
— I
— ji

THE CURRENT STATE OF GRAPHICS AT THE VLA

Written by Jim Torson
Version 3

February 17, 1984

1. INTRODUCTION

This document is intended to be a description of the current state
of VLA graphics software that I have been involved with. This will
include various tidbits of information that may be of interest to someone
in the future. (This document is contained in
D ISPLY:: [201,223]T ID B IT . DOC. In order to output it to the laser
printer, I first copied it into the DEC-10 and processed it with
SCRI BE[13,476].)

2. DEC-10 GRAPHICS

2.1. OMNIGRAPH

OMNIGRAPH is a package of general purpose graphics routines that
runs on the DEC-10. It is used by most of the DEC-10 programs that do
graphics. (An exception to this is Jerry Hudson's DEC-10 contour
program, which uses its own set of routines for doing Tektronix 4012
graphics.)

We first obtained the OMNIGRAPH package from the National
Institutes of Health in 1975. We obtained an updated version in 1977.
Another updated version was obtained in 1981. This is the version that
we are currently using. OMNIGRAPH supports a variety of devices, but
we are currently using it only for the Tektronix 4012 and Tektronix 4025
terminals. OMNIGRAPH can be called from SAIL, FORTRAN or BASIC,
but we currently use it only with SAIL programs.

The sources for the pieces of this software that we are using are
contained in [11,12]. The disk area [1 1 ,16,OMN I , SOURCE] contains
what appears to be the unmodified sources that we received from NIH. I
think the only change that we made was a small change to DISSAI.FAI
that was done by Bob Duquet.

The tape from NIH contains several machine-readable documentation
files, including a user manual and a description of implementation
details. I don't think any of these documentation files are currently
stored on the DEC-10 disks. The file DISMAN. DOC[12,12] is probably
derived from the user manual that came with the I975 version of
OMNIGRAPH and should thus be ignored, although the more recent
releases mostly contain new features rather than changes to the original
system.

2.2. AXIS DRAWING AND DATA PLOTTING ROUTINES
FOR USE WITH OMNIGRAPH

I implemented a set of routines for drawing labelled axes and for
plotting data. These are contained in LCPLT. SAI [11,12]. Also,

2

LC U TIL . SAI [11,12] contains'"the DRESTOR routine which reads in a
picture description that was saved in a disk file. GRFUTL.SAI [11,12]
contains some utility routines that are used by the LCPLT.SAI routines
and also by the character plotting routines.

2.3. CHARACTER GRAPHICS ROUTINES

I implemented a set of routines that do crude graphics in a
character array for output to the line printer or a text terminal.
CHPRIM.SAI [11,12] contains the set of character graphics routines
which are similar to the basic OMNIGRAPH functions.

2 .4 . AXIS DRAWING AND DATA PLOTTING ROUTINES FOR
USE WITH CHARACTER GRAPHICS ROUTINES

CHPLT.SAI [11,12] contains a set of routines which are similar to
the routines in LCPLT. I seem to recall that at some point Dave
Rosenbush broke CHPLT up into separate source files for each routine so
that only the needed routines would be included in an executable
program. I think he may have made some changes to the routines when
he did this, and it may have led to some problems.

* 2.5. OTHER DEC-10 ROUTINES AND DOCUMENTS

LCPLT3. SAI [11,16] contains some routines for doing 3D plotting on
the Tektronix terminal. These were never submitted to the standard
system. [11,16] also contains some miscellaneous documents which might
be of interest to someone. [21,16] contains some additional documents
and an old version of the DEC-10 FITS program. I don't remember why
we kept the old FITS program around. Perhaps it had something to do
with the way scaling was done on tapes written long ago.

3. PDP-11 GRAPHICS

3 .1 . IMPS

The standard" IMPS source files and task files are contained in
[201,10]. This includes the sources for the general utility routines as
well as the IMPS main programs. For many of these source files, the
older version is the version that was used before the change from the
PDP-11/40 CPU to the PDP-11/44 CPU. The [201,10] area also contains
the IMPS version of the FITS program. The updating of this disk area
(excluding FITS and the changes for the 11/44) was documented by the
use of system change forms which are all filed together in a binder.

Currently , when the system is reloaded, the STARTUP command file
executes [1,2] PREIMPS. CMD, which runs [201,10]STDUFD to initialize
some

3

things in the global common area used by IMPS. STARTUP also executes
[201,10] I NS IMPS. CMD to install the IMPS tasks. Since there are a lot of
IMPS tasks, this takes up a lot of pool space. The command file
[201,10jREMIMPS.CMD will remove most of these and thus free up some
pool space.

When you start up IMPS, it asks you to type in your user number.
This is just a string which forms the filename of the catalog file which is
to be used. Currently, the IMPS task only allows three characters to be
typed for the user number. The current user number string gets stored
in the global common area, where space for six characters is provided.
Thus, it might be easy to change things to allow IMPS to handle four
character user numbers. However, there might be a few cases where the
user number string is passed from one task to another in the packet of
data that gives the parameters to be used by a processing operation.
Another problem might be that GETMAP also only allows you to type in a
three character user number. (I'm not even sure if GETMAP still works
these days.)

Most of the IMPS routines are compiled with a line buffer size that
will allow reading in and processing a map line that contains 1024 floating
point pixels. A map line that is 2048 pixels long can be handled if the
map is stored in 16-bit format on the disk and conversion to floating
point is not required (or conversion of no more than 1024 pixels to
floating point is required). As long as you don't run out of PDP-11
address space, it is quite easy to expand the buffer size.

The area [201,207] contains some "special" versions of some of the
IMPS tasks. This includes versions of the image loading programs that
allow the user to specify a range of map values to be scaled into the 8-
bit pixel values. It also includes versions of WRTDIC and WRTDC2 that
have been compiled with bigger line buffer sizes so that a 204-8 pixel
floating point map can be output to the Dicomed. I seem to recall that
there once were some other special versions, e .g . , a version of the
Versatec contour program that would draw thick contour lines and a
special version of the optical depth (?) program. These seem to be gone
from the disk. Perhaps they exist on a back-up tape somewhere.

The program [201,201]WHO will tell you the user number that was
last specified when the IMPS task was run.

The program [201,10]CRCOP will allow you to copy a catalog record
from one user's catalog file into another's. If you then use PIP to make
a copy of the corresponding map file, you will effectively copy a map
from one user's area into another's.

The program [201,10]CHKCAT will check to make sure all of the
maps listed in a catalog file actually have existing data files. It will try
to read in the last map line stored in the map file to make sure that the
file is at least as big as it should be.

4

If you set the UIC to [201,220] and type ©SPACE, then you will get
a report of how much disk space is being used by each user for storing
IMPS maps. This list is put into a disk file which can then be printed
out on the Versatec. (I f you try to spool this file to the DEC-10
printer, part of the file will not get printed out.)

line

The program [201,10]MASDEL will do a massive delete of all the
maps listed in a given user's catalog. (I t will not delete the catalog file,
but SPACE will delete any empty catalog files that it f inds.)
[201,201] CATDEL is similar to MASDEL except that it will delete only
maps that are in a given category.

3 .2 . DEMO

The command file [201,10] INSIMPS also installs and runs the DEMO
program. This program is contained in [201,201]. The purpose of
DEMO is to automatically display a sequence of sample images on the
Comtal image display when nobody is running IMPS. DEMO finds the
images to display by looking in the map area for user number 8. Since
user numbers are octal numbers, this does not correspond to any real
user. Global event flag number 34 is used for communication between
IMPS and DEMO. When DEMO starts up, it clears the flag. The IMPS
task sets the flag when it starts up. DEMO checks the state of the flag

loaded into the Comtal, and it just exits when it sees
the flag. When the user exits from IMPS, it restarts

DEMO. DEMO is installed at the lowest system priority so that it will not
interfere with other things in the system.

each
that

time a line is
IMPS has set

3 .3 . PIPELINE DISPLAY SYSTEM

This section contains some general comments on the Pipeline Display
System (PDS). The next several sections contain comments on the
various individual packages of graphics routines which are used for
handling the various devices. These are followed by a section that
describes the overall software organization of how these pieces are used
together in the PDS.

The file DISPLY: : [201,223]GP. DOC contains a description of new
functions that were planned for the Pipeline Display System and the
priorities that were assigned to them.

The PDS is initialized by the execution of the command file
[300,20] EXP. CMD. This sets the default UIC to [300,20], installs the
global common area used by some of the tasks, installs the individual
tasks, runs the three special display handling tasks (described below),
and runs the T V IN IT task. Unlike IMPS, the PDS appears to the user as
a collection of separate tasks that are run from the console terminal.

T V IN IT TASK. This purpose of this task is to initialize the state

5

of the IIS image display device by setting the various IIS control
registers and table memories to a standard state. Information about the
current state of the IIS is contained in a block of data defined by the file
TVSTAT.D CL. This block of data is stored in the file
[300,21] T V S T A T .TVS between task activations. Routines are available
to read and write this file (TSREAD and TSWRIT). The contents of the
IIS image memory planes is kept track of by using an image catalog file
which is similar to that used in the AIPS system. The image catalog file
is [300,21] IMCAT. IMG. The records in this file which describe an image
loaded into the IIS are the same as the records in the map catalog file
plus a few additional items. The items in the map catalog record are
defined in CATREC.DCL. The additional items used in the image catalog
record are defined in ICREC.DCL. Several routines are available for
dealing with the image catalog file, i . e . , IC IN IT , ICOPEN, ICREAD,
ICREAL, ICREAN, ICREA1, and ICWRIT. A very simple task called
ICCREA is used to initially create the image catalog file. This should
only have to be run if something terrible happens to the image catalog
file. Ordinarily, the user will not need to explicitly run the T V IN IT
program. However, it is OK for him to run it if he wants to initialize the
IIS.

TVLOD TASK. The user runs this task to load a map image into
one of the IIS image planes. This task is also intended to draw a wedge
with the image, draw map identification labels, and draw coordinate tic
marks and labels. However, these things have not been fully
implemented due to the fact that the change to the new map catalog
record format has not yet been made. For coordinate tic drawing, all
that is implemented is to draw a box around the image and to title the
axes as either Right Ascension/Declination or Time/Baseline. For the
map identification labels, the program always labels the peak intensity as
"JY." This will have to be improved when the new catalog record format
is implemented. The title on the wedge is always "INTENSITY - JY."
This also will have to be improved. The program was initially set up to
use the standard command CHANNEL to allow the user to select a
spectral line channel plane out of a 3D data cube. However, this
command has been disabled since the current mapping system does not
produce cubes and users were expecting this command to select different
spectral line channel maps which are stored as separate 2D images.

TVDIS TASK. The user runs this task to modify the way the image
is displayed on the IIS. If any mode other than intensity/hue is
selected, then the "Insert Wedge" function will just draw an unlabelled
wedge across the bottom of the screen. This is thus a rather useless
function now that labelled wedge drawing is implemented in TVLOD.
However, if the user enables intensity/hue mode and picks the "Insert
Wedge" function, then this will draw a two dimensional intensity/hue
wedge (without labels). The last function in the top level menu, "Label
Transfer Function Plot, $ was intended to put nice labelled tic marks on
the transfer function plots, but this has not been implemented. (When
the program starts up, it will label the X axis of the transfer function
plots with the min and max map values. It will also put the zero value
grid line in the right location.) Most of the things displayed on the

6

VT-11 by TVDIS are contained in a VT-11 display file which is saved in
a disk file and gets read in when TVDIS starts up. Changes to the V T -
11 display are done by turning VT-11 ’’subpictures” on and off. TVDIS
expects to find the display file in [300,21] T V D IS . D lS . This file is
generated by running the GENDIS program, which of course needs to be
run only when a change needs to be made to the display file. Note that
there was not enough room in the display file for everything that was
needed. Thus, TVDIS generates some things at run-time and then
deletes them when it is done with them. An example of this is the
messages used with drawing the intensity/hue wedge.

TVVAL AND CURVAL TASKS. These tasks allow the user to
position a cursor on the IIS and dynamically display the pixel coordinates
(or antenna pair) and map intensity of the pixel under the cursor. When
the user freezes the display by pushing down on the data tablet pen, the
sky coordinates (or time) are also displayed. TVVAL gets the pixel
value by reading it back from the IIS image memory. This thus allows
pointing to pixels in the wedge. CURVAL gets the pixel value by
reading it from the map stored on the disk. This thus gives a full
precision map value. Both programs only allow the user to point to the
last image that was loaded into the enabled IIS image plane. Perhaps it
would be useful to allow the user to select the desired image if more than
one has been loaded into the image plane.

CLNMAP TASK. This task allows the user to submit a clean request
to GRIDEfR. When the user types the GO command, CLNMAP (running in
DISPLY) communicates with the CLNDIS task that runs in GRIDER. The
BOX command allows the user to interactively specify clean boxes on the
IIS screen. This command is implemented in the source file BOX.FTN.
The INTBOX and GETICR routines in this file should probably be put
into separate files so that they can be used by other tasks that would
want to allow box specifications, e .g . , the map statistics task. CLNMAP
allows specification of the PACK names for the input maps and output
map. However, the programs in GRIDER do not yet have this feature
implemented, so these pack names are not put into the MIX record and
are thus not sent to GRIDER.

The files for ICCREA, GENDIS, T V IN IT , TVLOD, TVDIS, TVVAL,
and CURVAL are kept in [210,50] and [220,50] in DISPLY. The files for
CLNMAP and CLNDIS are stored in [210,51] and [220,51].

3 .4 . CONCURRENT TASKS IN THE PIPELINE DISPLAY SYSTEM

Since the Pipeline Display System consists of a collection of separate
tasks, the user may want to have more than one task running at the
same time. This can be done as long as certain restrictions are
observed. (I t may be easier to just tell the user that he cannot run
more than one task at a time than it is to make sure he understands the
restrictions.) Running two tasks that output to the IIS does not present
a problem. (This is explained further below.) For example, the user
can

7

start loading an image plane in the TVLOD task and then run TVDIS to
modify the transfer function, etc. The restrictions involve the image
catalog file which describes what maps are currently loaded in the IIS
image planes. When the user gives the GO command to TVLOD, the new
entry is made in the image catalog file and then the image is loaded.
When the TVDIS task starts up, it looks in the image catalog file to get
the map min and max for labelling the transfer function plots and for
positioning the zero value grid line. If the user loads a new image while
TVDIS is running, then TVDIS will not know about the new image and
will not update the transfer function plots. In a similar manner, T W A L
and CURVAL just get the map scaling out of the image catalog file when
they start up and will not know it if TVLOD loads a new image. CLNDIS
looks in the image catalog file each time the interactive box specification
is used. On the other hand, trying to talk to both TVLOD and CLNDIS
on the same terminal at the same time would be a bit confusing. Of
course it makes no sense to try to run things like TVDIS and T W A L at
the same time since you can't do more than one thing at a time with the
data tablet.

3 .5 . VT-11 SOFTWARE

The software package supplied by DEC is used for doing the basic
display functions on the VT-11. The PDS uses the latest version of
these routines, which is contained in the object module library [210,10]
or [220,10]G LIB VT.O LB . The sources for these routines are stored in
[200,200].

The IMPS tasks are built with the previous version of the VT-11
routines, which have been moved into [200,201]. (The IMPS task build
command files point to [200,200] GLI BVT. OLB since the previous version
used to be stored in [200,200].)

The file [200,200]GLI BIN .OLB contains the latest version of the
VT-11 routines that have been compiled to accept integer rather than
floating point arguments. These are not used by any of the current
applications software.

The VT-11 manual says that RSX uses the top 32 words of APR 7
and this area should not be used by the VT-11 display file. Our display
file partition extends into this area, but I have been careful not to store
anything there. This seems to work OK.

It may be of interest to note that VT-11 characters are 14 units
wide by 25 units high (in terms of VT-11 screen coordinates). This
allows 73 characters across the screen and 40 characters down the
screen.

I have implemented a few additional routines for dealing with the
VT-11 . The sources for these routines are contained in [210,53] or
[220.53] and their object modules are in the object module library
[210.53] or [220,53] INTLIB.OLB. These routines include:

ABSMOV - put a move to an absolute screen location into the

8

VT-11 display file. This is done without drawing a
visible dot and without changing the intensity.

FMPLOT - update an IIS function memory plot which is being
displayed on the VT-11.

FNDSUB » find a given subpicture in the VT-11 display file.
MAKCUR - add a subpicture which contains a cursor to the

display file.

3 .6 . VERSATEC SOFTWARE

The latest version of the Versaplot software supplied by Versatec is
contained in [7,7] and [7 ,11]. The object module library is
[7,11]PEPLIB.OLB. The IMPS contouring program is currently built to
use this latest version. (The previous version has been moved into
[107,7] and [107,11]. I seem to recall that this had a bug which
resulted in the RASM task aborting sometimes when it was outputing the
plot.) The Pipeline Display System currently does not use the Versatec.

The following is a summary of the changes that were made to the
distributed version of Versaplot. PLOTS. FTN was changed to specify
our plotter model number. Also, VPMCOM common was added to the
PLOTS routine, the VPARAM routine was added, and IWORD (in PLOTS)
was changed to indicate a new size of buffer in the vectoi to-raster
phase. IOPKG.MAC was changed so that the output device is SYO: rather
than VPO. . VTOR.MAC was set to use the MUL instruction. Also, the
change shown on p. F-13 of the Versatec manual was applied to allow a
buffer larger than 32K bytes. Debug messages were removed from
OFFSET, SYMBOL, TONE, THREAD, ADDVEC, RASM and RASL. The
buffer size was set to 19000 words in RASM, RASL, and RASS. A
request of the IMPS task was added at the end of RASM. The following
command files in [7,7] were modified: INSTAL.CMD, INSTP2.CMD,
PCOMP1.F77, PCOMP2.F77, PSORT.F77, RASM.CMD, RASS.CMD,
RASL.CMD, THREAD. CMD, SORT.CMD. Note that the original versions
of files that were modified are still stored on the disk as version 1, so it
is easy to find out exactly what changes were made.

We recently received the October 1983 issue of the Versatec User s
Newsletter. I noticed that it says the current revision of the RSX-11M
version of Versaplot is 7 .OH. I think this may be a more recent revision
than the one we have. The latest operating manual is 5716-12, but we
have manual number 5716-11. It probably would be cheap to obtain an
update. Perhaps they have fixed some bugs. I suspect that our version
has a bug which sometimes causes the end of the plot to get truncated.

3 .7 . IIS SOFTWARE

The software supplied by IIS is divided into four categories: device
interrupt handler, diagnostic interpreter, interface and utility routines,
and primitives package. Al Braun is taking care of the device interrupt
handler and Arnold Rots is taking care of the diagnostic

9

interpreter, so I won’t say any more about them. The interface and
utility routine package includes the basic routines to control the various
subunits in the IIS plus some higher level routines such as character
drawing. These also include various lower level routines which get
called by the routines of interest to the application programmer. The
primitives package contains higher level routines which do things which
are more application-oriented. For the most part, the existing software
uses the routines in the interface and utility package. Only a few
routines in the primitives package have been used.

For some unknown reason, IIS sent us an obsolete version of their
software when they sent us the hardware. The obsolete version of the
utility routines is currently stored in [314,30]. The obsolete version of
the primitives is currently stored in [314,32]. These files should be
ignored, and maybe they should just be deleted.

The updated version of the utilities package and the primitives
package that we received from IIS is stored in [201,217]. The subset of
routines that has actually been used is stored in [201,224]. (A few of
these have been modified.) The object module library that contains
these routines is [210,10] or [220,10] 11 LI B . OLB.

The documentation for the IIS software is inadequate. For one
thing, there is no description of the buffering scheme. Some of the key
routines such as INFCB and WTEXEC are not described. Sometimes the
routines that are described have incomplete or incorrect descriptions. I
have made a few annotations in the manual, but the applications
programmer will probably have to look in the listings of the code.

An important feature of the current version of the IIS routines is
the buffering of output to the device. The last parameter in the INFCB
routine specifies the number of buffers to use. 0 means no buffering,
i .e . , each 8-word header and each data block are sent out to the IIS
with a separate DMA transfer. 1 means single buffering. As calls to
output to the IIS occur, the headers and data blocks are accumulated in
a buffer (which is contained in the FCB parameter supplied to all the
routines). When the buffer gets full, it is output to the IIS with a single
DMA transfer. Or, the application program can call WTEXEC to send out
whatever is in the buffer and wait for the completion of the I/O . A
value of 2 in the last parameter to INFCB indicates double buffering is
desired. This might not work properly since it was necessary for me to
make some internal changes to some of the routines. I recommend that a
buffering parameter of 1 be used.

The following is a summary of changes that have been made to the
distributed version of the IIS software.

M70OP.UTI - changed to correspond to our hardware configuration.
M70ERR.DSP - changed so that the ’’Model 70 time-out” message will

be output on a new line.
DGREY.PRI - removed call to SETUP so that all it does is just draw

the greyscale wedge.

10

M70UTILS.UTI - changed DVECT routine so that it expects the
input data array to be a byte array rather than an 1*2 array. (This now
works the way it is described in the manual.)

DISPIO.FMD - changed GTM70 routine so that it doesn't t ry to
allocate the device. Changed M70IO routine so that it always does a
WTQIO instead of a QIO. Added calls to P and V routines in the MC
routine. (The P and V operations and most of the other changes were
made in order to^allow more than one task to do I/O to the IIS at the
same time. This is explained further below.)

DEXECW. DSP - changed to make sure it does a wait. (NOTE: this
routine does not contain the P and V calls and thus should probably not
be used. The applications tasks should call WTEXEC.)

DEXEC.DSP - added P and V calls.
WTEXEC. DSP - added P and V calls.
M70XF.DSP - changed calls to M70BF so that it tells it whether a

header or a block of data is being added to the buffer.
M70BF.DSP - added a parameter to the calling sequence which

indicates whether header or data is being buffered. Added P and V calls
and made other changes so that things would work properly when
multiple tasks try to access the IIS.

I did some tests with different buffer sizes to see how fast an image
plane could be loaded. The maximum speed is less than the transfer rate
that is in the Model 70 specs. Someone at IIS told me that this is due to
a transfer rate limitation in the PDP-11 interface. Also, very large
buffer sites gave a Model 70 time-out error. I don't know what causes
that.

One of the things that the IIS is used for is to allow the user to
interactively specify a box location on the screen. This is done by using
the data tablet to move a cursor on the IIS screen which in turn specifies
the location of one of the corners of the box which is drawn on the
screen. This is implemented by a loop which gets the latest cursor
position and then erases the old box and draws the new box. Erasing
the old box was initially done by a call to BCHAN, which in turn calls
FDBCK. This resulted in the box jumping around on^the screen when
zoom was enabled. Since this seems to be a "feature of the hardware
rather than a malfunction, I changed the program so that the old box is
erased by drawing it with "0" bits rather than "1" bits. This seems to
work OK.

It may be of interest to know that the software character generator
in the IIS routines seems to make characters that are contained within a
box that is seven pixels wide and eleven pixels high. This seems to
apply to the letters and numbers. Things like spaces and punctuation
marks are not as wide. Although the background character box is
eleven pixels high, the actual characters are smaller. Thus, a line
spacing of ten pixels will work OK.

11

3.8."' DATA TABLET SOFTWARE

A ’’temporary” kludge was implemented in IMPS for using the data
tablet since no device driver for the tablet was available at that time.
The kludge was never changed. An IMPS task that uses the tablet maps
the I/O page into its address space. When it wants to get a set of
coordinates from the tablet, it calls a routine which triggers the tablet
and waits for the coordinates to be produced. It does the wait by
executing a tight loop which just checks the appropriate bit in the tablet
status word in the I/O page. In order for this to work properly, the
data tablet must be set to ’’remote” mode with the buttons on the front of
the controller box. This will also work if the tablet is set to ’’not switch
stream” mode since the controller will then generate its own trigger at
the rate set by the slide switch.

The Pipeline Display System makes use of the data tablet device
driver which was written by Al Braun. In order for this to work
properly, the tablet MUST be in ’’not switch stream” mode. (Thus, if it
is always left in this mode, both the PDS and IMPS will work.) When the
tablet generates an interrupt, the driver will cause an Asynchronous
System Trap (AST) to occur. (In the original version of the driver, an
AST was generated only if something had changed since the last
interrupt. However, it was necessary to change this so that each
interrupt generates an A ST.) Note that the setting of the stream rate
slide switch is important. If a slow rate is selected, then the user will
get a sluggish response from the tablet. However, the rate should not
be set too high. As the rate of interrupts is increased, more of the
available CPU cycles will be used by the AST processing. More CPU used
by the AST processing of course means less CPU available for the
application program that wants to do something with the data from the
tablet. Also, if the AST’s start coming faster than they can get
processed, then the pool space will quickly get gobbled up since the AST
queue uses pool space.

Th ere is a program called TIME in [201,223] which is useful for
setting the slide switch. If this program is installed and run at the
lowest priority then it will report a rough estimate of what percent of the
total available CPU cycles is actually being used by the other tasks in
the system. When the system is idle, TIME will usually report that only
one percent or less of the avialable CPU cycles is being used. However,
sometimes it reports that about 17% is being used. I don't know what is
causing this. Perhaps it is something related to the network.

Two sets of low level routines have been implemented for using the
data tablet. The sources are stored in [210,53] and [220,53]. They are
contained in the object module library [210,53] or [220,53] INTLIB .OLB.
With the routines in T1RTNS.MAC, the AST routine accumulates
information about what has been happening with the tablet. Routines
which can be called by the application program are available for
obtaining this information, e .g . , the tablet coordinates and status flags
at the latest AST and information about what has happened with the
status flags since the last time the application program asked for
information. The

12

routines in T2RTNS.MAC allow the run-time specification of a Fortran-
coded routine that is to be activated when an AST is received. This
makes it easy for the AST routine to do application-specific things such
as moving a cursor in response to relative movements of the pen.

From time to time the data tablet hardware develops a problem that
is not fatal but is a bit annoying. When the tablet is operating properly,
the user can lift the pen off the tablet surface and then put it back down
near the surface without the cursor on the screen jumping. When the
problem develops, the cursor will jump back and forth a bit when the
pen is moved up and down. This usually happens when the pen is in the
center or right-center area of the tablet surface. If you open up the
tablet surface you will see that it consists of a set of horizontal wires
and a set of vertical wires separated by a sheet of plastic. The problem
seems to be caused by some of the wires getting stuck to the plastic,
perhaps resulting from users pushing down too hard on the pen. To fix
it, all you have to do is move the plastic sheets around a little to unstick
the wires. Of course in doing this you should be very careful not to
break any of the wires.

3 .9 . KEYBOARD SOFTWARE

The file KBRTNS. MAC in [210,53] and [220,53] contains a set of
routines for handling input from the keyboard that sits in front of the
VT-11. «These are contained in the object module library [210,53] or
[220,53] INTLIB.OLB. These are the routines that are used in the
Pipeline Display System. (IMPS uses an earlier version of these
contained in [201,10] KBPRIM.MAC.) When a key is typed on the
keyboard, an AST is generated and the AST routine adds the character
to a buffer. The application program can call routines to do things like
get the next character out of the buffer or wait for a key to be typed.

The keyboard contains a beeper which makes a loud obnoxious
noise. Sending a control-Gi out on the terminal line that is connected to
the keyboard will not ring this beeper. I have a vague recollection that
you can ring it by doing something like trying to write in the location of
the I/O page that contains the VT-11 read-only status register.

There is a power switch on the back edge of the keyboard case.
Occasionally a user will push the keyboard against the VT-11 and turn
off the keyboard power, which of course causes it to quit working.

3.10. ZETA PEN PLOTTER SOFTWARE

The pen plotter routines supplied by Zeta are contained in
[210,35]. ZETASUBS.OLB is the object module library. Arnold Rots has
handled the installation of the Zeta routines, so I won’t say any more
about them.

13

files, applied a few patches recommended by Precision Visuals, and made
some changes to the Versatec driver. A little later I installed the
contour package when we received it, but it did not include the mesh
surface package. Some time after that we received the Zeta pen plotter
device driver, but I did not install it. Arnold Rots recently installed the
Zeta driver. We recently received a tape that contains an updated
version of the contour package which includes the mesh surface package.
This is the "standard" version of the contour package, i .e . , it does not
contain anything that is specific to the PDP-11 system. This package
has not yet been installed. Currently, the only application that uses Dl-
3000 is Arnold's text processing program. Arnold is now taking care of
D I-3000, so I won't say any more about it.

3.12. INTERACTION ROUTINES

The interactive programs in the Pipeline Display System use a set of
interaction routines which were implemented to follow the general input
model that has been proposed for GKS. This is described in the article
"The Detailed Semantics of Graphics Input Devices," by Rosenthal, et.
a l. , in COMPUTER GRAPHICS Vol. 16, No. 3 (July 1982), p. 33. The
interaction routines provide the application program with a set of logical
input devices which make it easy for the application program to get a
variety of input values from the user without getting bogged down with
the details of the I/O to the various physical devices. The
implementation of the interaction routines takes care of the details of
using the physical devices that are present in order to obtain the
desired logical input values. This involves accepting input from the data
tablet and keyboard and providing appropriate feedback and
acknowledgement on the VT-11 and IIS screens.

The routines do not strictly adhere to the GKS specification because
the proposed Fortran binding was not available when I implemented the
routines. Also, I only implemented the subset of the GKS functions that
were needed. For the ones that were implemented, only the input modes
that were needed were implemented. And, I implemented some additional
functions that were useful in the PDS. Some of these are composites of
the basic logical device types, e .g . , a composite of the valuator and
choice devices. Some of the additional devices are new types, e .g . ,
routines for inputing box locations on the IIS.

The firs t character of the routine name indicates the type of
function and the rest of the name indicates the logical input device to
which the function applies. The following are the first letter codes and
functions:

I - initialize the logical device.

14

R - request a value from the logical device.
M - set the mode of operation. This will select either request

mode or sample mode for logical devices that support
sample mode.

S - sample the value of the logical device.
A - The Fortran part of the AST routine that implements the

logical device. These routines should never be called
directly by the application program.

The following are the logical input devices that are implemented and
the types of data that they supply to the application program:

LOCI - locator no. 1 - VT-11 screen location.
LOC2 - locator no. 2 - IIS screen location.
CHOI - choice no. 1 - item chosen from a VT-11 menu display.
CH02 - choice no. 2 - choice indicated by typing a keyboard

key or by pushing down on data tablet pen.
VC1 - valuator-choice no. 1 - pair of values plus choice

indicated by keyboard key or pen push.
LC1 - locator-choice no. 1 - IIS screen location plus choice

indicated by keyboard key or pen push.
LIN1 :"*■ line no. 1 - pair of IIS screen coordinates which

define a line on the IIS screen.
BOX1 - box no. 1 - two pairs of IIS image plane coordinates

which define a box on the IIS image plane. User
positions two of the box corners.

BOX2 - box no. 2 - two pairs of IIS image plane coordinates
which define a box on the IIS image plane. User
positions the center of a fixed size box.

Note that some of the logical devices that deal with the IIS were
initially implemented to return IIS screen locations but have now been
changed to supply IIS image plane coordinates. These include BOX.1 and
BOX2. These thus work properly when the IIS zoom is enabled.
However, some of the logical devices have not been changed to deal with
image plane coordinates. The BOX1 and BOX2 implementations make use
of the LC1 logical device, so it is useful for LC1 to return screen
coordinates. On the other hand, the LIN1 device should probably be
changed so that it returns image plane coordinates rather than screen
coordinates. (LIN1 is currently not used by any part of the Pipeline
Display System.)

Note that for the LOCI logical device, the Fortran-coded AST
routine does the movement of the VT-11 cursor in response to movements
of the data tablet. Similarly, in LC1, the Fortran-coded AST routine
moves the IIS cursor. The RBOX1 routine makes use of the LC1 logical
device for positioning the IIS cursor. It does this by calling MLC1 to
put the LC1 device into sampled mode and then going into a loop where it
calls SLC1 to sample the current IIS cursor location and then redraws
the box on the IIS screen based on the new corner location. There are
thus effectively two concurrent processes running in the system. The
higher priority process is the AST routine which does the quick and
easy task of moving the cursor. The lower priority process is the box
drawing, which runs at

15

the normal task priority. The time to redraw the box can be longer than
the time between successive interrupts from the tablet. However, this
organization gives the user good response in moving the IIS cursor.
The redrawing of the box will just sometimes lag behind the movement of
the cursor.

The sources for the interaction routines are stored in [210,53] and
[220.53] . They are contained in the object module library [210,53] and
[220.53] IN T L IB . OLB.

3.13. GENERAL U TIL ITY ROUTINES

The sources for the general utility routines that are used in IMPS
are stored in [201,10] along with the IMPS main programs. The routines
are contained in the object module library [201,10] IMPLI B . OLB.

The sources for the general utility routines that are used in the
Pipeline Display System are stored in [210,47] and [220,47] . The
routines are contained in the object module library [210,47] or
[220,47] DISLI B. OLB. Some of these routines are adaptations of some of
the IMPS utility routines. However, there may be some routines in the
IMPS area which are of general usefullness but which are not in the PDS
area.

3.14. GRAPHICS SOFTWARE ORGANIZATION
IN THE PIPELINE DISPLAY SYSTEM

This section describes the overall organization of how the Pipeline
Display System makes use of the graphics routines described above.
The applications tasks in the PDS do not directly handle the graphics
devices. Instead, there are three special tasks that do the actual I/O to
the VT-11 , IIS, data tablet and keyboard. When an applications task
makes a call on a graphics function, the subroutine that is linked into
the task image doesn't actually do the function. Instead, it calls upon
one of the special tasks to perform the graphics function for it. The
main advantage of this is that it reduces the memory size and thus the
need for overlays in the applications tasks since the linkage routines
require less memory than the code which executes the graphics
functions. Also, a task which uses the VT-11 does not need to have the
VT-11 display file in its address space. A secondary advantage of this
organization is that it allows more than one applications task to be
accessing a graphics device at the same time. (As a practical matter,
this is only desirable for some uses of the I IS .)

The three special tasks that handle the graphics devices are called
V T , I I , and TK. VT processes requests for VT-11 functions, II
processes requests for IIS functions, and TK (Tablet-Keyboard)
processes requests for the interaction routines that implement the logical
input devices.

16

LINKAGE CONVENTIONS. Conceptually, the V T , II and TK tasks
are initially waiting to receive a request for their services from an
applications task. An applications task makes a request by sending to
the appropriate task a packet of information which specifies the desired
operation and any needed parameters. The applications task then waits
for the special task to send back a packet which indicates completion of
the operation and which contains parameter values being passed back to
the caller. One way to implement this would be to use the operating
system functions which pass data packets between different tasks.
However, in order to get faster run time execution (I hope), the global
common area defined in GBLCOM.DCL is used for communications between
the tasks and global event flags are used for synchonization. Space is
allocated in GBLCOM for a set of request packets for each of the three
special graphics tasks.

The command file [300,20] EXP. CMD initializes the system by
running the three tasks, each of which suspends itself by waiting on the
global event flag that is to be set when the task has work to do. (I f the
communications gets hung up, you can restart things by aborting any
applications tasks that are running and then executing
[300,20] RESTART. CMD.) The code for a graphics routine that is linked
into an application task will obtain an available request packet and fill it
with a request code and parameter values. It will then set the global
event flag associated with the desired graphics task and wait for the
global event flag which will be set when the graphics operation is
complete.* As a practical matter, only a single request packet is used for
the V T task and a single is used for the TK task. As many as three are
available for use with the II task.

[210,47] and [220,47] contain a collection of routines which have
the same names as the various graphics routines but which just provide
the linkage to the special tasks which actually perform the functions.
These linkage routines are included in DISLIB.OLB. Thus, the task
builder command file for an applications task should specify a search of
DISLIB, but should NOT specify a search of GLIBVT, H U B , or INTLIB.

Note that the set of linkage routines that has been implemented does
not include all of the available graphics routines. Thus, it may be
necessary to add some linkage routines and to make additions to the V T ,
I I , or TK tasks. Also, note that use of the linkage routines puts some
restrictions on what the applications task may do. These restrictions are
described below. Some of these restrictions result from the fact that
fixed arrays in GBLCOM are used for passing some parameters between
the applications tasks and the graphics tasks. This increases efficiency
by eliminating copying of large data arrays. Also, it reduces the size of
the request packets. In a few cases, a linkage routine is provided which
results in several graphics routines being executed in the graphics task.
This is done to increase efficiency by reducing the communications
between tasks.

VT TASK. The services provided by this task include a subset of

DEC's VT-11 routines plus the additional* routines ABSMOV, FMPLOT,
FNDSUB, and MAKCUR. Also included in the linkage routines is DSET,
which sets a word in the VT-11 display file. This is used for setting the
position of subpictures. Note that some of DEC's VT-11 routines allow a
variable number of parameters. I have always used them with a fixed set
of parameters, so the linkage routines do not handle variable numbers of
parameters. The VT-11 request packet contains room for 40 words of
parameter data. Thus, a call to TEXT should not contain a string longer
than 79 characters. (The 80'th character would be needed for the
terminating null byte .) The FMPLOT function obtains the new function
memory from the FM array in GBLCOM.

II TASK. The services provided by this task include a subset of
the IIS supplied routines plus some special versions of some of these
routines plus a couple functions which execute several IIS routines. The
special versions include GIMAGE (write 1's to a graphics plane) and
RIMAGE (read pixel data from an image memory into the RDBUF array in
GBLCOM). The composite functions include ZBOX (erase a box in a
graphics plane) and BBOX (draw a box in a graphics plane). IMAGE
and I FM get their data from LINBUF in GBLCOM. LUT, POFM, PLUT,
and GRRAM get data from BUF in GBLCOM. BCHAR will use only the
first 76 characters that are supplied. For routines that require a
scratch buffer, the buffer is of course supplied by the II task and does
not need to be supplied by the application task. The II task calls INFCB
to initialize its FCB when it starts up. Thus, the application program
does not have to call INFCB. If it does, it is just a null operation in the
II task.

Note that the current implementation of the system will support two
(or maybe three?) concurrent applications tasks that are making
requests for services from the II task. Thus, for example, the user can
run TVLOD and give the GO command to start the loading of an image
memory plane. Then, while the loading is in progress, he can run TVDIS
to change the display mode, set the color encoding, modify the transfer
function, etc. It

TK TASK. The services provided by the TK task include most of
the logical input device routines described above. It also includes some
of the keyboard functions in KBRTNS, some of the tablet functions in
T1RTNS, and some functions for dealing with the local event flags
associated with the keyboard and tablet.

All input from the data tablet and keyboard is handled by the TK
task in the logical input device routines. For the most part, all handling
of the VT-11 is done by the VT task. Thus TK calls upon VT to provide
the feed-back on the VT-11 that is needed for some of the logical input
devices. The only exception to this is the positioning of the VT-11
cursor that is done in the AST routine for the LOCI logical device
(routine named ALOC1). In this case, the TK task also includes the V T -
11 display file in its address space, and ALOC1 directly sets the
locations which contain the VT-11 coordinates of the cursor.

For the most part, all handling of the IIS is done by the II task.

18

Thus, TK calls upon II to provide the feed-back on the IIS screen that
is needed for some of the logical input devices. The only exception to
this is the positioning of the IIS cursor that is done in the LC1 logical
input device by the RLC1, MLC1 and ALC1 routines. In these routines,
the TK task itself sends cursor positioning commands out to the IIS.
This is done by the calls to CURSOR followed by the calls to DEXEC to
flush the buffer out to the IIS. In order for this to work properly, the
FCB (defined in CLC1.DCL) gets initialized by the INFCB call in ILC1.
Note that the task builder command file for TK is set up so that the

real versions of INFCB, CURSOR and DEXEC (and lower level routines
which they call) get included from IIL IB .O LB. The linkage versions of
all the other user-callable IIS routines get included from DISLIB.OLB.
Thus, when RLC1 and MLC1 in TK call CRCTL and WTEXEC, they
execute the linkage routines and the actual output is done by the II
task.

The DEXEC and WTEXEC routines basically perform the same
functions. (I'm not sure, but I think DEXEC might not wait for
completion of the I/O . The wait would not occur until the next call that
tried to put something into the bu ffe r .) In the TK task, DEXEC flushes
out the buffer that is contained in the same task. WTEXEC flushes out
the buffer that is contained in the II task. Any applications task should
only use the WTEXEC routine.

The above considerations would also be true for the LOC2 logical
device if*it were to be added to TK. Some of the DEXEC calls in RLOC2
and MLOC2 would need to get changed to WTEXEC calls.

The II task can of course process only one request for IIS I/O at a
time. Thus, if II is busy processing a request from the TVLOD task to
output to the IIS and a request for IIS I/O is made by the TVDIS task,
then the request from TVDIS is queued. The buffer that gets sent out
to the IIS in a single DMA transfer may then contain output that was
requested by more than one concurrent applications task, but this works
fine. Since all of the actual I/O is being done by the II task, there is no
problem with multiple tasks trying to access the IIS at the same time.
However, there are situations when two tasks may try to access the IIS
at the same time. When an applications task calls RBOX1, the request
gets processed by the TK task. The "reaH RBOX1 code running in TK
sets the LC1 logical device to sample mode. This means that ALC1 will
send a cursor positioning command out to the IIS each time a tablet AST
is received. Meanwhile, the main-line code in RBOX1 will sample the
current LC1 value and make calls which request that the II task erase
the old box on the screen and draw the new box. There is thus a
possibility that both II and the AST routine in TK will attempt to output
to the IIS at the same time. In order to prevent this, it was necessary
to make some modifications to the low level routines provided by IIS. At
those points where an actual I/O transfer is to be done, a call to P(33)
was added. The parameter value "33" specifies a global event flag which
is used as a semaphore to insure that only one task at a time is permitted
to access the IIS. When the I/O is complete, a V(33) is called to release
the IIS. Some additional changes were necessary in the M70BF and M70XF
routines.

19

These insure that the 8-word IIS header and all of its associated data
block will be output before the V(33) is called to release control of the
IIS.

Note that the GENDIS task has not yet been changed to make use of
the separate task for handling the VT-11. If this is done, either the
SMLCUR routine or the routines it calls will have to be added to V T .

3.15. TASK PRIORITIES

In order the make sure that the user gets good response when he
runs the Pipeline Display System, the various tasks are set up to run at
priorities that are higher than the default priority. The TK task runs at
the highest priority (101) since it must be able to process the AST's
from the tablet and keyboard. Next, VT and II run at priority 100.
The user-runnable applications tasks (TVLOD, TVDIS, etc.) run at
priority 70.

3.16. MISCELLANEOUS

The file DISPLY: : [201,223]E D T IN I. EDT might be of interest to
someone. It sets up EDT so that some of the most commonly used keypad
functions can be done by typing control characters. This is nice since
you don't have to take your hands off the normal keyboard so often.
The following are the new commands:

ctrl-U move cursor up one line
ctrl-N move cursor down one line
ctrl-J move cursor left one word
ctrl-K move cursor right one word
ctrl-F move cursor right one character
ctrl-D move cursor left one character
ctrl-R delete one character
ctrl-E delete one word

4. APPENDIX

4.1. SUMMARY OF GLOBAL EVENT FLAG USEAGE

33 - semaphore for gaining exclusive use of the IIS
34 - set by IMPS when DEMO should exit
35 - set when VT task has work to do
36 - set when V T has processed the request
37 - set when TK task has work to do
38 - set when TK has processed the request
40 - set when II has processed first request packet
41 - set when II has processed second request packet
42 - set when II has processed third request packet
43 - set when II task has work to do

4.2 . SUMMARY OF DISK AREAS FOR GRAPHICS FILES

DEC-10 Disk Areas:

[11,12] Standard system area - includes Omnigraph,
Tektronix 4012/4025 plotting routines (LCPLT,
LC U TIL), character plotting routines (CHPRIM,
CHPLT, e tc .) , GRFUTL

[11.16] Jim Torson’s work area - includes Tektronix 3D
plotting routines (LCPLT3), miscellaneous
document files, unmodified Omnigraph sources
(in [11 ,16,OMNI,SOURCE])

[21.16] Jim Torson's area for submitting files to the
standard system - includes old Fits program and
miscellaneous document files

[13,16] Jim Torson's scratch area - currently empty

21

P D P -1 1/44 (DISPLY: :) Disk Areas:

[1,2] Command file for IMPS (PREIMPS.CMD) ^

[7,7]
[7,11] Versatec software - most recent version,

(sources and PEPLIB.OLB)

[107,7]
[107,11] Versatec software - old version - should

be ignored or deleted

[200,200] VT-11 software - most recent version,
(sources and GLIBVT.OLB)

[200,201] VT-11 software - old version - used by
IMPS, but should be ignored

[201,10] Standard system area for IMPS - includes
utility routines (sources and IMPLIB.OLB),
IMPS task files, CRCOP, CHKCAT, MASDEL

[201,201] Jim Torson’s work area for IMPS - includes
WHO, DEMO, CATDEL

[*201,205] Arnold Rots’ work area

[201,207] Special versions of IMPS tasks - includes image
loading and Dicomed writing

[201,213] "Games" !| includes a simple paint program and
color table animation program for the Comtai

[201,217] Most recent software received from IIS -
includes interface and utilities package plus
primitives package

[201,220] UIC that should be used for running IMPS -
disk area includes SPACE.CMD

[201,221] DI-3000 files

[201,222] DI-3000 files

[201,223] Jim Torson’s work area for Pipeline Display
System - includes TIME

[201,224] IIS software that is being used - includes
subset of files in [201,217] (some of which
have been modified)

[201,225] Jim Torsons work area for Pipeline Display
System - used for V T , II and TK tasks and
logical input device routines

[210,10]
[220,10] Object module libraries used by Pipeline Display

System - includes IIL IB .O LB, GLIBVT.OLB

[210.47]
[220.47] Utility routines for Pipeline Display System -

sources and DISLIB.OLB

[210.50]
[220.50] Pipeline Display System user callable tasks -

includes T V IN IT , TVLOD, TVDIS, T W A L , CURVAL,
also includes GENDIS, ICCREA

[210.51]
[220.51] CLNMAP, CLNDIS

[210.53]
[220.53]

*

Logical input device routines (ILOC1, RLOC1,
e tc .) , data tablet routines (T1RTNS.MAC,
T2RTNS.MAC), keyboard routines (KBRTNS.MAC),
object module library that contains all these
(INTLIB.OLB)y special tasks for handling
display devices (V T , I I , and TK)

