
NATIONAL RADIO ASTRONOMY OBSERVATORY
SOCORRO, NEW MEXICO

VERY LARGE ARRAY PROGRAM SGP MEMO NO.
VLA COMPUTER MEMORANDUM NO. 145

I ' Li A SORTING 1111 ■ — 1 1 S I GI C 11111 B M W IS

by J . i-udson, G, Hunt, b. Ehnebuske, A. Braun
May 2, 1978

The VGA sorting engine has as its task the ordering of spectral line
and continuum data in Cu»v) sequencing to facilitate gridding the data
for Fast Fourier Transforming (FFT) into a map of the radio source. It
also has the task: of breaking out frequency channels, a job which perhaps
can be shared with other processors.

in speclfvi
proolem we need
machine, since t
visibility data
orderin.g of the
processor CAP) v
finally, we need
order to get an
expected.

ng the architecture of the computer system for this
to consider first the requirements of the gridoing
his will put constraints on tne ordering ana layout of
records. Second, we need to consider the source and
data records arriving from the spectral line array
la the MODCQMP minicomputers "Cora" and "Corbin.”
to give some thought to the sorting process itself# in

idea of throughput times and memory requirements to be

1.1, A Hypothetical Gridding Engine

It is not our- intention to design anv part of the magoing system at
this time, but we must have better than a vague notion of the
requirements of tne first stage of that process: the gridding. It is
supposed that the gridding machine will prepare a two-dimensional array
of data, of size ranging up to 8192 X 8192 complex numbers# perhaps
truncated to naif that size if we take advantage of the Hermitian
property of the visibility function;

V (u , v) = v » (- u # - v) ,

It is also a necessary requirement for the gridding engine that the data
oe convolved with some function C(u#v) having limited range in the (u#v)
domain. If the present continuum mapping system is any guide, that range
can be as large as b x 6 grid points# meaning that 6 columns at a time of
the array must reside in fast memory. For the 8192 map size# this
requires fast storage capable of nolding 49152 complex numbers, we
anticipate the most common map size to be 1324 X 1024# whence it would be
practical to organize visibility data records with no more than 8
frequency cnannels per record, (For the larger maps# this leads to an
obvious inefficiency unless the user is content to map only a fragment of
his data# or to have tne channels averaqed together,) If input records
contain more than one frequency channel, then, mass storage is required to
ho la the gridded data for all channels but the one currently being
mapped. Most probably, mass storage will be required anyway for the
three-dimensional transforms (required to correct for the map curvature

1

2

a b e r r a 11 o n).

ic is also anticioated that cal i nrat ion will be accomplished by the
griddinq enoine, usina a concept similar to the antenna gain tables in
current use in tne DliC — 1 ̂ continuum system. Tnus, records must bear such
information as the antenna pair and a date/time stamp, in addition to the
(u,v ,w.) coordinate. it data records contain H frequency channels/ with 4
pytes (32 bits) per complex visibility/ the overhead tor these additional,
data can be Kept to 2v>% (assuming B bytes of overhead per record)« If
further breakout of frequency channels is desired/ one should use instead
an indexing scneme whereby the record's position in the data base
dictates the Location of its identifying information.

From this *e conclude that visibility data records to be nandled by
tne sortin'-} and gr.idd.ing engines should be broken down into at least 3
different data sets (8 frequency channels per record)/ assuming 256
channels. Further breakdown may be desirable/ but at the expense of
separating identification data from the visibility data.

1.2. Cora ana Corbin

It would oe niqhly desirable for the proposed system to tie in with
the tfto botCU.MP JI minicomputers/ Cora and Corbin, which will receive
visibility .'.data from the Array Processor. Cora and Corbin are limited to
64 k words of memory, and are somewhat inhibited by a maximum o m a data
transfer rate of **600'.Mbytes/second, nevertheless, it is felt they can
perform useful functions as an adjunct to the various sorting algorithms
discussed below. They should be able to accomplish a 32-way split into
frequency groups, as an assist to the customary external sorting
algorithm; they should also be able to accomplish a random-access store
of records to facilitate the "pldgeonbciinq" process.

It is assumed it will be possible for the AP to feed data to Cora
anc! Corbin in one or tw0 frequency groups (256 or 123 channels), with
baselines ordered in any way desired. For instance, they could arrive in
order or tne desired (u,v) sorting key.

1,3, Some Assumptions

Let us suppose that computers are selected for the sorting machine
which are capable of virtual memory addressing, and that context
switching between address spaces (64 Kbytes in size, say) requires very
little effort. ne assume the program can reside outside the address
space, we suppose the computers are capable of interfacing to large
capacity ois< drives having capacities of 400/Mbytes, average seek times
of “40 msec, and byte transfer times of “ 1 usec/byte.

3

1*4* f)i s k Sort!ng

ot th0 various a ppro a c h e s avai table for a c n i e v i ng t n e desired (u # v)
or ierina, perhaps toe customary method should be explored f irsts that of
sorting the data into "strings" of correctly sequenced records, followed
by merging- the strings into one correctly sequenced data set» Let!

f.£ = Total number of frequency channels (256 assumed earlier)
du = Total number of (u,v) data points in entire data set
S ='D,ata set size, bytes = 4.Wf,Nu, roughly
F = ‘Number of partitions of S into frequency groups
8 = Amount of core available for buffers during merge
x - Blocking factor of data records (we will read x at one

t i me)
m = ■ e r g e order
p = Number of merge passes through entire data set
L = Logical record size, bytes (holding «f/F complex numbers +

overhead)
Lp = Physical record size, bytes
tc = Compute time to compare 2 sorting keys
ts = Disk seek time
tt = Data transfer time during I/O

ie will neglect for the moment the problem of lucerudiiy
(This will perhaps be accomplished complalety by

Corbin») Assuming now that we have sorted strings of length x records,
through each frequency group (S/F bvtes long),

until there is one string for each
frequency group, of length n u records. To simplify the discussion we
assume

records.
)

proceed
merging

Cora and
Assuming now that

to make p passes
the strings of length

Nu

vV

i u S B

Chus
p = loa N u •

i

In practice (and in the time estimates below)* we round p up to the next
qreater inteqer* This does not result in the optimum merge pattern for
the given number of records* a problem taken up by Knuth (1973* pp*
361— 378). The total number of I/O operations for a merge of ip records
is then

N i o (P e r freqf group) = 2#(Nu/x)* l oq Nu#
1

where we count both input and output operations. For the entire data
set* we must accomplish this F times# and so we write for the total
number of I/O operations

• i O - 2 . (S / X L) . 1 0 Cl w u

■ 2 . (SB i) . c S/R) . log L’U .

where we have assumed tne available buffer space , B, is occupied by M + l
buffers (M input, 1 output), each holdinq x records of length l . Nio is
minimized for w=4, a result which is independent of the data set size,
buffer size, and number of frequency groups.

The t o t a l I/O time f or merging i s

Tio = R i o . t s + 2 . p . S . t t

= 2 . (l og wu) . S . [(M+i) . t s/B + t t J .
I

The total compute time is

Tc = f.p,hu.(to-1).tc + F.p.Nu.tt
= (log NiO ,(S/L). t(H-i).tc + tt]#

' M

where we assume the same transfer time for core-core transfers as for
core-disk:. Putting some numbers in for ts, tt, and tc, let:

ts =■ 40 msec/IO operation#

tt = 1 usec/byte#

tc = 3 usec/byte.

We see that the ratio

2 » C(M+i),ts/B + tt]

C(M-i),tc + tt] /L

is considerably greater than unity, for Just about any cnoice of M# 6#
and l . Thus# 10 time dominates the throughput time in the normal merging
process. We can safely assume that most compute time can be overlapped
with disk: seeking, whence it disappears from consideration, except
perhaps for arguing for 1 minicomputer in place of 2, We now arrive at
TASl E I# which shows total merging time as a function of merge order# M#
and buffer size# B.

From t a b l e i f we conclude that it is marginally possible for one

5

TABLE 1. s-’erqe time for 12 hour data sample.

M
1
1 0

1 f>, Kbyt.es

1
I _

I
 ̂ 1

6 4 \ 2 5 6 1
Í

512

3 1 13 i 35.8 nr. t 18.6 hr. i 15,1 nr.
4 l

i 11 ii 39,6 I 17.2 |
i
|

13.5

5
i
1 9

i
! 37.2 1 15.3

1
\ 11.7

5 i 8 { 37.5 1 14.7 1 10.9
7 i 8 Í 4 1.8 1 15.8 I 11.4
8 j 7 1 40.4 1 14.8 1 10.5
9 1

I
7 1

i 44.2 1 15.8 1
1

11,0

U*
i
1 7

i
i 4 7,9 1 16,7

I
1 11.4

minicomputer with the capability of virtually addressing > 512 K bytes of
memory to handle the sorting task. in doing so we have glossed over some
hardware-dependent considerations: 1) Can the computer perform direct
memory access data reads and writes from and to disk of blocks of memory
exceeding the range of directly addressable storage? (Probably not.
This is only _64 Kbytes on some machines.) 2) is there a penalty assessed
in data transfer whenever a disk track boundary is reached? (We are
suoposing not; there would be a penalty only when the heads must move
from cylinder to cylinder.) 3) since the merge time is heavily dependent
upon seek time# we have ignored the saving that would result from having
the input data set on several different spindles# with perhaps separate
data paths (via separate disk controllers).

Aside from time# one must also consider disk space occupied by the
data sets during the sort/merge, If v/e break the 12 hour sample into F
portions# it is necessary to have (F + l) times the space occupied by one
portion during the merge, For F=32, this is an extra 3,1%, Also, the
approach taken to handling the data in the real world is not to wait
until a full 12 hour load has been accumulated before starting the merge;
instead, we want to begin the first stage of meraing as soon as enough
data accumulate to warrant the effort. When M sorted strings of length M
records are accumulated# we want to perform pass 2 of the merge

2
operation, creating a data set of size [> , ana so forth. Assuming we
can merge as fast as the data flow, as Table I suggests, we will be left
at the end of 12 hours with data strings of varying length: let us say, M

2
strings of length 'mmH-l strings of length m , and so forth, including

** t s t r i ng sof length M , This leaves os i t h some c 19 a n i n g - u o to do:

one M-way merge or m records, one h-way merge ot records, and so
forth, up to an 'R~way merge of the last stage. The fraction of tne
merging effort left to do after completion of a 12 hour observation is
then:

2 P
I + M + ... + M

P + 1
M - M.

P
p

P
m m m M i l P.(M-l)

which, for M = 8, p ~ 7 (best case in Table 1) works out to 16.3% of the
total time. ‘while this is going on, of course, we can be doing the first
few merges required for the next 12 hour observation. But we are left
with an extra "2« per cent, storage requirement, in addition to, the 16%
delay, Requests to make maps during the merging process we think would
require pretty sophisticated coordination in order not to disrupt the
proceedings while making most of the pieces of partially merged strings
available for processing.

1,5. Keysorting and Pidgeonholes

For both of these techniques (whicn we shall see are very similar) ,
it is advantageous to keep the frequency channels together during the
(u ,v) sort, agid then to break them out later.

The' keysorting process becomes practical when the length of records
is large. Then one simply records for each record the place where it has
been written, together with the key on which he desires to soft, ¿ihen
all data records are stored, a sort of the key records takes place;
whence the data records are simply retrieved according to the pointers
keot with the keys, storage of data records is sequential; retrieval is
random, with each read operation requiring time for head seeking. For

6
i.6 X 10 data records of length 1024 bytes (256 complex numbers), it
would require roughly 1/2 hour sequentially to write the data, and 17,8
hours to retrieve them, assuming, as above, tt = 1 usec/ayte, and ts 5 40
msec/head seek. Thus, two independent data paths are called for.

The operation of breaking out frequencies into F different groups
requires filling F large buffers, to be written Into F different places
on disk storage. Taking f=32 and assuming, say, 4 Kaytes/buffer, the
output side of this operation requires 390000 head seeks,, at the rate of
40ms/seek, or 4,32 hours. In practice, we would break the input data set
into several chunks while data is being collected, and overlap the
operation of frequency breakout. This has the virtue of cutting down on
extra disk storage to just those disk spinciles required to retain the

/

collected data as it cries in» plus those involved in emptying data to
tne frequency breakout machine.

Equivalent in its demands on the sorting engine is a "pidgeonnoie"
sort» whereby the aata are written selectively on different parts of the
ciisK» so that they can be retrieved sequentially in (u»v) order. This is
made possible by a priori knowledge of the baseline projections wnich
determine the sort key (u,v), m a t is to say, we could, in principle,
carry out the Key sort ahead of time. we also then allocate exactly what
disk area is needed, so pointers can be stored with the keys. A slightly
more flexible aporoach would be not to worry about, say, tne v
coordinate, and group the data into perhaps 2043 bins, each for a small
range in u. (say, 1024 bins for a halt-plane, taking into account the
Hernitian property of the visibility function.) n o w , as each 256
frequency (i.524 Byte) record is received, it is written onto one of the
1 •'21 disk partitions. it is best to allocate clusters of, say, 20
records, as needed. This leads to much less waste than allocation
according to estimated storage requirements per bin; statistical
fluctuations in the record counts lead to biqh chance of overflowing one
or more bins when the bins are oh the average only 60 to 70% rilled. It
is suggested that one frequency channel be sacrificed to hold the (u,v)
coordinate, and another to hold a backward link, linking the record to
its predecessors belonging to the same range in u coordinate, one aid
can be drawn from a priori knowledge of the sorting keys; in any
10-second interval tne optimum seek pattern is very similar to the seek
pattern in the preceding interval. It is possible in principle for the
pidgeonnoIing computer to request its input records in the order
optimizing head seeks on the output ciisk drives, thus ensuring that a
backlog will not occur. At the rate of 351 records/13 seconds, we can
allow a neaa seek "budget” of 28.5 msec/record.

PidgeonhoLing, like keysorting, also requires the F-way breakout of
data records after tne storage is completed. Penalty in time is slight
(~4 hours) for the breakout, and the cost in storage to nold Che data
during breakout can be kept to the same level as the keysort technique.

1,6. A Hardware Configuration

One configuration which seems to satisfy the needs of all approaches
to the sorting problem appears in Figure 1.

The machinery would have differing functions, depending upon the
choice of sorting algoritm. For the classical sort/merge, Cora and
Corbin would be responsible for writing out the data into F distinct
frequency groups on their disk storage units. For F=32, this would mean
(assuming a buffer capacity of 60 KBytes for each computer), the 13
second workload of 180 Kbytes would be divided into 3 core loads,
requiring 32 disk head seeks apiece, or 96 seeks/13 seconds (a budget of
h'fqssec/see< allowed). Part of the time, Cora and Corbin access a large
group of adjacent data belonging to one frequency group, and feed it to

I

i Array i

1
1

----- 1 Processor 1 Ip
1 1 !

I1

1 Cora
1
1 f

1
1
1

1 corbin 1
I I
1 1

11 l M r _ I 1
i — — — — — — — —
1 149 MBy,1 1 1 49 ¡Vl6y.l

| -0 ̂ mm "m.--* *, *■ .*,
1 149 MBy,1

1 ̂‘ ‘U' ' ̂
1 149 M B y , 1

P - i D i s k + 1 P - i 0 i s k + 1 P-IDisk: + I P-IDisk + 1
1 IControll I 1 C o n t r o 11 1 IControll l IControll

= Peri- 1 ---------- 1 ---------- 1 1 ---------
pheral i 1 1

Control 1 | ---------- ------- 1 1
Switch 1 1 1 Interface 1

1 -------1 MQDCOMP 7 8 1 &> t---
-------- | (64 KBytes) 1

I

I Sorter I
I DEC 11 /f>0 I
I (128»5 12KBy)I

I I

I Cont. I -------
---.---- I

I3y« MByl-
I Disk I I -
-------------- 1 | -

--------- -I i -
---------- 1 | -

-------------- 1 i

C 5)

I Gridley? I
I (Gridding I
I Engine) I

I Cont,

I MBy I -
I Disk II-
---------- 1 1«
--------- -1 |
------ ---- 1 |.
---------- 1 |

(5)

Fig. I The Sorting Machine

i

tr.e sorting engine* ice. data are automatically sorted by (u>v), a
service provided oy the array processor in con junction with Boss (this
done on a Id second record basis). fne next machine merges the sorted to
second, groups into longer ones on their way out to reside on tne
large— cgipacity disk; units. we provide 10 spindles of .Hid Megabyte
capacity, 6 of which are required for holding 12 hours' data, l for
scratch, and 3 for keeping previous observations. The memory required
tor the sorter should he on the upper end of the scale 128-512 KBytes for
more efficient operation.

For the pictgeonho 1 inq process, Cora and Corbin would carry out 176
seeks apiece/1 ’ seconds (oudaet of 56 msec/seek). (In reality, it would
be more like 176 seeks/6 seconds (ouaqet of 34 msec/seek), to allow more
flexibility for the array processor.) The AP would provide records of
256 frequency channels in some order (requested by Cora and Corbin) that
optimizes disk access. When one entire disk pack (holding 480OP. records)
is filled (about every 40 minutes) it is turned over to the sorter for
emptying; meanwhile the other disk is being written by Cora or Corbin.
The sorter then proceeds with the frequency breakout. Assuming a 32-way
split, with 4 KBytes/buffer (128 KBytes for ouffers), the 12000 writes
and 2400 reads would occupy it for 9.6 minutes. It must also perform the
same service for the other 48000 records coming over from the other-
processor, whicn will require a total of 19.2 minutes, assuming no
overlap in the 1/0.

The purpose of the MODCQMP 7810 computer is to provide an interface
between the m q OCo m P systems and the other vendor (DEC, say). Another
possibility is to replace the peripheral control switch system with one
having dual-port disks, cutting down on the number of controllers. This
alternative has the penalty of going to larger disks, since the 49 Mbyte
drives are not available with dual ports. since the sectoring of the
aisks will differ from manufacturer to manufacturer, it will probably not
be possible to configure the system with different manufacturers'
computers on either side of the aual-port drives.

1,7, Cost Estimates

The following are cost estimates for two possible configurations
involving the MODCOMP computers:

C o n f i g u r a t i o n A - - D u a l - p o r t d r i v e s

3 m q DCo MP 4138 (100 MByte) disks + controllers $78K
1 woDCOMP 4138 disk, no controller 19K
1 MODCOmP 7810 computer, 32 Kwords MOs memory 6K
1 MGDCOMP-DEC CPU link (est. 2 man-months effort) , , , , , 5K

H i

Conf iguration ■ ■ Sino le-port drives 1 ieri o aerai control switches

4 MoOCod.P 4134 (49 MByte) disks + controllers
4 MOD-COMP 49i4b Peripheral control switches . . .
1 MOBCOMP 731 computer, 32 Kwords MGS memory .
1 MOOCOMP-DEC CPU link (est, 2 man-months effort)

$92 K
1 2K
6K
5K

$1 15K

it is not clear that tne MODCOMP 4138's can be obtained for the price
shown; our estimate is based upon a recent HRAO procurement of single
oort drives at this cost (OEM supplier: a m p e x). Our figure for the
single-port configuration is a little more firm (manufacturer's list
orices); hence it is the configuration shown in the diagram.

The sorting machine will have to be equivalent to a DEC 11/60 or
MOOCOMP 7860(i since memory mapping is required, and the rapid data
transfer rate obtainable will be useful, though not absolutely necessary,
m o ,3 memory is the most economical, and is suggested. The largest
capacity disit drives obtainable are the CALCOMP TRIDENT series, model
C-300. we find that AMPEX makes an equivalent’device, but it is not
known whether it interfaces to a minicomputer. The CALCOMP drives have
oeen interfaced to O E C - H ' s ? the availability of interfaces and software
may make D E C - U ' s much more attractive than their competitors, we
tentatively suggest the following configuration;

Sorting Engine

DEC 11/60 computer» with 256 KBytes MOS memory • • . $39k -
10 CALCOMP T-300 disk drives» without controllers • • 120k
2 controllers for the above • • • i^K

S173K

The total estimated hardwarre cost, assuming Configuration 3»
is $2S8k . This does not include software development, which we roughly
estimate at about a man year's effort -- this is highly qualified:
it makes no provision for additional complexity introduced by the
desire of occasional users to share observational time, use of multiple
subarrays, processing of calibration sources, and the numerous error
checks that would go into a polished, sophisticated system.

