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Self calibration, marvelous though it is, cannot correct quite a 

large number of instrumental effects because they do not correspond to 

antenna gain effects. The purpose of this memo is to estimate order 

of magnitudes for some of these. The alternate title of this memo is 

therefore, "What Self-Cal Won't Do For You”.

1. Antsol's "Closure Errors"

Consider the case of a "perfectly calibrated" point source at

field center. The output on each baseline, due; to the defects in

closure, will be, not S, the source flux, but (1+a )S, where a is
mn ran.

the closure defect on the m-n baseline as printed by antsol. The 

error pattern (E(x,y)) this induces in a map is, obviously, the Fourier 

transform of amn S*W, where W  is the weighting function (ignoring the 

effects of convolution). By Parsevel’s Theorem



<E2 (x,y)> = <W2 or 2> S 2 
mn

if W and Of are independent (if I didn't have this parenthesis here, I 

would have sneaked a very iffy hypothesis past you without your noticing, 

wouldn't I have?), then

rms dynamic range = * V <a 2>
<W> mn

The lefthand factor is (for large maps anyway) essentially identical

to that for the rms value of dirty beam sidelobes. Since dirty beam

sidelobes tend to be 1%  to 3% rms, and the a tend to have an rms
mn

(dominated by the imaginary part) of 1%  to 2%, the predicted limitation 

of this effect on dynamic range is of order 0 .1%  to 0 .0 1 %  (highest for 

snapshots which have bad dirty beams). The success of trying to 

calibrate the effect is not known.

2. Bandwidth

I have shown (VLA Scientific Memo #118) that under the premise of 

identical bandpasses, the effect of bandwidth smearing is representable 

as an integral convolution. The implication is, that since this is a 

linear operation, self-calibration should work normally, producing a. 

map which can later be corrected by the procedure I outlined.

However, Dick Thompson has shown (VLA Electronics Memo #192) that 

the presence of large delay errors can cause small bandpass mismatches 

to contribute much more to closure errors than they do in the case of 

well matched delays. It would not surprise me if the "effective 

closure errors" (as measured by self-cal's ability to make high dynamic
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range maps) were of order 1 0%, rather than the 1 -2%  we measure on 

calibrators, for a source near the first null of the bandwidth pattern 

on the longest baseline. Moral - if the field is dominated by a 

strong point, put it at the phase tracking center if you possibly can.

For fun I give yet another expression for the effects of bandwidth 

smearing. For a circular gaussian beam of width 0 (full width, half 

maximum) and a gaussian passband of width W  at frequency F (W<<F), the 

effect is approximately, in the vicinity of (x^y^), to convolve the 

beam

(x2+y2) 
e 20*

(where c = In 256) with a one dimensional "bandwidth beam"

(xxQ+yyo )2F 2

e C 2W 2 (x 2+y 2 ) 2
o Jo

for the cross-section y = yQ = 0 this convolution gives

a + £  £  >"* *'c 2 o2 ♦ *;>

Note that with other parameters constant, the synthesized beam 0 is 

inversely proportional to F so that the amplitude reduction (the first 

factor) is independent of F.

3. Beam and Pointing

It has long been known, that, for identical, perfectly pointed, 

elements, the effects of the element beam can be removed by a division 

in the map plane. A reasonable (Arnold Rots has more reasonable) 

estimate of the beam is
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P(r) - 1 - 1.2xl0 " 3 (rF ) 2 + 3.5xl0_ 7 (rF ) 4

where r is in minutes of arc and F is in Gigahertz.

Of more concern to us here is the variation in pointing, either 

as a function of time or of antenna. If radiation comes from all over 

the beam, self-cal cannot remove this effect because different pieces 

of the source vary independently. The rms amplitude fluctuation on a 

source at radius r is approximately the slope of the beam times our 

0 . 2  minute rms one dimensional nighttime pointing error.

AA —7
= 4.8x10 rF2 - 2.8x10 ' r3F 4

We may here repeat the moral, that if you are dominated by a strong 

point, put it at the phase tracking center if you possibly can.

4. Non-Coplanar Baselines

This isn't really a dynamic range or proper instrumental problem -

it can be corrected analytically and exactly. However, the fact is

that we have no software to do so.

The VLA is, to an excellent approximation, instantaneously coplanar.

Jerry Hudson showed in his thesis that for an instantaneously coplanar

array, the instantaneous beam at a given point on the map wanders with

time on a path with length of order r2 (where r is the radius from the

center of the field in radians). The coefficient depends very much on

the circumstances of the observation, ranging from near zero for

snapshots to about the cosecant of limiting elevation for full synthesis.

For an order of magnitude estimate, let us take uniform motion along a

path of length r2. Then, with a Gaussian beam of size 0, the reduction 

in intensity is given by
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For small r, this deviates from unity by a term going as r4 , so there 

is a rather sharp cutoff of the useful field. For correction factors 

near unity, the above expression reduces to

c r4
1 - 2 4  q2 (r an<* 6 radians).

5. Finite Integration Time

This bears an interesting similarity to bandwidth smearing. In 

fact, for an object at the north pole, it reduces to a distorted 

azimuthal convolution in the same way that bandwidth smearing reduces 

to a distorted radial convolution. Unfortunately at other declinations 

the situation is not so simple. For an object at x,y (relative to 

phase tracking center) the instantaneous phase is

2tiF ( ux+vy ) .

The phase rate is

2nF (dE x + dt y)

and the loss in amplitude by integrating for a time At is given by 

ft *  sin Off ( £  x + y) At)/(nF ( £  x + £  y))

-  1 - 1 < £ x + £  A t J2

To see how this affects things we can make reasonable assumptions 

about the symmetry of the array:



< r  > ■ <■•>

< “n: > = <u2> sin2 6 
at

Then R ~  1 - ^  (x2+sin2 6 y 2) <(2tiFu)2> A t 2

' 5 5 > - '

If we have a Gaussian beam of width 6

x4
-c

e 2 0 2

The u,v distribution must approximate to its transform

- (27CFu6)2 
C 2 c

whence

<u2> =
(2nF0 ) 2

and the amplitude loss is approximately

R - 1 - ^  (x2+sin2 6 y2) p - At2 

For order of magnitude work we can say

R ~ 1 " * 3000 0 ^

where the integration time is n times 10 seconds. Maps are severely

affected by integration time at a few times closer than beamwidths
n

from the center. Once again though, I can pronounce my moral: If 

your field is dominated by a strong point source, put it at the phase 

tracking center if you possibly can.
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6 . Truncation of u,v

Currently the databases contain a fixed point u and v, with the 

least significant bit of 4 ns. This is, of course a pillbox convolution

- resampling of the data, whose deleterious effects are well known on 

a larger scale. To estimate its importance, we can fall back on the 

usual analysis of the pillbox convolution (assuming it is unaffected 

by the later convolution-resampling in mapmaking, as it definitely is 

not in the case of the direct Fourier transform). The reduction in 

amplitude at (x,y) is

sin (rcxFA) sin (ziyFA)/ (7txFA7tyFA)

where A  is the 4 ns truncation interval. This is approximately

1 - (27tFAr)2

Again, the reiterated moral is invoked.

G. Summary: What is Important

It is useful to know which of the above effects limits your work, 

so that you can take special care. To see that, we can put all the 

above effects in a comparable form, by noting the leading term of 

their reduction in amplitude on a source at half power beamwidth, and 

assuming that this is a measure of their importance in more subtle 

aspects of mapping. The only error which does not lend itself readily 

to this procedure is the pointing error. I put it in as equivalent to 

a multiplicative error of 1 -2.4x10 ^ rF2 error which would be the 

case if, halfway through the observation, all antennas leaned away
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from the source, and stayed there. The actual situation is much more 

complicated, and this may result in a slight over emphasis of pointing 

errors relative to the others. In the process of summarizing, I shall 

convert from beamwidths, 6 , which I have been using, to arm lengths,

L. For L in kilometers, 8 in seconds I take 0 ~ F in Gigahertz.
FL

Bandwidth:

W 2
Correctable: 1 - 290 =75- L 2

F*

Uncorrectable: Unknown, but perhaps only a factor of

W 2L 2
1 0 less important, say 1- 30 ■■■2

Beam:

Correctable: \

. 0
Uncorrectable: Equivalent to 1 - 4.6x10 F 

Non-Coplanar Baseline:

T 2
Correctable: 1 - 4.5x10 ^

Integration Time:

Uncorrectable: 1 - 6.4xl0~^ n 2L 2 

Truncation of u,v:

-4
Uncorrectable?: 1 -8 .9x 1 0  

It is interesting to note that the non-coplanar baseline effect 

at half power on the beam has the same functional form as a bandwidth 

correction, and is about equal to the uncorrectable effects of a 1 2  

MHz bandwidth, and is less important than the full bandwidth effect at 

6 MHz. This arises because the reciprocal of 12 MHz is 80 ns, about 

equal to the dish^diameter. However, because the effect rises as the

fourth power of radius, it becomes much more serious if you map to the 

the beam null.
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The attached figure shows which uncorrectable errors dominate in 

various parts of the armlength-frequency plane. Pointing effects 

dominate except in A configuration at low frequencies where the errors 

are dominated by the effects of the 2 0 second integration (the boundary 

between these regions is the solid line). The area to the left of the 

dashed lines (labeled by bandwidth) is dominated by the uncorrectable 

bandwidth error. The u,v truncation error is a dominant error only in 

C or D array, and then only at frequencies near 100 MHz, where pointing 

error is vastly reduced by the very large beam.

I would like to close with a caveat that the approximations used 

here are such that a factor of two difference from an alternate calculation 

of the same quantity in the summary expressions in this section should 

be unsurprising, and in some particular circumstances a full order of 

magnitude may have been lost.
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