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SUBJECT:

C. C. Aleksoff

Output Calibration Correction for
Phase Errors

In this memo we investigate calibration correction to

the spread function errors, calculated in a previous memo-

Recall that the spread function is-denoted by

S(p) = S(; x,y) =uv {Ae i } (1)

where 4 = c(u,v) is the input phase error and A = A(u,v)is

the aperture function. The ideal spread function is S(0).

The output error function of interest is given by

(2)
r = 10 logl0 IRe S(Q) - S(O)J

The calibration procedures that can easily be performed

at the output plane include:

(a) magnitude scaling by the factor M, i.e.,

1. C. C. Aleksoff, "Phase Error Plots," ERIM memo
to VLA File, 16 August 1976, SA-761060-123401.

0



2

FO.M.RL t LLOW NU N LAUNAtQ#tS. TMo UNaIvSITY OF wicmAN

S (p) - s' () = MS() (3)

(b) Translation by the factors Xo, Yo' i.e.,

S(4; x,y) S'(4; x,y) = S(4; x-xo, y-y 0 ) (4).. C

which can be implemented in the input signal by
letting

2rrx u 27y v..

x - x'y= ax, y + y' = by (6)

(d) Refocusing by a factor c, i.e.,

,* .' = 4 + k u27 +7 7 c2 (7)
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In this memo we will only investigate cases (a) and

(b) for one-dimensional errors. That is, we will be cal-

culating equations of the form

S = 10 logl 0 IRe MS( - wu ) - S(0) I

where

(8)

(9'

and W is the aperture extent. Recall that

A ( r )e * T(u)
(10)

where T(u) is the taper function.

Typical spread function (SF) errors are shown in Figures

I and 2.

For all the curves the phase error is given by

u \3

i.e., tenth-wave cubic phase error.

-I -- - -

(11)

R~nci
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The curves are:

0) The spread function itself for T(u) 1.

A) The uncalibrated curve (same as plot 30 in ref. 1)

for T(u) = 1.

B) The calibrated curve for T(u) = 1. The magnitude

scaling was such as to give a null at the center

of the SF error curve after translation. i.e., we

..used

) .05[( 3 tl a = 0. 6

M = l/S(4;O,O)

C) Same as case B except that a = 0.2 and that the

Gaussian taper

T(u) = exp . [(u)2Tr)= exp [(r ) n (.017)]

was -used which corresponds to tapers used by NRAO.

In Figure 2:

The curves are labeled for Figure 1 and the only dif-

ference is that fourth order phase error was used, i.e.,

replace eq. (11) by

. " W-/2 r/ =06...
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Note that for even order phase errors that the calcu-

lation does not need to include translation since the SF

is even and real.

Figure 3 is included to show the Gaussian taper (win-

dow) used in the calculations and the corresponding spread

function. It is seen that the spread function is over

three times wider than for no taper.

Figures. 4 and 5 show a compilation of maximum spread-

.function errors extracted from a large set of curves of the

type illustrated in Figures 1 and 2. The curves in Figure

4 give the maximum spread-function error as a function of

peak-to-peak phase error for va .ious phase error orders.

Calibrated and uncalibrated results are given for Gaussian

tapered inputs (as shown in Figure 3), as well as for no

tapering.. Also, the magnitude error for the second order

has been included as well as the real part. The curves

are for the-real part unless otherwise labeled.

Figure 5 also shows the peak spread-function error

but where the central part of the error has been excluded,

as indicated in the legend. For example, curves B and E

exclude the distance from the main lobe to the center of

the first side lobe (i.e., the central ±1.5 X-units in

Figures 1 and 2), while curves C and F exclude the entire

"main lobe and first side lobe (i.e., the central -±2 X-units

in Figures 1 and 2). For a .017 Gaussian tapered input,

the exclusion of the main lobe and first side lobe (i.e.,

the central +4 X-units in Figures 1, 2, and 3) gives curve

H.

It is immediately obvious that the curves tend to be
straight lines for these small phase-error plots. The

odd orders go as the square of the phase error and the even



6

FORMLY *%%LLOA RUN LAUU5RATONE&. TTLE UNtvLRITY Of Mag.mI.AN

orders in proportion to the error (see Appendix A). The

odd orders are more troublesome. The calibration

procedure improves theresults. Exclusion of the main

lobe region for determining the maximum spread-function
error gives a very significant improvement. For example,
considering the third order, .the l% criteria indicates

S/71 phase error allowance for no taper, no calibration,

and no exclusion but a X/1O phase error is allowed if both
calibration and exclusion are used (and no taper). If the

.017 Gaussian taper is also allowed, then the improvement

is extremely large. We should also note that taking the
real part also gives a large improvement for the even-

order phase errors.

CCA/pw

cc: I. Cindrich

J. Fienup

M. Hidayet

A. Klooster
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Appendix A

ANALYSIS OF OUTPUT ERRORS DUE TO

SMALL. INPUT PHASE ERRORS

The spread-function errors (S.F. errors) shown in

this memorandum, which have been numerically computed using

FFT's, all tend to be straight lines for phase errors of

less than X/2. This implies that retaining only the first

few terms of a power series expansion of the exponential

term is sufficient in analyzing the results. This expansion

is used below to describe the results obtained in this

memorandum.

BASICS

Consider the output error given by

B B(4) - B(O) (A-1)

where B(4) = B(4; x, y) is the output brightness with phase

error 4 = 4(u, v; x, y) and 3(0) is the ideal brightness.

The brightness is given by

B(4) ={VA e} (A-2)

where V = V(u, v) is the visibility and A = A(u, v) is the

er e now assume that << 1 such that the expansion

e = 1 + it - .2 (A-3)
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A-2

is appropriate. Then (A-i) can be written as

.B =' VA(i. - 42) (A-4)

We now expand in the power series

2 cm umvn (A-5)
m,n

where the coefficients c = c (x, y) All summations are
mn mn

assumed to go from 0 to = unless otherwise specified. Then

.2 = (2)2 d umv n (A-6)
m, n

where the coefficients d can be written as a combination

of c coefficients.

Using the well-known relationship for derivatives of

a Fourier transform gives

( ) B (0)'aum n V mn (A-7)£-2V)m+n

(-2ni)

where

am n
B (0 ) B(0) " (A-8)
mn m n

Thus, from (A-4) to (A-7)

2nic - 42 d
B = mn mn B (0) (A-9)

m,n (-2ni)n

which shows that the output error is a sum of derivatives

of the ideal response.
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A-3

If we are interested in the real part of AB where

B (0) is real due to the fact that VA is hermetian, then

m-I-n odd

Re AB =

m,n
m+n even

(-1) P mn B.rn (0)

(21T)

where P = +n- 1
2

d(-1)P B (0)
1) +n-2 an(2'r)

m + n + 2where P = 2

(A-10)

Thus, the even summed terms go directly as the phase error

coefficients, while the odd summed terms go as the product

of the phase error coefficients.

ONE-DIMENSIONAL EXAMPLE

Let

Sm

. = 2n hmu -

Aw rect )
W-h)

and V= 1.

Then

.2 42 h2m 2 m• •n •

jRII --i,,r !

4L
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A-4

and

B(0) = sine (Wx)

Hence,

h

m,0 (W/2)m

h2

2m, O- (W/.2).2 m

Then (A-9) becomes

AB 2 2(i) hm sincm(Wx)

m-i 2s
+ 4 2 (-1) h

m sinc2 m(Wx)

where

1 3 s in (-Wx)sine (Wx) = 1 sinWx
S(W) m a Wx

Thus, if m is even,

22 2Re AB = -42 h2 sinc (Wx)

and if m is odd (retaining only the lowest order term)

Re AB = 2 (-1) ( m+ 1l)/2 hm sincm(Wx)RebB~ m t (1

and

TR1I1i

Am w I- I - L
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A-5

We see that the odd-order terms are proportional to the

amplitude hm , while the even-order terms are proportional
2 m

to h which was confirmed by the curves formed using the
m

FFT. The shape of the curves are determined by the proper

derivative of the sinc function. The effect of taking the

real part is to drop the linear term in hm for the even-

order terms.


