
S G P M E M O N O . ^ J L

NATIONAL RADIO ASTRONOMY OBSERVATORY
SOCORRO, NEW MEXICO

VERY LARGE ARRAY PROJECT

VLA COMPUTER MEMORANDUM NO. 137

A DIGITAL MAP-MAKING SCHEME
B. G. Clark
July 1977

We have been vigorously investigating the application of
optical devices to VLA data handling problems for the last two years.
It appears that even after this time that path is still dimly
illuminated and fraught with snares. Before embarking on it, we
should have a look at other paths; this memo comprises such a
look at a "moderate size" digital alternative. Other digital
alternatives are a "large system" approach, typified by Staran,
at over twice the cost of this system and correspondingly more
powerful, or to simply reduce our expectations to the level that
our currently on-order PDP 11/70-array processor system could
handle them.

The approach of this memo is based on the equipment of Figure 1.
For purposes of this memo, the array processors are taken to be
FPS120B processors with fast memory, and the computers to be
modest PDP 11/34*s. This memo proceeds in the following sections:
I. Performance of this engine on the cannonical problem of a
2048x2048x5 transform, with some consideration of what is happening
inside the system, II. Remarks on extensions to more and to less
severe problems, III. A growth plan for the system, IV. Specifications
and cost estimates.

I. SYSTEM PERFORMANCE
The cannonical case has been taken to be a 2048x2048x5 transform.

For convenience I have assumed that input convolution and map-making
Proceed synchronously, which may not be the case (convolution will
require more time on the center of the 5 w slices, because that is
where most of the data are). In this case, each w slice is handled
in about 45 seconds, resulting in a final output map every 3.5
minutes.

The system shows two minicomputers. The host computer has the
dual functions of control and input data buffer. This will not be
a severe load, because the input data set is notably smaller than the

found elsewhere; instead of data reduction we have data
expansion. In the cannonical 2048x2048x5 case, the five maps contain
2.1 x 107 complex data points, whereas the input data set contains
only 351x4320=1.5x10® complex numbers and a similar number of u,v
coordinate pairs for a 12 hour observation; the data are expanded
by a factor of 7.

The form of input convolution assumed in n x n square area in
the output plane is affected by each input point and that the
convolving fraction is a separable function of u and v. There
are K convolving functions, depending on the truncated portions
of u and v. Specifically, the convolution is equivalent to the
following Fortran program.

DIMENSION F(K,N)
COMPLEX UVPLAN (N,LROW), DATUM, T(N)

10 CALL INPUT (DATUM,U,V)
C SELECT CONVOLUTION FUNCTION
C ASSUMED SEPARABLE F(u,v) = F(u)*F(v)

IUCONV = MOD(U,K)
IUTRUN = U/K
IVCONV = MOD(V,K)
IVTRUN = V/K
IF(IVTRUN.NE.IPREV)GO TO 40

2

/

DO 20 1=1,N
20 T(I) = DATUM*COMPLX jF(IUCONV,I),oj

DO 30 1=1,N
DO 30 J=1,N

30 UVPLAN (I,IUTRUN+J)
= UVPLAN (I,IUTRUN+J) + T(J) * F(IVCONV,I)

GO TO 10
40 CONTINUE

IPREV = IVTRUN
C OUPUT ROW 1 AND PROMOTE OTHER ROWS ETC.

The inmost loop requires for each complex number two multiplies
and two adds, along with some indexing operations. This process
can probably run at near memory speed - two fetches and two stores
require 1 1/3 microsecond. With indexing, loop control, etc. the
inmost loop will run at about 2 microseconds per cycle (which
handles one complex number}. If our goal is to process all 1.5 x 106
complex points in 220 seconds, we are limited to -75 executions per
data point, or a 8 x 8 input convolution. If as discussed below, we
have to do each point twice, this drops to 6 x 6. An 8 x 8 Gaussian
convolution seems to reduce aliased sources to near zero by 1.3 field
semidiameters from field center.

The row transform proceeds very rapidly - a 2048 complex FFT runs
in about 12 ms, so that the entire map is transformed in about 25
secondsM This will be slowed down by up to an additional 12 seconds
due to the interference of the I/O operations with the computation's
memory accesses. It looks, then, like an allowance of 45 seconds
for a 2 K x 2 k complex map is reasonable.

The transposing memory would have special interfaces which would
cause the map to be stored in rows and recovered in columns. Its
normal mode of operation would be read/write, so that while it is
retrieving a word for AP-3 it would also be storing a word from AP-2

3

into that location, so that these two AP's would be running absolutely
synchronously, and would have hardware interlocks to compel this
synchrony. Probably a similar arrangement will be necessary between
AP-1 and AP-2.

Operation in AP-3 is like that in AP-2 with two exceptions. The
fir^t,is that the output to the map merging computer will proceed much
more slowly, so that buffer management must be done more carefully*?;
The second is that the phase factors for the third dimension of the 3
dimensional transform would be applied (the third dimension is, of
course, a classical FT, since there is only one output point) so that
the map merging computer could complete the transform in the
third dimension by a simple add, allowing it to complete this task
in less time than the AP's take to do their FFT's. This phasing
should add about 3-5 seconds to the processing time of AP-3.

The utilization of the Hermitian property in 3 dimensions is
not entirely straightforward. To minimize both the size of the
transposing memory and any mass-store data transfers, it seems
to me necessary to handle the w dimension last. There are then
apparently only two, rather unattractive options: 1) use the
Hermitian property at the end, in which case the intermediate u,v
planes are not Hermitian, and the transposing memory must consist
of 4 million complex words. 2) Use the Hermitian property at the
beginning to construct u,v planes of size IK x 2K, and which
transformed, result in a 2K x 2K real map, which seems to require
access to both +w and -w data to construct, and therefore doubles
the convolution time. The second option is the one discussed
here, though we shall continue to look for a better algorithm, as
well as considering combining short time slices as one would do for
an optical processor.

The map merging computer handles the final step of the 3rd
dimension of the Fourier transform, and in addition handles formatting
and communication with the rest of the computer system. It should
have available about 300 MBytes of disk for storage of the intermediate

4

maps for a very large transform, say 4096x4096x10.

II. OTHER PROBLEMS
For less severe problems, the system speeds up nicely. For

instance, a 1024x1024x4 transform could be stored directly in the
transposing memory and AP-3 would supply thé final output map in
45 seconds. For smaller maps yet, one would have a hardware mode
that used only one corner of the transposing memory. Note though,
that for small maps, doing any input convolution (except for
pillbox averaging) becomes a severe limitation, since this time
is proportional to the amount of input data and independent of
map size. At some point it becomes more profitable to make a
larger map and discard the outer portion (equivalent to a sine
convolution) than to convolve the input data*

For more severe problems, 4K x 4K or 8K x 8K maps, the
machine slows down very much. For instance, a 4K x 4K transform
requires four passes through the machine, each handling a quarter
of the array, and each running a little less than a minute. An
amusing sidelight is that it looks like the way to do the job is
to have AP-2, after doing a 4096 transform, simply discard 3/4 of
the data; it is faster and easier to regenerate these 13 million
numbers from the original 1.5 million input points via a FFT than*
it is to write them on disk and recover them.

An 8K x 8K transform similarly requires 16 passes, and
therefore takes about a quarter of an hour for each two dimensional
map.

III. A GROWTH PLAN
One of the principal strengths of a digital system is that it

may grow gracefully as our needs and our understanding of the
system increase. The primitive part of the system is already on
order - an FPS AP120B array processor (already received) and a
PDP 11/70 host computer. This system has not been configured into

5

the final system - its usefulness as a map manipulation system will
probably occupy it too much of the time. However, it is available
to use as part of the system, and will be successively rescued from
the system as the increasing work load is taken over by purchasing
an additional component of the final system. At each of these junctures
we can review where we stand, and, in light of the up-to-date experience
decide whether we are going in the right direction. My suggested
development plan is given below.

1977 We shall make the 11/70, AP120B system operational.
It1s capacity is, approximately, a 2K x 2K map in
15 minutes.

1978 Purchase of AP-2 and the new Host, plus the disks
of the map merging computer. This will be only
slightly less capable than the 11/70 system by
itself. Also this year we should procure the
transposing memory and design its special purpose
interfaces. This, with the use of the 11/70
system, should give us the final throughput rates,
but without the input convolution.

1979 Purchase of AP-1. This gives us the entire system.
1980 Purchase of AP-3 and map merging computer frees the

11/70 system for map manipulation and analysis. •'* ^

IV. COST ESTIMATES
Host Computer

CPU, Memory, & Options
Cartridge Disks
Cabinets, Cables, & other hardware

AP-1
CPU, Interfaces, Program Memory Options
Table Memory
Main Memory

$26K
18K

__8K $ 52K

$56K
6K

86K $148K

AP-2 and AP-3
CPU, Interfaces, Program Memory, Options $56K
Table Memory 3K
Main Memory 34K

94 $188K
Map Merging Computer

CPU, Memory, and Options $26K
Pack Disks 92K
Cabinets, Cables, and Other 8K $126K

Transposing Memory
4 M Words x 24 Bits $220K
Special Interfaces - Parts 12K $232K

TOTAL $746K

In addition, the sorting system needs to be 3-stage, rather than
the one or two stages needed for the optical processor. This is an
increase in cost of ~$120K, so for price comparisons, this system
should be figured as about $870K, vs the optical processor at $1200K.

Software costs will be high for both the digital and optical
system, but, I think, comparable, with perhaps a slight edge to the
digital system. The inconvenience of working in multiple CPU's is
slightly more than offset by the particularly messy interfaces to «a
complicated analog device, and the necessity to support several
processor modes to work around its accuracy problems.

7

----- = control information

= = main data flow
AP = Array Processor

FIGURE 1: BLOCK DIAGRAM

