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I. INTRODUCTION
The purpose of this memorandum is to give, in some detail, the 

effect of bandwidth on the synthesized beam. Dick Thompson, in the 
VLA Electronics Memorandum #118, has laid the groundwork and shown the 
effects of bandwidth on peak response. Here we extend the results and 
show the effects of bandwidth on the beam shape and the resolution.

We assume throughout that the u,v plane is fully sampled, and 
that the beam is related to this fully sampled u,v plane by an 
analytic Fourier transform. Thus, effects of aliasing, due to the 
FFT, are not considered. These will be negligible in virtually all 
practical cases when compared to the beam.

It is obvious that the bandpass shape and u,v taper will strongly 
influence the beam shape. An important conclusion which derives from 
this work is that these differences become small when the quantities 

of interest are considered functions of a universal parameter.



II. THE EFFECT OF BANDWIDTH ON VISIBILITY MEASUREMENTS

Thompson has shown that the bandwidth effect multiplies the true 
visibilities of the source in question by a function g(t), where 

t = differential time delay for source in question from the 
phase center.

If the source position is (x,y), relative to the phase center,
measured in radians, and the baseline coordinates are (u,v), measured
in wavelengths, then

_ ux+vy
T ' vo

where v q is the observing frequency.

The bandwidth loss function can be evaluated from knowledge of
the bandpass shape of the interferometer pair in question: they are
Fourier transform pairs.

g(i) * G(v') = A1(v*) A* (v1) (2)
where v* = v -Vq is the frequency offset from the bandpass center, and
A^, A^ are the passband shapes of the antennas contributing to the
interferometer pair in question.

Considerable simplification, and good approximation to reality,
is gained in assuming all antennas have the same passband. If we
further assume the antenna bandpasses are even functions about v ,o’
then the loss function, g(t) is real and even. In what follows, we 
assume this to be the case, so the effect on the u,v data is a simple 
loss of amplitude.

Because rotation by 0 in the map plane corresponds to rotation by 
the same angle in the u,v plane, we can consider, without loss of 
generality, the source to be displaced solely along the x-axis. Then
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the bandwidth loss function, g(t) is solely a function of u. Thus, if 
the true visibilities are V(u,v), then the measured visibilities are: 

Vm(u,v) = V(u,v)*g(u) 
so the synthesized beam becomes:

BD(x,y) = B(x,y)**D(x)6(y) 
where B^ and B represent the distorted and undistorted beams, D(x) is 
the Fourier transform over u of g(u), and 6(y) is the Kronecker delta 
function. The double asterisk (**) denotes two-dimensional 
convolution. If B(x,y) is separable in x and y:

B(x,y) = b(x)c(y), 
then we immediately find that

BD(x,y) = c(y)*[b(x)*D(x)].
Thus, the distortion caused by the bandwidth acts on the beam in 

only one coordinate - that line joining the phase center to the 
position in question. The beam shape in the orthogonal direction is 
unaffected. Although this applies strictly to "separable*1 beams 
(which include a Guassian), practical beams are usually of a form 
which differ only slightly from ideal, separable ones.

In the next section, we calculate the distorting function, D(x), 
and convolve it with the undistorted beam to find the distorted beam.

III. CALCULATION OF BEAMSHAPE FOR SOME SPECIAL CASES
Consider a point source of unit flux located at position xq .

I(x,y) = fi(x-xQ,y) = 6(x-xQ)6(y).
The visibility function is then, simply,

\if \ _ “2irix u V(u) = e o
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The interferometer measures this at points described by S(u,v), 
the spatial measuring function. The effect of the bandwidth is to 
multiply the visibility by the bandwidth loss function, g(u).
Finally, an applied taper, T(u,v) is applied. Thus, the visibility 
data, prior to transformation, is:

S(u,v)*T(u,v)*V(u,v)*g(u)
We recognize the expression S*T*V as the synthesized beam, free 

of bandwidth effects. As noted in the last section, we consider only 
cases where the distortion acts in one dimension. Then, the distorted 
beam is

Bd (x ) = B(x)*D(x)

where D(x), the distorting function, is given by the Fourier transform 
over u of the bandwidth loss function, g(x).

We now consider special, simplified cases.
Class A

Square bandpass of full width Av.
The (normalized) bandpass is:

G<v ’> = b n  &
And, the loss function in the u,v plane becomes, from equation 
(2)

g(x) = sine (Avx) = sine (—  x u)
o

Finally, the transform over u gives the distorting function,

D«  = f e r n  i f - )  o)o o
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The distorted beam is then the convolution of the undistorted 

beam with the above expression.

Case 1

Full u,v coverage within a square of width 2u q, and no u,v 

taper. u q is the "maximum baseline".

Then,

S(u) = n  <2̂  o

T(u) = 1
Then the normalized beam is simply:

B(x) = sine [2u o (x -x q)] sine (2uQy) 

and we seek its convolution with (3), as pictured below.

At any given point, Ax, from the beam center, xq , the value 

of this convolution is:
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Ax +
Avx ___c
2v

B (Ax,x ) = --D o' Avx sine (2i^x)dx

Ax -
Avx___<
2v

2iru Avx o o
r Avxo Avx ^
{Si[2Tru (Ax + -z— )] -Si[2iru (Ax + 2)]j (4)

where Si(x) is the sine integral function.

Now, the FWHP of the function sine (2u x) iso '
b = 0.603

u

Defining n = 2iruob = 3.79
Axa = —  = width parameter in undistorted beamwidths

Av Xo3 = —  = fractional bandwidth multiplied by the 
o

offset in beamwidths, we express (4) as

bd (Ax ,xo) = {si[n(o + |)] -si[n(o - |]} (5)

At the beam center, Ax = 0, so a - 0. Then,
V 0*3̂  = k  Si(t§) c«)

This represents the 'peak response', or sensitivity. When the
source offset, x , or the bandwidth, Av, is zero, the beam is:O f t !
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sine (— ) = sin (tio)/tio. it
We defer discussion of these functions until after the following 
example.

Case 2
Full u,v coverage to a radius qQ which is large compared to 

a Gaussian taper described by:

x _ /ib ,-ir2b2u2N T(u) = —y— exp ( — ^ 2---) •

X2This has a half-power width at u^ = 2 ^ ,  where 

Z = 2/Tn2 = 1.665

b = FWHP of synthesized beam.

The undistorted beam corresponding to this taper is 
B(x) = exp (— £?-)•

The calculation of the broadened beam proceeds as in the last
case, and y i e l d s : __________________________________

Bd (Ax ,x o) = {erf [I(a + f)] -erf[!T(a - |)]> (7)

where a and 3 are defined as before.
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At the beam center, a = 0, and
V 0’3̂  = 0  e rf  (P>  (8)

which is identical to Thompson's equation (8).

Similar (but more complicated) expressions can be generated 
for other combinations of taper and sampling.

Class B

A Gaussian bandpass of full width to 3 db of Av:
G(v > " 75ft exP >

where Z = 2V1tl2.
x2u2

Thus g(t) = exp C-ir2 x2) = exp (-ir2
o

and the transform over u gives:

D(x) = “ p '* Sv1 ir*> <9>o o
Case 1

Here we take a Gaussian taper as in Class A, Case 2:

-T., x _ v̂ ib ,-ir2b2u2N T(u) = -j- exp (---^2— )•

Rather than convolve the beam with equation (9), it is 
somewhat simpler to multiply in the u,v plane and transform.
Thus the modified visibilities are:

/ib r-ir2u2 2 . Av2 2n,
T  exp (b + x0O
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which transforms to:
n s a \ _ b r Ax2*2V AX>XJ  * — /----XT2---- eXP [-

o o

or, bd (Ax ,xo) = TjIgT exp [- (10)
where all symbols have the same meaning as in the preceeding 
examples.

At the beam center, o = 0, and
BD^°*Xo^ = 7I+P

IV. DISPLAY OF THE DERIVED FUNCTIONS

Bandwidth loss causes two major effects: a loss in beam 
intensity, causing a loss in signal/noise, and a degradation .of the 
beamwidth. In this section we consider these effects in detail for 
the three cases given in Section III.

A. Loss of Intensity at Beam Center 
The expressions are:
A.l No u,v taper, square bandpass

v ° > v  - i f si <!*>• 11 = 3 -79
A.2 Gaussian u,v taper, square bandpass 

Bd (0,x o) = 0  erf (I6), I = 1.665

B.l Gaussian u,v taper, Gaussian bandpass 

BD(0,Xo) = 7I+F

9



For all expressions,
A *

» - ~  * iTv bo
These functions are plotted in Figure 1. Note that, 

overall, they all are rather similar. This is especially true 
for the two square bandpass examples - the more realistic cases. 
This agreement illustrates the applicability of 3 as a universal 
parameter - the variations in beamsize due to u,v coverage and 
taper are absorbed in the beamwidth, b.

B . Bearnshape

The expressions are:

A.l Bd (Ax ,xo) = ^  [Si(no + |b) - Si(no - |b)]

A.2 Bd (Ax,xo) = [erf(To + -  erf(!f« - |h)]

B.l Bd (Ax ,xo) = T j i p  exp [- ^  a1]

with ii = 3.79, X = 1.665, and a = Ax/b.

The functions are plotted in Figures 2, 3, and 4. Again, 
use of the normalized parameters, a and 3, results in remarkably 
similar functions, considering the general range allowed in 
observing parameters. These three plots give the detailed beam- 
shapes, normalized to the peak response, for the three cases.

A parameter of much interest is the broadening of the beam 
as measured by the half-power. This can be read off Figures 2, 3 
and 4, the results of this are shown in Figure 5. The ordinate
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is the half-power (FWHP) in units of the undistorted beamwidth; 
the abscissa is the normalized parameter,

It may appear that the Gaussian taper gives better immunity from 
bandwidth losses - in actuality, this is due to the division by 
the beamwidth. For the Gaussian case to give the same beam as 
the no-taper case, considerably longer u,v spacings are required. 
These are affected by bandwidth losses more severely than the 
corresponding no-taper case, thus giving a worse initial 
broadening.

V. DISCUSSION
The most important results deriving from this work are shown in 

Figure 1 and Figure 5 - the loss of central intensity and broadening 
of the synthesized beams due to bandwidth losses. An important note 
is that the effects of spacing (array scale), frequency, duration of 
observation, and bandwidth, can all be absorbed into a single 
parameter, denoted by Use of this parameter allows approximately 
correct results to be derived quickly without recourse to detailed and 
complicated calculations.

As a final note, observe that the bandwidth effect is independent 
of observing frequency. This can most easily be realized by noting 
that the loss function is given by the transform of the bandpass
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shape, referenced to the center frequency. The fact that frequency 
appears in the parameter 3 is due solely to the simultaneous presence 
of the beamwidth. The product of these two is independent of 
frequency.
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