
SG P MEMO NO_ _
VLA Computer Memorandum no. 159

GRIDDER SYSTEM
W.N. BROUW

September 15, 1981
Part 2 - PDP 11/44 Programs

1. INTRODUCTION

The GRIDER software has been designed to follow the MAPPER setup as
closely as possible. It consists of 8 main programs:

1.
2 .
3.
4.
5.
6.

7.

8.

PPLCOM - a resident common area
GRIDER - communication with DEC10
PPMAIN - overall program to produce maps
PPSET - set all relevant parameters
PPTR - do gridding and other tasks related to API
PPFT1 - do first part of Fourier transform and all other tasks

related to AP2
PPFT2 - do second part of Fourier transform and all other

tasks related to AP3
PPCAT - reformat and catalog output maps.

All of the above programs should be installed, which can be done by:
@[302,1] GRIDER
which will also set the UIC to [302,40], the UIC of the programs.
To start the process:
RUN GRIDER
either from the terminal, or from a program like MAPRCV.
All other programs will be called automatically.

The general logics of the program flow is:

1. PPLCOM - acts as communication area between all programs,
and keeps some history. *

2. GRIDER - will get information from MAPRCV.CAT, spawns PPMAIN,
and will wait for it to finish.

3. PPMAIN - will spawn PPSET to determine map parameters, and
wait for it to finish; it then spawns PPTR and PPFT1,
wait for them to finish; it then waits for the previous run of
PPFT2; starts PPFT2 and stops.

4. PPCAT - is a spooler program. PPFT1 and/or PPFT2 produce
output files, which are queued to PPCAT.

2C: PROGRAMMING

All sourcemwdtiles and CMD files can be found in [302,20]. All object
modules are in [302,21] WNB.OLB.
Each routine has its command file, e.g.„; PTMEM.FTN is compiled by: @PTMEM.
The command files for the programs GRIDER, PPSET, PPTR, PPFT1, PPFT2 and
PPCAT will compile and taskbuild. To just task build them use @GRIDERB,
PPSETB etc.
PPMAIN comes in 2 flavors, depending on whether a 2 AP (i.e. gridding and
first FFT pass in the same AP) or a 3 AP system is wanted. The routines, and

their commands, are called PPMAN2 and PPMAN3 respectively. They only change
in a parameter definition. The main body of their program is included from
PPMAIN.DCL.
PPLCOM.DCL defines a lot of parameters used in the programs, and the layout
of the resident common area. PPLCOM.FTN defines an initialization program.
The resident common area is produced by: OPPLCOM.

If a change is made in PPLCOM.DCL, all routines and programs using it can be
rebuild by: OPPLUPD
If a change is made in PPMAIN.DCL run: 0PPMAINUPD
If a change is made in the MIX record format, run: OMIXUPD
If a change is made in the INX record format, run: 0INXUPD.
If a change is made in PCAT.DCL (see later), run: OPCATUPD.

In addition to the routines described below, some general routines are
available in several modules. These modules are:

FILBUF.FTN
QMAC.MAC
QFUN.FTN
QAST.MAC
QSCALE.MAC
PPDFIL.FTN
GRDLOG.FTN
GDTTM.FTN
PCWZER.FTN
PCFILN.FTN

to be compiled with OFILBUF
0QMAC
@QFUN
@QAST
(3QSCALE
OPPDFIL
0GRDLOG
@GDTTM
0PCWZER
OPCFILN

Some other general command files:
0SP00L - to print all .LST and .MAP files
@CLUP - cleans [302,*] areas
@DUP - duplicates [302,*] areas to DB1:
@CLDUP - combines CLUP & DUP
ONFTDUP - duplicates [302,*] areas to GRIDER
OTAPDUP - dumps [302,*] areas on tape. *

Other tasks in [302,20] and [302,40] areas:
MDUMP - dumps selected blocks of a file (e.g. map) in integer or

floating point format. The first block (0) is dumped
in 4 formats.

MIX - allows you to change MIX records
MIX1 - allows you to change map type and size in MY.MIX record

3. AP DEBUGGER:

AP programs can be debugged by including the JTAP(integer) function in your
program. If a statement, like:

IF (JTAP(integer).NE.O) STOP is encountered. The debugger is entered,
typing at your terminal:

RUNNING or: PSA = value
ACTION integer: ACTION integer:

depending on whether the attached AP is running or stopped.

- 2 -

All AP-registers and PPLCOM can be inspected by commands to ACTIONS:,
and all AP-registers can be changed.
Output of JTAP is to YERLUN (defined in PPLCOM), which is assigned to the
terminal by the CALL PPASG(O) in each program. Output will be terminal
selectable to either terminal or a disk file by changing this call to:

CALL PPASG(1,'file name').

The debugger commands are (Oi is
<CR:>

CO
HE
SW
LI
RS
ST
XT
CM
ZB
TD
TR
TI
IE
ID
RP
RD
RT
CC
CS
SR
ME
MD dl 1--

1

C
L ro

MI dl [,d2]

MV dl ,d2
DD dl [,d2]
XI dl C,d2]
YI dl [,d2]
SD dl [,d2]

SI dl

1-----1
(X

I
"O1___

I

LD dl
RR dl
SO 01
SB 01
PD 01■
PI 011
PS 01 ,02 ,G
LP 01
LT 01
CB 01
DA 01 C >02]
DS 01 ,02
LM 01

an octal value, di is a decimal value):
Return to main program
Return to main program
Help
read SWR
read LITES
reset AP
stop AP
exit main program
copy input line
empty APEX break point
test DMA activity
test AP running
test AP CTL5 interrupt state
enable CTL5 interrupts
disable CTL5 interrupts
read PSA
read DPA
read TMA
continue AP program from current location
execute single AP instruction

• read STATUS
read MAE
dump AP memory from dl to d2 in floating
format
dump AP memory from dl to d2 in octal
format
set value dl in AP memory d2 *
dump D-PAD from dl to d2
dump DPX in octal from dl to d2
dump DPY in octal from dl to d2
dump S-Pad from dl to d2 in decimal
format
dump S-Pad from dl to d2 in octal
set dl in DPA return 1 + dl
function

format
to JTAP

set APEX breakpoint to 01
dump program memory from 01 to 02
As PD
set 02,03,04 in program memory 01
load 01 in PSA
load 01 in TMA
Continue AP program till breakpoint 01
Read Da from 01 to 02
Set 02 in DA 01
Load MA

-3-

SS 01,02
MS 01 ,02,03,04

OD 01[,02]

01 01[, 02]

OS 01 ,02,03,04
EX 01,02
DP 01 ,02,03,04,05,06
PO 01

XS 01,02
YS 01, 02
XOV 01,02

YA 0[,02]

ZA 01[,02]

Dump MP memory from 01 to 02 in float
format
Dump MP memory from 01 to 02 in octal
format
Set 02 03, 04 in MP memory address 01.
= APEXAM (,01,02)
= APDEP ((03, 04, 05, 06), 01, 02)
Use 01 as offset in all input / output of
program memory references,
type as decimal integer values at offsets
01 to 02 in PPLCOM.
type as REAL values at offsets 01 to 02
in PPLCOM
set 02 in S-Pad 01
set 02, 03, 04 in memory location 01
set 02 in DPX 01
Set 02 in DPY 01
Set 01 in memory location 02

[302,21] WNB/LB:JTAP in .ODL file for program.,

4. GRIDER

GRIDER is called by MAPRCV to start the process. It calls GRDOPN
to get an entry from MAPRCV.CAT. If .INX, .GAI and .MIX are found,
an entry exists. If also a .VIS file exists, it is assumed later that
input data is in the MAPPER format. Else SORTER input is assumed.

If a correct entry is found, GRIDER starts PPMAIN, waits for PPMAIN
to finish; and calls GRDOPN for next entry.

A program GTEST exists which basically does the same but assumes all
files are called MY.MIX, MY.INX, MY.GAI, MY.VIS instead of getting
them from the catalog.' Furthermore, the files are not deleted after
use, and only one set of MIX records is used. «

5. PPMAIN

PPMAIN calls PPINIT, which initializes all AP's if a reboot occurred,
and reserves some standard, fixed size area's in all 3 AP's.

PPMAIN then starts PPSET (see 6), which determines all map parameters,
and waits for PPSET to finish. It types and logs some information
about the maps and its input.

For each pass necessary through the transpose memory (see PPSET for
details)• ft— then:

a. For all gridding passes (ie. if the memory in API is too
small for one run, see PPSET), and for all data sets, it:

- starts PPFT1
- waits till PPFT1 is properly initialized
- starts PPTR

-4-

- waits till PPTR initialized
- waits till PPTR and PPFT1 finish
- adjusts parameters describing gain tables and U, V-plane

boundaries.

b. - Waits for PPFT2 to finish
- starts PPFT2
- restart a. for next TM pass.

After all TM passes are ready, it spools the file GRID.TMP to PPCAT
if gridded output was requested, and finishes.

MOTE: At 10 August 1981 only 2 AP's are available, and also no mech
anism exists to read from/write to the TM, and regulate the traffic.
Therefore, PPFT2 runs in AP2, and gridding has to wait for PPFT2 to finish.

6. PPSET

PPSET defines all map making parameters by calling:

IDFMIX - Get parameters from MIX record
IDFINX - Get parameters from INX records
IDFPIG - Get pigeon hole parameters from SORTER
IDFCHK - Check parameters for validity
IDFCTP - Define convolution function, taper function etc.
PSETCW - Calculate and set all function tables
PSTVAL - Define value descriptors
IDFUVW - Define (U, V, W) - solid parameters.
PSTSC1 - Set source subtraction list for API (gridding)
PSTSC2 - Set source sutraction list for AP2 (FFT phase 1)
PSTMP1 - Set map descriptions for API
PSTMP2 - Set map descriptions for AP2
IDFGM - Prepare gain tables
PPPREP - Calculate the number of TM and gridding loops

necessary with the limited TM and AP memory available.

The more detailed description of the above routines:

IDFMIX: Reads a MIX record, and gets all information about the map
to be made (size, convolution etc.). The information is converted
and stored in PPLCOM for later use. Extension of the MIX record is
wanted to be able to set all necessary information. In Appendix B
a description of possible MIX extensions is given. After
reading a MIX record, all subsequent MIX records belonging to the
same "set" (see App. B) are read and the information stored.

IDFINX: Reads first IMX record, and fills in some MIX data (coordinates,
frequencies etc.), and fills the VLA.LOG. It then reads all
other INX records and:

- tests if same "type" (i.e. INX, GAI, VIS record lengths the
same, # or IF1s the same).

I skips record if different type

-5-

- determines the "data set" to which the INX record belongs,
based on SORTER choices (source name, meridian passage date,
frequency and more, still to be defined in detail).
- If more than 16 datasets, remaining data is ignored.
- save relevant data about INX record, especially where to find

it.
- save dataset # in INX record.

IDFPIG: Defines data to be obtained from SORTER. It sets:
- maximum values of U, V and W in the input data sets
- width of one pigeon hole
- map rotation influence on pigeon hole width

IDFCHK: Check parameters for validity (e.g. map size <= 8192, FFT size
power of 2 etc.). If invalid data, replace it with default
value, and increase the warning count.
IDFCHK also reserves space for some buffers of which the length
is now known.

IDFCTP: Using the data from MIX and INX, IDFCTP calculates the
parameters for the definition of all functions used
(convolution, uniform weight, taper) in an internal format.

PSETCW: Calculates and sets in AP memory the tables for the uniform
weight function, convolution function, taper function,
convolution correction function.

PSTVAL: Generates and sets into AP-memory the necessary value descrip
tors (see Part 1) to generate the appropriate maps (I, Q, U, V,
...)from each dataset.

IDFUVW: Calculates the boundaries of the (U,V,W) - convolution solid
needed and the boundaries of the (U,V)-uniform weight solid.
It reserves space for the intermediate buffers between API and
AP2, and for the gridded output data buffers in AP2.

PSTSC1: Makes list of sources to be subtracted in gridding phase.

PSTSC2: Makes list of sources to be subtracted in FFT phase 1
Note: Dummy routine since no data available.

PSTMP1: Put address of source list in map descriptor for gridding.

PSFMP2: Put address of source list in map descriptor for FFT phase
1 (Dummy).

IDFGN: The action taken is:
- open GAIN.TMP file
- read an INX record and save pertinent data (see part 1) in

GAIN.TMP
- make sure the INX record and its gain tables fit on 1 AP

page.
- define an extra data set if AP memory ful1.
- Call PSETGN for all gain records

- 6-

PSETGN - Reorder gains
- Extrapolate if necessary to make all gain records equally
distant in time

■ >- Apply all VIS and GAI scales
- If polarization, apply parallactic angle rotation to gain
- If parallactic angle change >15° between table entries, re

define 2 min time interval. If change still >15°, forget data.

PPPREP - Determine number of passes through TM, based on TM size,
simultaneous maps, map output sizes.

- Determine number of gridding passes based on memory available in
API, and minimum size of convolution buffer, based on
(U,V,W)-maxima and the pigeon hole width.

7. PPTR

PPTR will call PTVAL to set the appropriate value and map descrip
tors, based on the current slice of the (U,V,W) - solid. Then it
calls PTMEM, which fills the general memory area (see Part 1), and
then PPTR will write the general memory to the AP. API is then
initialized via calls to TRPM and TRPV. The correct gain tables are
loaded in PTLGN; the gain area is prepared in PTVMEM; transferred
to the AP and initialized via a call to TVPM. PPMAIN is now
notified that initialization is finished. Forgetting about the 2
AP case, TRAL is now started. In the case of natural weight all data
from a pigeon hole is treated until no more data available.

In the case of uniform weight data from a pigeon hole is read. If
enough data is available to start the convolution, the weight data
is transformed into a factor, and convolution is started with data
from the first pigeon hole. Alternately more weight data is read
and processed and convolution data is processed, until all data is
convolved.

8. PPFT1

PPFT1 first determines the number of work buffers (>= 1, <= 5)
available in AP memory. It then generates the map descriptors in
P1VAL, and the general memory area in P1MEM. The general memory
area is transferred to the AP, and initialized via F1PM.
PPMAIN is now notified of a successful inizialization. In the case
of 2AP's PPFT1 finishes. In the 3AP case the FI FT program is
started, and P1GRD is called. P1GRD returns immediately if no
gridded output is asked for. If gridded output wanted, a file
GRID.IMP is generated and filled.

9. PPFT2

PPFT2 first determines
AP memory (>=1, <=4).
P2VAL, and the general
general memory area to

the number of work buffers available in the
It then creates the map descriptors in
memory area in P2MEM. After writing the
AP memory and initializing it by a call to

-7-

F2PM,PPMÁIN is notified of successful initialization. F2FT is now
started, and P2MAP is called to generate the final output map.
After the last part of a map has been obtained, P2MAP spools the
output to PPCAT for final formatting and cataloging.

10. PPCAT

PPCAT receives file identification for either output grid data, or
output maps.

In the case, of gridded data, GRID.TMP is opened, and for each output
map and W-plane the correct data is read from GRID.TMP and reformatted
in PCGRD, after which each map and W-plane is catalogued by a call
to PCCAT. In the case of map data the input map data is rescaled from
scaled per line to scaled per map via a call to PCMAP, and then
catalogued by a call to • PCCAT^

11. ADDITIONS

It is obvious that cleaning and self-calibration has to be added to
GRIDER, if possible making use of more then 1 AP and the transpose
memory. The usage of the transpose memory in these cases is,
however,probably limited, due to, at least at present, an access time
of about 15 micro sec per word. Since GRIDER produces essentially
the same output data as MAPPER, it will be very easy to incorporate
the present CLEAN and SELFCAL in the system.
For intermediate use a program PPSORT is added, called by PPMAIN, to
sort old DEC 10 visibility files.

- 8-

Appendix A - Proposed MIX changes

To use all the capabilities of GRIDER extensions to the MIX record have
to be made. Space for these extensions can easily be found by trimming
existing entries (e.g. bringing back the existing ANTENNAS from 28 words to
28 b-its).

Proposed extensions include:

-MSET: A; "set" indicator. Since GRIDER can produce similtaneous maps
from one input database (e.g. I, Q, U) it would be wasteful not to
be able to do it (e.g. 4 maps of Ik can be handled in one run
through the input data, greatly reducing the I/O time). In
addition, producing COVER etc/, can be done at the same time. To be
able to use this feature with the existing MIX structure, all MIX
records differing only in KIND and / or POLARI should have the same
MSET.

-UV-1imits: GRIDER has provisions to limit the use of U,V-data to a
box ok ring by specifying low/high limits for U, V and SQRT
(u V) .

-Passband: For line work bandpass corrections are needed.
Provisions are there. It probably is easiest to reference a
standard file.

-line work: extensions are necessary to be able to define a set of
channels and sums of selected channels from the selected data base.
Summation should be possible before or after gridding.

-flags: Correlation based flags are probably helpful, and could be
added on a per scan base to the INX record.

-output order: GRIDER produces multiple maps in either map or
frequency order.

-third dimension: The third dimension requires the number of
planes used and the suppression possibility of the
convolution correction, and a "field size".

-output size: Very often the output size of a map can be much
smaller than the Fourier transform size. As an interim measure I
have assumed that the output size is given by the user, and the
transform size is the next higher power of 2. To let this work,
the check for a power of 2 should be deleted from the DEC 10.
Finally, however, the user should be able to set both sizes with
maybe the default output size set to half the transform size.

-uniform weight: the user should be able to set the weight box
size in both dimensions in nsec (not in gridpoints). For line channels
you want to have the maps in the same coordinate system, not your
U,V plane. Furthermore, you want to be able to select your
weighting function (in both coordinates). GRIDER has, at the

moment, provisions for Gaussian and Box weighting.

-taper: Different taper values for U and V should be possible.
Tapering functions are grid based in GRIDER to produce the same
sky convolution function at different frequencies.

- -convolution: separate U and V widths and parameters should be
selectable. The present tie between size and function should be
broken. Both values should be specifiable.

-map addition: Onee should be able to specify a map that will be
weighted and added to the final output map. Usable to subtract
e.g. continuum from all line maps. (Note: input logics exist,
small additions to P2MAP and F20B have to be made).

-source subtraction : subtraction should be extended, and
preferably be done via a "standard" source file. Furthermore, one
should be able to specify subtraction from the gridded U,V-plane.
The last possibility exists in GRIDER only if the map and the
antenna pattern are produced in the same run.

-four IF's: POLARI should include possibilities for selection.
E. g. 1 (use only A and C), 2 (use B and D), B and D.

Appendix B - Error Messages

Error messages are produced by the routine PPERR (in FILBUF module).
They give the time, a number, and text. None of the messages give
extra information. However, PPERR had provisions for extra information,
and it is easy to include it in the call to PPERR whenever necessary.

Errors are a warning or fatal. The type is indicated in the next
list by the sign of the number (+=warning, -=fatal).

B.l. GRIDER messages

-900 : Cannot start a process because PPMAIN is not installed or
busy. Busy indicates a bug in the rundown process.

+901 : Cannot open catalog
+902 : Cannot open MIX file
+903 : Read error MIX file

B.2. PPMAIN messages

-501 :PPSET not installed or busy
-502 :Error in execution of PPSET
-503 :PPFT1 not installed or busy
-504 :Error found in initializing PPFT1
-505 :PPTR not installed or busy
-506 :Error found in initializing PPTR
-507 :Fatal error in PPTR
-508 :Fatal error in PPFT1
+509 :Fatal error in PPFT2

- 10-

-510 rCannot assign API
-511 •PPFT2 not installed
-512 :Error found in initializing PPFT2
-513 rCannot open MIX file
-514 ¡Read error MIX file
-515 rCannot open INX file
-516 rRead error INX file
+517 :Too many datasets in input
+518 rCannot catalog gridding output

B.3 PPTFt' messages

-101 :No memory in API
-102 :No Map asked
-103 :The AP not available
-104 :Cannot open work file GAIN.TMP
+105 :Cannot detail the INX pointers in AP memory
-105 :Read error GAIN.TMP
-107 :No SORTER database program yet
-108 :Cannot open INX file
-109 :Cannot open VIS file
-110 rRead error INX file
-111 :Read error VIS file

B.4. PPFT1 messages

-201 :No memory in AP2
-202 :AP2 not available
-203 rCannot open workfile GRID.TMP
-204 :Cannot open MIX file
-205 rRead error MIX file
-206 :Write error GRID.TMP file
-207 rRead error GRID.TMP file

B.5. PPFT2 messages

-301 :No memory in AP3
-302 :AP3 not available
+303 rCannot find a filename for output
+304 :0pen error output file
+305 :Write error output file
+306 :Cannot catalog output file (gives name of output file)
+307 rCannot obtain MIX record

B.6. PPSET messages

-551.. rCannot open GAIN.TMP work file
+552 :Too many INX sets
+553 rGAI file format error
-554 rWrite error GAIN.TMP file
-555 rCannot open MIX file
-556 :Read error MIX file
-557 rCannot open INX file
-558 rRead error INX file

-559 :Write error INX file
-560 :Cannot open INX file
-561 :Cannot open GAI file
-562 :Read error INX file
-563 :Read error GAI file

B.7 PPCAT messages

+401 :Cannot open GRID.TMP file
-402 :Read error GRID.TRIP file
+403 :Di sk 1/0 error
+404 :Cannot open grid output file
+405 :Write error grid output file
+406 :Cannot enqueue on catalog
+407 :Cannot open catalog
+408 :Catalog creation error
+409 :Catalog read error
+410 •.Catalog write error
+411 :Cannot open MIX file
+412 :Read error MAP file
+413 :Write error MAP file
+414 :Read error MAP file
+415 :0pen error MAP file

Appendix C Timing

Timing depends critically on memory available in the PDP 11/44 and
on disk contention.

As an example A 1024*1024 map with 18000 unsorted visibility records
required 3 passes through the input data. In the case of no other
program running, each pass took about 35 sec. Initialization took
10 sec. and the second phase FFT took about 60 sec. including
writing of the map to disk.

However, running concurrently with PPCAT, the times were:

Initialization: 18 sec.
Gridding pass : 70 sec.
2nd phase FFT 'tf 300 sec.

WB/tr

- 12-

