
National Radio Astronomy Observatory
Very Large Array

15th November 1982
To;;

From:

Subject:

Addressee
Bob Duquet

A FORTRAN Standard Commands Package

The attached document describes the results of work that I have
been doing during the past two months. It was, essentially, a
easibility study whose purpose was to estimate the amount of effort

be required to replicate the Standard Commands package in FORTRAN 77. °

The were several reasons why such a study was thought to be
worthwhile. First, we need to maintain (actually, to re-establish) a
standard interface between our users and all the software that they
need. That software is now being dispersed across many machine types
u t e original user interface was implemented in a language (SAIL)
that is available on only one machine.

A related reason is the likelihood that some day we will want to
mv?rate ^rom t*ie DEC10 to newer hardware. Even now, we ought to be
able to evaluate alternatives such as the Jupiter or CRAY or HEP
machines without the distraction of a machine-specific software
library. For that reason a committee of two (Don Wells and I) has
been charged with evaluating present and foreseeable programming
anguage options. This study can be considered a part of that

committee work.

Another reason for this study was to see if our software
productivity could be improved. The SAIL Standard Command package,
as elegant as it is in concept, is nevertheless the foremost reason
j ■maintenance of our production programs is so painfullv
difficuit. The problem lies in an abuse of SAIL's high-level macro
acility. The very deep nesting of these macros in the Standards

Command package has two ill effects: it requires that all Standard
Command code be recompiled for each modification to each program no
matter how trivial the program or how slight the modification: even
more devastatingly, it translates the program text into a pile of
mush that is unrecognizable by the author.

initial Plan was to use the SORTER machine for this study
PDPll software includes a FORTRAN 77 compiler, the SORTER machine was
available for software development and, of course, the most
immediate use for a FORTRAN Standard Commands package would be in
conjunction with pipeline software which is expected to run on the

SORTER machine. (Even though much of the relevant software has
already been written without the benefit of such a package.)

develon^1̂ ^ day!\of starting the project, the SORTER machine
— Ubardi?are Problems that kept it out of service for the next
■ ■ I I n what turned out to be a rather fortuitous move, the
fVAY?rmin? h uas involved in this project was transfered to a VAX
I B i jast at the the SORTER troubles started. The move was
thp M B G H m H bacause the VAX implementation of FORTRAN 77 is
the full ANSI standard whereas the FORTRAN 77 available on the PDP11
s l a n X l ^ I t n f e m ^ i 5^ ^ & £~ (non-

continued only far enough to be a proving ground for ideas about the
P ge structure. It also demonstrated the applicability and
usefulness of FORTRAN 77 features that were not available in eLlier versions of the language. earner

Here is a summary of the results of this study:

a) The feasibility of the project has certainly been demonstrated.
.n addltlon> the study has demonstrated the feasibility of
including in the package certain enhancements that were suggested. were

b) A set of specifications for a FORTRAN Standard Commands package
has been developed and is being circulated herewith for
suggestions and comments.

c) A partially completed FORTRAN version of the Standard Commands
package now runs on a VAX. It should be relatively easy to
m° X .Z . ose Pr°grams so that they conform to whatever final
specificati°ns emerge from discussion of item b above. Thev
therefore represent a large first step taken toward achievement
of a fully useable implementation.

d) A program that served as a test bed for the above can now serve
as a working model of how the (existing version of the) package
looks to a user. It will also reveal details of the programming
steps that must be taken in order to use the package for a
specific application.

e) The experience gained during this study has been used as the
basis for estimates of the time and effort required to create a
complete FORTRAN package for each of the machines we presentlv
use. With somewhat less confidence, we have also ̂ rejared
inrn . of..the time and effort that would be needed to
incorporate these packages into the present library of user-
accessible software. y

FEASIBILITY OF A FORTRAN STANDARD COMMANDS PACKAGE

PART :

PART ;

PART 2

PART 4

PART 5

PART 6

PART 7:

Robert T . Duquet

November 1982

* INTRODUCTION ~ A summary of what was done and why.

: PACKAGE SPECIFICATIONS— A distillation of what seems to
be both feasible and desirable. This portion should be
examined carefully by anyone who has a stake in what the
final product (if any) will look like.

: DESCRIPTION OF THE EXPERIMENTAL PACKAGE - Describes an
existing prototype package. This portion emphasizes the
structure of the package and the programming techniques
that were used in writing it.

DOCUMENTATION OF THE EXPERIMENTAL PACKAGE - This is mostly
a collection of the comment lines abstracted from various
routines of the experimental package. It is aimed
primarily at those who might be interested in the internal
workings of the package.

UTILITY ROUTINES - Basically a continuation of the
previous section, Part 5 describes a set of routines
written for this study but of wider usefulness.

THE TEST BED" PROGRAM - Shows the full text of a small
program that exercises the package. It is included here
for those who would like a paradigm of package
utilization. 6

B B B B B G OF TIME AND EFFORT - This is the payoff. These
estimates should help those who must decide whether or not
a completely operational FORTRAN version of the Standard
Command package is worth the effort required to write it.

1

Feasibility of a FORTRAN Standard Commands Package

Part 1 : INTRODUCTION

Until recently, all of the software needed by our users
consisted of DEC10 programs that incorporated a standard user
anter^ace " the Standard Commands package. The relatively few PDP11
programs were driven by users through standard-conforming DEC10
programs.

The advent of the AIPS system on the VAX, with which the user
interacts directly, has changed this situation; it requires
familiarity with a different user interface. Since our users will
also be required to interact directly with the new "pipeline"
software now being written for the PDPlls, there is a real
possibility that yet another user interface will be created.

This trend can be reversed only if the programming tools that
provide the user interface are made machine-independant. This report
describes work done to evaluate the feasibility of replicating the
DEC10 Standard Command package in FORTRAN 77.

The overall question of feasibility involved four parts. One
was the extent to which the SAIL Standard Commands package utilizes
TOPS10 system services. If the dependency were large, differences
between operating systems might make it difficult to replicate the
DEC10 package on other machines.

A second source of problems might be the absence of recursion in
FORTRAN. (The ANSI committee for FORTRAN is currently debating the
suggestion that recursion be allowed in FORTRAN 8X; it is not allowed
in FORTRAN 77.) Since SAIL does allow recursion, a great deal of
effort might have been required to reformulate recursion-based
algorithms used in the SAIL package.

Facilities for handling character data have been notoriously
absent from previous versions of FORTRAN; in SAIL they are excellent.
Since the Standard Commands package accepts free form input which
must be parsed according to fairly complex rules, the string­
handling features of FORTRAN 77 needed to be evaluated for this
application.

Finally, it was anticipated that communication between FORTRAN
subprograms would be awkward compared to the automatic communication
that exists when high-level macros blend Standard Command variables
and user code into one monolithic program.

It turns out that none of these difficulties was particularly severe. J

3

Feasibility of a FORTRAN Standard Commands Package

Ho Wvn£ 3 f6W miIî0r excePtions> the SAIL Standard Commands package
NOT use a large number system-specific services. Typical

exceptions are: capturing the compilation date and time (for run time
documentation) and ascertaining the identity of the current user (so
that file names can be constructed appropriately).

rnt, The °nly siSnificant use of recursion was found in the NEEDNUM
I P M H recognition of the allowable date and time formats

volves identification of numerous subfields. In the SAIL package
itsW^ h f ° T T lent t0 USe the Same C°de to parse the total field and its subfields i.e. ro use recursion. This is no big deal however. For
one thing the depth of recursion is very limited and known in
s W l e 6’ f°rn an°thar’ I is questionable design to include in a
ingie procedure a basic service function (that of identifying the

^ ™ ° Î hT eri t3) “ d 3 higherlevel task (Parsing a complex ing that consists mostly of non-numeric characters). In other
words, splitting the analysis of date and time into a separate non-
recursive procedure for FORTRAN, is probably an improvement.

The CHARACTER variables of FORTRAN 77 are certainly not as
convenient to use as the STRING variables of SAIL. The most important

FORTRAM1106! °f course’ 15 mfiXSd Pre_determfned length of the TRAN variables. (Dynamic assignment of CHARACTER variable
storâge, a non-standard extension of FORTRAN 77, should be avoided
H H H H H Ë É I H Wï°le’ the CHARACTER-handling features of
£acS£f Th? the were adequate for writing the Standard Command
package. The situation on the PDP11, however, may be an entirely
FORTRAN 77 I 15 precis,ely in this are^ that the subset of
l a n ^ e d lffe rs most markedly from the full version of the

A FORTRAN Standard Commands package could be designed as a self-
contained task that would communicate with other tasks through
system-dependant task-task services. That was not considered
attractive possibility. It would severely limit the adaptability of
the package to special program requirements. ■

FORTRAN provides several alternatives for communication between
? n Î K SramS Programs that CALL them. Straightforward use of a
reactedrerat H U H pr°gram Parameters would be defined, was rejected It would have meant recompiling the entire package for each
change that affected the COMMON area (e.g. for Pthe ïrequentîy
C O M M O N addltl0n of special-purpose commands). Only two small
COMMON areas were used in the experimental package; thev define
quantities that should change only infrequently, if ever. lie chosen
alternative, inter-modular communication via arguments, turned out
to be quite adequate for the needs of the package.

make îr summary then, the study showed no special problem that would
naika^e ^ f fX C U l t to replicate the existing DEC10 Standard Command package m a more machine-independant language.

4

Feasibility of a FORTRAN Standard Commands Package

Part 2: PACKAGE SPECIFICATIONS

User interface

Ideally, differences between the current DEC-10 Standard
Command package of SAIL macros and a new FORTRAN version should all
be upward compatible . In other words, users should be able to
continue using programs as they had been doing previously, without
even being aware of changes that had been made. In practice, some
improvements that have been suggested (such as a change in the
appearance of the HELP text) would be fairly obvious to users. (Of
course, changes that were sufficiently popular could be
"retrofitted" to the older SAIL package.)

Some of the proposed changes are:

i) The response to the HELP command should accommodate longer,
easier-to-read text.

ii) Where references to command "types" is now allowed the new
package should allow the full freedom of refering to individual
parameters.

iii) new package should make it easier to modify current
parameter values by providing a line-editing capability.

The FORTRAN package should supply all of the following user
services that are a v a i l a b l e in the present package:

i) Default values that are most reasonable and/or most convenient
for a given program should be inserted automatically for each
input parameter.

ii) The user should be able to ascertain the options available for
each input parameter. (The "Help” service).

iii) The user should be able to review the current values of each
program parameter (the "inputs" command) and should be able to
alter any or all of them. Iterative review and modification
should be allowed until the user is satisfied.

To spare the user from the tedium of repeatedly selecting the
same options, parameters should be initialized to the values
automatically saved the most recent time the same program was
run by the same user from the same terminal.

Commands should be readable from a disk file as well as from a
terminal (indirect command specification). That file should be
a standard ASCII file that the user can create and modify
through the standard system text editor.

5

Feasibility of a FORTRAN Standard Commands Package

« 1 Should be protected from typing errors. Invalid input
Id be rejected, the user should be notified of the error

immediately, and the most recent valid parameter value should be retained.

Programming Features

To the programmer the FORTRAN Standard
expected to look very different from the SAIL
differences the services provided to the
similar. In particular:

Command package WILL be
version. Despite those
programmer should be

i) It should
parameter.
units.

be simple to determine the current value of any
e values should always be in standard internal

ii) It should be possible for each program
Command to provide appropriate default
override the ones built into the package.

that uses a Standard
parameter values that

in) The package should accommodate the invention of new, special-
purpose commands as required by individual programs.

1V) i m i include.a set of library routines that can be used to
efme those special-purpose commands. (For example, a routine

to parse the user-supplied input.)

V) There should be hooks available to intercept and modify the
input and output to and from specific command routines. (A
slight generalization of the "Special Help" and "Special Exit"
features of the SAIL package.) F P 1 tx 1

Structure

<. • tt 71,6 structui; ■ F0RTRAN package „ill have to differ from the
SAIL version. The difference should be exploited to increase programmer productivity. ^ increase

i) The package should consist of subprograms rather than high-
. ! H B H a result, debugging a program should no longer
be the terribly difficult task that it is no„. (The d«plv
nested macro, of the SAIL Standard Command package convert
the^programmerO11 ^ lnt° S°” “ t0tally l a m i n a r to

n) Program development should be speeded up because the FORTRAN
package will not have to be recompiled for each minor alteration
to each program it serves. (The SAIL high-level macros produce
voluminous source code that becomes an intrinsic part of the
program using them. They can convert a triv^l H
with large compilation requirements.) Sram into one

6

Feasibility of a FORTRAN Standard Commands Package

Part 3: DESCRIPTION OF THE EXPERIMENTAL PACKAGE

An Overview

The Experimental FORTRAN Standard Commands Package, which will
be designated by the initials "XFSCP" in the rest of this report, is
a collection of independently-compiled subprograms. The svstem
linker will automatically include the required XFSCP modules into
any program that needs them - provided, of course, that the linker
has access to the library in which the XFSCP modules are stored.

Communication between XFSCP modules and between the package and
the program it serves occurs primarily through arguments in CALL
statements. The two areas of "named" COMMON are defined in a small
FORTRAN source file that can be "INCLUDED" in the source for any new
special-purpose command. These areas do NOT have to be part of the
root segment of overlaid programs.

XFSCP should be CALLed from a MAIN program whose sole
purpose is to initialize the package; the real work to be done by
programs that use the XFSCP should be carried out in subroutines. In
particular, for each program there must exist a subroutine named ,fG0n
which will be called by the XFSCP whenever the package encounters the
GO command in the input stream. Any text that follows the word GO in
that command will be passed intact to the GO subroutine.

This arrangement has three main advantages. First, it lets the
XFSCP initiate the actual work by a CALL rather than by a RETURN
statement; control is therefore retained in the package where it
should be. Second, it means that there is a unique entry point to the
program from the package; this is good structure in principle. Third,
it lets most of the package be overlaid (when necessary) by almost
all of the program being served.

The XFSCP differentiates between commands on the basis of their
purpose and̂ origin. The different types of commands are treated in
radically different ways.

The first type of command consists of those that request some
ACTION on the part of the XFSCP. (These are: GO, HELP, EXPLAIN
INPUTS, GETCOMMANDS, SAVE, SETDEFAULTS and the various aliases for
STOP. A brief description of what each of these does in the XFSCP is
given in a later section of this report.) The action-requesting
commands are executed directly by the XFSCP with no opportunity for
intervention by the program being served. They cannot be removed from
the package even when they are not needed in a given application.
They must not be redefined (by a routine using the same name as one
in the XFSCP). In several ways then, action-requesting commands are
protected .

7

Feasibility of a FORTRAN Standard Commands Package

H ^ second type of command recognized by the XFSCP consists of
those that assign a value to a program parameter (or to a set of
parameters). This category includes all standard commands not listed
XFSCP6)PreV1°US Paragraph- (The? have not all been implemented in the

The execution of parameter-setting commands is mediated through
common master routine which provides a convenient point at which

communication to or from specific commands can be monitored
¿hfTtTndeardan%sCpaltered' I H i °aSeS’ pro§rams may supercedeversion version of a command by supplying their own

It will be very easy to increase the repertory of "standard"
parameter-setting commands but this should only happen after there
addition.nSUS ^ definition of "standard" for each proposed

Tbe third type command recognized by the XFSCP are those
med as part of a specific program in order to serve its unique

requirements The special commands are handled through a "master"
The SsCP U b I d i f f e r e n t fro,T fbe one used for standard commands,
m t f h ""I — 3 Stub version of the special master
commands. I ®d int° proSrams that d° not require special

as Ü H I °f Íhe/ 0RTRAN code for the "stub" should be used
framework of an actual special master routine whenever one is

íest^f t h ^ X F ^ already c°ntains the standard interface to the t of the XFSCP and it only needs to be edited to recognize the new
mmands being defined. The special master routine then merely

relays information between the special commands and the rest of the

v_ -i_ M l library contains a set of utility routines that should
W m m a minimum the amou^ of programming required for each
special command There are library routines to normalize input, to
parse it, to check consistancy, etc. P

Note that a special command is not limited to setting parameter
values; it can do anything the programmer wants it to do In
particular the activities of these commands can represent
substantial encroachments on the GO function. A certain amount of
restraints therefore appropriate since this is closely equivalent
to writing program FUNCTIONS that have "side effects”; a practice
generally considered undesirable. practice

shown^n H U ° l a Skalepal ("do-nothing") special command is own m a later section of this report where we describe the test
bed program used in this study.

At least conceptually, each parameter-setting or special
t h ™ aa"cc«t r J ' lf-contf,ined entity- The action-requesting coLands that accept references to parameter-setting commands carry out their

8

Feasibility of a FORTRAN Standard Commands Package

function by polling the routines for each command included in the
program. For example, the "HELP" command does not contain ANY text;
it merely scans the list of commands being used, calling upon each in
turn to supply or display its own text. (Text for a given command is
not duplicated; it is defined in one, and only one, location.)

This modularity ensures that one need not recompile all of the
XFSCP in order to create a special command or to modify a standard
one. It reduces the space requirements of the XFSCP package to what
is needed for commands used. One slight drawback to this complete
modularity is the absence- of a COMMON area for parameter values.
Programs that use the XFSCP MUST obtain the latest value of
parameters by querying the appropriate command routine. Normally
this only has to be done once. The exception occurs when XFSCP
services are requested from within the GO phase; the value of each
potentially altered parameter must be checked after every return
from the XFSCP.

Initialization

The FORTRAN Standard Commands package is initialized by a call
to the subroutine SCINIT. The XFSCP expects to receive the following
information:

a) The name of the program being served.

b) The version number of the program beinz served

c) A succinct text containing a reminder the program1s purpose. It
will be displayed for the use each time the program is started.

d) A list of names that identifies the parameter-setting and
special commands used by the program.

e) Four integers to be used as logical unit numbers by the package.
If the numbers are zero, the package will use LUN 5 for I/O to
and from the user’s terminal, LUN 7 for the file in which
parameter values are to be saved and LUN 8 for indirect command
files. (A better method might be to write a FORTRAN equivalent
of SAIL s GETCHAN to dole out LUNs on request.)

Communication Conventions

The two areas of named COMMON used by the XFSCP contain the list
of Logical Unit Numbers currently assigned, the list of parameter­
setting and special commands being used by the program being served,
a work space shared by standard modules and a few other miscellaneous
items. Further details are documented in a later section.

9

Feasibility of a FORTRAN Standard Commands Package

The subroutine for every parameter-setting and special command
is defined in terms of the same set of four formal parameters ("dummy
arguments). The first is an INTEGER numeric code that designates the
service being requested from the routine. The interpretation of this
code is described below. The next two arguments are CHARACTER
variables through which text can be passed to and from the command
routines. The last argument is a REAL variable in which a parameter
value can be returned to the caller. Since FORTRAN subroutine calls
are by reference”, this final argument can equally well be an array
of REAL variables when appropriate.

Here is the numeric code by which the first argument designates
the service requested by the caller:

1- The caller wants to have all parameters defined in this command
set to their default value(s). If the second argument is not
blank, the caller is simultaneously specifying what the default
values should be for this command for this program. The
specification is a CHARACTER string identical to the one that
would be typed in the input stream to set the command parameters
to the desired value(s).

2- The XFSCP has encountered the name of this command in the input
stream. The routine should do whatever is supposed to do
whenever the user types this commandj usually to give new values
to one or more parameters. The second argument is the string
that followed the command name on the input line.

3- The INPUTS command has been encountered in the input stream. The
caller therefore wants (in the third argument) the text that
should be displayed in response. The caller will take care of
doing the actual display.

4- Caller wants the string that is to be SAVE’ed. It should be
supplied as the value of the third argument. (Caller will do
whatever actual I/O is required.) This and the previous
function should almost always be identical.

5- Caller wants to have the HELP text output on LUNTTO.

6- Caller wants the value of one or more parameters which will be
expected in the subsequent arguments. The specific values to be
returned are very much command - dependent. For example, the last
argument could be either the address of a scalar variable or the
starting address of an array of real values. The next-to-last
argument can be used to return character values. Some complex
commands may require that the second argument identify which
among several possible responses the called wants.

10

Feasibility of a FORTRAN Standard Commands Package

Obtaining XFSCP Services During the GO Phase

The present DEC10 Standard Commands package interacts with the
program user only when the program starts or re-starts. There is no
provision for interaction with the user during execution of the
program s GO phase. This effectively limits all of our operational
programs to a quasi-BATCH mode of operation.

on u"1116 H I Wil1 resP°nd to a service request originating from the
GO phase of a program. In its present form, the XFSCP then lets the
user o anything that could be done during initialization (i.e.
ef? i \ the ?° Phase was entered). In some cases that much freedom

undesirable. With a little additional programming the XFSCP
could limit the commands available to a user at different stages of
program execution. The GO phase would merely pass a list of enabled
commands to the XFSCP as part of its calling sequence.

The EDIT Command

thS study at was suggested that users would find the
andard Command package much more convenient if they could edit

W m M V3lUeS instead of ^typing them. The model suggested was the GYPSY program used at Groningen.

A full text editor is a major piece of software, far outside of
°f ■ XFSCP- Jt did seem possible, however, that a ONE-

LINE editor with much of the desired functionality would be feasible.

A relatively small routine was written to test this conjecture.
It is system dependant because it requires "transparent" I/O
(control sequences are simply passed along to the program) and
suppression of automatic echoing. FORTRAN programs on the VAX have
access to this type of I/O through calls to the VMS operating system.

The editor recognizes only three escape sequences - all others
are simply ignored. Two of the escape sequences are used to move the
terminal cursor through the line being edited; the third is used to
delete a character from that line. All other characters except
carriage return are inserted in the line at the cursor position as
they are read from the input terminal. A carriage return terminates
editing of the line currently being processed.

• U The edltor works by calling the appropriate command routine
!?th * r^ uest for the text that is normally displayed in response to
the INPUTS command. The editor displays that text but does not end
the line normally; instead, the cursor is left at the end of the line
that has been displayed. The text continues to be available to the
editor m a memory buffer. Whenever the editor accepts from the
terminal a character or control sequence (which it interprets as a
command to alter the text or to change the position of the cursor)

11

Feasibility of a FORTRAN Standard Commands Package

the buffer is updated and the latest version of the line (and cursor)
is rewritten in such a way that it covers the text that was
previously displayed on the terminal screen. Upon receiving a
carriage control character, the editor again calls the appropriate
command routine, this time with a request to accept the modified text
as input to the command. The loop (get text, change it, feed it back)
is repeated until a carriage return is the first character received
after a line has been displayed.

Editing that creates invalid input will be rejected immediately
by the^command. The text supplied by the command in response to the
editor s next request for INPUTS will show no change from its most
recent valid content. Multi-line texts (involving ellipses) must be
edited one line at a time but feedback to the command routine takes
place only when the full text has been edited (i.e. the loop is
closed only after receipt of the carriage return for the last line in
the text).

The editor is invoked by the command EDIT. If no argument is
supplied, all the command routines used by the program will be polled
by the editor. The current parameter values for each command in turn
can be altered or accepted as they stand. The name of a parameter-
setting special command may be used as an argument for the EDIT
request, in which case only those parameters set by the specified
command will be edited.

The editor will be invoked automatically whenever the user
types the name of a parameter-setting or special command
unaccompanied by the text normally supplied as input to such
commands.

Using a Graphics Cursor as Input

It has also been suggested that the FORTRAN Standard Commands
package should be able to use the position of a cursor and other
values obtained from a graphics device as an alternate form of input.

The XFSCP contains nothing at all that would prevent one from
writing a new command that would read and properly interpreted such
input. Furthermore, there is no reason why such a command could not
call upon the one-line editor to enable modification of values
obtained from the alternate device through the main terminal
keyboard.

At present all input to all commands is handled in one routine.
The GETCOMMANDS command is implimented by a simple redefinition of
the symbolic logical unit number used in that routine. (That LUN is
one of the items in named COMMON.) It should be utterly trivial, one
or two lines of code, to define a command that changes the input LUN
to a keyboard on some other device.

12

Feasibility of a FORTRAN Standard Commands Package

Deliberate Omissions

The XFSCP has dropped the notion of command "types". The reason
is that all appropriate action requests in the XFSCP have two forms;
they can refer either to ALL parameter-setting or special commands in
the program or to an INDIVIDUAL command. Since one can list the
current parameter values, set the defaults, edit or ask for help
concerning any individual command, the concept of command "type" is
not really very useful any more and would be a nuisance to impliment.

For the sake of convenience, the XFSCP has dropped the ability
to read multiple commands from a single line of input. This feature
does not seem to be particularly valuable; in fact, several long-time
users of the SAIL package were unaware of its existance. When the
XFSCP encounters a line containing more than one command it generates
an error message and rejects ALL commands on that line.

The PARAMETER-Setting Commands in XFSCP

Not all of the presently-used standard commands have been
included in the XFSCP; only enough to conduct the tests pertinent to
this project. The ones that have been done and that are more or less
complete are:

ANTENNA ANTENNAS REFANT REFANTS

IF IFS IFPAIR IFPAIRS

SOURCE SOURCES CALCODES DBNAME

The ANTENNAS command includes:

the "*" notation for "all antennas",
the j, k, ..." notation for "all but ...",
and the default assignments that accompany the WITH option.

The DBNAME command has been coded to include all the "sticky"
attributes of file names and file qualifiers. This command was a good
test of the code to handle continuation lines in input, saving and
editing.

The indication that the commands listed above are "more or less"
complete refers to the fact that none has ever actually been used in
a real program. In fact, the portion of the commands that returns
parameter values to a calling program has been deliberately ignored
(for now) because it was not needed for the purposes of the study.

13

Feasibility of a FORTRAN Standard Commands Package

The ACTION Commands in XFSCP

norT A11 °5 thS ACTI0N'requesting commands of the SAIL package one
S L p COmr e 5defn d -:-neW f iaS f°r "QUIT" have I M the
SAIL "version In BBSB COmmand maF differ slightly from the
commands are:' alPhabetical order the XFSCP ACTION-requesting

F D T rp a

w a s " £ d £ £ £ £ “ “ ^ Si"Pl<> °ne'Hne e<Ut°r *hich
EXIT, FINISH, QUIT or STOP These are all aliases for a request to wrap

things up and return to the operating system.

EXPLAIN detailed information about the program. (Basically
it just writes on the terminal the content of an ASCII file.)

Designates_a^file which is to serve as a new (temporary)

GO

HELP

INPUTS

SAVE

Indicates that parameter setting is complete
i;aÌ:T1leaSt tainp°rarily) and that the work of the program
being served should be started (or continued).

Asks for information about one (or all) program parameters

Requests a listing of current value(s) assigned to all
(or to an individual) program parameter.

Requests that all current values of program parameters be recorded on a disk file. P^imeters De

SETDEFAULTS Requests that the current value of all (or a single')
parameter be set to a default value which may differ f r o m * ™
one program to another.

BBBHflH ACTI0N-requesting commands could be addedbut were NOT tested in the XFSCP. Among the ones suggested were:

A command to transfer a program from current interactive
(terminal) control to batch control. Task shedding would be
very system-dependant of course.

A command to abort a job from the XFSCP. This might be as simnl*
as a trap for the <CNTL C> character. P 6

14

°
°

o
n

Feasibility of a FORTRAN Standard Commands Package

Part 4: DOCUMENTATION OF THE EXPERIMENTAL PACKAGE

C THIS IS SCCOMMON. DCL

Here is the list of recognized ACTION-type commands.
It is initialized by the BLOCK COMMON called SCOMMANDS.

PARAMETER (NNSC=12)
CHARACTER*12 SCCNAM(NNSC)

Here is the list of built-in PARAMETER-setting commands.
It is initialized by the BLOCK COMMON called SCOMMANDS.

PARAMETER (NNSP=40)
CHARACTER*12 SCPNAM(NNSP)

C The following array will contain the name of all commands used
y a program (including the name of special-purpose commands).

 ̂ it is initially set to blanks in the BLOCK COMMON.

PARAMETER (NNUX=50)
CHARACTER*12 SCPUSN(NNUX)

(This flag tells of the current use of an auxiliary input file
(consequent to a GETCOMMANDS command). XXXX is a dummy.

L0GICAL*1 USEAUX, XXXX

This is the name of the file used for saving parameter values.
CHARACTER*20 FILENM

These are the default logical unit numbers used by the package.

INTEGER LUNTTI, LUNTTO | LUNCOM, LUNAUX

H®re H W°rk area* I is Placed in COMMON so that it can be
shared by manyroutines. User-defined routines should keep their
grubby little hands off of it. P

CHARACTER*400 WRKSTR

There are two named COMMON areas because some versions of FORTRAN 77
(such as on the PDP1I) can't mix character variables with other
types in the same COMMON. (Isn't that silly !)

COMMON /STDC01/ FILENM, LUNTTI, LUNTTO, LUNCOM, LUNAUX
1 NSPUSD, USEAUX, XXXX

COMMON /STDC02/ SCCNAM, SCPNAM, SCPUSN, WRKSTR

15

Feasibility of a FORTRAN Standard Commands Package

BLOCK DATA SCOMMANDS

INCLUDE * SCCOMMON.DCL/LIST1

This counts the number of parameter-setting (or user-defined)
commands used by the program.

DATA NSPUSD/0/

This initializes the area used for selected commands

DATA SCPUSN /NNUX*’ '/
Here are the default LUN assignments

DATA LUNTTI, LUNTTO, LUNCOM, LUNAUX /5,5,7,8/
DATA USEAUX /.FALSE. 1

This is the list of Standard PARAMETER-setting commands

DATA SCPNAM /
1 'TIMERANGE', 'SOURCES', 'SOURCE',
3 'd b n a m e1, 'CALCODES', 'CALIBRATION', 'PASSFLAG
3 'ANTENNAS', 'ANTENNA', 'REFANTS', 'REFANT',
3 'IFS', 'IF' , 'IFPAIRS', 'IFPAIR',
3 'BANDS', 'BAND', 'MODES', 'MODE',
3 'INFILES 1, 'INFILE', 'OUTFILES', 'OUTFILE'
3 'DCSADDRESSES', 'DCSADDRESS',
3 'DATATYPE', ’STOKES',
3 'LISTOPTIONS', 'LISTOPTION',
3 'AVERAGE', 'AMP/JY',
3 'LSQTOLERANCE', 'GTINTERVAL',
3 7*' '/

This is the list of Standard ACTION-request commands

DATA SCCNAM /
1 'HELP', 'EXPLAIN',
2 'INPUTS', 'EDIT',
3 'SAVECOMMANDS', 'GETCOMMANDS iy
4 'SETDEFAULTS', 'GO' ,
5 'EXIT', 'QUIT', 'FINISH', 'STOP 7

n
o
n
n
o

Feasibility of a FORTRAN Standard Commands Package

SUBROUTINE SCINIT (HISNAM, HISVER, TEXT, USING, L1,L2,L3,L4)
—---—C

C THIS IS AN INTEGRAL PART OF THE STANDARD COMMANDS PACKAGE
C

This routine establishes the initial contact between a user
program and the Standard Command package.

 ̂ routine never RETURNS to the caller. Upon recognizing
C the GO command in the input stream it calls a subroutine

called "GO" which is expected to contain the GO phase of the
C program being served.
C
C The GO subroutine is expected to RETURN here so that the XFSCP
C can resume its dialog with the user and/or exit properly at
C the user’s request.
C
C (The SCSUB routine is provided so that XFSCP services can be
C requested by the GO phase of a program without recursiveness.)C “ — ______ _

INCLUDE 'SCCOMMON.DCL/NOLIST'

CHARACTER*(*) HISNAM, TEXT, USING
REAL HISVER
INTEGER LI, L2, L3, L4

The arguments are :

HISNAM The name of the program being served.
The version number that program supplies.
A message (or salutation) to the user.
A list of commands to be used.
Logical unit numbers for I/O. If zeroes,
defaults will be supplied.

C HISVER
C TEXT
C USING
C L1,...L4
C
C

17

o
o

Feasibility of a FORTRAN Standard Commands Package

C
C
C
C
C
C
C
C
C
C
C
Ccccc

SUBROUTINE SCSUB (PROMPT)

THIS IS AN INTEGRAL PART OF THE STANDARD COMMANDS PACKAGE

This routine is nearly identical to the SCINIT routine except
that it is called from within the GO phase of a program.
This lets the program interact with the user during the
execution of a program as well as during initialization.

This is NOT an infinite loop; it returns to the place from which
it was called (in the GO phase) when GO is found in the input.

The initial value of the argument is a prompting message (supplie
by the calling program) which will be displayed to the user when
the XFSCP resumes its interaction with him or her.
Upon returning to the GO phase, the XFSCP will leave in this same
variable the string found in the GO command.

INCLUDE 1SCCOMMON.DCL/NOLISTf

CHARACTER*(*) PROMPT

18

Feasibility of a FORTRAN Standard Commands Package

SUBROUTINE SCOPEN (X, NEW)
C
c
C THIS IS AN INTEGRAL PART OF THE STANDARD COMMANDS PACKAGE
C
C This routine constructs the name of a file in which to SAVE the
C parameter values for this program.
C
C The file name reflects
C
C 1- The name of the program being served by XFSCP.
C (Obtained from the value of the first argument.)
C
C 2- The user’s identity (obtained from the operating system).
C
C 3- The point from which the program is being controlled.
C (The terminal number or batch controller id obtained from the
C operating system.)
C
C This routine tries to find and open an existing file with this name.
^ If ft cannot do so it creates a new one. The value of the second
C argument is a flag that asserts wether or not a new file was

created. (If so* default values for all parameters will be solicited
from the command routines. If not, the parameter values contained

C in the pre-existing file will be read as the initial values for
C this run of the program.
C
C Obviously,, the name and file-handling parts of this routine are
C system dependant.
C
C THIS VERSION IS FOR THE VAX VMS SYSTEM
C ||.... -.....-..............

INCLUDE f SCCOMMON.DCL/NOLIST1

CHARACTER-(*) X
LOGICAL NEW

19

n
o
n

Feasibility of a FORTRAN Standard Commands Package

SUBROUTINE SCPARS (INSTR, CMND, ITYPE, INDX)

THIS IS AN INTEGRAL PART OF THE STANDARD COMMANDS PACKAGE

C This is a parsing routine.
C The first argument is a character string typed in by the user.

We break off the first identifiable substring (using NEEDCH)
C and return it as the value of the second argument.
C We search for this second argument in the user's list of defined
C commands.
C
C We return in the third argument a code as follows:
C
C Neg Command is ambiguous«. (INDX is meaningless.)
C *
C Zero Input is not a recognizable command. It may be standard
C but not among those selected by the user program. If
 ̂ t'his is the case the fourth arg (INDX) will be non-zero
C
C 1 A PARAMETER-setting command.
C In this case INDX will be pointing to the entry number
C in the list of selected commands.
C
C 2 A User-defined (EXTRA) command.
C In this case too INDX will be pointing to the entry number
C in the list of selected commands.
C
C 3 An ACTION-request command. In this case INDX will point
C point to the entry in the list of ACTION commands.
C -...

INCLUDE 'SCCOMMON.DCL/NOLISTV

CHARACTER*(*) INSTR, CMND
INTEGER ITYPE, INDX

20

Feasibility of a FORTRAN Standard Commands Package

SUBROUTINE SCPARM (NAME, REQUES, INSTR, OUTSTR, VALUE)

C THIS IS AN INTEGRAL PART OF THE STANDARD COMMANDS PACKAGEc
C This is the "master" command routine for all of the standard
C commands that are part of the package. It fans out the call

for service to the proper command-defining routine.L>
C The program being served by the XFSCP may include a modified

copy this routine as part of its own definition. This might be
0 desirable in two circumstances:
C
C 1- The user wants to intercept communication to or from a

standard command in order to impose certain restrictions
C or alterations upon the normal command. (This routine
C therefore provides what is known as a "hook".)c
C 2- References to unused commands can be removed thereby paring
b the memory requirements of the XFSCP
C
c The first argument is the name of the command that has been found

m the input stream. The others are meant to be passed to that C command.

INCLUDE 1SCCOMMON.DCL/NOLIST1

INTEGER REQUES
CHARACTER*(*) NAME, INSTR, OUTSTR

C ?.U. ^ ° ^ TiNE SCXTRA (NAME, REQUES, INSTR, OUTSTR, VALUE)

C THIS IS AN INTEGRAL PART OF THE STANDARD COMMANDS PACKAGE
c
C This is a "stub".
C
c It is the default "master" command routine used when there
0 is no need for any special-purpose commands.

INCLUDE 'SCCOMMON.DCL/NOLIST'

CHARACTER*(*) NAME,INSTR,OUTSTR
INTEGER REQUES

21

feasibility of a FORTRAN Standard Qommands Package

SUBROUTINE SCSAVE
C
C
C THIS IS AN INTEGRAL PART OF THE STANDARD COMMANDS PACKAGE C
C THIS ROUTINE DEFINES THE STANDARD COMMAND: SAVEc
C This routine writes out to the COMMAND file the name of the

parameter-setting and user-defined commands along with the current
c vaiue(s) of each parameter set by these commands. The file format

is such that it can be edited (using the standard system editor)
C and it can be read as an alternate input source C ---- ---------------- -------------- ---------------

INCLUDE 'SCCOMMON.DCL/NOLIST'

SUBROUTINE SCGETC (INSTR)

C
C THIS IS AN INTEGRAL PART OF THE STANDARD COMMANDS PACKAGEc
C THIS ROUTINE DEFINES THE STANDARD COMMAND: GETCOMMANDSc
C The argument is a name of the file which is to be used as the
C new input stream. (The name must be supplied in the current
C input stream). This routine merely OPEN's the file and sets a

flag; reading from this file is done by the same routine that
C reads from the normal input stream. Input from the terminal is
C resumed automatically when an End-of-File is encountered.C — — — —------------ — — —________ _ _____ ______

INCLUDE ’SCCOMMON.DCL/NOLIST'

CHARACTER*(*) INSTR

22

Feasibility of^a FORTRAN Standard Commands Package

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
Cc

SUBROUTINE SCAMEN

THIS IS AN INTEGRAL PART OF THE STANDARD COMMANDS PACKAGE

THIS ROUTINE DEFINES THE STANDARD COMMANDS: EXIT, QUIT, AND STOP

This is^the wrap-up routine. It calls a "stub" with the
name SCXIT so that the user can write his own version
U needed) to take appropriate concluding actions such as
closing files.

Each command used by the program is solicited for a character
string to be recorded in the SAVE file. Presumably this will
reflect the latest value of each parameter.

Then it1s bye-bye.

INCLUDE rSCCOMMON.DCL/NOLIST'

Ccccccccccc

SUBROUTINE SCXIT

THIS IS AN INTEGRAL PART OF THE STANDARD COMMANDS PACKAGE
This is a "stub".

It is the default called by the AMEN routine at wrap-up time,
his technique lets the user write his own version (which will
automatically supercede this one) to take any final action
tnat might be appropriate (such as closing files)

INCLUDE 'SCCOMMON.DCL/NOLIST'

23

Feasibility of a FORTRAN Standard Commands Package

SUBROUTINE SCEDIT (INSTR)
C ̂- - -....... -..................................¿L _ . T_____
C
C THIS IS AN INTEGRAL PART OF THE STANDARD COMMANDS PACKAGE
Cc THIS ROUTINE DEFINES THE STANDARD COMMAND: EDIT
C
C
C This routine edits the line printed for parameter values

It uses the secondary routine SCEDX for system-dependent
C operations.
C ---------- ---------- ----------------------------

INCLUDE TSCCOMMON.DCL/NOLIST1

CHARACTER*(*) INSTR

SUBROUTINE SCEDX (WRK, NCH, ED)
C-___________ _________________ ____________c
C THIS IS AN INTEGRAL PART OF THE STANDARD COMMANDS PACKAGE
C
C It contains the system-dependent portion of the code for the
C line editor. In particular, this is the portion that reads
C one character at a time (in "transparent" and "no-echo” mode)
C from the input terminal. It echoes back the line being edited
C so that character deletion and insertion as well as curser
C motion relative to the text appear correct to the user
C —-------......................

INCLUDE '($IODEF)*

L0GICAL*1 ED
INTEGER NCH
CHARACTER*(*) WRK

24

Feasibility of a FORTRAN Standard Commands Package

SUBROUTINE SCGTIN (INSTR)
Cc
C THIS IS AN INTEGRAL PART OF THE STANDARD COMMANDS PACKAGE
C
C Reads the input from a terminal or from an auxiliary input file.
C It squeezes out redundant blanks, checks for multi-line input
C (designated by the ellipsis ...) and concatenates that input
C into one long character variable. The result is NOT parsed
C here; it is merely passed along to the caller.
C

INCLUDE 'SCCOMMON.DCL/NOLIST'

CHARACTER*(*) INSTR

SUBROUTINE SCINPU (INSTR)
Cc
C THIS IS AN INTEGRAL PART OF THE STANDARD COMMANDS PACKAGE
Cc THIS ROUTINE DEFINES THE STANDARD COMMAND: INPUTS
C

If the argument is blank this routine will poll all of the
C command routines used by a program to obtain from each the
^ current value of the parameters (which this routine displays
C in one or more lines as appropriate.)c

If the argument is not blank it is expected to be the name of
C a single command whose current parameter value(s) are to be
C displayed.
C ■

INCLUDE TSCCOMMON.DCL/NOLIST’

CHARACTER*(*) INSTR

25

Feasibility of a FORTRAN Standard Commands Package

SUBROUTINE SCRDIN
Cc
C THIS IS AN INTEGRAL PART OF THE STANDARD COMMANDS PACKAGE
u

C routine is triggered whenever the initialization routine
finds that there exists a file with parameter values saved by

C a previous run of the program. This routine will read the file,
t call the parser, relay the input to the appropriate "master"
C command routine and go back for more until an End=of-File is read.

C Notice that this routine is not set up to handle ACTION-requesting
t commands which are not stored in the SAVE file.

INCLUDE 'SCCOMMON.DCL/NOLIST'

26

Feasibility of a FORTRAN Standard Commands Package

Part 5: UTIL ITY ROUTINES

SUBROUTINE MNMTCH (IN, LIST, ISTAT)

C
C This routine does a MINMATCH of the input CHARACTER variable
C with a list of similar variables concatenated (with suitable
C delimiters) into one long character variable.
C
C If a unique match is found the value of ISTAT will be the
C sequence number of that entry in the list.
C If no match is found ISTAT will be zero.
C If ambiguous, ISTAT will be negative.
C -------------- ------------------ ___________________

CHARACTER* (*) IN ¡¡¡LIST

SUBROUTINE LSMTCH (IN, TABLE, NOPTS, ISTAT)

CIL______ ______
C This routine does a MINMATCH of the Input CHARACTER variable

with a table of similar variables. In other words, it does the
C same sort of thing that MNMTCH does but it operates against an

array of character variables (the number of array elements
C is NOPTS) rather than against one long character variable.
C
C If a unique match is found the value of ISTAT will be the
C index of that entry in the table.
C If no match is found ISTAT will be zero.
C If ambiguous, ISTAT will be negative.
C-5-........^

CHARACTER*(*) IN, TABLE(1)

27

n
o
n

Feasibility of a FORTRAN Standard Commands Package

SUBROUTINE NEEDCH (IN , OUT, I ST AT)

C
C This routine picks up the first character string from an
C input line. The string is terminated by the first blank, tab,
C comma or semicolon (or the end of input) unless the string
C starts with a quote mark.
C
C Leading blanks are removed from the input. If the string
C is longer than the length of the CHARACTER variable sent to
C fetch it the extra characters go in the "bit bucket".

The value of ISTAT returned is the length of the output
string (up to, but not including, the terminating character).

SUBROUTINE WHATUN (INSTR, CLASS)

C -................*..............
C This routine will examine the input string (INSTR) to see if the
C first field is a numeric value. If it is not, the value of CLASS
C will be set to * . If the input string does start with a number
C the class of the units field will be returned in CLASS.
C i..... ..

CHARACTER*(*) INSTR, CLASS

28

Feasibility of a FORTRAN Standard Commands Package

LOGICAL FUNCTION ISNM (INSTR, CLASS)

C - -....................................... .
C This routine will examine the input string (INSTR) to see if the
C ' first field is a numeric value.
C The units of the value will be compared with the specified CLASS.
C If there is a number and the units are of the appropriate class
C then the value returned will be TRUE otherwise FALSE.
C — — — — — — — — — — — — — — — — — — — — — —

CHARACTER*(*) INSTR, CLASS

SUBROUTINE NEEDNM (INSTR, CLASS, VALUE, ISTAT)

C
C This routine will pick up the first numeric value from an input
C string (INSTR). The value will be returned in the second argument,
C Note that it will be returned as a REAL variable.
C The units of the value will be compared with the specified CLASS.
C If there is a number and the units are of the appropriate class

then the value returned will be scaled into the proper internal
C units. If all goes well the value of ISTAT will be returned as 1
C Other values of ISTAT are coded as follows-
C
C 0 Input string did not start with a numeric value
C -1 Units of input did not match units requested.0
C If and only if, all went well (ISTAT=1) the numeric field
C and the units symbol will both be stripped off the front of the
C input string. The remainder of the string will be left normalized.

CHARACTER*(*) INSTR, CLASS

29

Feasibility of a FORTRAN Standard Commands Package

LOGICAL FUNCTION ISFL (IN)

C
C
C
C
C
C
C
C
C
C

This rontine tests the first substring of an input line to determine
first biaikinL h designator. The string is terminated by theirst blank, tab, comma or semicolon (or the end of input)
The string must NOT be enclosed within quote marks.

CLEARLY, THIS ROUTINE IS OPERATING-SYSTEM DEPENDANT. THIS VERSION
IS FOR THE VAX SYSTEM VMS.

CHARACTER*(*) IN

C
Cccccccccc
cc
cc

SUBROUTINE NEEDFL(IN, OUT, NODE, DEV, DI R, Fl LE, EXT, VER, DISP,

This routine tries to obtain a file name from the M B m H
of an input line. The string is terminated by the first blank tab
comma or semicolon (or the end of input). The string must NOT be
enclosed within quote marks.

CLEARLY, THIS ROUTINE IS OPERATING-SYSTEM DEPENDANT. THIS VERSION
IS FOR THE VAX SYSTEM VMS.

■ B W f J16 nam(T11 returned in the string OUT where various
default values will have been supplied by the routine.

I M B name components are expected in the subsequent arguments
which will be returned with the components actually used.

If a disposition field is found in the input string it will be
returned m the next-to-last argument (DISP).

C The last argument (ISTAT) will be set to 1 if all goes well
C or to 0 otherwise. s
C

CHARACTER*(*) IN, OUT, NODE, DEV, DIR, FILE, EXT, VER, DISP

30

Feasibility of a FORTRAN Standard Commands Package

LOGICAL FUNCTION ISLETR (ARG)

C ---.... —
C This function is .TRUE, if the first (or only) character in the
C input string is a letter (upper or lower case).
C Otherwise it is .FALSE.
C„

CHARACTER*(*) ARG

LOGICAL FUNCTION ISDIGT (ARG)

C $ - « ________----------____-___
C This function is .TRUE, if the first (or only) character in the
C input string is a digit (0-9).
C Otherwise it is .FALSE.
c - - B - --- ■ ■ ---- ------- — ... ^ B ...

CHARACTER*(*) ARG

LOGICAL FUNCTION ISDLIM (ARG)

c -gr
C This function is .TRUE, if the first (or only) character in the
C input string is~a delimiter (blank or tab or comma or end of line).
C Otherwise it is .FALSE.
c - - - - - - - ... - i^-—___ - - - - - - - - - -

CHARACTER*(*) ARG

SUBROUTINE FNDLIM (IN, WHERE)

C - -A- - -............... - ||g-____- --¡t____-----...... - ______
C This routine is used to find the first occurrance of a delimiter
C (blank or tab or comma or end of line) in the input string (IN).

CHARACTER*(*) IN
INTEGER WHERE

31

U U U U
U u

 u

Feasibility of a FORTRAN Standard Commands Package

SUBROUTINE FNDLAS (IN , WHERE)

C -......_____
C This routine is used to find the last occurrance of a non-blank
C character in the input string (IN).

CHARACTER*(*) IN
INTEGER WHERE

SUBROUTINE SQUEEZ (IN, OUT, LAST)

C -.................
C This routine removes redundant blanks from an input string.
C (A redundant blank is one that follows another blank or a comma.)
V is careful to leave quoted strings untouched.

CHARACTER*(*) IN, OUT

SUBROUTINE U U S T (IN)

This routine strips leading blanks and tabs from an input string
i.e. Left Justify it.

CHARACTER*(*) IN

SUBROUTINE UPPER (IN , OUT)

This routine translates ail lower case letters to upper case

CHARACTER*(*) IN, OUT

32

Feasibility of a FORTRAN Standard Commands Package

Part 6: THE "TEST BED" PROGRAM

I introduction

The purpose of this program was to test various features of the
experimental FORTRAN Standard Commands package. At this time it
should also serve as an illustration of the way in which various
features of the package can or should be used.

The MAIN program

The MAIN program has been kept VERY small; it serves no other
purpose than to initialize the XFSCP. As explained above,';-,.all of the
work to be performed by the program served by the XFSCP should be
done in subroutines.

PROGRAM TSTBED

C
C This program is not meant to do anything usefull. It is merely

a test bed for experimentation on a FORTRAN version of the
C standard commands package.
C
C The MAIN program merely calls the package to initialize it.
C The package will"NEVER return. It calls GO to do the work
C

The list of commands is in 3 parts only for aesthetic reasons.c — —n..... ■ ___
CHARACTER*80 TEXT
DATA TEXT /' I test the EXPERIMENTAL Standard Command Package'/

REAL*4 VERSN
DATA VERSN /l.l/

CHARACTER*40
DATA USE1
DATA USE2
DATA USE3

USE1, USE2, USE3
/'IF, IFPAIRS, REFANTS, SOURCES,'/
/'CALCODES, ANTENNAS f DBNAME,' /
/'MY.EXTRA.ONE, MY.SECOND'/

CALL SCINITC'TSTBED',VERSN,TEXT,USE1//USE2//USE3,0,0,0,0)
STOP
END

33

Feasibility of a FORTRAN Standard Commands Package

The GO subroutine

This routine is the entry point for all action performed by the
program being served by the XFSCP. It is called whenever the package
receives the command "GO”. Any character string that follows the word
GO is passed to this subroutine as an argument. (The string is not

parsed in any way but consecutive blanks may have been squeezed down
to single blanks.)

SUBROUTINE GO (TYPE)

C -..........................
This will be the GO phase. In general, the GO phase is the

C main part of the application program. The argument is the
C character string (if any) that follows the word GO in the
C command. This allows for many different action requests.

CHARACTER*(*) TYPE

CHARACTER*(60) TEXT, GOSTR
DATA TEXT /’This string is sent to the user via the XFSCP'/

I=LEN(TYPE)
IF (I .GT. 70) 1=70

WRITE (5,100) TYPE(1:1)
100 FORMAT('0 On initial entry to the GO phase1,

1 1 the string received was:1/' ',A)

G0STR=TEXT
CALL SCSUB(GOSTR)

WRITE (5,200) GOSTR
200 FORMAT('0 Back from the Command package which returned',

1 1 to the GO phase with:'/' ',A)

RETURN
END

34

Feasibility of a FORTRAN Standard Commands Package

The SCXTRA subroutine

This is an example of a "master” routine for user-defined
commands. It is called by the standard package whenever any user-
defined command is recognized in the input stream. This routine need
NOT be supplied in cases where no special commands have been defined.
For such cases a dummy routine of the same name (a "stub") has been
included in the Standard Commands library.

Since the first argument is the name of the command that has
been encountered,-■ only one master routine is required no matter how
many special commands have been defined. (Note that the name being
passed will always be fully expanded and in upper case. Funneling
all references^ to user-defined commands through one conventionally-
named master routine is the only way one default routine can
satisfy linkage requirements.

All but the first argument are meant to be passed along to the
command-defining routine. They are described elsewhere. Of course
the programmer always has the option of combining the command master
and the code for the actual commands. This would be especially
appropriate if only one special command is being defined.

SUBROUTINE SCXTRA (NAME, REQUES, INSTR, OUTSTR, VALUE)

C This is a sample of a user-defined command master.
C
 ̂ The first argument is the name of a command. The others are
C to be passed along to the routine for that specific command.
C — — — — — — — — — — — — — ■ ■ _ _ _ _ _ ____________

INCLUDE 'SCCOMMON.DCL/NOLIST1

INTEGER REQUES
CHARACTER*(*) NAME, INSTR, OUTSTR
REAL VALUE

IF!|nAME .EQ. 'MY.EXTRA.ONE') THEN
CALL MY0WN1 (REQUES, INSTR, OUTSTR, VALUE)

ELSE IF (NAME .EQ. ’MY.SECOND') THEN
CALL MY0WN2 (REQUES, INSTR, OUTSTR, VALUE)

ELSE
WRITE (LUNTTO,100) NAME

100 F0RMAT(I don''t recall defining something called ',A)
END IF
RETURN
END

35

Feasibility of a FORTRAN Standard Commands Package

Special purpose (user-defined) commands

The^following page shows an example of a user-defined command;
oesn t do a whole lot. A second special command was written but

it is just a copy of the first and is not shown.

e argument list in this example is standard but, of course,
e interface to the XFSCP is in the master routine (SCXTRA -

eSCr± e just Previously) so the user is free to devise whatever
argument list is appropriate.

SUBROUTINE MY OWN1 (REQUES, INSTR, OUTSTR, VALUE)

C -.................
C This is a sample of a user-defined command.
C
C Its single parameter is a character string which will contain
C a message describing what the command has done most recently
C (The string becomes whatever is fed to the command in the input.)

INCLUDE 1SCCOMMON.DCL/NOLIST1

INTEGER REQUES
CHARACTER*(*) INSTR, OUTSTR
REAL VALUE
CHARACTER*6 0 MYVAL

IF (REQUES .EQ. 1) THEN
MYVAL='MY first command has been set to its DEFAULT value'

ELSE IF (REQUES .EQ. 2) THEN
MYVAL=INSTR

ELSE IF ((REQUES .EQ. 3) .OR. (REQUES .EQ. 4)) THEN
OUTSTR=MYVAL

ELSE IF (REQUES .EQ. 5) THEN
WRITE (LUNTTO,200)

200 FORMAT(’0 MY.OWN.EXTRA',T20,'This is the HELP text’)

ELSE IF (REQUES .EQ. 6) THEN
OUTSTR=MYVAL

END IF
RETURN
END

36

Feasibility of a FORTRAN Standard Commands Package

Part 7: ESTIMATES OF TIME AND EFFORT

Completion of the VAX package

Since the design work has been done and the fundamental service
routines have been written, the remaining work is routine coding and
debugging. It should take between 2 and 3 weeks.

Clearly it would take longer if the final specifications for the
package entail major changes from what has already been done in the

A PDP-11 Version

The problems of writing the package with the PDP11 FORTRAN 77
subset will make this a rather painful chore.

A reasonable estimate of the amount of time required is about 2
months.

Re-writing Pipeline Software to Include the Package

Once the package is available on the PDP11 (cf above) it should
not take more than 1 to 2 weeks to revise both the DBUTIL and
DBFILLER programs to make use of it.

A DEC10 Version

Since DEC has announced plans to deliver a full implementation
FORTRAN /7 for the DEC10 in the first quarter of next year (1983),

we should postpone any work on a FORTRAN Standards Command package
until at least that time. Alternatively, we could start as soon as we
wanted to by using the DEC20 version of FORTRAN 77 which is already
available at various locations among them New Mexico Tech in Socorro.
(The DEC20 version of FORTRAN 77 and the DEC10 version should be
identical.)

When FORTRAN 77 is available on the DEC 10y converting the VAX
version to work on the DEC10 will involve no more than rewriting the
system-dependant routines. That should take no more than a week to 10
days.

37

Feasibility of a FORTRAN Standard Commands Package

Rewriting DEC10 Application Programs to use the Package

This is a major undertaking and, IF IT IS TO BE DONE AT ALL, it
should be planned as an ongoing project whereby each component of the
present SAIL library is rewritten at the time major maintenance would
otherwise be done on that program. (For example, when modifications
are needed for Spectral-line work or to increase the number of
continuum channels to 4.)

A reasonable guess for the total effort required to convert all
of our present programs is 18 +/- 3 man-months.

It is NOT the intent of this report to recommend one way or the
other about the desirability of embarking on such a conversion
project. At the very least a decision on this matter should await the
completion of the larger language study that is planned.

38

