Interoffice

To:

From:

SGP MECONO. 8 A

National Radio Astronomy Observatory

Very Large Array October 20, 1981

G. Hunt

W. N. Brouw

Subject: Grider Timing

The following tables give some indication of the timing of the Grider System. The headings are:

- SETUP: Start program, scan index records, gain tables, type out some data on terminal.
- GRFT1: Feed data into AP, correct for gain, grid, do first phase FFT, pass data to Transpose memory.
- FT2: Read data from Transpose memory, do second phase FFT, read data from AP onto disk.
- REFORM: Reformat data on disk from scaled per line to scaled per map on disk.

SIZE: LxM pixel size of Fourier tranformed map.

Re input data were 2-continuum, old visibility data. For all cases the data were sorted for the first run of the program. The sorting times are:

82 sec for 18643 visibility records. 49 sec for 9328 visibility records.

Table 1.

The data consists of 18643 visibilities. For all maps an area of the U, V plane of about 130×130 cells contained data. Natural weight of data, 1 * 1 box cconvolution. The data was sorted by the program once. Times in seconds.

Size	Setup	GRFTI	FT2	Subtotal	Reform	Total
256x256 512x512 1024x1024 2048x2048 4096x4096	10 sec 9 sec 11 sec 10 sec 10 sec	21 sec 20 sec 21 sec 20 sec 21 sec	9 sec 23 sec 65 sec 220 sec 864 sec	40 sec 53 sec 97 sec 250 sec 895 sec	11 sec 18 sec 52 sec 189 sec 1160 sec	51 sec 71 sec 149 sec 439 sec 2055 sec
8192x8192	10 sec	25 sec	34/3 sec	3508 sec	DISK too	Small

Uniform weighting with 1x1 box weighting:

256x256

10

35

54

9

11

65

Using o	nly 9328 visibi	litis; natural v	weighting:				
256x256 1	0 14	10	34 11	45			
Using c	convolution of s	size y*y:					
y=1 256x256 1 y=2 256x286 1 y=4 256x256 1 y=8 256x256 1	0 20 0 21 10 20 10 21	10 9 10 9	4011401140114011	51 51 51 51			
Using	different filli	ng of the U, V-P	lane; width giver	n as UxV FM Use			
U,V=135x135 2048x204 500x500 2048x204 1000x1000 2048x20 2000x2000 2048x20 125x2000 2048x20 2000x125 2048x20	48 10 48 10 048 10 048 10 048 10 048 10	202202422031221532202022052222	250 189 254 189 262 189 283 189 250 189 - 284 189	439 256k 443 1024k 451 2048k 472 4096k 435 4096k 473 4096k			
	Influence of ou	tput size:					
Size=1024 1024×1 768 1024×1 512 1024×1	024 11 024 10 024 10	21 65 20 37 20 23	97 52 67 39 53 18	149 106 71			
From the ta AP take the	bles it is clea most time.	ar that the I10	I/O operations be	tween disk and			
a. <u>Visibil</u>	ities:						
Gridding time: 7+.00075 NVIS sec natural weight. 7+.0015 NVIS sec uniform weight.							
Result	ing in:						
	Natural	Uniform	/Real time ((natural) Uniform			
	NVIS/sec	NVIS/sec	(10sec int	tegration)			
2-IF continuum	1330	665	35	18			
4-IF continuum	885	443	23	12			
32-channel line	156	78	4	2			
64-channel line	81	40	2	1			
128-channel line	41	20	1.	1 0.5			
256-channel line	21	10	0.	6 0.3			

(

2

(

The above rate is about 38 kbytes/sec and, since SORTER has to read the data from disk as well, representative for the SORTER/GRIDER system as

2

well. Improvement by a factor 2-3 is possible by increasing the buffer size, and the use of virtual arrays. The maximum throughput of the SORTER/GRIDER link (DA11-B) is 500≈kbaud (50 kbyte/sec).

b. Sorting.

Sorting is only a temporary measure for the old databases. The results are about .0041 sec per VIS record, or about 41 kbytes/sec I/O rate, and a 6.8 kbytes/sec sort rate, resulting in a real-time breakdown for a 10 sec integration time for 32 line channels. However, using 2 independent disk controllers the rate will be twice as high.

c. Gridding/First phase Fourier transform.

From the tables it can be seen that the actual work in the gridding and gain correction process is negligable compared to the I/O time. The second phase of the Fourier transform depends on the filling of the U,V-plane and on the use of the transpose memory. The TM time seems to be a bit better than the earlier estimate of 15 microsec. For a filled U,V-plane I expect about 20 sec of actual AP time for a 2048 square map. Hence, the 52 sec in the table are largely due to the TM timing. I estimate an output rate of about 10 microsec/word at the moment. Improvement by a factor 2-3 will make the transfer time equal to the actual AP time.

d. Second phase FT.

This part is fully dominated by the transfer of data from AP to disk.

The rate is about 41 kbytes/sec. Again, increased throughput for the larger maps is possible with the use of virtual arrays.

A factor of 2 seems feasable this way. In the case of 3 Array Processors running, the actual time spent in doing the second phase will overlap with the gridding/first phase FT. The time spent in both processes will be about equal for a 2048/2048 map if there are about 15000 visibilities for uniform weighting, or 300000 for natural weighting, or reps. 66 and 132 minutes of observing at 10 sec integration time, 2-IF continuum. Note, however, that the output size is the determing factor. A 4k map of which only the central quart is used (aliasing!) takes the same time as a full 2k map.

Output to tape will be faster. Using the same size buffers as currently in the program, output to a 6250 bpi, 120 ips tape unit will reach about 120 kbytes/sec. However, since all I/O is on the unibus, interference will probably lower this number. (In effect a SORTER/GRIDER system with tape in the present set-up will run: 76+240=320 libytes/sec, however, the peak tape rate is 780 kbytes/sec, close to the unibus maximum of 1.2 M bytes/sec).

e. Reformating

3.