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I. INTRODUCTION

-Defects (amplitude and phase) in an optical processor

cause errors in the output map. These effects have been

studied analytically and numerically. Here we present Ai

tabular summary of our efforts to date. Our goal is to

share current understanding for the purposeLof identifyin1

phase (and to a lesser extent, amplitude) defect specifica-

tions which will result in VLA maps meeting an astronomically

acceptable "1%" map error criteria.

The following pages are a tabular summary of

1. Simulation Performed

2. Calibration and Compensation Techniques

3. Error Criteria

4. Numerical Results

5. Some.Design Considerations and Conclusions

II. SIMULATION

Our simulations are essentially numerical experiments

performed in a digital computer. We have concentrated on

two principal kinds of phase defects. They are (1) the

spherical wave defect and (2) polynomial defects. sBoth

are so-called "low frequency defects" because they contain

less than one full cycle of a sin wave (in the input aperture

of the processor) if expanded in a Fourier series. High-
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frequency defects, i.e., more than one cycle of a Fourier

component in the input aperture.are not considered.here.

They must, however, be kept to less than 1/100 the minimum

visibility amplitude we desire to map..

The spherical wave defect has its origin in the Huggens

spherical wave fronts which diverge from every point of the

input plane to every point in the output plane. These -wave

fronts can only be approximated by plane waves (i.e., the

Fourier kernel) overa finite region. This leads to the

concept of a finite space-bandwidth product. The magni-

tude of this product depends on the magnitude and type of

error acceptable ' in the processor output. Since this de-.

fect (the difference between the perfect Fourier transform

and the optical Fourier transform) has its origin, the

propagation of spherical wave fronts, the concept of a

finite space-bandwidth product for optical transform instru-

.ments is fundamental.

Polynomial defects originate in the usual wave..aberra-

tions of an optical system, as well as in the.posi-tioning

errors inherent in laser and electron-beam recorders (the

most attractive types for this processor). More correctly,

the positioning errors can be modeled conveniently and

accurately with a power series in the input plane.

As will be seen, we are most concerned with the low-

order, odd-power (1, 3, 5) terms in.. the power series, the

even powers (2, 4, 6) contributing significantly less error

to the output map. We have simulated the low-order even

and odd terms and calculated the resulting map error for

both the VLA aperture and a clear circular aperture. By

the VLA aperture we mean an aperture of unity transmission

at the locus of points in the V-v plane sampled by the
telescope. A clear aperture, in contrast, has unity trans-

mission everywhere. Uniform aperture weighting was usually

simulated.

H.-.
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Since it is possible to remove some of the result-

ing map errors by gain and position adjustment of the

diode sensors array (in the output plane), we have simu-

lated these error-correction techniques also. The term

"error compensation" refers to. error correction of

stationary defects in the processor. The term "error

calibration" refers to error correction of map-to-map

-dependent errors.

This simulation has been performed with both FFT

and DFT (direct Fourier transforms) techniques in a large

digital computer. There are interesting differences in

our results which depend on thesize of the FFT array used.

These are important differences and I (LES) do not fully

understand their significance. It seems., however, that

the larger the FFT array (1024 vs 512, for example) the

closer the simulated result is to the true Fourier trans-

form.

We turn-now to calibration and compensation techniques

and means of simulating them.- This is followed by some

numerical results.

III. CALIBRATION AND COMPENSATION

Calibration and compensation remove output-plane

dependent geometric and radiometric (brightness) defects

only. Four principal defects can be partially removed this

way. They are (i) linear phase shift in the input plane,

(2) cubic phase shift in the input plane, (3) quadratic

phase shift in the input plane and (4) scale change in the

input plane. Also, many amplitude and phase defects reduce

the brightness in the output plane by a predictable- amount.

This effect too can be partially removed.

The spherical wave defect is represented by terms of

the form (in one dimension for ease)
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For large Z, D is almost equal to l/Z being slightly less
uv

in magnitude xy and containing a real, as well as an

imaginary component.. Z is a constant fixed distance in the

processor, U is the input plane coordinate and x is the out-

put plane coordinate. Details of the derivation of Duy are

found in VLA memorandum xy

It is possible to compensate for the linear phase shift

term exp [-ikZ(4Ux 3 /8Z 4 )] in the output plane by positioning

the sensor array at the corresponding displacement in the

output plane. Similarily, the focal shift term

exp ikZ(6U2 x 2 /8Z 4 ) can be compensated by a shift of focus

being applied to the sensor array. The cubic phase shift.

can be partially compensated by a displacement in the out-

put plane corresponding to a linear approximation to the

cubic.

In the numerical results (following), we have simulated

these compensations by removing the corresponding defect

from Duv. The linear phase shift compensation is referred
xy

to as "linear"; the quadratic as "focus".

Turning to the polynomial defect simulations, these

two can be partially compensated as described for the spherical

wave defect terms of power 1, .2 and 3 (in U). We (NRAO) have

not performed any compensated polynomial simulations at this

writing. Aleksoff (ERIM) has simulated the removal of the

cubic by means of a linear phase shift with meaningful im-

provement (a map error reduction of 2.5).
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IV . ERROR CRITERIA

We are concerned with the difference between the true

Fourier transform and the output of the optical processor.

We wish this difference or error to be less than 1% of the

peak value of the map (image): of a point source. This

error is to be less than 1% of the peak radio brightness

at the center of the point source image and everywhere be-

yond (at values of x and y greater than) the peak of the

first side lobe of the point source image. We have also

included in this study the errors beyond the second null

of the point source image.

In terms of a synthesized beam, the above regions of

interest are shown in Figure 1.

The-errors we have studied with FFT and DFT techniques

have always been in the region of the point image; e.g.,

four to six side lobes in all directions. We have found

that the errors (error maps) are well behaved with peaks

(peak error) near the .3dB point of the main lobe and

falling nanotomically to small values within a few beam.

diameters. We have not studied map errors in many hundreds

of beam diameters from the point object. Should this be

done?
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FIGURE 1
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