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1. In tro d u c tio n . The topics considered in this memorandum are 
the optimal smoothing of noisy one-dimensional spectral line velocity 
profiles, the estimation of moments and other parameters characteriz­
ing these profiles, the estimation of the uncertainties of these estimates, 
and an investigation of their biases. Smoothing is an essential element 
of the parameter estimation procedure, for it yields an estimate of the 
mean profile shape. Usually, some of the parameters of interest depend, 
either directly or indirectly, on the estimation of the location of a par­
ticular profile ordinate—perhaps on the location of the profile peak or 
of the half-maximum. For example, this dependence is direct in an an 
estimate of the 50% width (FWHM), and it is indirect in estimates of 
the profile moments, if they are calculated over a data window centered 
about the abscissa of the profile peak. Smoothing is desirable in that 
it causes the estimates of the locations of particular profile ordinates 
to become continuous functions of the measurement errors, and thereby 
allows the calculation of meaningful error estimates. It is undesirable 
in that it introduces bias, especially in the estimation of characteristic 
widths (see e.g., Lewis [L]).

In § 2 is outlined a method of variable data smoothing based on a real 
parameter a. Appropriate choice of a  depends on the magnitude of the 
measurement errors. If an a priori estimate of the measurement error 
is available, then one can make a reasonable guess at an appropriate 
choice for a . On the other hand, if it can be assumed that the errors 
are independent and identically distributed (in particular, that there 
has been no prior smoothing of the data), then a choice can be made 
which is based on the data alone: For a particular choice of a, and 
successively ignoring one data point at a time, the data are repeatedly 
smoothed; and the optimal choice of the smoothing parameter is that 
winch jueiub lilts ie<*9t> lueau sqiiaie data prediction enor—i.e., it is that 
a  which yields, on average, the best prediction of each missing datum. 
This is the method of cross validation, described in § 3.

In § 4 are defined some parameters—moments, etc.—which would be 
appropriate for the characterization of a unimodal, or singly peaked, 
emission line profile. This is so tha t an error estimation procedure can 
be outlined in § 5 and some test results presented in § 6. An attractive
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point to emphasize is tha t these nonparametric error estimates can be 
retrieved as by-products of the optimal smoothing method of § 3. For the 
analysis of multimodal profiles or absorption line profiles, similar ideas 
apply—but a useful characterization of a complicated profile necessarily 
requires the estimation of a larger number of parameters than the num­
ber needed to characterize a simple profile. As this number increases, it 
becomes more useful, perhaps, simply to look at a plot of the graph of 
the mean profile estimate that has been derived through some technique 
of optimal data smoothing, and to “let the data speak for themselves.” 
In § 7, brief attention is given to the application of smoothing techniques 
to the problem of testing for multimodality.

To summarize, the method of analysis described below consists of three 
parts: smoothing of the data, by the calculation of a spline curve which 
passes near each of the data points, with particular attention to choosing 
the proper degree of smoothing; computation of parameters (moments, 
etc.) which characterize this curve; and estimation of the errors in these 
derived parameters.
2* Sm ooth ing. The reasons for smoothing the data are threefold: 
1) to produce an aesthetically pleasing estimate of the mean profile 
shape lacking (obvious) noise bumps; 2) to reduce the variance in the 
parameter estimates (at the expense of increased bias); and 3) to make 
the derived parameters continuous functions of the data, so that useful 
error estimates can be obtained.

Let the observed profile—i.e., the measured intensity as a function of 
velocity, at a particular position in the sky—be given by t/t- =  / (vt) +  e,- 
for t =  1 , . . . ,  n, where /(v) is the true intensity as a function of velocity 
and where the c; are independent zero-mean random variables of finite 
variance <rf, representing the measurement error at velocity t/,\* Given 
a smoothness parameter a  >  0, and given estimates cr,- of the <r,-, we 
shall choose to minimize the quantity

over all twice continuously differentiable functions *(v)—subject to the 
smoothness constraint

J»  1
The solution «(a; v) is a cubic spline function, comprised of cubic pieces 
pieced together at t/2 , . wi t h matching first and second deriva­
tives at these points, and satisfying aw(ui) =  «"(«„) =  0. For v 6
*In § 3 we shall assume, in addition, that the c< are identically distributed.
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[v,-, vt+i), we shall represent 8 by «(v) =  e,-0 +  e,i(v — v ,) +  c.^v  — 
w,')2 +  e,3 (v -v ,-)3, where c,y =  s ^ ( v t) /j{ . The c,y are called the spline 
coefficients. The larger that a  is chosen, the nearer s(a; t/,) stays to y,-; 
conversely, the smaller a, the smoother s becomes. In other words, a 
measures the roughness, or “flamboyancy”, of *;* and S  measures the 
degree of “infidelity” of 8, in its relation to the data.

A reasonable choice for a  might be one such that the corresponding 
value of S  lies in the confidence interval n — y/2n  <  S  <  n +  s/2 n. 
An Algol subroutine for numerical computation of a  and «(a; t/), given a 
desired value of S, appears in Reinsch [R]; a Fortran version of Reinsch’s 
algorithm is given by de Boor [deB, Chapt. XIV]; and another Fortran 
version is included in the IMSL Library—this is the subroutine (ICSSCU) 
which was used for the tests reported in § 6. de Boor’s Fortran version 
would have to be used in AIPS, because of the proprietary nature of the 
IMSL library.
3. O p tim al sm ooth ing . In § 6 it is shown that the estimation of 
moments and related parameters of / ,  derived by calculating the cor­
responding parameters characterizing the smoothed velocity profile, is 
very sensitive to the amount of smoothing that is chosen. In particular, 
if one employs an automated procedure to pick out an interesting look­
ing “hump” in the smoothed profile, positions a data window in the 
neighborhood of the hump, and then calculates moments over that win­
dow, then the velocity dispersion estimate is biased downward if too 
little smoothing is used and may be biased severely upward if too much 
smoothing is used. One might not expect this downward bias in the case 
of too little smoothing; it evidently arises from errors in calculating the 
appropriate placement, and width, of the data window.

For a particular choice of the smoothness parameter a , let 8^ (a ;v )  
denote the smoothing spline that is obtained if the tth  data point is 
excluded from consideration. Then yt- — *(«)(<*; v;)> the data prediction 
error, tends to be small (in absolute value) if the other data points, and 
the chosen degree of smoothing, do a good job of predicting y,-; and it 
tends to be large otherwise. Selecting that value of a  which minimizes 
the mean square data prediction error

Q{<*) =  “  S  “  *(•■)(“ »'*«'))2

is called the method of cross validation. Assuming now th a t the measure­
ment errors £; are identically distributed, we have a method of optimal 
data smoothing in which the degree of smoothing is determined from 
the data alone.
*This terminology is doe to Silverman [S].
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Spline smoothing by cross validation is described in detail by Craven 
and Wahba [C—W]. This method is implemented in the IMSL Library 
Fortran subroutine ICSSCV, which I have used for the test results 
reported in § 6. Obviously the idea of cross validation can be used in 
many other applications; it is described in a broader context by Efron 
[El], [E2], and by Grace Wahba [W]. The latter reference describes 
the application to ill-posed problems given noisy data (as in maximum 
entropy deconvolution, choosing the trade-off between the entropy term 
and the error term). An application in periodogram analysis, a problem 
very similar to our own, is described in [W—W].
4. M om ents, an d  re la ted  p a ra m e te rs . The first three (normalized) 
moments of the smoothed velocity profile are given by

~  [  a(w) dv»
1°2 =  TJ v V8{v)dv,

and

Note that each of the integrals simply is equal to a weighted sum of 
the spline coefficients. For example, 0X =  o M  + *)»
where A,- =  v,-+ 1 —t/,-. Three additional parameters, of particular interest 
in the case of a unimodal profile, are

$4 =  the abscissa, vo, of the peak of a , $5 =  *(t/0) , 
hand =  — =  At/eq, the equivalent width.05

is the width of that rectangular profile whose integrated intensity is 
the same as that of «, and whose peak intensity is the same as the peak 
intensity of the smoothed velocity profile. Additional parameters, likely 
to be more useful than 0\-O$ for characterization of a noisy profile, are 
the moments of the smoothed profile restricted to a narrow window W  
centered about the abscissa, vo — 64, of the peak of 8 (say, the window
W = [ v 0  -  Aueq, Vo +  Aveqj) :

r
07 =  I «(v) d v , Jw

03 =  j -  J  (V -  02)2s{v) d v .
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(One wants to restrict the computation of moments to a narrow data 
window in order to reduce the variance in the parameter estimates; but 
the selection of the window can be the main source of of bias). 69 is 
the velocity dispersion, over the window W, about the mean velocity 
08, calculated over the same window. (I’ve taken the square root here, 
in hopes that the computed second moment will be positive). Often 
other parameters than these—say, the 50% width (the FWHM), the 
20% width, etc.—also are of interest.
5. E stim a tio n  o f  e rro rs . Useful non-parametric error estimates can 
be derived by a method which resembles cross validation, and, as a 
by-product of cross validation. Of course, errors in the moments of 
the unsmoothed velocity profile, computed over a fixed data window, 
follow from the standard normal distribution theory (see e.g., Kendall 
and Stuart [K—S, pp. 228-231]). But, more properly, the error estimates 
ought to reflect the uncertainty in the choice of an appropriate data 
window—so the matter becomes more complicated in the case of the 
parameters 87-0q defined above. And, too, the matter is more compli­
cated in the case of any other parameters (say, the 50% width) which 
depend on an estimate of the location of a particular ordinate or on an 
estimate of the height of the profile peak.

The method described below, known as the jackkntfe, first was 
described by Quenouille in 1949, and it was popularized in the 1950’s 
by J. W. Tukey (of Cooley-Tukey FFT fame). The name jackkntfe was 
coined because the technique is a tool, like the pocket knife, which can 
be handy in diverse situations. For more thorough discussions of the 
jackknife and related methods than that given here, see Efron [El], 
[E2].

Denote the (column) vector of parameters by 0 , 0  =  {0\ , . . . ,  0$)T , 
and the vector of parameter estimates derived from cross validation by 
0 . Also, let denote the vector of parameter estimates derived by 
ignoring the tth  data point y,-. (To do things completely correctly, each 
©(,•) ought to be obtained by a separate cross validation estimation, 
but we shall settle for the ©(,-)’s that correspond to the single optimal 
a  appropriate to the full set of observations).* Now, if we let 9  J { =  
n 0  — (n — 1)0(,-) and 0 /  =  £ 1 ® J,i> then the jackknife estimate 
of the covariance G of 0  is given by

*The IMSL Library subroutine for computation of smoothing splines by cross valida­
tion, based on an algorithm given in [U l], requires 0(n )  arithmetic operations 
when the abscissae are evenly spaced, versus 0 (n 2) operations when they are not. 
(Normally the velocity abscissae are evenly spaced, but, of course, when a point is ig­
nored, the remaining abscissae no longer are equispaced—unless one of the endpoints 
has been dropped). (Recently though, Utr6ras [U2] has published an 0 (n )  algorithm 
for the case of non-equispaced data).
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6 = ^ r n j  -  ® ')T •
0 j  is called the jackknifed estimate of 0 ; it includes a bias correction 
term which, in our application, often is large compared to the standard 
error—so we shall ignore it. The estimate of the standard error of 0  is 
the vector of square roots of the diagonal elements of C. The matrix 
of estimated normalized correlation coefficients is obtained by dividing 
each element of C by the corresponding pair of standard error estimates.

Matloff [M] gives a versatile Fortran subroutine for jackknifing—given 
a user-supplied subroutine that is called repeatedly to compute the base 
estimator (0  above). Note that the jackknife is relatively expensive to 
apply, requiring, in the analysis of a set of n data points, about n times 
as much work as usual. For large data sets, when it is impractical to 
apply the standard jackknife procedure, the data can be divided into 
groups, and groups deleted one at a time.
6. T est re su lts  an d  exam ples. Several examples of the application 
of cross validation and the error estimation procedure of § 5 are given 
below. More comprehensive tests, including comparisons with the tradi­
tional methods of profile analysis, may await practical experience with 
the method.

Examples of cross validation, with varying S / N . In Figures la - lf , a 
few sample results obtained by the cross validation technique are shown. 
Here, n =  101, /(v) is a Gaussian, the £,• are identical pseudo-random 
normal deviates of zero-mean, with standard deviation a equal to the 
maximum of f{v) divided by the indicated value of S / N ,  and the cr,- =  
<r in the definition of S. 0  is shown in the Figures (except that 0io is 
equal to the 0q of § 4, and 0g here is the velocity dispersion about Vo). 
Figure If, in which the signal to noise ratio {S /N )  is equal to zero, is 
particularly interesting in that it illustrates the tendency for the cross 
validation smoothing spline to approach a straight line coincident with 
the v-axis whenever the data are well-behaved random noise.

Effect of varying the smoothing parameter. The effect of varying the 
smoothing parameter is illustrated in Figure 2. Here /  is as in the 
previous example, S / N  =  4, and a  is chosen such that 50pt is equal to 
n, n ± y /2n. The cross validation curve also is shown. The cross validation 
curve looks best, in that the width of the largest bump is closest to 
the width of the irue pronie (similarly for the height). (Jn the other 
hand, it has extraneous bumps, one negative and the other positive, at 
v .19, .67. Since these bumps do not appear when a  is chosen such 
that Sopt is close to n, they mightn’t  be considered real if this were a 
“real-life” situation (see § 7).

Bias of the width estimates. In Figures 3a-3c are shown histograms 
of width estimates (Oq of § 4), each based on 1000 trials, for the cases



S / N  =  3.333,5,10, respectively. Here again, f(v) is a Gaussian density 
with standard deviation 0.05. The distribution of widths of the smooth­
ing splines derived by cross validation is shown in the top portion of 
each Figure. The middle histogram shows the distribution of width es­
timates derived naively from the raw data—that is, the integrals were ap­
proximated by rectangular sums (i.e., sums of the form Q\ ~  £  IfrAt/,*), 
and the height and the location of the profile peak were estimated by 
finding max y,-; the equivalent width was calculated in this naive manner, 
as well. The bottom histogram represents widths that were estimated by 
using the cross validation estimates of 0 4 - 0 6  to calculate the data win­
dow W, but then using rectangular sums and the raw data to calculate
0 7 , Os, and the second moment over W.

In Figure 3a, corresponding to the case S / N  =  3.333, we see that the 
cross validation width estimates are biased upward by 14% and the naive 
estimates downward by 17%, but that the third estimates are biased 
only by +0.7%. On the other hand, the variance of the width estimates 
derived by the third method is significantly greater than the variance 
of the width estimates derived by either of the other two methods. The 
bias is significantly less for the higher signal to noise cases shown in 
Figures 3b and 3c: for S / N  =  5 we have (+8.8% ,—9.5%,+0.6%); and 
for S / N  =  10 we have (+4.3% ,—3.7%,+0.5%).

The reason for the upward bias in the cross validation case is clear—it 
is simply due to the tendency of any smoothing technique to fatten a 
curve. However, as is suggested by inspection of Figure 2, the bias in the 
width of the smoothing spline would be even greater if the curve were 
derived not by cross validation, but rather by setting S  =  n, on the basis 
of an a priori estimate of the noise, and using the smoothing method 
of § 2. The downward bias exhibited in the case of the rectangular sums 
is due to the severe underestimation of the equivalent width, which in 
turn is due to the overestimation of the height of the profile peak; and 
probably contributing too is a greater uncertainty in the location of the 
abscissa of the profile peak. The third method appears somewhat more 
attractive than the other two, except for the greater variance in the 
estimated width.

Overall, cross validation generally seems not to broaden a profile much 
more than is necessary in order to get a pleasing appearing representa­
tion of the data. In addition to the bias in the width estimate derived 
by cross validation, there is a downward bias in the estimate of the 
height of the profile peak, and, hence, an upward bias in the estimate of 
the equivalent width. It is this effect which probably causes the larger 
variance of the width estimates derived by the third method; that is, 
the better estimate of the center position, and the tendency to broaden 
the data window, effectively remove the bias, but the noise added into 
the rectangular sums at the edges of the window increases the variance.
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Example of the jackknife estimation of error. An example of parameter 
estimates and error estimates, derived by the method of § 5, is shown 
in Figure 4. Here S / N  =  5. 0  and S j  both are shown in the Figure, 
along with the matrix C  of estimated normalized correlation coefficients, 
and the estimated standard deviations of 8 . The matrix of correlation 
coefficients is arranged in the straightforward manner; for example, the 
observed correlation of the width estimate 0io with the estimated height 
of the profile peak is —0.63. I have not studied systematically the dis­
tribution of the jackknifed estimates 0 j ,  but their behavior has ap­
peared somewhat erratic in a number of trials similar to this one.
7. T esting  for m u ltim o dality . Following an idea proposed by 
Silverman (see [S], and references cited therein), suppose that one wishes, 
in the analysis of a measured profile, to test the hypothesis that the true 
profile has at least k modes, or “bumps”, for some given k >  1. One 
may search for the critical value a cxjt , which is defined as the smallest 
value of the smoothing parameter a  for which k modes appear in s(a; u). 
The smaller a crit , the greater the confidence level for the hypothesis that 
there are indeed at least k modes.

Generally, too, one is interested in specific profile features, or par­
ticular bumps. Analogous tests can be constructed for these situations— 
for example, one may search for the value a crit at which a persistent 
bump first appears in the neighborhood of a given profile abscissa.

The problem of constructing significance tables appropriate to these 
situations merits investigation. A priori estimates of the crt- appearing in 
the definition of 5  in § 2 perhaps would be helpful here.
8. D iscussion. Utreras’ work is quite important in our application, 
for, by reducing the problem of selection of the optimal value of the 
smoothing parameter to an equivalent eigenvalue problem, he decreases 
the required computational effort roughly by a factor of n. Listings of 
his computer programs are available in a technical report [U3]. [U2] 
gives timing information for computation of smoothing splines by cross 
validation: on an IBM 360/67 computer the quoted run times for n =  
50, 100, 150, 200, 250, 300, 350, and 450 are .80, 1.14, 1.76, 2.47, 3.18, 
3.79, 4.45, and 4.90 seconds, respectively. It is apparent that this method 
is practical for single-dish radio astronomical applications, and, in a 
limited sense, for aperture synthesis spectral line data reduction—but 
probably not for iarge-scale aperture synthesis reduction, if ui ohermore, 
the reduction in computational effort by a factor of n applies only to 
the computation of the cross validation smoothing spline, and not to the 
jackknife estimation of errors outlined in § 5; hence, my assertion in the 
Introduction that these error estimates may be retrieved as by-products 
of cross validatory data smoothing requires the obvious qualification that 
this only is so provided that the smoothing is done by the naive, com-
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pntationally intensive algorithm. Some of the computations profitably 
could be performed in a high-speed array processor; but array processors 
are not particularly well-suited to the task.

An obvious objection to the cross validation smoothing technique, 
and to the error estimation scheme described here, is that, in actual 
practice, the measurement errors e,* are not independent. Generally the 
data yi are averages of spectra, each of which is obtained by comput­
ing the discrete Fourier transform of a discrete correlation function 
r(ry) =  2̂ k x i{tk)x2(tk +  Tj), where xi and x<i are stationary time 
series. That the sampled values, X\ (<*), X2(tk), usually may be con­
sidered independent is not of much direct utility, because of the pos­
sibly large volume of such data. But, if one were willing to combine the 
averaging operation with the operations of smoothing and parameter 
estimation, then in cross validation and jackknifing one could delete 
individual spectra rather than individual data points. If, for example, 
there were N  spectra of n points each, given by y,y, t =  1 
j  =  1 , . . . ,  n, one would minimize S  =  £ < —i £ 7 = i  {yij -  s { v j ) f , sub­
ject to the smoothness constraint a  =  fj"(s"(v))2 dv; and select a 
by minimizing a mean square data prediction error given by Q(a) =
WrT (y«j — -»(*) (o:; V j f f , where now *(,•) denotes the smooth­
ing spline obtained if the ith  spectrum is excluded from consideration. 
The jackknifed error estimates would be obtained analogously. If N  were 
too large for this method to be practical, one could divide the spectra 
into groups, compute group averages, and then apply the cross validation 
technique and the jackknife to these averages. One thousand indepen­
dent spectra, for example, might be divided into 25 groups of 40, and 
cross validation applied to the resultant 25 independent mean spectra. 
Such a scheme as this would be practical in single-dish radio astronomy, 
but probably not (at present) in aperture synthesis work (though, in 
fact, the technique could be applied with as few as two groupings of 
data).
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F ig . 4. An example of error estimates derived by the procedure 
outlined in §5. Here S / N  =  5, and the true parameters are 
(1.0,0.1,0.0025,0.4,7.9788,0.1253,0.9878,0.1,0.04776,0.01776).
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