio obtained when using 
half the u-v plane is approximately half that obtained when 
using the full u-v plane.

JRF:sd
cc: C. Aleksoff 

M. Carter
I. Cindrich 
M. Hidayet
A. Klooster


