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The VGA sorting engine has as its task the ordering of spectral line 
and continuum data in Cu»v) sequencing to facilitate gridding the data 
for Fast Fourier Transforming (FFT) into a map of the radio source. It 
also has the task: of breaking out frequency channels, a job which perhaps 
can be shared with other processors.
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1.1, A Hypothetical Gridding Engine

It is not our- intention to design anv part of the magoing system at 
this time, but we must have better than a vague notion of the 
requirements of tne first stage of that process: the gridding. It is 
supposed that the gridding machine will prepare a two-dimensional array 
of data, of size ranging up to 8192 X 8192 complex numbers# perhaps 
truncated to naif that size if we take advantage of the Hermitian 
property of the visibility function;

V ( u , v ) = v » ( - u # - v ) ,

It is also a necessary requirement for the gridding engine that the data 
oe convolved with some function C(u#v) having limited range in the (u#v) 
domain. If the present continuum mapping system is any guide, that range 
can be as large as b x 6 grid points# meaning that 6 columns at a time of 
the array must reside in fast memory. For the 8192 map size# this 
requires fast storage capable of nolding 49152 complex numbers, we 
anticipate the most common map size to be 1324 X 1024# whence it would be 
practical to organize visibility data records with no more than 8 
frequency cnannels per record, (For the larger maps# this leads to an 
obvious inefficiency unless the user is content to map only a fragment of 
his data# or to have tne channels averaqed together,) If input records 
contain more than one frequency channel, then, mass storage is required to 
ho la the gridded data for all channels but the one currently being 
mapped. Most probably, mass storage will be required anyway for the 
three-dimensional transforms (required to correct for the map curvature
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a b e r r a 11 o n ).

ic is also anticioated that cal i nrat ion will be accomplished by the 
griddinq enoine, usina a concept similar to the antenna gain tables in 
current use in tne DliC — 1 ̂  continuum system. Tnus, records must bear such 
information as the antenna pair and a date/time stamp, in addition to the 
(u,v ,w.) coordinate. it data records contain H frequency channels/ with 4 
pytes (32 bits) per complex visibility/ the overhead tor these additional, 
data can be Kept to 2v>% (assuming B bytes of overhead per record)« If 
further breakout of frequency channels is desired/ one should use instead 
an indexing scneme whereby the record's position in the data base 
dictates the Location of its identifying information.

From this *e conclude that visibility data records to be nandled by 
tne sortin'-} and gr.idd.ing engines should be broken down into at least 3 
different data sets (8 frequency channels per record)/ assuming 256 
channels. Further breakdown may be desirable/ but at the expense of 
separating identification data from the visibility data.

1.2. Cora ana Corbin

It would oe niqhly desirable for the proposed system to tie in with 
the tfto botCU.MP JI minicomputers/ Cora and Corbin, which will receive 
visibility .'.data from the Array Processor. Cora and Corbin are limited to 
64 k words of memory, and are somewhat inhibited by a maximum o m a  data 
transfer rate of **600'.Mbytes/second, nevertheless, it is felt they can 
perform useful functions as an adjunct to the various sorting algorithms 
discussed below. They should be able to accomplish a 32-way split into 
frequency groups, as an assist to the customary external sorting 
algorithm; they should also be able to accomplish a random-access store 
of records to facilitate the "pldgeonbciinq" process.

It is assumed it will be possible for the AP to feed data to Cora 
anc! Corbin in one or tw0 frequency groups (256 or 123 channels), with 
baselines ordered in any way desired. For instance, they could arrive in 
order or tne desired (u,v) sorting key.

1,3, Some Assumptions

Let us suppose that computers are selected for the sorting machine 
which are capable of virtual memory addressing, and that context 
switching between address spaces (64 Kbytes in size, say) requires very 
little effort. ne assume the program can reside outside the address 
space, we suppose the computers are capable of interfacing to large 
capacity ois< drives having capacities of 400/Mbytes, average seek times 
of “40 msec, and byte transfer times of “ 1 usec/byte.
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1*4* f)i s k Sort!ng

ot th0 various a ppro a c h e s avai table for a c n i e v i ng t n e desired ( u # v ) 
or ierina, perhaps toe customary method should be explored f irsts that of 
sorting the data into "strings" of correctly sequenced records, followed 
by merging- the strings into one correctly sequenced data set» Let!

f.£ = Total number of frequency channels (256 assumed earlier) 
du = Total number of (u,v) data points in entire data set 
S ='D,ata set size, bytes = 4.Wf,Nu, roughly 
F = ‘Number of partitions of S into frequency groups 
8 = Amount of core available for buffers during merge 
x - Blocking factor of data records (we will read x at one 

t i me)
m = ■ e r g e order
p = Number of merge passes through entire data set 
L = Logical record size, bytes (holding «f/F complex numbers + 

overhead)
Lp = Physical record size, bytes
tc = Compute time to compare 2 sorting keys
ts = Disk seek time
tt = Data transfer time during I/O

ie will neglect for the moment the problem of lucerudiiy
(This will perhaps be accomplished complalety by 

Corbin») Assuming now that we have sorted strings of length x records,
through each frequency group (S/F bvtes long), 

until there is one string for each
frequency group, of length n u records. To simplify the discussion we 
assume

records.
)
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In practice (and in the time estimates below)* we round p up to the next 
qreater inteqer* This does not result in the optimum merge pattern for 
the given number of records* a problem taken up by Knuth (1973* pp*
361— 378). The total number of I/O operations for a merge of ip records 
is then

N i o (P e r freqf group) = 2#(Nu/x)* l oq Nu#
1

where we count both input and output operations. For the entire data 
set* we must accomplish this F times# and so we write for the total 
number of I/O operations



• i O - 2 . ( S / X L ) . 1 0 Cl w u

■ 2 . ( SB i ) . c S/R ) . log L’U .

where we have assumed tne available buffer space , B, is occupied by M + l 
buffers (M input, 1 output), each holdinq x records of length l . Nio is 
minimized for w=4, a result which is independent of the data set size, 
buffer size, and number of frequency groups.

The t o t a l  I/O time f or  merging i s  

Tio = R i o . t s  + 2 . p . S . t t

= 2 . ( l og  wu) . S . [ ( M+i) . t s/B + t t J .
I

The total compute time is

Tc = f.p,hu.(to-1).tc + F.p.Nu.tt
= (log NiO ,(S/L). t(H-i).tc + tt]#

' M

where we assume the same transfer time for core-core transfers as for 
core-disk:. Putting some numbers in for ts, tt, and tc, let:

ts =■ 40 msec/IO operation#

tt = 1 usec/byte#

tc = 3 usec/byte.

We see that the ratio

2 » C(M+i),ts/B + tt]

C(M-i),tc + tt] /L

is considerably greater than unity, for Just about any cnoice of M# 6# 
and l . Thus# 10 time dominates the throughput time in the normal merging 
process. We can safely assume that most compute time can be overlapped 
with disk: seeking, whence it disappears from consideration, except 
perhaps for arguing for 1 minicomputer in place of 2, We now arrive at 
TASl E I# which shows total merging time as a function of merge order# M# 
and buffer size# B.

From t a b l e  i f  we conclude that it is marginally possible for one
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TABLE 1. s-’erqe time for 12 hour data sample.
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minicomputer with the capability of virtually addressing > 512 K bytes of 
memory to handle the sorting task. in doing so we have glossed over some 
hardware-dependent considerations: 1) Can the computer perform direct 
memory access data reads and writes from and to disk of blocks of memory 
exceeding the range of directly addressable storage? (Probably not.
This is only _64 Kbytes on some machines.) 2) is there a penalty assessed 
in data transfer whenever a disk track boundary is reached? (We are 
suoposing not; there would be a penalty only when the heads must move 
from cylinder to cylinder.) 3) since the merge time is heavily dependent 
upon seek time# we have ignored the saving that would result from having 
the input data set on several different spindles# with perhaps separate 
data paths (via separate disk controllers).

Aside from time# one must also consider disk space occupied by the 
data sets during the sort/merge, If v/e break the 12 hour sample into F 
portions# it is necessary to have (F + l) times the space occupied by one 
portion during the merge, For F=32, this is an extra 3,1%, Also, the 
approach taken to handling the data in the real world is not to wait 
until a full 12 hour load has been accumulated before starting the merge; 
instead, we want to begin the first stage of meraing as soon as enough 
data accumulate to warrant the effort. When M sorted strings of length M 
records are accumulated# we want to perform pass 2 of the merge

2
operation, creating a data set of size [> , ana so forth. Assuming we 
can merge as fast as the data flow, as Table I suggests, we will be left 
at the end of 12 hours with data strings of varying length: let us say, M

2
strings of length 'mmH-l strings of length m , and so forth, including



** t s t r i ng sof length M , This leaves os i t h some c 19 a n i n g - u o to do:

one M-way merge or m records, one h-way merge ot records, and so
forth, up to an 'R~way merge of the last stage. The fraction of tne 
merging effort left to do after completion of a 12 hour observation is 
then:

2 P
I + M + ... + M

P + 1
M - M.

P
p

P
m m m  M i l P.(M-l)

which, for M = 8, p ~ 7 (best case in Table 1) works out to 16.3% of the 
total time. ‘while this is going on, of course, we can be doing the first 
few merges required for the next 12 hour observation. But we are left 
with an extra "2« per cent, storage requirement, in addition to, the 16% 
delay, Requests to make maps during the merging process we think would 
require pretty sophisticated coordination in order not to disrupt the 
proceedings while making most of the pieces of partially merged strings 
available for processing.

1,5. Keysorting and Pidgeonholes

For both of these techniques (whicn we shall see are very similar) , 
it is advantageous to keep the frequency channels together during the 
(u ,v ) sort, agid then to break them out later.

The' keysorting process becomes practical when the length of records 
is large. Then one simply records for each record the place where it has 
been written, together with the key on which he desires to soft, ¿ihen 
all data records are stored, a sort of the key records takes place; 
whence the data records are simply retrieved according to the pointers 
keot with the keys, storage of data records is sequential; retrieval is 
random, with each read operation requiring time for head seeking. For 

6
i.6 X 10 data records of length 1024 bytes (256 complex numbers), it 
would require roughly 1/2 hour sequentially to write the data, and 17,8 
hours to retrieve them, assuming, as above, tt = 1 usec/ayte, and ts 5 40 
msec/head seek. Thus, two independent data paths are called for.

The operation of breaking out frequencies into F different groups 
requires filling F large buffers, to be written Into F different places 
on disk storage. Taking f=32 and assuming, say, 4 Kaytes/buffer, the 
output side of this operation requires 390000 head seeks,, at the rate of 
40ms/seek, or 4,32 hours. In practice, we would break the input data set 
into several chunks while data is being collected, and overlap the 
operation of frequency breakout. This has the virtue of cutting down on 
extra disk storage to just those disk spinciles required to retain the
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collected data as it cries in» plus those involved in emptying data to 
tne frequency breakout machine.

Equivalent in its demands on the sorting engine is a "pidgeonnoie" 
sort» whereby the aata are written selectively on different parts of the 
ciisK» so that they can be retrieved sequentially in (u»v) order. This is
made possible by a priori knowledge of the baseline projections wnich
determine the sort key (u,v), m a t  is to say, we could, in principle,
carry out the Key sort ahead of time. we also then allocate exactly what
disk area is needed, so pointers can be stored with the keys. A slightly 
more flexible aporoach would be not to worry about, say, tne v 
coordinate, and group the data into perhaps 2043 bins, each for a small 
range in u. (say, 1024 bins for a halt-plane, taking into account the 
Hernitian property of the visibility function.) n o w , as each 256 
frequency (i.524 Byte) record is received, it is written onto one of the 
1 •'21 disk partitions. it is best to allocate clusters of, say, 20 
records, as needed. This leads to much less waste than allocation 
according to estimated storage requirements per bin; statistical 
fluctuations in the record counts lead to biqh chance of overflowing one 
or more bins when the bins are oh the average only 60 to 70% rilled. It 
is suggested that one frequency channel be sacrificed to hold the (u,v) 
coordinate, and another to hold a backward link, linking the record to 
its predecessors belonging to the same range in u coordinate, one aid 
can be drawn from a priori knowledge of the sorting keys; in any 
10-second interval tne optimum seek pattern is very similar to the seek 
pattern in the preceding interval. It is possible in principle for the 
pidgeonnoIing computer to request its input records in the order 
optimizing head seeks on the output ciisk drives, thus ensuring that a 
backlog will not occur. At the rate of 351 records/13 seconds, we can 
allow a neaa seek "budget” of 28.5 msec/record.

PidgeonhoLing, like keysorting, also requires the F-way breakout of 
data records after tne storage is completed. Penalty in time is slight 
(~4 hours) for the breakout, and the cost in storage to nold Che data 
during breakout can be kept to the same level as the keysort technique.

1,6. A Hardware Configuration

One configuration which seems to satisfy the needs of all approaches 
to the sorting problem appears in Figure 1.

The machinery would have differing functions, depending upon the 
choice of sorting algoritm. For the classical sort/merge, Cora and 
Corbin would be responsible for writing out the data into F distinct 
frequency groups on their disk storage units. For F=32, this would mean 
(assuming a buffer capacity of 60 KBytes for each computer), the 13 
second workload of 180 Kbytes would be divided into 3 core loads, 
requiring 32 disk head seeks apiece, or 96 seeks/13 seconds (a budget of 
h'fqssec/see< allowed). Part of the time, Cora and Corbin access a large 
group of adjacent data belonging to one frequency group, and feed it to
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Fig. I The Sorting Machine
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tr.e sorting engine* ice. data are automatically sorted by (u>v), a 
service provided oy the array processor in con junction with Boss (this 
done on a Id second record basis). fne next machine merges the sorted to 
second, groups into longer ones on their way out to reside on tne 
large— cgipacity disk; units. we provide 10 spindles of .Hid Megabyte 
capacity, 6 of which are required for holding 12 hours' data, l for 
scratch, and 3 for keeping previous observations. The memory required 
tor the sorter should he on the upper end of the scale 128-512 KBytes for 
more efficient operation.

For the pictgeonho 1 inq process, Cora and Corbin would carry out 176 
seeks apiece/1 ’ seconds (oudaet of 56 msec/seek). (In reality, it would 
be more like 176 seeks/6 seconds (ouaqet of 34 msec/seek), to allow more 
flexibility for the array processor.) The AP would provide records of 
256 frequency channels in some order (requested by Cora and Corbin) that 
optimizes disk access. When one entire disk pack (holding 480OP. records) 
is filled (about every 40 minutes) it is turned over to the sorter for 
emptying; meanwhile the other disk is being written by Cora or Corbin.
The sorter then proceeds with the frequency breakout. Assuming a 32-way 
split, with 4 KBytes/buffer (128 KBytes for ouffers), the 12000 writes 
and 2400 reads would occupy it for 9.6 minutes. It must also perform the 
same service for the other 48000 records coming over from the other- 
processor, whicn will require a total of 19.2 minutes, assuming no 
overlap in the 1/0.

The purpose of the MODCQMP 7810 computer is to provide an interface 
between the m q OCo m P systems and the other vendor (DEC, say). Another 
possibility is to replace the peripheral control switch system with one 
having dual-port disks, cutting down on the number of controllers. This 
alternative has the penalty of going to larger disks, since the 49 Mbyte 
drives are not available with dual ports. since the sectoring of the 
aisks will differ from manufacturer to manufacturer, it will probably not 
be possible to configure the system with different manufacturers' 
computers on either side of the aual-port drives.

1,7, Cost Estimates

The following are cost estimates for two possible configurations 
involving the MODCOMP computers:

C o n f i g u r a t i o n  A - - D u a l - p o r t  d r i v e s

3 m q DCo MP 4138 (100 MByte) disks + controllers $78K
1 woDCOMP 4138 disk, no controller 19K
1 MODCOmP 7810 computer, 32 Kwords MOs memory 6K
1 MGDCOMP-DEC CPU link (est. 2 man-months effort) , , , , , 5K

H i



Conf iguration ■ ■ Sino le-port drives 1 ieri o aerai control switches

4 MoOCod.P 4134 (49 MByte) disks + controllers 
4 MOD-COMP 49i4b Peripheral control switches . . .
1 MOBCOMP 731 computer, 32 Kwords MGS memory .
1 MOOCOMP-DEC CPU link (est, 2 man-months effort)

$92 K 
1 2K 
6K 
5K

$1 15K

it is not clear that tne MODCOMP 4138's can be obtained for the price 
shown; our estimate is based upon a recent HRAO procurement of single 
oort drives at this cost (OEM supplier: a m p e x ). Our figure for the 
single-port configuration is a little more firm (manufacturer's list 
orices); hence it is the configuration shown in the diagram.

The sorting machine will have to be equivalent to a DEC 11/60 or 
MOOCOMP 7860(i since memory mapping is required, and the rapid data 
transfer rate obtainable will be useful, though not absolutely necessary, 
m o ,3 memory is the most economical, and is suggested. The largest 
capacity disit drives obtainable are the CALCOMP TRIDENT series, model 
C-300. we find that AMPEX makes an equivalent’device, but it is not 
known whether it interfaces to a minicomputer. The CALCOMP drives have 
oeen interfaced to O E C - H ' s ?  the availability of interfaces and software 
may make D E C - U ' s  much more attractive than their competitors, we 
tentatively suggest the following configuration;

Sorting Engine

DEC 11/60 computer» with 256 KBytes MOS memory . . . . . • • . $39k - 
10 CALCOMP T-300 disk drives» without controllers • . . . .  • 120k
2 controllers for the above • • • i^K

S173K

The total estimated hardwarre cost, assuming Configuration 3» 
is $2S8k . This does not include software development, which we roughly 
estimate at about a man year's effort -- this is highly qualified: 
it makes no provision for additional complexity introduced by the 
desire of occasional users to share observational time, use of multiple 
subarrays, processing of calibration sources, and the numerous error 
checks that would go into a polished, sophisticated system.




