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July 22, 1982

This is an attempt to be more quantitative about the disk I/O 
efficifc*icy question. Given that we have a certain fixed amount of memory 
that can be used for buffers, is it better to fill the entire buffer in 
each I/O call or to fill half the buffer and do double buffering? There is 
no single answer since the relative performance varies depending upon the 
ratio of CPU time to I/O wait time.

The diagram shows a plot of normalized total job time for double 
buffering as a function of the ratio of CPU time to I/O time. The 
normalized total job time for double buffering is defined as the job time 
for double buffering divided by the job time for single buffering. The 
CPU time to I/O time ratio is defined in terms of times for the single 
buffering case.

For CPU-I/0 ratios of 2.0 and greater, double buffering is faster. At
2.0, double buffering reduces the job time by one third. At larger 
ratios, there is a smaller improvement. In this region, the gain in speed 
results from the "disappearance" of the I/O time since the I/O is done 
concurrently with the computing. The larger the amount of computing, the 
smaller the fractional improvement that we see by eliminating the I/O wait 
time.

Things are more interesting for CPU-I/0 ratios that are smaller than
2.0. In this case, the performance of double buffering varies depending 
upon the I/O time to get a half-buffer for double buffering versus the 
time to get a full buffer for single buffering. The lower curve assumes 
that the I/O time for the half-buffer is half as long as the I/O time £or a ^ 
full buffer. The maximum gain for double buffering occurs at a CPU-I/0 
ratio of 1.0. In this case, double buffering makes the job twice as fast.
As the CPU time becomes neglibi'^e compared with the I/O time, the double 
buffering performance becomes the same as the single buffering 
performance.

In reality, we cannot read in a half buffer in half as much time.
Some time ago Barry did some experiments which gave the following results:

Buffer size (disk blocks)
1 
2 
4 
8

I/O time (ms) 
17 
20 
19 
22
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Thus, the real situation is closer to the top curve, which assumes that 
the I/O time is the same for a half buffer as for a full buffer. When the 
CPU-I/0 ratio is 1.0, the performance of single buffering and double 
buffering is the same. For negligible CPU time, double buffering causes 
the job to take twice as long.

What will the CPU-I/0 ratio be for our tasks? Perhaps the calling 
program should tell the I/O routines whether single buffering or double 
buffering is to be done. How accurately can the person coding a task 
guess the CPU-I/0 ratio? Of course, if it is just an option specified in 
an initialization call, he could easily change it and see which way runs 
faster for a given task.

The above of course assumes that the data files are allocated as 
contiguous files and that most I/O requests ask for an integral number of 
disk blocks beginning on a block boundary. In this situation, the I/O 
time does not vary significantly for different size transfers. On another 
system (e.g., the VAX) these might not be valid assumptions.

The above also assumed that the task in question was the only thing 
running in the computer. What happens if you have multiple tasks 
accessing the disk? For heavy disk useage, each I/O request will take 
longer since the heads have to be moved. For our disks, the average head 
seek time is 30 milliseconds, with a maximum of 55 milliseconds. Thus, 
the I/O time might be doubled. This will mean the CPU-I/0 ratio for a 
given task will be lower. Thus, more tasks would be faster if single 
buffering were used.

If single buffering is used, there will be half as many I/O calls in 
a system. For a system with multiple concurrent tasks, there will thus be 
fewer disk seeks. Nobody can access data when the heads are moving, so 
this would allow a higher overall disk I/O throughput.
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THOUGHTS ON DISK I/O EFFICIENCY

Written by Jim Torson 
Version 1 

July 16, 1982

Three ways to improve the I/O efficiency (speed):

1. Read an integral number of blocks beginning on a block 
boundary. Data is transferred directly into the buffer 
rather than being broken up into two or three separate disk 
transfers. Eliminates' copying data from the one block 
intermediate buffer used by Al?s routines.

2. Read in larger buffer with each input. You wait fewer 
times for the disk to turn. This works because transferring 
several blocks in an I/O operation is frequently nearly as 
quick as transferring a single block. If the time spent 
waiting for the I/O was a significant part of the total task 
time, you can get substantial speed improvements. There 
may be problems with this technique when reading a file
backwards," i.e., reading line by line top to bottom.

3. Double buffer. You do some computation concurrently 
with waiting for the I/O. If the buffer is the same size 
as with single buffering, you wait for the disk the same 
number of times. You can at best only double the speed of
a task - only when the compute time is about the same as the 
time spent waiting for the I/O. In most cases, improvement 
is smaller. This of course requires two buffers. Thus the 
maximum line size that can be processed may be half as much.
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Ways to implement reading larger buffers:

L-l. Read into a large "hidden" buffer. User asks for lines 
or partial lines of data. Data copied into user's buffer 
as needed. (Some calls just copy data from system buffer to 
user buffer.)
Advantages:

a. Call is simple - user program can easily process 
map lines.
b. I/O routine is fairly easy to write.

Disadvantages:
a. Uses too much memory space. (May not be a problem 
if buffer is put in a core-resident overlay.)
b. Extra CPU execution to copy data to user's buffer.

L-2. User specifies a starting location and a pixel count. 
Data is read directly into the user's buffer (if an integral 
number of blocks starting on a block boundary is requested). 
(Eric's proposal.)
Advantages:

a. I/O routine is very easy to write.
b. No CPU execution to copy data from system buffer 
to user buffer (if integral number of blocks starting 
on a block boundary).
c. Caller can control the size of the buffer. 

Disadvantages:
a. Extra book-keeping needed by the caller if he 
wants to process in terms of map lines and if a buffer 
holds more than one map line. Also extra book-keeping 
if buffer is not an integral number of lines.
Also extra book-keeping if reading lines top to bottom.

L-3. User specifies a starting location. Data is read 
directly into user's buffer. Each call "gets" one map line 
(or a partial line). A pointer to the line is returned to tfie 
caller. Some calls just return an updated pointer.
Advantages:

a. No CPU execution to copy data (if integral number 
of blocks starting on block boundary).
b. Caller can control the size of the buffer.
c. Easy for caller to process forwards in terms 
of map lines. In this case the book-keeping is 
handled by the I/O routines.
d. If the I/O routines know that map lines are being 
read top to bottom, then the I/O routines could handle 
the book-keeping for reading backwards.

Disadvantages:
a. Calling program is a little bit more complex than 
if a^map line is returned at the beginning of the 
user's buffer.
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Ways to implement double buffering:

D-l. Similar to L-l. Read into 2 ’’hidden” buffers. User 
asks for lines or partial lines. Data is copied into user’s 
buffer as needed.
Advantages:

a. Call is simple - user can easily process map lines.
b. I/O routine is fairly easy to write.

Disadvantages:
a. Uses too much memory. (May not be a problem if 
buffers are put in a core-resident-overlay.)
b. Extra CPU exucution needed for copying data.

D~2. Similar to L-2. ' User specifies a starting location and 
a pixel count. Data is read directly into user’s buffer (if 
integral number of blocks starting on block boundary};. The 
I/O is queued. User must call a wait routine before using 
the data. (The same call could be used for non-aueued I/O, in 
which case it functions the same as L-2.)
Advantages:

a. I/O routine is very easy to write.
b. No CPU execution to copy data (if integral number 
of blocks starting on block boundary).
c. Caller can control the size of the buffer. 

Disadvantages:
a. Extra complexity in calling program to keep track 
of the two buffers.
Extra book-keeping needed by the caller if he 
wants to process in terms of map lines and a buffer 
holds more than one map line. Also extra book-keeping 
if buffer is not an integral number of lines.
Also extra book-keeping if reading lines top to bottom.

D-3. Same as D-2 except a read of a single line (or partial 
line) is queued on each call. (This is the proposed 
modified IMPS I/O.) (This is similar to old IMPS I/O except 
only transfer of a complete line was permitted.)
(The same call could be used for non-queued I/O, in which 
case it would appear to the user to function the same as L-l.) 
Advantages:

a* I/O routine is very easy to write,
b. No CPU execution for copy of data.

Disadvantages:
a. If a map line (or the desired piece of a line)
is much smaller than the buffer size, then part of the 
buffer space is not used.
b. Extra complexity in calling program to keep track 
of the two buffers.
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D-4. User specifies a single buffer. Each call gets half a 
buffer worth of data by waiting for the I/O that was queued on 
the previous call and then queueing the next I/O which goes 
directly into the other half of the user’s buffer. A pointer 
to the data is returned to the user. (This is similar to the 
way FITS works.)
Advantages:

a. I/O routine is fairly easy to write.
b. No CPU exucution to copy data.
c. Caller can control size of buffer.
d. Calling program book-keeping is only a little more 
complex than L-l or D-l.

Disadvantages:
a. User program book-keeping is a bit more complicated 
if you want to allow reading map lines top to bottom.

D-5. Similar to L-3. User specifies a starting location.
Data is read directly into user’s buffer. Each call "gets" 
one map line (or partial line) by waiting for a previously 
queued I/O and then it queues the read of the next line.
A pointer to the data is returned to the user. (ALPS I/O is 
similar to this except that lines (or partial lines within a 
map subsection) are read sequentially backwards or forwards.) 
Advantages:

a. I/O routine is fairly easy to write.
b. No CPU exucution to copy data.
c. Caller can control size of buffer.
d. Calling program book-keeping is only a little more 
complex than L-l or D-l.

Disadvantages:
a. If a map line (or the desired piece of a line) 
is much smaller than the buffer size, then part of the 
buffer space is not used.

Note that we could also consider schemes that are combinations of 
some of the basic types of schemes described above. For example, 
we could combine D-5 and L-3. An I/O operation will actually read in 
the maximum number of lines that will fit in half the buffer that is 
supplied by the user. Some calls would then just need to return an 
updated pointer which is within the same half-buffer. Other calls 
would have to wait for completion of the read into the other 
half-buffer.



In addition to considering the basic types of I/O schemes described 
above, we can consider various ways for the caller to specify the 
desired pieces of the map file to be read in. The following are some 
of the possible options:

Ways for caller to specify location in disk file for a read operation:

1. No specification. First read gets a block of data starting 
jat the beginning of the file. Next read gets the next 
.sequential block, etc.

2. Pixel number or byte address.

3. Column number, line number and channel number.

Places where starting location for read could be specified:

1. Nowhere. Applies to sequential reading of blocks of data.

2. In a single initialization call which specifies the map 
subsection that is to be processed. (This is the way AIPS I/O 
works.)

3. In a location-setting call that is separate from the read. 
(This is the way Eric's proposed I/O routines work.)

4. In the read call. (This is the way the old IMPS I/O works.)

Ways for caller to specify the amount of data to be read in:

1. No specification. Each call could get a single entire map 
line. (This is the way the old IMPS I/O works.) Or, each call 
could fill the entire buffer with pixels. (This is the way 
FITS works.)

2. Pixel count or byte count. (Eric's I/O routines.)
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Types of input processing that we^want to handle:

1. Line at a time in forward direction.

2. Partial line at a time in forward direction.

3. Sequential without regard to lines, columns, channels.

4. Partial line at a time in backwards direction.

,S. Partial line at a time at "random" locations.
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Now, which type of I/O scheme would be "best" for our use?

L-l. The need for an extra buffer makes this scheme 
undesirable. However, we might be able to eliminate this 
problem by putting the buffer in a core-resident overlay. 
(Also, the DISPLAY computer is not yet running with a large 
amount of physical memory. Things look promising though.)
This would still leave the problem of extra CPU execution to 
copy the data from the system buffer to the userTs buffer.
If L6-bit data is being read from the disk and converted to 

. floating point, then this isnTt a problem since we have to 
access the data for conversion anyway. How much of our disk 
data will be in 32-bit floating point format? And, how much 
of a problem is it to ‘copy data from the system buffer to the 
user buffer? Perhaps this scheme should be considered 
further.

L-2. For sequential processing of an entire map, this scheme 
would allow both a simple application program and efficient 
operation. For accessing a map line by line, the calling 
program could be kept simple by just having each call ask 
for the number of pixels in a line. However, in cases where 
a buffer could hold several map lines, the efficiency would 
suffer greatly since each I/O call would fill only a small 
part of the available buffer. If we are processing a small 
continuum map, this would probably not be a serious problem 
since there is a small amount of data anyway. However, in 
the spectral line case, the total amount of data to be 
processed could be large even though the line size is small 
enough that several lines would fit into the buffer. In order 
to improve the I/O efficiency, the application programs would 
have to ask for multiple lines in each I/O call and then 
do the book-keeping themselves. This scheme is thus not 
desirable for processing line by line.

L-3. For processing line by line, this scheme would require 
a slightly more complex calling program than would scheme 
L-2. The structures of the programs would be the same, only 
the data accessing would be different. An L-2 program would 
access the I'th element in the buffer by saying BUFF(I) and 
an L-3 program would say BUFF(I-K)FFSET), where OFFSET is the 
pointer to the beginning of the current line being processed. 
An advantage of this scheme would be that reading in multiple 
map lines with each call to the I/O system would be 
automatically handled without any additional complexity for 
book-keeping in the calling program. We could view this 
scheme as similar to L-2 except that the I/O routines take 
care of the book-keeping needed for reading in multiple lines. 
A program that is not concerned with line numbers, column 
numbers and channel numbers could still be written to process 
in terms of lines. This would result in extra subroutine



calls since the read routine would be called once for each 
map line rather than once for each buffer worth of map lines. 
A problem would be th&t the size of the map that could be 
processed would be limited by the line size that would fit 
in the buffer. This scheme seems to have worthwhile 
advantages and will be considered further below.

Before evaluating the various type of double buffering 
schemes, let’s consider double buffering in general.
, Given that you have a certain fixed amount of memory for 
buffers, is it faster to fill the entire space in one read 
or to do double buffering with buffers half as big? If the 
computing that the task has to do is negligible compared with 
the I/O and if the file is contiguous on the disk, then single 
buffering is better since you would wait for the disk to 
turn fewer times. If the file is scattered all over the disk 
then it probably doesnTt make much difference.
If the compute time is about the same as the I/O time, then 
single buffering will give you N cycles of read-compute, where 
each cycle is half read and half compute. If the read and 
the compute each take one unit of time, then the whole job 
will take 2N units of time. Double buffering 
would give 2N cycles of concurrent reading and computing.
The compute part in each cycle will take half as long as in 
the single buffering case. If each read (for half as much 
data) takes half as long, then we will have 2N cycles which 
are each one half unit of time long, i.e., half as long as 
the single buffering cycles. The whole job would then take 
N units of time and would be twice as fast as single buffering. 
However, an access to fill the half-size buffer actually 
takes nearly as long as an access to fill the full buffer.
Thus, total job time for double buffering would be nearly as 
long as for single buffering. If the compute time is large 
compared with the I/O time, then double buffering still dees 
not help much. It thus appears that for sequential 
processing of contiguous files, double buffering does not 
provide a significant gain in speed over doing single buffering 
with a buffer' that is twice as big.

The FITS program can have three concurrent things going on 
at one time: a disk read, computation (conversion of previous 
disk buffer to tape format), and a tape write (previously 
converted data). Does this really speed things up over just 
using a larger disk buffer? (The size of the tape buffer is 
fixed by the FITS definition.)

There may be a case where double buffering gains you nearly 
a doubleing in speed. Suppose you are processing a subsection 
of a large map and two partial map lines will fit in your 
buffer space. If your buffer isn’t big enough to hold enough
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data to contain more than one of the partial lines of interest 
then for single buffering you would still have to make an 
I/O request to read in each partial line individually. If the 
compute time is about the same as the I/O time then double 
buffering could double the speed of the program.

If there are other tasks running in the system, double 
buffering may even make things slower since you will have more 
separate I/O requests and thus more time spent waiting for 
head seeks.

D-l. This double buffering scheme has the same problems that 
L-l has. If you have -the memory, L-l would be a better 
scheme to use.

D-2 and D-3. These schemes are undesirable because they 
cause too much complexity in the calling program for keeping 
track of the two buffers.

D-4. This scheme is undesirable since it requires too much 
complexity in the calling program for the case of reading 
line by line.

D-5. As discussed above, in most cases, scheme L-3 is better. 
However, this might be useful for reading partial lines if 
a partial line would fit in a half buffer but the whole buffer 
cannot hold a contiguous piece of the file which contains 
more than one of the partial lines of interest.
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Before describing a proposed set of routines for our use, let's list 
the main concepts to be used in the design:

1. Many applications are most conveintly done by processing 
in terms of map lines. The routines will be based on the 
L-3 scheme. When the caller asks for a line of map data, 
the available buffer will be filled with map lines so that 
subsequent requests from the user can just return an updated 
pointer without actually accessing the disk. In some 
cases, the D-5 scheme will be used. The caller will not
.need to know which scheme is being used by the I/O routines.

2. There will be a separate call to access the map data 
sequentially without regard to map lines. This will allow 
easy coding of things like a copy program which will not have 
any limit on the size of the map that can be processed.

3. A map line buffer similar in concept to the old IMPS 
scheme will be used. The buffer will consist of space for 
some book-keeping data in addition ro the actual data buffer. 
One of the book-keeping items will specify the size of the 
data buffer in this particular map line buffer. All tasks 
will be coded so that they can process at least a partial line 
that contains 1024 floating point numbers. However, some 
tasks may use larger map line buffers for effiency. Some 
tasks such as map copy or FITS will be capable of sequentially 
processing any size map. Other book-keeping items in the
map line buffer will keep track of what part of the map file 
is currently contained in the data buffer.

4. When a map is opened for read, the caller can specify 
the type of line by line access to be used: forwards, 
backwards, or random. For forwTards or backwards, the read 
routine will fill the buffer with lines either beginning or 
ending with the requested line. For random access, the 
routine will only read in the requested data. (This will
be useful for reading corresponding lines along the frequency 
axis of a spectral line cube.) If the caller does not 
specify the mode, or specifies it incorrectly, things will 
still work properly but there may be a loss of efficiency.

5. We will avoid having A1's I/O routines break up the disk 
disk transfer into two or three pieces whenever possible.
This will be done by asking for an integral number of blocks 
that begin on a disk block boundary.
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In addition to the access mode specification in the map open routine, 
the following are some proposed routines:

SUBROUTINE SRDMIO(MID, ML, NUM)

This routine does a sequential read of the map file. ML is 
a map line buffer. The buffer is completely filled with pixel data. 
The pixels are converted to floating point format if necessary.
NUM returns the number of pixels that have been read in. This is 
the number of floating point pixel that will fit in the buffer except 
that there might be a partial buffer at the end. This returns zero 
when you have reached the end of the file.

SUBROUTINE RDMIO(MID, COLUMN, LINE, CHANEL, NUM, ML, OFFSET)

This routine "reads" a line or partial line of the map. 
COLUMN^ LINE and CHANEL specify the starting location and NUM 
specifies the number of pixels desired. If COLUMN is one and NUM is 
MAPNX then it gets an entire line. ML is the map line buffer that 
returns the desired data (in floating point format). OFFSET is the 
index into the map line data array which points to the element just 
prior to the first element being returned. For example, if we used 
the files ML1.DCL and ML1DAT.DCL to define the map line buffer, the 
following would read in line 5 of a map and calculate the sum of the 
pixel values in the line:

CALL RDMI0(MID1, 1, 5, 1, MAPNX, ML1, OFFSET)
TEMP =0.0
DO 100, I = 1, MAPNX

100 TEMP = TEMP 4* ML1R( 14-OFFSET)

Another way to code the loop might be:

DO 100, I = l+OFFSET, MAPNX-fOFFSET *
100 TEMP = TEMP 4- ML1R(I)
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The following is a sketch of the algorithm that might be used by RDMIO. 
For simplicity, the following assumes we are only using the L-3 type 
single buffering. It is left as an exercise for the student to put 
in the D-5 type double buffering where appropriate.

1. Check for proper access type:
If access type is not initialized

then set access type (in MID) to "line-by-line" 
else if access type is "sequential" 

then error;

2. See if we already have desired data:
If specified data is already in the buffer

then return a pointer to it;

3. See if buffer is big enough:
If buffer will not hold NUM floating point numbers 

then error;

4. Calculate file location of requested data:
START = file address of first requested pixel;
MBYTES = number of bytes in requested number of pixels;

5. Align on disk block boundary:
If NBYTES at START is not an integral number of disk blocks 

then begin
Save START and NBYTES;
Adjust START and NBYTES to describe integral number of blocks; 
If NBYTES of data (converted to floating point) wouldn’t fit 

in the buffer then restore old START and NBYTES; 
end; - ¡g

6. Anticipate next request:
If direction is not "random"

then begin
If direction is "forward"

then Increment NBYTES to include as many map lines as will 
fit in buffer (in floating point format) 

else Decrement START to include as many map lines as will 
fit in buffer (in floating point format);

end;

7. Read and convert the data:
Ask A1 for NBYTES of data beginning at START in the file;
Convert the data to floating point format (if necessary);


