VLA TECHNICAL REPORT \#3
MODULE T5
IF RECEIVER
A. R. Thompson May 1975

CONTENTS

I. Related Material Not Included in the Manual
(a) Drawings, Artwork and Parts Lists
(b) Publications and Memoranda
II. General Description
III. Circuit Details
IV. Some Assembly Details
V. Initial Adjustment Procedures and Servicing Hints
VI. Bills of Materials

D13450Z1

D1345022

Dl3450Z3
VII. Data Sheets and Application Notes

MD614

山A733

LHOO22

FMA120

5082-3081

5082-7300

5082-2800
H. P. Application Note 936

IF Receiver, left side with cover plate removed

October 18, 1974

Schematic Diagrams

```
Schematic Diagram of IF Receiver Module
Dl3450S1
```


Parts Lists

```
Bill of Material, Mechanical
Al3450Z1
Bill of Material, Electrical, P.C. Board Assembly
    for Filter Select Display
    Al3450Z2
Bill of Material, Electrical, Main P.C. Board Assembly Al3450z3
```

Assembly Drawings
Main P.C. Board Assembly
P.C. Board Assembly for Filter Select Display
Assembly and List of Mechanical Module (1SB)
Dl3450P4 (2 parts)
Bl3450P2
IF Receiver Module Assembly
D13450P1
D13450P3

Printed Circuit Board Artwork
Main P.C. Board
Dl3430ABl (2 parts)
P.C. Board for Filter Select Display
P.C. Board Drawings With Component Layout

Main P.C. Board
Dl3450M13 (3 parts)
P.C. Board for Filter Select Display

Mechanical Parts of Module

Front Panel	Bl3450M2
Rear Panel	Bl3450M8
Top and Bottom Support Bars	Bl3450M10
Left Side Plate, Front	Cl3450M4
Left Side Plate, Rear	Bl3450M5
Left Side Plate Support	Bl3450M6.
Right Side Plate	Cl3450Ml2
Front Shield	Bl3450M3
Connector Shield	Bl3450M1
Mounting Plate for Integrated Circuit	Bl3450M7
Heat Sink Support	Bl3450M9
Mounting Frame for Circuit Board	Cl3450Mll
Guides	Bl3050M4

Mechanical Parts for Semi-rigid Cable Assembly

Connector to P.C. Board B13450M14
Cable clamp
Bl3450M15
I. (b) Related Publications and Memoranda

VLA Electronics Memo \#115
Bandwidths for the VLA Receiving System
A. R. Thompson July 18, 1973

VLA Electronics Memo \#118

The Bandwidth Effect ('Delay Beam') for a Synthesis Array and Related Requirements for the IF Filter Characteristics
A. R. Thompson November 13, 1973

VLA Electronics Memo \#129
The Response of the VLA to Interfering Signals
A. R. Thompson January 1975

The function of the IF Receiver module is to accept IF signals in any one of the four frequency bands $1300-1350 \mathrm{GHz}, 1400-1450 \mathrm{GHz}, 1550-1600 \mathrm{GHz}$ and 1650-1700 GHz from the modem, to convert the signals to a frequency band $0-50 \mathrm{MHz}$, and to amplify them to a level of 45 mw (1.5 V rms in 50 ohms). The signals are then passed to the digital sampler. The IF Receiver also allows selection of one of six different signal bandwidths from 0.5 to 50 MHz by means of switched filters, and it provides for automatic level control to hold constant the signal level at the sampler.

A block diagram of the IF Receiver is shown in Figure 1. Input levels to the mixer are -20 dBm in 50 MHz bandwidth for the signal and 8 ± 4 dBm for the local oscillator. The L.O. signal is supplied by the L.O. Offset module and its frequency is variable under computer control so that when a narrow IF bandwidth is used the signal can be selected from any part of the incoming 50 MHz band.

The mixer is followed by a high pass filter with cutoff frequency approximately 1 MHz , a voltage controlled attenuator with a range of 40 dB and a broadband amplifiex with gain of approximately 46 dB . The signal next encounters a low pass filter with a cutoff frequency of 52 MHz (-3 dB point). The -1 dB point of the filter is 50 MHz and this together with two earlier filters in the signal path which have -1 dB bandwidths of 50 MHz results in a signal level of -3 dB at 50 MHz . Diode switch networks then direct the signal through one of seven paths, one of which passes the full signal band of $1-50 \mathrm{MHz}$, five others contain filters which pass bandwidths of $24,12,4,1.5$ and 0.5 MHz each centered on 38 or 40 MHz , and the last makes provision for an external filter. Attenuators are incorporated in the signal paths so that the total signal power through each is approximately the same. The filter path desired is.selected by setting three TTL levels as indicated in Table 1 . These filter select signals come from the IF Control module.

The signal next passes through another broadband amplifier, then to a medium power broadband stage and finally to the output terminal. The frequency response of the amplifiers described here as broadband is essentially flat from 1 to 50 MHz . At the input of the final stage a part of the signal is tapped off to a monitoring detector and also through an isolating stage to a front-panel monitor terminal. The output voltage at the monitor terminal is about 0.06 of that at the main output $J 1$ when both are terminated in 50 ohm loads. The
*Later changed to -3 dBm at 50 MHz , see VLA E.M. \#129.
$\dagger_{25} \mathrm{MHz}$ center frequency was used in the prototype design, but later changed to 40 MHz to obtain better rejection of the image response at the mixer input.

Eigure 1.

TABLE 1. Characteristics of Switched Filter Paths

Filter Path Number	Select Signal MSB	LSB	Filter Bandwidth $(-3 \mathrm{~dB})$	Attenuator Network	
0	0	0	0	49 MHz	20 dB
1	0	0	1	24 MHz	17 dB
2	0	1	0	12 MHz	14 dB
3	0	1	1	4 MHz	9 dB
4	1	0	0	1.5 MHz	4.8 dB
5	1	0	1	0.5 MHz	0 dB
6	1	1	0	External	0 dB
				Filter	

detector output drives a front panel meter and an amplifier with a gain of 10 that provides an output monitoring voltage.

On the front panel of the module there are the detector current meter, a BNC jack which provides the monitor signal, and an LED numeric indicator which shows a number in the range 0 to 6 indicating the filter channel chosen.

The high pass filter immediately following the mixer was originally included because in the first version of the VLA electronic system the fringe rotation was introduced at that mixer. A digitally generated signal at approximately 100 kHz was added to the local oscillator, and the effects of unwanted 100 kHz sidebands on the oscillator were eliminated by this filter. The filtex is also deemed to be beneficial because the PIN diodes used in switching between the bandpass filters are specified as "useful down to 1 MHz. " The degree of distortion that the switching diodes would cause below 1 MHz has not, however, been investigated in detail. Typical values for the frequency response of the high pass filter are as follows:

-3 dB	1.2 MHz	-20 dB	730 kHz
-6 dB	1.0 MHz	-30 dB	590 kHz
-10 dB	920 kHz	-40 dB	480 kHz

Four IF Receiver modules are used for each antenna. They are located in rack N in the control building and occupy slots $4,6,8$ and 10 of bin s.
III. Circuit Details

All of the electronic components except the final amplifier and the LED filter-channel indicator are mounted on a single printed circuit board of dimensions 12.68×6.45 inches. A circuit diagram of the complete module is shown in Figure 2.

The mixer is an Anzac flatpack model, MD614, with a nominal range of input frequencies of $0.6-2 \mathrm{GHz}$. An OSM connector on the circuit board, TP1, allows a test signal in the intermediate frequency range to be injected inmediately after the mixer. Inductors Ll to L 5 and the associated capacitors form a high pass filter of 50 ohms impedance with a cutoff of frequency of approximately 1 MHz . This filter is adapted from a design given on p. 150 of Electrical Filters published by White Electromagnetics Inc.

The voltage controlled attenuator which follows the filter contains two 5082-3081 PIN diodes and is taken from a design in Hewlett Packard Application Note No. 936, figure 6 (see section VII). The signal level at C6 is decreased over a range of 40 dB as the voltage at the junction of C12 and R36 goes from zero to about +10 volts. The ALC control voltage coming into the module is buffered by an LHOO22 operation amplifier which has a balanced input and a voltage gain of two.

The first broadband amplifier in the signal path is a $\mu \mathrm{A} 733$ with pins 4 and 11 connected to give the highest gain. This amplifier or its equivalent is manufactured by several companies including Fairchild ($\mu \mathrm{A} 733$), Motorola (MC1733), National Semiconductor (LM733), and Signetics ($\mu \mathrm{A} 733$). It is followed by a 2 N5197 emitter follower which drives the 52 MHz low pass filter FLl. Resistors R35 and R32 provide matching impedances for the filter.

The signal next passes through one of seven paths selected by the switching PIN diodes* CR4 to CR24. For the path chosen the three diodes that otherwise block the signal are turned on by signals from the SN7445 BCD to decimal decoders which have open collector outputs. In the off condition the SN7445 collectors are returned to +15 volts through resistors Rl and R14 so that the diodes in the open paths are back biased by +15 V on one end of the path and 1 V to 6.0 V on the other. The latter voltage results largely from the drop across R 52 and R 48 which carry the current drawn by the diodes in the open path. The SN7445 collector voltage in the on condition should be approximately 0.2 V and the currents through the forward biased diodes, which are

[^0]limited by R52 and R48, lie in the range 13 to 20 ma . Resistors R86 and R52 provide matching terminations for the filter-attenuator combinations, and the signal paths on the printed circuit board between the emitter of $Q 2$ and the input to $U 5$ are of width chosen to present 50 ohms impedance to the ground plane on the front side of the board. With the $1 / 16$ inch $G 10$ circuit board the conductor width for 50 ohm impedance is approximately 0.118 inches, depending somewhat upon the dielectric constant of the board material. In the artwork 6.0 mm width tape was used for $2: 1$ reduction in the subsequent photographic process. The filter and switching circuitry occupy a central location on the board. In order to prevent unwanted signal paths between the stages that precede and follow the filters, inductors or resistors are inserted into the power supply, filter selection and monitor level conductors that run between the input and output ends of the board.

Amplification after the filters is provided by U5, a $\mu \mathrm{A} 733$ with pins 3 and 13 connected for the intermediate gain condition. This is followed by Q3 which has a voltage gain of about 4 with a 50 pf variable capacitor to ground on the emitter to allow adjustment of the overall frequency response. The next stage is Q4, a 2N5109 emitter follower, the collector of which has a heat sink to the module. The maximum signal level that can be obtained at the emitter of $Q 3$ is approximately 5 V peak-to-peak. Resistor R 71 provides matching to the 50 ohm 0.141 coax that takes the signal to the input of the final amplifier, a Fairchild FMAl20 which is mounted directly on the module for heat sinking purposes. Note that although the FMA 120 is accessible from the exterior of the module, it cannot be removed without unsoldering connections inside the module.

The emitter of $Q 4$ also drives emitter follower Q5 which provides isolation for the signal monitor output on the front panel. Another signal from Q4 goes to a diode detector, CR25, the output of which drives the front panel meter and operational amplifier $U 6$ which has a voltage gain of 10 . The output of U 6 is monitored by the computer through the IF Control Module.

Power supply currents drawn are as follows:

+28 V	180 ma
+15 V	220 ma
+5 V	180 ma
-15 V	4 ma

IV. Some Assembly Details

Filters
When inserting the filters FLl to FL6 the two hold-down screws should be tightened before the four pins are soldered. This is to ensure a close contact between the board and the filter case. The presence of a gap will allow signals to propogate along the filter case and the full out-of-band rejection of the filter will not be achieved.

OMQ Connectors
When fitting-0.141 inch semi-rigid cable to OMQ connectors it will be found easiest to fit the OMQ to the cable first, then bend to the desired shape and fit the circuit board connector last.

Mixer
The hole in the circuit board into which the mixer fits must be just large enought to allow the mixer to mount with the leads flush with the surface of the conductors to which they are soldered. The RF, LO, and IF conductors should extend not quite up to the edge of the hole so that they cannot short to ground on the mixer case.

Test Connector TP1

The end of the center conductor of the OSM connector which extends on the back side of the board should be cut off after soldering as it may otherwise be long enough to short on the left side plate of the module. If the teflon insulation of the connector protrudes beyond the back of the connector it should be cut off flush with the back surface to that outer part of the connector makes good contact with ground plane of the board.
V. Initial Adjustment and Servicing

For test and adjustment of the IF Receiver module it is convenient to make up a small control box. This should have a potentiometer and three switches mounted in it, a few feet of cable terminating in a connector to mate with the 14 pin module connector, and leads with bananna plugs to connect to the required power supplies $(+5 \mathrm{~V},+15 \mathrm{~V},-15 \mathrm{~V},+28 \mathrm{~V})$. The switches ground or open the three filter select lines to the module, and the potentiometer provides an adjustable voltage in the range 0 to +10 V which is applied to the positivegoing gain input, the negative going one being grounded.

The module contains only three preset adjustments, R41 and R77 which set the offset voltages of the operational amplifiers $U 4$ and $U 6$, and the emitter capacitor of Q3. Test and adjustment procedures are as follows. Before applying power to the module for the first time inspect the board for any short circuits at soldered joints etc. Check that the power supply voltages are precisely adjusted and apply power to the module. Ground the two gain control terminals E4 and E5 on the board and adjust the Helitrim R4I for zero output on pin 8 of the operational amplifier U4. Then for the other operational amplifier, U6, ground the junction of R76 and R83 and adjust R77 for zero output on pin 8.

Next set up the module with the test input, TPl, fed from a sweep signal generator covering the range zero to about 100 MHz ; Wavetek Model 2001 is recommend, using band 1 . The $R F$ output level of the sweper should be -45 dBm and the sweep output should drive the x scan of an oscillosope with frequency response flat to over 50 MHz ; Tektronix 475 is recomended. The IF output of the module, from Jl, is then connected by a 50 ohm cable to the Y input of the oscilloscope, and the cable should be terminated in 50 ohms at the oscilloscope input terminal. Set the gain control voltage for zero attenuation (zero volts) and the filter select switches to position zero giving the full 1-50 MHz bandwidth. With correct operation the output on the oscilloscope should look like Fig. $3(a)$. Adjustment of $C 73$ will be required to obtain the optimum response which is flat within $\pm 0.5 \mathrm{~dB}$ from 1 to 50 MHz . As the output level of the sweeper is varied the display should show signs of overloading when the output signal level is between 10 and 15 V peak-to-peak. If the response is not flat but shows unwanted maxima or minima, check the switching voltages to be sure that all diodes except those in the desired signal path are biased off. If the problem is not associated with the switches and filters check through the

[^1]
(a) Full Bandwidth

(c) 12 MHz Bandwidth

(e) 1.5 MHz Bandwidth

(b) 24 MHz Bandwidth

(d) 4 MHz Bandwidth

(f) 0.5 MHz Bandwidth

Figure 3 . Frequency response with each filter as displayed using Wavetek 2001 sweeper and Tektronix 475 oscilloscope. Vertical scale was 2 V per cm and input power levels at TP1 were $-43,-49,-53,-55$ and -58 dBm for cases (a) to (f) respectively. Filters are the prototype units with 25 MHz center frequency.
circuit with an oscilloscope probe to attempt to locate the trouble. If the output shows signs of distortion when the level is a little below lov peak-topeak, try replacing transistors or $\mu A 733$ amplifiers, since the gain and dynamic range of individual units can differ significantly. In particular check Q^{3} (2N5179). The input signal level at TPl for 10 V peak-to-peak output is typically -43 dBm .

Increase the gain control voltage and check that the response remains flat as the signal level decreases. In one module tested insufficient attenuation at low frequencies resulted from a defective capacitor cl2.

When the unit is operating correctly in the full bandwidth mode examine the response in the other filter positions. Examples of correct operation are shown in Figure 3. In switch position 6, for the external filter, a 20 dB attenuator connected between $J 5$ and $J 6$ should give an output identical to that in the full bandwidth position. The l0V peak-to-peak output without distortion should be obtainable with each filter position, but it will be necessary to reduce the sweeper output in going to narrower filters because of the lower loss in the attenuator network immediately preceding the filter input.

To test for adequate rejection of out-of-band signals in the narrower filter positions a spectrum analyzer is most convenient because of its logarithmic response, A source of noise flat over the required frequency can be used at TPI instead of the sweeper. A broadband, flat-response amplifier with the input correctly terminated with a resistive load can be used as a noise source; the Hewlett Packard 8447F amplifier with the two sections connected in series is very satisfactory. Examples of the output spectrum displayed on a Hewlett Packard 1417 spectrum analyzer with 8553 B RF section and the above amplifier used as a noise source are shown in Figure 4. Insufficient out-of-band rejection is most likely to arise from the filters not being mounted close to the board, as mentioned in section IV, or from the switching diodes in other paths not blocking the signal correctly.

Finally one should test the operation of the mixer which has thus far been omitted from the signal path. A sweeper covering the $1-2 \mathrm{GHz}$ range, or some part of it, should be fed into J4, and a local oscillator signal at some frequency in the same range inserted at J3. The oscillator level should be 8 dBm and IF outputs similar to those shown in Figure 3 should be obtainable. For filter path zero the required signal level for 10 V peak-to-peak output should be about -33 dBm .

Figure 4 Frequency response with each filter as displayed on HP $141 T$ spectrum analyzer using broadband noise input at TP1. Gain was adjusted to give approximately half scale reading on front panel meter. Frequency range was 0 to 100 MHz . Vertical scale was 10 dB per cm . Low level harmonics of the IF signal are seen in cases (d), (e) and (f). The signals at the extreme' right on each trace are FM station pickup. Filters are the prototype units with 25 MHz center frequency.

Following is a list of voltages at various points in the circuit which may be useful for troubleshooting. The figures given were measured from one satisfactorily-operating unit (serial Al) and reasonable tolerances should be borne in mind when comparing them with values for other units.

U3	pin 8	11.0 V
U5	pin 8	10.8 V
Q1	emitter	1.25 V
"	base	2.0 V
"	collector	10.9 V
Q2	emitter	1.2 V
"	base	1.9 V
"	collector	11.2 V
Q3	emitter	1.2 V
"	base	1.9 V
"	collector	7.2 V
Q4	emitter	6.4 V
"	collector	13.9 V
Q5	emitter	3.3 V
"	base	4.0 V
"	collector	13.8 V

Signal levels through the same unit for the wideband (number zero) filter path were measured using a Wavetek 2001 sweeper and Tektronix 475 oscilloscope with P6201 FET probe. Results were as follows:

Input level at TPI: $\quad-43 \mathrm{dBm}$
Pin 8 of $\mathrm{U3}, 0.8 \mathrm{~V} \mathrm{p}-\mathrm{p}$ at 10 w end decreasing to $0.6 \mathrm{~V} \mathrm{p}-\mathrm{p}$ at 50 MHz
Emitter of $\mathrm{Q} 2,0.35 \mathrm{~V} \mathrm{p}-\mathrm{p}$ at low end decreasing to $0.23 \mathrm{~V} \mathrm{p}-\mathrm{p}$ at 50 MHz
Pin 8 of U5, $0.8 \mathrm{~V} \quad$ " " " \quad " $0.6 \mathrm{~V} \quad$ " 0.0
Emitter of Q4, 3.2V . " , flat
Across 50-ohm load at J4, 10 V p-p, flat
The contribution of the internal noise from the IF Receiver should be less than 1% of the total noise level. In normal system operation this is most easily checked by examining the monitor output at the front panel BNC connector with a spectrum analyzer. Disconnecting the input signals at the 4-way power divider at the back of the rack should cause the output noise level to fall by 20 to 26 dB .

BILL UY MAICHIALS

$\left\lvert\, \begin{aligned} & R E V \\ & \text { TP } \end{aligned}\right.$	DESCRIPTION OF CHANGE	$\begin{gathered} \text { DRAWM } \\ B Y \end{gathered}$	DATE	$\begin{gathered} A P P R V \\ B Y \end{gathered}$	DATE
	PT. NO. 8: CAPACITOR VALUE :IAS 212 PT. NO. 9: 8121-050-651-103M ADDED THIS SHEET	J. GRAY	$12 / 12$	1:	\%
C	REIEASED FOR MICROFIMING	J. GRAY	12 J N 1975	CPace	$113 / 75$
D,	ITEMS 17 \& 18; ADDED AERTECH NO. AS ALTERNATE SOURCE OF SUPPLY ITEM 20; PT. NO. WAS 4B51-25/24-P ITEM 21; PT. NO. WAS 4B51-25/12-P ITEM 22; PT NO. HAS 4B51-25/4-P ITEM 23; Pt. NO. WAS 4B51-25/ 1.5-P ITEM 24; PT. NO. WAS 4B51-25/0.5-P ITEM 31; "REMOVED L30 FROM REF. DESIGNATIONS AND REDUCED QUANITY TO 24 FROM 25 ITEM 39; QUANTITY WAS $5 \div$ ITEM 63; REMOVED R38 AND R39 FRDM REFERENCE DESIG AND REDUCED \!UANTITY FROM 5 ITEM 70; ADDED	J. GRAY	$17 \mathrm{AP}$	h.1.1.	17715
	heparid $D=-\frac{1}{2} / 12 / 25$				
MATOAAL RADIO ASTROACYY OESERVATORY IFROJ: V.L.A.					
TTLE: P.C. BOARD ASS'Y.					
TE I.F. RECEIVER IOYG. HO		A1345073			

Wigathe

\qquad $\underline{6}$ MODULE \# T5 NAME 1.F. TRANSMISSION RECEIVER DWG \# D13450P3 SUB ASMB D, C. BOARD ASSY L_ DWG \# RECEIVER PREPARED BY IDEA/WWB \qquad approved (o) Firer

$\underset{\#}{\text { ITEM }}$	$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	MANUFACTURER	MFG PART \#	DESCRIPTION	$\begin{aligned} & \text { TOTAL } \\ & \text { QUA } \end{aligned}$	
1		NRAO	D13450p4	P.S._BAABDASSY LI_ RECELVER	二-	
2		NRAO	D13450M13	P.C. BOABD	1	
3		ROBINSON NUGENT	1CN-143-53	SOCKET 14 PIN	1	
4		ROBINSON: NUGENT	1CN-163-53	SOCKET 16 PIN	2	
5		CINCH	3-PS-3	TRANSISTOR SOCKEI	5	
6	*	ERIE	8121-050-651-104M	CAPACITOR . 1 UF	69	
7	**	ERIE	8131-050-651-105M	CAPACITOR 1. OUF	6	
8		ERIE	8141-050-651-2259	CAPACITOR_2.2 UF	1	
9	C828CC83	ERIE	8121-050-651-103M	CAPACITOR . OIUF	2	
10	073	JFD	DVJ305A	CAPACITOR 4.5-50 Pf	1	
11	C2\&C8	ARCO	DM19302J	CAPACITOR 3000 Pf	2	
12	ClO	ARCO	DM19202J	CAPACITOR 2000 Pf	1	
13	C3	ARCO	DM19102J	CAPACITOR 1000 Pf	1	
14	C9	ARCO	DM19621J	CAPACITOR 620 Pf	1	
15	C4	ARCO	DM19251J	CAPACITOR 250 Pf	1	

* $\mathrm{Cl}, \mathrm{C5}, \mathrm{C} 6, \mathrm{C} 7, \mathrm{C} 11-\mathrm{C} 21, \mathrm{C} 23, \mathrm{C} 26-\mathrm{C} 31, \mathrm{C} 33-\mathrm{C} 42, \mathrm{C} 44-\mathrm{C} 67, \mathrm{C} 71, \mathrm{C} 72, \mathrm{C} 74-\mathrm{C} 81, \mathrm{C} 85-\mathrm{C} 86, \mathrm{C} 88$
** CA3 C68 C69, C 70 , C87 C 32

BILL OF MATERIAL

\square mechanical
Bom \# Al345023 REV \qquad DATE \qquad PAGE \qquad OF \qquad 6

$\begin{gathered} \text { IETM } \\ \# \end{gathered}$	$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	MANUFACTURER	MFG PART \#	DESCRIPTION	total QUA	
33	Q1-Q3, Q5	RCA	2N5179	TRANSISTOR	4	
34	Q4	RCA	2N5109	TRANSISTOR	1	
35	R16, R17			RESISTOR $2.0 \mathrm{~K} \Omega, \frac{1}{1} \mathrm{~W}, 5 \%$	3	
36	R19			RESISTOR $1.6 \mathrm{~K} \Omega, 1 \mathrm{l} \mathrm{W}, 5 \%$	1	
37	R20			RESISTOR $1.8 \mathrm{KS!}, 4 \mathrm{~T}, 5 \%$	1	
38	*			RESISTOR $4.7 \mathrm{~K} \Omega,{ }_{1} \mathrm{~W}, 5 \%$	8	
39	**			RESISTOR 1.0 K ${ }_{\text {S }}$, $\frac{1}{4} \mathrm{~W}, 5 \%$	5	
40	$\begin{gathered} R 24, R 26, \\ B 61 \\ \hline \end{gathered}$			RESISTOR $20 \mathrm{~K} \Omega, \frac{1}{4} \mathrm{~W}, 5 \%$	3	
41	R18,R32 B64, B78			RESISTOR 51,	4	
42	R23, 863			BESISTOR $10.0,-\frac{1}{2} H, 5 \%$	3	
43	R15			RESISTOR 43s\%, $\frac{1}{1} \mathrm{~W}, ~ 5 \%$	1	
44	$\begin{aligned} & \text { R25, R27 } \\ & R 30 \end{aligned}$			RESISTOR 330	3	
45	***			RESISTOR 100R, $\frac{1}{4} W$, 5%	6	
46	$\begin{gathered} R 35, R 86 \\ \text { R71 } \end{gathered}$			RESISTOR 47 $\Omega, \frac{1}{4} W ; 5 \%$	3	
47	R36,R81			RESISTOR 470ת, $\frac{1}{2} W$, 5%	2	
48	$\begin{aligned} & \mathrm{R} 43, \mathrm{R44} \\ & \mathrm{R} 53 \\ & \hline \end{aligned}$			RESISTOR 62:, $\frac{1}{4} W, 5 \%$	3	
19	R42			RESISTOR 240n, $\frac{1}{1} W, 5 \%$	1	

*R21, R22, R30, R33, R59, R67, R68, R79
** R65, R66 R28, R29, R87

MECHANICAL
BOM \# A1345023 REV \qquad date $+$ PAGE \qquad 4

OF \qquad 6

$\begin{gathered} \text { IETM } \\ \#! \end{gathered}$	$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	MANUFACTURER	MFG PART \#	DESCRIPTION	$\begin{aligned} & \text { TOTAL } \\ & \text { QUA } \end{aligned}$	
50	R46		.	RESISTOR 160 $2, \frac{1}{1} \mathrm{~W}$, 5%	1	
51	R47, R45			RESISTOR 68, $\frac{1}{4} W$, 5%	2	
52	C84	ARCO	DM19200J	GAPACITOR, 20pf	1	
53	R48\&R52			RESISTOR 680s, ${ }^{1} \mathrm{~W}$ W, 5%	2	
54	$\begin{gathered} 850, \mathrm{R} 51, \\ 869 \end{gathered}$			RESISTOR 75.w, ${ }^{1}$ W, 5%	3	
55	1849			RESISTOR $120 \Omega, 1$ W, 5%	1	
56	R56			RESISTOR 30.n, ${ }^{1} \mathrm{~W}$, 5\%	1	
57	$\begin{gathered} R 57, R 58 \\ 873 \\ \hline \end{gathered}$			RESISTOR 180ת, ${ }^{\prime} \mathrm{W}$, 5%	3	
58	1662			RESSISTOR 430, 2 , $1 \mathrm{~W}, 5 \%$	1	
59	R883, R74			RESISTOR 10K $\Omega, 4 \mathrm{~T}$ W, 5%	2	
60	$\begin{aligned} & \text { R1-R14, } \\ & \text { R76. R84 } \end{aligned}$			RESISTOR $100 \mathrm{~K} \Omega, \frac{1}{4} \mathrm{~W}, 5 \%$	16	
61	R70			RESISTOR 82, ${ }^{\text {ITW, }}$, 5%	1	
62	R41, R77	BECKMAN	63WR	TRIMPOT 10K 210 TURN	2	
63	$\begin{aligned} & \text { R37, R40, } \\ & \text { R72 } \end{aligned}$			RESISTOR 1M $3, \frac{1}{1}$ W 5%	3	
64	TP1	OMNI SPECTRA	OSM244-2	CONNECTOR, R.F.	1	
65	U3, u5	SIGNETICS	UA733	VIDEO AMPLIFIER	2	
66	U4, U6	NATIONAL SEMICONDUCTOR	LH0022	OPERATIONAL AMPLIFIER	2	

lill 208 FIMED
DATE $2 / 12 / 26$ RY REV. LTR
BOM \# Al345073 REV D DATE

``` \(\qquad\)
``` PAGE 5 OF 6
```

$\underset{\#}{\operatorname{IETM}}$	REFIG	manufacturer	MFG PART \#	DESCRIPTION	TOTAL QUA	
67	U1, U2	TEXAS I NSTRUMENT	SN7445	DECODER/DRIVER	2	
68	U7	ANZAC	MD614	MIXER	1	
69			\#22 AWG 1"LG	WIRE BUS	1	
70	R39, P3n			RESISTOR, $510 \mathrm{~K}, 1 / 4 W, 5 \%$	$?$	

lilconglincly

X MECHANICAL BOM \#A1345073 REV $\qquad$ date $\qquad$ PAGE $\qquad$ $6 \quad O F$ $\qquad$ 6

$\begin{gathered} \text { ITEM } \\ \# \end{gathered}$	$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	MANUFACTURER	MFG PART \#	DESCRIPTION	$\begin{aligned} & \text { TOTAL } \\ & \text { QUA } \end{aligned}$	
$70 \%$		WQLDON	NW875	FLAT WASHER \# 4 NYLON	4	
7172			\#4-40 X . 250 lg.	SCREW, PAN HEAD, ST. ST ${ }^{\text {² }}$.	12	
727			\#4 NOM.	WASHER, FLAT, ST.ST'L.	8	
7371		PENNTUBE PLASTICS CO.	$\begin{gathered} \text { 0-6591A, } 22 \text { AWG } \\ \text { 1W NATURAL } \\ \hline \end{gathered}$	TUBING, TEFLON	2 in.	
747			\#2-56 X . 250 1g.	SCREW, PAN HEAD, S't. ST'L.	. 2	
$75 \because$			\#2-56	NUT', HEX, ST. ST'IL.	2	
767			\#2 NOM.	WASHER, FLAT, ST. ST'L.	2	
77						
78						
79						
80						
81						
82						
$83^{\circ}$						
84						
85						
8,6						



BILL of materials




$\underset{\#}{\text { ITEM }}$	$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	MANUFACTURER	MFG PART \#	DESCRIPTION	$\begin{aligned} & \text { TOTAL } \\ & \text { QUA } \end{aligned}$	
1		NRAO	B13450P2	P. C. BOARD DISPILAY ASSEMBLY	-	
2		NRAO	B13450M16	P. C. BOARD DT.SPI.AY	1	
3.		ROBINSON NUGGET	INC-2.36-S1	T.C. SOCKET 28 PIN (MODTFIED TO 8 pIN)	1.	
4	49	hewlett packard	5082-7300	NUMERIC DISPlay	1	
5	E7-E10	KEYSTONE	1502-3	TERMINAL	4	
6		WALDON	2101-04-00	LOCKING TERMINAL	1	

BICROFILILD

$\square$ ELECTRICAL $\quad \mathrm{X}$ MECHANICAL BOM \# AI345022 $\quad$ REV $\quad$ DATE 2

$\underset{\#}{\text { IETM }}$	REF DESIG	MANUFACTURER	MFG PART \#	description	$\begin{aligned} & \text { TOTAL } \\ & \text { QUA } \end{aligned}$	
7		G.E. ELECTRONICS	13-602-C	StANDOFE	2	
8			\#4-40x. 250 Lf .	SCREN, PAN HEAD S.S.	2	

REVGING SHEET
WIPE LIST


MODULE \# T5 NAME 1.F. TRANSMISSION RECEIVERDWG \# D13450P3
SUB ASMB
DWG \# $\qquad$
SChematic dwg \# Di3450S1 LOCATION
QUA/SYSTEM $\qquad$ PREPARED BY IDEA/WWB ${ }_{\text {approved }} C$ Ficc

$\underset{\#}{\text { ITEM }}$	$\underset{\text { DESIG }}{\text { REF }}$	MANUFACTURER	mFG PART \#	description	torai QUA	
1		NRAO	D13450P3	IF TRANSMISSION RECEIVER	-	
2		NRAO	B13450M2	PANEL, FFIONT	1	
3		nRaO	C13450M12	RIGHT SIDE PLATE	1	
4		NRAO	C13450M4	LEFT SIDE PLATE, FRONT	1	
5		nino	B13450M'	IEft side plate, rear	1	
6		NRAO	B13450M10	BAR, SUPPORT, TOP \& BOFTOM	2	
7		NRAO	B13050,M4	GUIDE	2	
8		NRAO	B13450M3	SHIELD, FRONT	1	
9		NRAO	B13450M1	SHIELD, CONNECTOR	1	
10		nRaO	B.13450M6	SUPPORT, LEFT SIDE PLATE	1	
11		NRAO	813450M9	SUPPORT, HEAT SINK	1	
12		NRAO	B13450M7	MOUNTING PLATE, INTEGRATED CIRCUIT	1	
13		NRAO	C13450M11	MOUNTING FRAME, CIRCUIT CARD	1	
14		NRAO	B13450M15	CABLE STRAP . 141 DIA	2	
15			4-40 $\times .500 \mathrm{LG}$	SCREW, FLAT HD, S.S.	11	



MECHANICAI
BOM \# Al3450Z1 REV B B DATE $1 / 10 / 75$ PAGE 3 OF $\qquad$

IETM   \#	$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	MANUFACTURER	MFG PART \#	DESCRIPTION	$\begin{aligned} & \text { TOTAL } \\ & \text { QUA } \end{aligned}$	
29	J7, 38	AMPHENOL	UG-492 B/U	BNC F.T.	1	
30	$\checkmark 9$	AMPHENOL	UG-625 B/	BNC CONNECTOR	1	
31	P1	AMP SPECIAL INDUSTRIES	201355-3	CONNECTOR	1	
32		AMP SPECIAL INDUSTRIES	201347-4	SHIELD	1	
33		AMP SPECIAL INDUSTRIES	202514-1	GUIDE PINS	1	
34		AMP SPECIAL INDUŞTRIES	202512-1	GUIDE PINS	1	
35		AMP SPECIAL INDUSTRIES	202725-1	CRIMP PINS	1	
36	M1	WESTON	MOHEL 131	ML: IER 0-100ua	1	
37		OMNI SPIECTRA	OM ${ }^{\text {P }}$ 3043-75	12\% CONNIC:TOR	1)	
38		UNIFOISM TUBES	$\begin{gathered} T-1 i^{\prime \prime} \\ C a-1 \end{gathered}$	CABI. E	1	
39	$\begin{aligned} & \hline \mathrm{CB9-C92} \\ & \mathrm{C968C97} \end{aligned}$	SPECTRUM CONTROL	BE001DA104P	CAPACITOR F.T.	6	
40	$\begin{aligned} & \text { C93-C95 } \\ & \mathrm{C} 98-\mathrm{ClO4} \\ & \hline \end{aligned}$	SPECTRUM CONTROL	FB3B10F1289	CAPACITOR F.T.	10	
41	U8	FAIRCHILD	FM-A-120	R.F. POWER AMP	1	
42		WALDON	T2009	RING TONGUE TERMINAI	1	
43		WAL.DON	T2015	CRIMP L.UG (SPADE LUG)	2	
44		NRAO	B13450P2	P.C. BOARD DISPLAY	1	
45		NRAO	D13450P4	P.C. BOARD ASSY, IF RECEIVER	1	


$\begin{aligned} & \text { IETM } \\ & \# \end{aligned}$	$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	MANUFACTURER	MFG PART \#	DESCRIPTION	$\begin{aligned} & \text { TOTAL } \\ & \text { QUA } \end{aligned}$	
46		NRAO	B13450M14	RF CONNECTOR	5	
47		WALDON	2101-04-00	TERMINAL LUG	1	
48		ERIE	8131-050-651-105M	CAPACITOR 1.0 uf	1	
49		AMPHENOL	RG174A	COAX CABLE, BLK	1	
50		PANDUIT	SST-IN-MP	TYRAFS	i	
51	P83 199	AMPHENOL	$31-315$	BNC, CONNECTOR	'	
$5 ?$			/H22 AWG 2 LG	WIRE. 303	$\because$	
53			\#22 AWG 6 LG	WIRE HOOK-UP PVC GOOV $7 / 30$ WHT/BLK	2	
54			\#22.AWG 9 LG	WIRE HOOK-UP PVC 600V 7/30 WH-T/BLK	1	
55			\#22 AWG 3 LG	WIRE HOOK-UP PVC 600V 7/30 WHIT/BLK	1	
56			\#22 AWG 12 LG	WIRE HOOK-UP PVC 600V $7 / 30$ WITT/BLIK.	1	
57			\#22 AWG 6 LG	WIRE HOOK-UP PVC 600V 7/30 WHT/GRA	2	
58			\#22 AWG 12 LG	WIRE HOOK-UP PVC 600V $7 / 30$ WHT/GRA	1	
59			\#22 AWG 9 LG	WIRE HOOK-UP PVC 600V 7/30 WHT/GRA	1	
60			\#22 AWG 3 LG	WIRE HOOK-UP PVC 600V 7/30 WHT/GRA	1	
61			\#22 AWG 9 LG.	WIRE HOOK-UP PVC 600V 7/30 WHT/GRN	2	
62			\#22 AWG 6 LG	WIRE HOOK-UP PVC 600V 7/30 WHT/GRN	$?$	


$\stackrel{\text { IETM }}{\#}$	$\stackrel{\underset{\text { DESIG }}{\text { RES }}}{ }$	manuracturer	mfg part \#	description	$\begin{aligned} & \text { TOTAL } \\ & \text { QUA } \end{aligned}$
63			\#22 AWG 12 LG	WIRE HOOK UP PVC 600V 7/30 ORN	1
64			16 LG	ORN	3
65			9 LG	ORN	1
66			12 LG	BLK	1
67			3 LG	vio	1
68			6 LG	V10	?
69			3 LG	WITN N IO	1
70			$3 \mathrm{~L} . \mathrm{G}$	Gilin	1
71			61.6	1ill	1
72			9 LG	121.11	1
73			3 LG	GirN	1
74			6 LG	GRN	1
75			3 LG	yEL	1
76			6 LG	yel	1
77			) 3 LG	BL.U	1
78			\#22 amg 6 LG	BLU	1
79			\#16 AWG 3 LG	WIRE HOOK-UP PVC 600V 7/30 BLK	1

micnatime


BILL OF MATERIAL


IETM $\#$	REF DESIG	MANUFACTURER	MFG PART 非	DESCRIPTION	total QUA	
80			\#22 AWG 6 LG	WIRE HOOK-UP 600V 7/30 GRA	1	
81		AMP SPECIAL INDUSTRIES	\#201578-1	PIN, CRIMP	11	

MICRAFIMED

BILL. OF MATERIAL
NATIONAL RADIO ASTRONOMY OBSERVATORY $\square$ ELECTRICAL $\quad \mathrm{X}$ MECHANICAL BOM \# A13450Z1 REV $\quad$ DATE $1 / 10 / 75$ PAGE 7 OF_ 7

$\underset{\#}{\text { ITEM }}$	REF DESIG	MANUFACTURER	MFG PART \#	DESCRIPTION	TOTAL QUA	
82			\#6-32 X . 750 lg.	Pan Head, Slotted, St. St'l. Screw	2	
				,		
					-1"	

## WIDEBAND SUBMINIATURE FLATPACK DOUBLEBALANCED MIXER

```
30
```



```
FGATURES
Wideband - 600 MHz - 2 GHz
DC - 1GHz IF Port Response
ig Low Conversion Loss
L Low Cost
Z Ultra Low Profile - Only 0.125" high
GUARANTEED SPECIFICATMOS
```

Frequency Range:

RF (R) Port	$600 \mathrm{MHz}-2 \mathrm{GHz}$
LO (L) Port	$600 \mathrm{MHz}-2 \mathrm{GHz}$
IF (X) Port	DC -1 GHz

Conversion Loss:
RF, LO Ports $(600 \mathrm{MHz}$ -
1 GHz )
IF Port (DC-1 GHz)
RF, LO Ports (1-2 GHz)
IF Port. (DC. 1 GHz )
Isolation (db Min.):
600 MHz - 1 GHz
$1 \mathrm{GHz}-2 \mathrm{GHz}$
LO Power Required:

Input Power Total:

X Port Input Current:
Operating Temperature Range:
Storage Temperature:
D.C. Polarity:

Impedance:
YPICA TEPFORMANCE

Noise Figure:
1 db Compression Point:
1 db Desensitization Level:
Two-Tone IM Ratio - 3rd order (with two - $\mathbf{1 0} \mathbf{~ d b m}$ RF signals):
DC Offset Voltage:

Within 1 db of conversion loss 0 dbm input (with +7 dbm LO) -3 dbm input (with +7 dbm LO)
-36 db (with +7 dbm LO) 3 mV


TYPICAL PERFORMANCE

conversion loss


VSWR, LO


CONVERSION LOSS VS. DRIVE LEVEL


IF PORT BANDWIDTH


## T3 3

The Model MD-614 is a high performance, subminiature double balanced mixer that utilizes well matched, low noise, hot carrier diodes. The $L$ and $R$ ports have a bandwidth of 600 MHz to 2 GHz , while the $X$ port has a bandwidth of DC to 1 GHz . Inputs to any two ports will produce the sum and difference frequencies at the third port with a minimum of undesired modulation products.
Advanced broadband ferrite transformer techniques achieve low conversion loss, a low noise figure, and a LO-RF isolation better than $\mathbf{2 0 ~ d b}$ (up to $2 \mathbf{G H z}$ ). Guaranteed performance is achieved with a LO power of +7 dbm , although the mixer may be used with LO inputs ranging from +4 to +13 dbm.
The ultra-low profile flatpack (only $0.125^{\prime \prime}$ high) provides improved performance with increased reliability, and very importantly, is ideal for high-density electronic circuit packaging. Metal-package, hermetically sealed, and RFI shielded, the MD-614 is ruggedly constructed to withstand severe environmental conditions, while at the same time lending itself to convenient stripline or microstrip mounting. The leads of this device can be readily soldered or welded.

## EMVIRONMENTAI

This Device Has Been Designed to Meet the Following Environmental and Physical Conditions of MIL-STD-202:
Thermal Shock: Method 107, Test Condition A $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, 30$ minutes at temperature extremes, 5 cycles
Humidity: Method 103, Test Condition B (96 hours)
Barometric Pressure: Method 105, Test Condition D 100,000 feet
Moisture Resistance:
Life Test:
Method 106
Method 108, Test Condition B (260 hours)
Seal Test: Method 112, Test Condition B (Gross Leak, $10^{-5} \mathrm{~atm} \mathrm{cc} / \mathrm{sec}$.)
Vibration: Method 204, Test Condition B $10-2,000 \mathrm{~Hz}, 15 \mathrm{G}$ peak Method 207
High Impact Shock:
Method 208
Solderability:

## 

\% As a frequency converter
3 As a phase detector

* As a double sideband suppressed carrier modulator
$\Leftrightarrow$ As a pulse modulator
(3) As a frequency doubler

As a voltage/Current variable attenuator


Please specify Model No. when ordering.
Model MD-614: $\quad \$ 75.00$ (1-5 Oty.)
Availability:
Stock
Terms: Net 30, f.o.b. factory

# MA733 <br> DIFFERENTIAL VIDEO AMPLIFIER <br> FAIRCHILD LINEAR INTEGRATED CIRCUITS 

GENERAL DESCRIPTION - The $\mu A 733$ is a monolithic two-stage Differential Input, Differential Output Video Amplifier constructed using the Fairchild Planar* epitaxial process. Internat series-shunt feedback is used to obtain wide bandwidth, low phase distortion, and excellent gain stability. Emitter follower outputs enable the device to drive capacitive loacs and all stages are current-source biased to obtain high power supply and common mode rejection ratios. It offers fixed gains of 10, 100 or 400 without external components, and adjustable gains from 10 to 400 by the use of a single external resistor. No external frequency compensation components are required for any gain option. The device is particularly useful in magnetic tape or disc file systems using phase or NRZ encoding and in high speed thin film or plated wire memories. Other applications include general purpose video and pulse amplifiers where wide bandwidth, low phase shift, and excellent gain stability are required.

- 120 MHz BANDWIDTH
- $250 \mathrm{k} \Omega$ INPUT RESISTANCE
- SELECTABLE GAINS OF 10, 100. AND 400
- NO FREQUENCY COMPENSATION REQUIRED

ABSOLUTE MAXIMUM RATINGS	
Supply Voltage	$\pm 8 \mathrm{~V}$
Differential Input Voltage	$\pm 5 \mathrm{~V}$
Common Mode Input Voltage	$\pm 6 \mathrm{~V}$
Output Current	10 mA
Internal Power Dissipation (Note 11	
Meral Can	500 mW
Flatpak	570 mW
DIP	670 mW
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military (733)	$0^{\circ} \mathrm{C}$ to $+\mathbf{7 0}^{\circ} \mathrm{C}$
Commercial (733C)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$300^{\circ} \mathrm{C}$



Notes on following pages.

ORDER INFORMATION	
TYPE	PARTNO.
733	$733 D M$
$733 C$	$733 D C$

- Planar is a patented Fairchild procass.

FAIRCHILD LINEAR INTEGRATED CIRCUITS • $\mu$ A733
733
ELECTRICAL CHARACTERISTICS ( $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 6.0 \mathrm{~V}$ unless otherwise specified)

PARAMETER (see definitions)	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Differential Voltage Gain   Gain 1 (Note 2)   Gain 2 (Note 3)   Gain 3 (Note 4)		$\begin{array}{r} 300 \\ 90 \\ 9.0 \\ \hline \end{array}$	$\begin{array}{r} 400 \\ 100 \\ 10 \\ \hline \end{array}$	$\begin{array}{r} 500 \\ 110 \\ 11 \end{array}$	
Bandwidth   Gain 1   Gain 2   Gain 3	$R_{S}=50 \Omega$		$\begin{array}{r} 40 \\ 90 \\ 120 \end{array}$		MHz   MHz   MHz
Risetime   Gain 1   Gain 2   Gain 3	$\mathrm{R}_{S}=50 \Omega, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V}_{\text {P-p }}$	.	$\begin{array}{r} 10.5 \\ 4.5 \\ 2.5 \\ \hline \end{array}$	10	ns   ns   ns
Propagation Delay Gain 1   Gain 2   Gain 3	$\mathrm{R}_{S}=50 \Omega, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V}_{\mathrm{Pp}}$		$\begin{array}{r} 7.5 \\ 6.0 \\ 3.6 \\ \hline \end{array}$	10	ns   ns   ns
Input Resistance   Gain 1   Gain 2   Gain 3	.	20	$\begin{array}{r} 4.0 \\ 30 \\ 250 \\ \hline \end{array}$		$\begin{aligned} & k \Omega \\ & k \Omega \\ & k \Omega \end{aligned}$
Input Capacitance	Gain 2		2.0		pF
Input Offset Current			0.4	3.0	$\mu \mathrm{A}$
Input Bias Current			9.0	20	$\mu \mathrm{A}$
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{BW}=1 \mathrm{kHz}$ to 10 MHz		12		$\mu \mathrm{V}$ rms
Input Voltage Range		$\pm 1.0$			V
Common Mode Rejection Ratio   Gain 2   Gain 2	$\begin{aligned} & V_{C M}= \pm 1 V_{,} f \leqslant 100 \mathrm{kHz} \\ & V_{\mathrm{CM}}= \pm 1 V_{,} f=5 \mathrm{MHz} \end{aligned}$	60	$\begin{aligned} & 86 \\ & 60 \end{aligned}$		$\begin{aligned} & d B \\ & d B \end{aligned}$
Supply Voltage Rejection Ratio Gain 2	$\Delta V_{S}= \pm 0.5 \mathrm{~V}$	50	70		dB
Output Offset Voltage Gain 1   Gain 2 and Gain 3			$\begin{array}{r} 0.6 \\ 0.35 \end{array}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mathbf{v} \\ & \mathbf{v} \end{aligned}$
Output Commori Mode Voltage		2.4	2.9	3.4	V
Output Voltage Swing		3.0	4.0		$V_{p-p}$
Output Sink Current		2.5	3.6		$m A$
Output Resistance			20		$\Omega$
Power Supply Current			18	24	mA
The following specifications apply for $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+125^{\circ} \mathrm{C}$					
Differential Voltage Gain   Gain 1 (Note 2)   Gain 2 (Note 3)   Gain 3 (Note 4)	.	$\begin{array}{r} 200 \\ 80 \\ 8.0 \\ \hline \end{array}$		$\begin{array}{r} 600 \\ 120 \\ 12 \\ \hline \end{array}$	-
Input Resistance Gain 2	-	8.0			$k \Omega$
Input Offset Current				5.0	$\mu \mathrm{A}$
Inaut Eirs Cureat				40	$\mu \mathrm{A}$
		$\pm 1.0$			$\because$
Cnnar-an Picericorato		U3			$\cdots$
Supply Uctage Fejection Patio		50			CB
Output Cffset Voltage Gain 1 Gain 2 and Gain 3				$\begin{aligned} & 1.5 \\ & 1.2 \end{aligned}$	$\begin{aligned} & \mathbf{v} \\ & \mathbf{v} \end{aligned}$
Output S.ring		2.5			$V_{0 \cdot p}$
Output Sink Current		2.2		.	mA
Positive Supply Current				27	mA

FARGFILLD LINEAR INTEGRATED CINCUITS • $\mu A 733$

$7330$					
PARAMETER (see definitions)	CONDITIONS	MIN.	TYP.	MAX.	UNITS
referentisl Voleng Esin					
		-5:	45	30	
5:12 2 Wote 31		3	i0,	120	
Goin 3 (No:e 4)		8.0	10	12	
Bandwidth	$\mathrm{R}_{S}=50 \Omega$				
Gain 1			40		MHz
Gain 2			90		MHz
Gain 3			120		MHz
Risetime	$\mathrm{R}_{S}=50 \Omega, \mathrm{~V}_{\text {OUT }}=1 \mathrm{VP-P}$				
Gain 1			10.5		ns
Gain 2			4.5	12	ns
Gain 3			2.5		ns
Propagation Delay	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$				
Gain 1			7.5		ns
Gain 2			6.0	10	ns
Gain 3			3.6		ns
Input Resistance					
Gain 1			4.0		$\mathrm{k} \Omega$
Gain 2		10	30		$\mathrm{k} \Omega$
Gain 3			250		ks
Input Capacitance	Gain 2		2.0		PF
Input Offset Current			0.4	5.0	$\mu \mathrm{A}$
Input Bias Current			9.0	30	$\mu \mathrm{A}$
Inpu: Noise Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{BW}=1 \mathrm{kHz}$ to 10 MHz		12		$\mu V_{\text {rms }}$
Input Voltage Range		$\pm 1.0$			V
Common Mode Rejection Ratio					
Gain 2	$V_{C M}= \pm 1 \mathrm{~V}, \mathrm{f} \leqslant 100 \mathrm{kHz}$	60	86		dB
Gain 2	$V_{C M}= \pm 1 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz}$		60		dB
Supply Voltage Rejection Ratio					
Gain 2	$\Delta \mathrm{V}_{\mathrm{S}}= \pm 0.5 \mathrm{~V}$	50	70		dB
Output Offiset Voltage					
Gain 1			0.6	1.5	$v$
Gain 2 and Gain 3			0.35	1.5	$v$
Output Common Mode Voltage		2.4	2.9	3.4	$V$
Output Voltage Swing		3.0	4.0		$V_{p-p}$
Output Sink Current		2.5	3.6		mA
Output Resistance			20		$\Omega$
Power Supply Current			18	24	mA
The following specifications apply for $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant \pm 70^{\circ} \mathrm{C}$					
Differential Voltage Gain					
Gain 1 (Note 2)	-	250		600	
Gain 2 (Note 3)		80		120	
Gain 3 (Note 4)		8.0		12	
Input Resistance-Gain 2		8.0			ks
Input Offset Current				6.0	$\mu \mathrm{A}$
Input Bias Current				40	$\mu \mathrm{A}$
Input Voltage Range		$\pm 1.0$			V
Common Mode Rejection Ratio Gain 2	$\mathrm{V}_{\mathrm{CM}}= \pm 1 \mathrm{~V}, \mathrm{f} \leqslant 100 \mathrm{kHz}$	'50			dB
Supply Voltage Rejection Ratio Gain 2	$\Delta \mathrm{V}_{\mathrm{S}}= \pm 0.5 \mathrm{~V}$	50			dB
Output Offset Voltage (All Gain)				2.5	V
Output Voltage Swing		2.8			$V_{p-p}$
Output Sink Current		2.5			mA
Power Supply Current				27	$m$ m

FAIRCHILD LINEAR INTEGRATED CIRCUITS • $\mu$ A733


TYPICAL PERFOR:AANCE CURVES FOR 733 AND 733C









NOTES

1. Rating applies to ambiant temperatures up to $70^{\circ} \mathrm{C}$. Above $70^{\circ} \mathrm{C}$ ambient derate linearly at 6.3 miv/ C for the $\mathrm{Metal} \mathrm{Can}, 8.3 \mathrm{~mW} /^{\circ} \mathrm{C}$ for the DIP and $7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the Flatpak.
2. Gain Select pins $G_{1 A}$ and $G_{1 B}$ connected togsther.
3. Gain Select pins $G_{2 A}$ and $G_{2 B}$ connected tagether.
4. All Gain Select pins opan.

## TYPICAL APPLICATIONS

## VOLTAGE CONTROLLED OSCILLATOR

OSCILLATOR FREQUENCY FOR VARIOUS CAPACITOR VALUES


PHASE ENCODING PLAYBACK SYSTEM


Phase Linearity: Input Resistance: $\pm 4^{\circ}$ fram 2 to 5 MHz Input Capacity $30 \mathrm{k} \Omega$
2 pF
100

## Operational Amplifiers

## LH0022/LH0022C* high performance FET op amp LH0042/LH0042C low cost FET op amp LHOO52/LHOO52C precision FET op amp

## general description

The LH0022/LHOO42/LH0052 are a family of FET input operational amplifiers with very closely matched input characteristics, very high input impedance, and ultra-low input currents with no compromise in noise, common mode rejection ratio, open loop gain, or slew rate. The internally laser mulled LH0052 offers 200 microvolt maximum offset and $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ offset drift. Input offset current is less than 100 femtoamps at room remperature and 100 pA maximum at $125^{\circ} \mathrm{C}$. The LH0022 and LHOO42 are not internally mulled but offer comparable matching characteristics. All devices in the family are internally compensated and are free of latch-up and unusual oscillation problems. The devices may be offset nulled with a single 10k trimpot with neglible effect in offset drift or CMRR.
The LHOO22, LH0O42 and LHOO52 are specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH0022C, LH0042C and LH0052C are specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

## features

- Low input offset current - 100 femtoamps max. (LH0052)
- Low input offset drift -5 $5 \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max (LH0052)
- Low input offset voltage - 100 microvolts-typ.
- High open loop gain - 100 dB typ.
- Excellent slew rate $-3.0 \mathrm{~V} / \mu \mathrm{s}$ typ.
- Internal $6 \mathrm{~dB} /$ octave frequency compensation
- Pin compatible with standard IC op amps (TO-5 package)

The LH0022/LH0042/LH0052 family of IC op amps are intended to fulfill a wide variety of applications for process control, medical instrumentsion, and other systems requiring very low input currents and tightly matched input offsets. The LH0052 is particularly suited for long term high accuracy integrators and high accuracy sample and hold buffer amplifiers. The LH0022 and LH0042 provide low cost high performance for such applications as electrometer and photocell amplification, pico-ammeters, and high input inpedance buffers.

Special electrical parameter selection and custom built circuits are available on special request.
For additional application information and information on other National operational amplifiers, see Available Linear Applications Literature.

## schematic and connection diagrams



Order Number LH0022D or LH0022CD or LH0042D or LH0042CD or LHOO52D or LH0052CD See Package 1

Metal Can Package


Order Number LHOO22H or LHOO22CH or LH0042H or LHOO42CH or LHOO52H or LHOO52CH See Package 11 Mat: -


Order Number LH0022F or LH0022CF or LH0042F or LH0042CF See Package 3
$\qquad$

absolute maximum ratings

Supply Voltage:
Power Dissipation (see graph)
Input Voltage (Note 1)
Differential Input Voltage (Note 2)
Voltage Between Offset Null and $\mathrm{V}^{-}$
Bive chrmi: iuraton

LHOD22, 1HGOч2, LHCO52
LH0022C, LHO042C, LHOO52C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec )
$\pm 22 \mathrm{~V}$ 500 mW
$\pm 15 \mathrm{~V}$
$\pm 30 \mathrm{~V}$
$\pm 0.5 \mathrm{~V}$
cumsinticis
$-55^{\circ} \mathrm{C} 10 \div 125^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
dc electrical characteristics for LH0O22/LH0O22C (Note 3)

dc electrical characteristics for LH0042:LH0042C
$\left(T_{A}=25^{\prime} C, V_{S}= \pm 15 \mathrm{~V}\right.$, unless othervise specified)

dc electrical characteristics For LH0052/LH0052C (Note 3)

ac electrical characteristics for at amplitiers $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$,

PARAMETER	CONDITIO:S	Lintis						UN:TS
		LHOS22i42:52			LH0022C/42C/52C			
		E11:	TVP	MAX	AIN	TYP	MAX	
Sッ\%	Vriesofuthes	, 5	3.		i 0	37		Y;
	$\because \because \%$ \%		$\because$			$\because \cdot$		: $!$
			; ${ }^{\text {d }}$			:		- . - ,
(1) - \% - - ,			23	$1 .$.		0.7	1.3	-
Ouershoot			10	30		15	40	\%
Setrling Time (0.1\%)	$\Delta V_{N}=10 \mathrm{~V}$		4.5			4.5		$\mu s$
Overload Recovery			4.0			4.0		$\mu \mathrm{s}$
Input Noise Voltage	$\mathrm{R}_{5}=10 \mathrm{k} \Omega . \mathrm{f}_{0}=10 \mathrm{~Hz}$		150			150	.	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
Input Noise Voltage	$R_{s}=10 \mathrm{kr}, \mathrm{f}_{0}=100 \mathrm{~Hz}$		55			55		$n \vee / \sqrt{H z}$
Input Noise Voitage	$\mathrm{R}_{5}=10 \mathrm{k} \Omega^{\prime} \mathrm{f}_{0}=1 \mathrm{kHz}$		35			35		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Voltage	$R_{s}=10 \mathrm{kS}$, $\mathrm{f}_{0}=10 \mathrm{kHz}$		30			30		$\mathrm{nV} / \sqrt{H z}$
Input Noise Voltage	$B W=10 \mathrm{~Hz}$ to $10 \mathrm{kHz} . R_{s}=10 \mathrm{kI}$ ?		12			12		$\mu \mathrm{V}$ ms
Input Noise Current	$B W=10 \mathrm{~Hz}$ to 10 kHz		$<.1$			$<.1$		pArms



imput voltage is : 5 V .
Note 3: Uniess otherwise specified, these specilications appiv tor $-5: \leq V_{S} \leq-20 \mathrm{~N}$ and $-55 \mathrm{C} \leq \mathrm{TA}_{\mathrm{A}} \leq-125 \mathrm{C}$ to- the
 $\mathrm{T}_{\mathrm{A}}=25^{\prime} \mathrm{C}$.
auxiliary circuits (shown for TO-5 pin out)


Offset Null
Protecting Inputs From $=150 \mathrm{~V}$ Transients


Boosting Output Drive to $=\mathbf{1 0 0} \mathrm{mA}$

## typical applications



typical performance characteristics












Stabilization Time of Input Offset Voltage from Power Turn-On


typical performance characteristics（con＇t）


Supply Voltage vs
Supply Current


Output Voltage Swing
vs Lead Resistance


Voltage Follower Large Signal Response








Output Swing vs Supply Voltage


Output Voltage Swing vs Frequency




## FMA SERIES <br> 5 MHz to 550 MHz THIN FILM VIF/UHF MICROWAVE IC AMPLIEIERS AND ATIENUATORS

## Features

- More than 10-octaves of flat RF bandwidth
- Low-noise, wide dynamic range amplifiers
- Low, tightly-matched VSWR into 50-ohms (1.5:1)
- Up to 40 dB gain per single amplifier
- Up to +27 dBm linear power
- Flat gain cascading
- Absolute stability for cascading
- Low cost-designed to compete with discrete designs in price
- Meets MIL S-883 and MIL S-19500 specs
- Five standard package configurations-DIP, Lo-pack. Metal Can, Chassis Mount, Connector Type
- IC-compatible dual-in-line package with excellent RF ground
- PC-compatible packages
- Custom capability

Note: See page 3 for detailed product description

## Specifications

Maximum Ratings
$\mathrm{P}_{\mathrm{IN}(\max )}$ without damage
Operating temperature
Storage temperature
DC input bias
DC on RF terminals
$+15 \mathrm{dBm}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
add 2 V to rated voltage $\pm 25$ Volts


## Applications

Applications include portable and mobile communications equipment operating in VHF, UHF and microwave regions, ECM, high frequency laboratory instruments, radar and navigational systems, collision avoidance and beacon sets, telemetry and space communication data links, and high speed digital systems. Devices with flat wideband frequency response are suitable for use in RF and IF stages in receivers, local and master oscillator multiplier chains, pulse counting, RF feedback loops, and isolation and buffer stages.

Model No.	Previous Model No.	Bandwidth (MHz)	Gain Minimum (dB)	Flatness (dB)	$P_{\text {out }}(\mathrm{dBm})$ @ 1 dB   Compression	3rd Order Intercept Pt. Typ. (dBm)	VSWR   Max   (50S)	N.F.   Max   (dB)	$\begin{gathered} \text { DC Power } \\ \text { In } \\ \text { V* } @ \operatorname{mA}(\max ) \end{gathered}$	Package
FMA 114	FCH 114	.2-550	20	$=1.0$	+16	+30	1.5:1	6	+28 @ 120	TO-3
FMA 111		.2-550	21	$=0.75$	+9	+22	1.5:1	6	+12@ 60	DIP ${ }^{+}$
FMA 115	FCH 115	.2-550	33	$=1.0$	+9	+22	1.5:1	5	+12@ 70	DIP ${ }^{+}$
FMA 10	FCH 10	10-500	$-1.5 \text { to }$	$=0.5$			2:1		+28@ 25	TO-8
FMA 300	MHA 300	100-500	-11.5 25	$=1.5$	+5	+17	2:1	4	+12@ 55	Lo-pack
FMA 301		100-500	25	$=1.5$	+5	+17	2:1	4	+12@ 55	Connector
FMA 112	FCH 112	200-400	14	$=1.0$	+9	+22	2:1	5	+12@ 50	TO-8
FMA 105	FCH 105**	375-500	23	$=0.5$	+6	+22	1.5:1	2.5	+12@ 50	DIP ${ }^{\text {+ }}$
FMA 106	FCH 106	375-500	$14$	$=0.5$	+7	+20	1.5:1	3.0	+15@ 40	TO-8
FMA 100	FCH 100	375-500	$\begin{gathered} 20 \\ (10 \mathrm{~dB} \mathrm{AGC}) \end{gathered}$	$=0.5$	+5	+20	1.5:1	2.5	-12@ 70	Lo-pack
FMA 125	FCH 125	150-170	27	$=0.5$	+15	+25	1.5:1	2.5	+15@90	TO-3
FMA 120	RFA 120	1-120	14.5	$=0.5$	+25	+37	1.5:1	8.5	+28@ 200	TO-3
FMA $70^{+t}$	MHA 70	50-90	40	$=0.5$	+5	+17	2:1	2.5	+12@ 55	Lo-pack
FMA 71	MHA 70-02	50-90	40	$\pm 0.5$	+5	$+17$	2:1	2.5	+12@ 55	Connector

* $\pm 1 \%$ Regulation **available as FMA 107 with negative power supply **attenuation range †IC compatible dual-in-line package
$t t_{\text {available }}$ as FMA 72 without ground strap



## Microwave Integrated Circuits

Fairchild offers a microwave integrated circuit line of VHF/UHF amplifiers in a variety of packages that provide the equipment designer with the ability to employ the same time and cost saving techniques previously available at low frequencies. Impedance matching networks, feedback loops, biasing, stabilization elements, noise figure and intermodulation problems are presolved. Amplifiers are absolutely stable; suitable RF case grounding will guarantee that no oscillation will occur. Units can be cascaded to achieve flat gains as high as $60-80 \mathrm{~dB}$ with good matching between individual units and no sacrifice in performance.

Hybrid integrated circuit amplifiers utilize a combination of computer-aided design and state-of-the-art transistors to provide unparalleled performance, stability, repeatability and reliability. They are suitable for both military and commercial systems.

In most cases, it is possible to impose performance specifications that are tighter than the sum of performances of comparable discrete components. With component interconnections minimized and only one package, significant size and weight advantages are obtained. Resulting performance of MICs exceeds that possible from a discrete circuit design, and ensures uniformity from circuit to circuit.

## Fairchild's MICs Eliminate Problems

Fairchild uses advanced s-parameter computer programs to speed the design of new and special amplifiers at prices that are more than competitive with the system designer's own internal design and manufacturing costs.

For the user concerned with saving time, reducing costs and efficient systems development, MICs will eliminate such problems as:

- Extensive breadboarding with its costly and time-consuming cut-and-try techniques.
- Overdesign with its higher costs.
- Redesigns or individual matching of components frequently required when prototypes are put into production.
- Space problems caused by the numerous interconnections and individual packages used in discrete component circuits.
- User testing costs caused by the need to perform incoming inspection on a multitude of individual components as well as circuit reworking.


## RF Grounding

As circuit designers know, the key to successful amplifier operation at the higher frequencies is effective RF grounding. Poor grounding can result in adverse effects ranging from a decrease in gain to oscillation, depending upon the parameters of the amplifier. Also, one of the principal advantages of MICs-repeatable performance-may be affected if the length of ground leads is allowed to vary, or if they are not kept as short as possible.


RELIABLE RF GROUNDING. Top and bottom views show a technique for assuring a good RF ground. Note that all ground connections are on one side of the circuit board. Never depend upon machine screws to make a good RF connection to the other side.

The various packages supplied by Fairchild MOD require a variety of grounding techniques. The TO-3 package inherently offers good RF grounding as well as good heat dissipation. The Lo-pack has a bottom plate that can be grounded to the PC board ground plane or to the chassis. The TO-8 package, as you will note from the packaging diagram, has all of its unused leads available for grounding. The connector type package is also designed to provide goopd grounding to the chassis.

From the viewpoint of use in printed circuit boards, most of the packages just mentioned have been somewhat difficult to work with. Now, Fairchild has introduced its hermetically-sealed DIP package, which we believe is the ideal PC package. A 4-pin version of the standard dual-in-line package, the DIP provides direct case-to-ground plane connection for excellent RF operation. Heat is dissipated directly through conduction, rather than depending upon radiation from the case, thereby improving device reliability. At present three amplifiers are available in this package as standard products, and additional circuits will be offered in this package in the future.

## Custom Circuits

The product specialists at Fairchild MOD will be pleased to assist you with optimization of circuits or the development of special amplifiers to meet your system requirements. New "standard" MIC amplifiers are constantly being developed which will simplify as well as extend your system design capabilities. Contact us with your performance requirements for a prompt evaluation.

## Product Description

FMA 114 Medium Power, General Purpose Broadband Amplifier.
General purpose broadband amplifier covering over three decades of VHF/UHF frequencies. Its 50 mW output for 1 dB gain compression permits it to be used as a driver for power amplifiers. The TO-3 package serves as a good heat sink.

FMA 115 High Gain, General Purpose Broadband Amplifier.
(FMA 111) An ideal pre-driver amplifier for the FMA 114. Has three stages of amplification with high feedback reserve gain. Priced below three single-stage amplifiers. The FMA 115 is produced in the IC-compatible DIP package. The FMA 111 is a lower gain two-stage broadband amplifier.

FMA $\mathbf{3 0 0}$ General Purpose ( $\mathbf{1 0 0} \mathbf{- 5 0 0} \mathbf{~ M H z}$ ) With Narrow
FMA 301 Band Options.
A general purpose amplifier optimized for low noise figure. Also available on special order are higher gains or lower noise figures for specified narrow frequency range. To order connector package, specify FMA 301.

FMA 112 Low-Cost Octave Band Coverage.
Designed to provide optimum performance in the $200-400 \mathrm{MHz}$ band. A popular amplifier, it provides a good compromise between low noise figure and high output power.

FMA 105 Low-Noise 440 MHz IF Amplifier.
Tuned to provide optimum performance in the 350 500 MHz band. This two-stage amplifier has a low noise figure and low intermodulation distortion. Also available as the FMA 107 for use with a - 12 VDC power supply with a positive ground.

FMA 100 Low-Noise 440 MHz IF Amplifier With AGC. Features built-in AGC capability for the 375-500

MHz range. Has a 10 dB adjustable gain combined with a matched input/output PIN attenuator. This two-stage amplifier, similar to the FMA 105, has a low noise figure and low intermodulation distortion. Operates from a single - 12 VDC power supply.

FMA 120 Uitra Low-Distortion Push-Pull Amplifier.
A $1-120 \mathrm{MHz} 50-\mathrm{ohm}$ impedance complementary push-pull amplifier that offers cancellation of second order distortion in addition to low 3rd order distortion. Features $1 / 2 \mathrm{~W}$ linear output over the 100 MHz bandwidth.

FMA 70
FMA 71 Low-Noise, High Gain 70 MHz IF Amplifiers.
These high gain, low-noise 70 MHz IF amplifiers differ only in the type of package. The FMA 70 comes in a low profile package; the FMA 71 in a connector type package. Have three stages of amplification. Also available with gain set to center around lower frequencies.

FMA 10 Broadband Low-Cost PIN Attenuator.
A $50 \Omega$ impedance attenuator with matched input/ output from $10-500 \mathrm{MHz}$. Has 10 dB adjustable gain range set by a $20 \mathrm{~K} \Omega$ external pot (not supplied). Usable up to input power level of +10 dBm .

FMA 125 Low-Noise, Low Distortion 160 MHz IF Amplifier. Has built-in 5 -section high-pass filter and features low noise figure. The 3 rd order IM products are better than 50 dB down at 0 dBm output. Operates from +15 VDC and out-performs units requiring higher DC input.

FMA 106 Low-Noise 440 MHz IF Amplifier.
Designed for the $380-500 \mathrm{MHz}$ range, it is ideal for 440 MHz IF applications. Has low noise figure combined with high dynamic range and flat gain response.

Bandwidth Selection Guide


## Dimensional Drawings and Pin Connections

## MODIFIED TO-3 FMA 120, 125, 114



## LO-PACK*



## DIP FMA 111, 115, 105



Notas: 1. All dianamiencin inches
2. Cave in RFyoud comnection


FMA 70

FMA 100


CONNECTOR FMA 71, 301


## FEATURES

- Priced for Industrial/Commercial Communications Equipment
- Low Intermodulation Products
- Useful Down to 1 MHz
- Specified RF Resistance with Bias
- Low Temperature Coefficient
- Tight Resistance Tracking Between Units
- Hermetically Sealed Glass Package


## DESCRIPTION

The low frequency current controlled resistor consists of a specially processed and tested silicon PIN diode. The long minority carrier lifetime assures usefulness at operating frequencies down to 1 MHz with
very low distortions. The fabrication process is tightly controlled and units are selected on the basis of similarity of RF resistance variation with bias.
repeatability of the RF resistance from unit to unit, which makes the device ideal for constant impedance .attenuators in either pi-, T -, or bridged T -configurations.

The low and high resistance values have been specified to eliminate adjustments in high quantity production.

Conditions $A$ and $E[4 \mathrm{lb}(1,0 \mathrm{~kg})]$ tension for $30 \mathrm{~min}-$ utes. The maximum soldering temperature is $235^{\circ} \mathrm{C}$ for five seconds.

Marking is bj coigital coding with a cathode band.

## ABSOLUTE MAXIMUM RATINGS

Povtr Dissipation ( $T_{A}=25^{\circ} \mathrm{C}$ ) ........................ 250 mW
Operating Temperature Range $\ldots . . . . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range ............ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
DC ELECTRICAI SPECHICATIONS TT $\left.25^{\circ} \mathrm{C}\right)$

2anmisistis	3ymbin	-			ご53.3\%i!				Test cmations
		Bia.	Tij.	Phax.	\%is:	T¢9.	Sida.	Units	
Breakdown Voltage	$V_{\text {BR }}$	100			100			volts	$I_{R}=10 \mu \mathrm{~A}$
Total Reverse Bias Capacitance	$\mathrm{C}_{\mathrm{VR}}$		0.3	0.4			0.4	pF	$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
Effective Minority Carrier Lifetime	$\tau$		1.3			2.0		$\mu \mathrm{sec}$	$I_{\text {r }}=50 \mathrm{~mA}, I_{R}=250 \mathrm{~mA}$

RF ELECTRICAL SPECIFICATIONS ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )

Characteristic	Symbol	5082-3030			5082-3081			Units	Test Conditions
		Min.	Typ.	Max.	Min.	Typ.	Max.		
High Resistance Limit	$\mathrm{R}_{\mathrm{H}}$	1000	2500		1500	3000		ohms	$\begin{aligned} \mathrm{I}_{\mathrm{DC}} & =0.01 \mathrm{~mA} \\ \mathrm{f} & =100 \mathrm{MHz} \end{aligned}$
Low Resistance Limit	$\mathrm{R}_{\mathrm{L}}$		5	8		6	8	ohms	$\begin{aligned} l_{D C} & =20 \mathrm{~mA} \\ f & =100 \mathrm{MHz} \end{aligned}$
Residual Series Resistance	$\mathrm{R}_{5}$		1.5.	2.5		2	3.5	ohms	$\begin{aligned} & \mathrm{l}_{\mathrm{CC}}=100 \mathrm{~mA}, \\ & \mathrm{f}=100 \mathrm{MHz} \end{aligned}$
2nd Order Distortion*	$\mathrm{K}_{2}$		-70			-75		, dB	Two-channel test on 10 dB ,
Cross Modulation*	$\mathrm{C}_{\mathrm{m}}$	.	-62			-75		dB	75 -ohm bridged T attenuator with 40 dBmV output on each channel $\begin{aligned} & \mathrm{f}_{1}=65 \mathrm{MHz} \\ & \mathrm{f}_{2}=100 \mathrm{MHz} \end{aligned}$

* See Figures 3 and 4.


Figure 1. Typical PIN Diode RF Resistance versus DC Bias Current (5082-3080).


Figure 2. Typical Temperature Sensitivity of RF Resistance.


Figure 3. Typical Second Order Intermodulation Distortion.


Figure 5. Cross Modulation Test Circuit.


Figure 4. Typical Cross Modulation Distortion.


Figure 6. Bridged Tee Attenuatcr Test Circuit.

## FEATURES

- Numeric 5082-7300/-7302
- 0-9, Test State, Minus Sign, Blank States
- Decimal Point
- 7300 Right Hand D.P.
- 7302 Left Hand D.P.
- Hexadecimal 5082-7340
- 0-9, A-F, Base 16 Operation
- Blanking Control, Conserves Power
- No Decimal Point
- DTL - TTL Compatible
- Includes Decoder/Driver with Memory
- 8421 Positive Logic Input
- $4 \times 7$ Dot Matrix Array
- Shaped Character, Excellent Readibility
- Standard . 600 inch X . 400 inch Dual-in-Line Package including Contrast Filter
- Categorized for Luminous Intensity
- Assures Uniformity of Light Output from Unit to Unit within a Single Category


## DESCRIPTION

The HP 5082-7300 series solid state numeric and hexadecimal indicators with on-board decoder/driver and memory provide a reliable, low-cost method for displaying digital information.
The 5082-7300 numeric indicator decodes positive 8421 BCD logic inputs into characters 0-9, a "-" sign, a test pattern, and four blanks in the invalid BCD states, The unit employs a right-hand decimal point. Typical applications include point-of-sale terminals, instrumentation, and computer systems.


The 5082-7302 is the same as the 5082-7300, except that the decimal point is located on the left-hand side of the digit.
The 5082-7340 hexadecimal indicator decodes positive 8421 logic inputs into 16 states, 0-9 and A-F. In place of the decimal point an input is provided for blanking the display (all LED's off), without losing the contents of the memory. Applications include terminals and computer systems using the base-16 character set.
The 5082-7304 is a " $\pm 1$ " overrange character, including decimal point, used in instrumentation applications.

## PACKAGE DIMENSIONS

## FRONT VIEW



REAR VIEW



SIDE VIEW



400 Efax. 7340


END VIEW


PIN	FUNCTION	
	$5082-7300$   and 7302   Numeric	$5082-7340$   Hexadecimal
	Input 2	Input 2
2	Input 4	Input 4
3	Input 8	Input 8
4	Decimal   point	Blanking   control
5	Latch   enatle	Latch   enable
6	Ground	Ground
7	Vric	V'c
8	Inpit	Inijut ?

NOTES: 1. Dimensions in inches and (millimeters).
2. Unless otherwise specified, the tolerance on all dimensions is $\pm .015$ inches.

## ABSOLUTE MAXIMUM RATINGS

DESCRIPTION	SYMBOL	MIN	MAX	UNIT
Storage temperature, ambient	$\mathrm{T}_{S}$	-40	+100	${ }^{\circ} \mathrm{C}$
Operating temperature, case	${ }^{T}$	-20	+85	${ }^{\circ} \mathrm{C}$
$V_{i c}$ Pin potential to ground pin	$V_{c c}$	-0.5	+7.0	V
	V	-0.5	15.5	$V$
vinge mplod tolith entuiu	$\checkmark$	-6. 5	$+5.5$	$\because$
Voltage applied to blanking control (2)	$\mathrm{V}_{\mathrm{B}}$	-0.5	$\div 5.5$	V

NOTES: 1. Dacimal point applies only to $7300 / 7302$ 2. Applies only to 7340

## RECOMMENDED OPERATING CONDITIONS

DESCRIPTION	SYMBOL	MIN	NOM	MAX	UNIT
Supply Voltage	$V_{C C}$	4.5	5.0	5.5	V
Logic voltage " 0 " state	$V_{\text {in }}(0)$	0		0.8	V
Logic voltage "1" state	$\mathrm{V}_{\mathrm{in}(1)}$	2.0		5.25	V
Latch enable voltage-date being entered	$\mathrm{V}_{\mathrm{E}(0)}$	0		0.8	V
Latch enable voltage-data not being entered	$\mathrm{V}_{\mathrm{E}(1)}$	2.0		5.25	V
Blanking control voltage-display not blanked (1)	$\mathrm{V}_{\mathrm{B}(0)}$	0		0.8	V
Blanking control voltage-display blanked (1)	$\mathrm{V}_{\mathrm{B}(1)}$	3.5		5.25	V

NOTE: $t=A p p l i o s o n l y$
ELECTRICAL/OPTICAL CHARACTERISTICS $\left(T_{C}=-20^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified)

DESCRIPTION	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply current	${ }^{\text {c }} \mathbf{c}$	$\mathrm{V}_{\text {cc }}=5.5 \mathrm{~V}$		$94^{(1)}$	$170^{(2)}$	ma
Power dissipation	$\mathrm{P}_{\mathrm{T}}$	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$		470 ${ }^{(1)}$	935 ${ }^{(2)}$	mW
Luminous intensity per LED \{Digit average) (3)	1	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	32	70		$\mu \mathrm{cd}$
Time data must be presented to logic input prior to enable risìing	${ }^{\text {setup }}$	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V}, V_{E(0)}=0.4 \mathrm{~V} \\ & V_{\text {in }(0)}=0.4 \mathrm{~V}, V_{E(1)}=2.4 \mathrm{~V} \\ & V_{\text {in(1) }}=2.4 \mathrm{~V}, T_{C}=25^{\circ} \mathrm{C} \end{aligned}$		30	50	ns
Time data must be held after enable rises	thold	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V}, V_{E(0)}=0.4 \mathrm{~V} \\ & V_{i n(0)}=0.4 \mathrm{~V}, V_{E(1)}=2.4 \mathrm{~V} \\ & V_{i n(1)}=2.4 \mathrm{~V}, T_{C}=25^{\circ} \mathrm{C} \end{aligned}$		30	50	ns
Time required for $90 \%$ change in display luminous intensity after change of state of $\mathbf{V}_{\mathrm{B}}$ (4)	$t_{\text {blank }}$	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			500	ns
Blanking control current "0" state (4)	${ }^{1} \mathbf{B}(0)$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}(0)}=0.8 \mathrm{~V}$			200	$\mu \mathrm{A}$
Blanking control current "1" state (4)	${ }_{8}(1)$	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}(1)}=4.5 \mathrm{~V}$			2.0	mA
Logic and latch enable currents " 0 " state	$\begin{aligned} & \mathrm{I}_{\text {in }(0)} \\ & \mathrm{I}_{\mathrm{E}(0)} \end{aligned}$	$\begin{aligned} & V_{c c}=5.5 \mathrm{~V} \\ & V_{i n}, V_{E}=0.4 \mathrm{~V} \end{aligned}$			-1.6	mA
Logic and latch enable currents " 1 " state	$\begin{aligned} & \operatorname{Tin}_{\text {in }}(1) \\ & I_{E(1)} \end{aligned}$	$\begin{aligned} & V_{c c}=5.5 \mathrm{~V} \\ & V_{\text {in }}, V_{E}=2.4 \mathrm{~V} \end{aligned}$			+250	$\mu \mathrm{A}$
Peak wavelength	$\lambda_{\text {peak }}$			655		nm
Spectral halfwidth	$\Delta \lambda_{1 / 2}$			30		nm
Weight				0.8		gm

## NOTES:

1. $V_{\text {ec }}=5.0 \mathrm{~V}$ with statistical average number of LED's lit
2. Worst case condition excluding test state an 5082-7300/-7302.
3. The digits are categorized for luminous Intensity such that the variation from digit to digit within a category is not discernible 20 the eye. Intensity categories are designated by a lerter located on the reverse side of the package contiguous with the Hewlett-Packard logo marking-
4. Applies oniy to 7340.

CHARACTER		InPUTS						CHARACTER		INPUTS					
$\begin{gathered} 5082- \\ 7300 / 7302 \\ \text { Numeric } \end{gathered}$	$\begin{aligned} & 5082- \\ & 7340 \\ & \text { Hex. } \end{aligned}$	X8	X4	X2	X1	E	$B^{(1)}$	$\begin{gathered} 5082- \\ \text { 7300/7302 } \\ \text { NUMERIC } \\ \hline \end{gathered}$	$\begin{aligned} & 5082- \\ & 7340 \\ & \text { Hex. } \end{aligned}$	X8	X4	X2	X1	E	$B^{(1)}$
0	0	$L$	$L$	L	L	L	L	Test	A	H	1	H	$L$	L	L
1	1	L	L	L	H	L	L	Blank	B	H	1	H	H	L	L
2	2	L	L	H	L	L	L	Blank	C	H	H	L	L	L	L
3	3	L	L	H	H	$L$	L	Minus	D	H	H	L	H	L	L
4	4	L	H	L	L	L	L	Blank	E	H	H	H	L	L	L
5	5	L	H	L	H	L	L	Blank	$F$	H	H	H	H	L	L
6	6	L	H	H	L	L	L	Hold	Hold	d	d	d	d	H	d
7	7	L	H	H	H	L	L	-	Blank   (1)	d	d	d	d	d	H
8	8	H	L	1	L	$L$	$L$	Decimal pt. on (2)	-			$D P_{\text {in }}$			
9	9	H	$L$	L	H	L	L	Decimal pt. off (2)	-			DP ${ }_{\text {in }}$			

NOTES:

1. The blanking control input, B, pertains to the 5082-7340 Hexadecimal Indicator only.
2. The decimal point input pertains to the 5082-7300 and -7302 Numeric Indicators only.

Figure 1. Truth Table for 5082-7300 Series Devices


Figure 2. Block Diagram of 5082 7300 Series Logic.


Figure 5. Typical Latch Enable Input Current Vs. Voltage for the 5082-7300 Series Devices.


Figure 4. Typical Logic and Decimat Point Input Current Vs. Voltage for the 50827300 Series Devices. Decimal Point Applies to 5082-7300 Only.


Figure 7. Typical Luminous Intensity Vs. Case Temperature for the 5082-7300 Series Devices.

## SOLID STATE PLUS/WINUSIONE SIGN

For display applications requiring a $\pm$ or 1 designation, the $5082-7304$ plus/minus/one sign including cecimal point is available. This display module comes in the same package as the 5082-7300 series numeric indicator and is completely compatible with it.


NOTES: 1. Dimensions in inches and (millimeters).
2. Unless otherwise specified, the tolerance on all dimensions is $\pm .015$ inches.

SIDE VIEN
END VIEW


P!N	F:jNCTiON
1	Pius
2	Number one
3	Number one
4	DP
5	Open
6	Open
7	$V_{\text {cc }}$
8	Minus/Plus


CHARACTER	PIN			
	1	2,3	4	8
+	1	0	0	1
-	0	0	0	1
1	0	1	0	0
Decimal point	0	0	1	0
Blank	0	0	0	0

NOTE: 0: Line switching transistor in Fig. 11 cutoff
1: Line switching transistor in Fig. 11 saturated

Figure 8. Truth table for 5082-7304

## ABSOLUTE MAXIMUM RATINGS

DESCRIPTION	SYMBO:	MIN	MAX	UNIT
Storage temperature, ambient	$T_{s}$	-40	$+100$	${ }^{\circ} \mathrm{C}$
Operating temperature, case	${ }^{\top}$	-20	+85	C
Forward current, each LED	${ }^{\prime}$		10	mA
Reverse voltage, each LED	$V_{R}$		4	$\checkmark$

## RECOMMENDED OPERATING CONDITIONS

	SYMBOL	MIN	NOM	MAX	UNIT
LED supply voltage	$V_{c c}$	4.5	5.0	5.5	$V$
Forward current, each LED	${ }^{i} F$		5.0	10	MA

NOTE:
LED current must be externally limited. Refer to Figure 11 for recommended resistor values.

TYPICAL DRIVING CIRCUIT FOR 5082.7304.


Figure 9.

## ELECTRICAL/OPTICAL CHARACTERISTICS ( $T_{C}=-20^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$, UNLESS OTHERWISE SPECIFIED)

DESCRIPTION	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
LED forward voltage	$V_{F}$	$T_{F}=10 \mathrm{~mA}$		1.6	2.0	$V$
Power dissipation	$P_{T}$	$I_{F}=10 \mathrm{~mA}$   all diodes lis		250	320	mw
Luminous intensity per LED (DIGIT average)	1	$I_{F}=6 \mathrm{~mA}$   $T_{C}=25^{\circ} \mathrm{C}$	32	70		$\mu \mathrm{cu}$
Peak wavelength				655		nm
Spectral halfwidth	$\lambda_{\text {peak }}$			30		nm
Weight	$\Delta \lambda_{1 / 2}$			0.8		gm



## HOT CARRIER DIODES

 HP 5082-2800 SERIES
## Features

LOW PRICE-50¢ at 1000 quantities allows use in any system.
FAST SWITCHING-Picosecond switching speed for high speed digital or logic circuits.

HIGH BREAKDOWN -70 volts breakdown allows high voltages in sampling gates, and wide dynamic range capability as UHF detector.

EXCELLENT ENVIRONMENTAL CAPABILITIES- $200^{\circ} \mathrm{C}$ operating temperature. $20,000 \mathrm{G}$ shock capability and overall ruggedness makes the 2800 family attractive for any military or other high reliability program.

## Description

The HP 5082-2800 series is an epitaxial, planar, passivated diode whose construction utilizes a unique combination of both a conventional PN junction and a Schottky barrier. The manufacturing process (Patent No. 3463971), results in a device which has the high breakdown and temperature characteristics of silicon, the turn-on voltage of germanium, and the speed of a Schottky barrier, majority carrier device.

## Applications

High level detection, switching, or gating; LOG or A-D converting; sampling or wave shaping are jobs the 2800 family will do better than conventional PN junction diodes. The low turn on voltage and subnanosecond switching makes it extremely attractive in digital circuits for DTL gates, pulse shaping circuits or other low level applications. Its high PIV allows wide dynamic range for fast high voltage sampling gates.

The 2800's low turn-on voltage gives low offsets. The extremely low stored charge minimizes output offsets caused by the charge flow in the storage capacitor. At UHF, the diodes exhibit $95 \%$ rectification efficiencies. Both their low loss and their high PIV allow the diodes to be used in mixer and modulator applications which require wide dynamic ranges.

The combination of these technical features with the low price make these devices the prime consideration for any dc or RF circuit requiring nonlinear elements.


## MECHANICAL SPECIFICATIONS

The HP Outline 15 package has a glass hermetic seal with dumet leads. The leads on the Outline 15 package should be restricted so that the bend starts at least $\mathrm{K}_{1}$ inch ( 1.6 mm ) from the glass body. With this restriction, Outline 15 package will meet MIL-STD-750, Method 2036, Conditions A-and E [4 lb ( $1,8 \mathrm{~kg})]$ tension for 30 minutes. The maximum soldering temperature is $230^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ for five seconds.

Outline 15 package inductance and capacitance is typically 2.3 nH and 0.17 pF , respectively.

Marking is by digital coding with a cathode band.

ELECTRICAL SPECIFICATIONS AT $T_{A}=25^{\circ} \mathrm{C}$

Diode Type	Specification	Symbol	Min	Max	Units	Test Conditions
$\begin{array}{r} 5082-2800 \\ 2810 \\ 2811 \end{array}$	Breakdown Voltage	$V_{B R}$	70 20 15		Volts	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$
$\begin{array}{r} 5082-2800 \\ 2810 \\ 2811 \end{array}$	Forward Voltage	$V_{F 1}$		$\begin{aligned} & 410 \\ & 410 \\ & 410 \end{aligned}$	mV	$I_{\text {r1 }}=1 \mathrm{~mA}$
$\begin{array}{r} 5082-2800 \\ 2810 \\ 2811 \end{array}$	Forward Current	$I_{\text {F }}$	15 35 20		$m A$	$\begin{aligned} V_{F 2}= & 1 \text { volt } \\ & \text { (nate 1) } \end{aligned}$
$\begin{array}{r} 5082-2800 \\ 2810 \\ 2811 \end{array}$	Reverse Leakage Current	$\mathrm{l}_{\text {R }}$		$\begin{aligned} & 200 \\ & 100 \\ & 100 \end{aligned}$	nA	$\begin{aligned} & V_{R}=50 \mathrm{~V} \\ & V_{R}=15 \mathrm{~V} \\ & V_{R}=8 \mathrm{~V} \\ & V_{R}=5 \mathrm{~V} \end{aligned}$
$\begin{array}{r} \hline 5032-2800 \\ 2810 \\ 2811 \end{array}$	Capacitance	$\mathrm{C}_{\text {T(0) }}$		2.0 1.2 1.2	pF	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$ and $\mathrm{f}=1 \mathrm{MHz}$
$\begin{array}{r} \hline 5082-2800 \\ 2810 \\ 2811 \end{array}$	Effective   Minority Carrier Lifetime	т		100 100 100	p sec	$\mathbf{I}_{\mathrm{f}}=5 \mathrm{~mA}$   Krakauer Method

## HIGH PERFORMANCE PIN ATTENUATOR FOR LOW COST AGC APPLICATIONS



## SUMMARY

PIN diodes offer an economic way of achieving excellent performance in AGC circuits. Significant improvements in crossmodulation and intermodulation distortion performance compared to transistors are obtained.
Other advantages of PIN diodes, such as good low frequency operation, constant impedance levels, and low power consumption will be discussed in this article.

## INTRODUCTION

In the short time since its introduction, the PIN diode has found many areas of application. New developments in diode design have allowed the PIN diode to be useful at much lower frequencies than ever before. This article describes its use as an attenuator for automatic gain control and compares its performance to a transistorized AGC system in a television receiver.
The most important feature of the PIN diode is its inherent ability to act as a current controlled resistor at RF frequencies. Most diodes possess this capability to some degree, but the PIN diode is especially optimized in design to achieve a wide resistance range with consistently good linearity and low distortion. As typically shown in Figure 1, when the control current is varied continuously from $1 \mu \mathrm{~A}$ to 100 mA , the resistance of a PIN diode will change from over ten thousand ohms to about one ohm. This characteristic variation of resistance with current makes the PIN diode ideally suited for application in automatic gain control systems.


Figure 1. Typical Pin Diode Resistance Versus Control Current.

The PIN diode is similar to ordinary PN junction diodes except for an added intrinsic region (1-layer) sandwiched between the $\mathrm{p}^{+}$and $\mathrm{n}^{+}$layers. It is in
this I-layer that the control of minority carriers is enhanced. The high resistance and large width of the intrinsic layer result in a high breakdown voltage and low capacitance. When forward bias is applied between $\mathrm{p}^{+}$and $\mathrm{n}^{+}$layers, the injection of minority carriers into the intrinsic region increases the conductivity of the I-layer.
Above a limiting frequency the PIN diode acts as a pure resistance. This RF resistance is controlled by varying the forward bias. Below the limiting frequency, rectification occurs as in an ordinary PN diode. In the vicinity of the limiting frequency there is some rectification with resulting distortion in RF resistance. The amount of distortion is dependent on the bias current, RF power, the frequency, and minority carrier lifetime. Distortion becomes appreciable at a frequency of operation equal to about 10 times the inverse of the minority carrier lifetime. Diodes of the HP 5082-3080 series, especially designed for low frequency operation, have a lifetime in excess of 1 microsecond, and are thus useful below 10 MHz . As an example, these low frequency PIN diodes are suitable for use in the attenuator to be described here for AGC application in television receivers.

## AUTOMATIC GAIN CONTROL SYSTEMS

Many receivers today use transistors to accomplish their AGC requirements. For normal operation these transistors are biased for maximum gain. When the signal exceeds a set threshold level, automatic gain control is achieved by an increase in bias current, which results in a gain reduction. The principle of forward AGC is applied.


Figure 2. Block Diagram of a Typical AGC System in a TV Receiver.

A block diagram of a typical AGC system in a television receiver is shown in Figure 2. The objective is to keep the output of the video detector constant with increasing RF signal levels. The usual way of determining the signal strength of the incoming signal is to use the height of the horizontal pulses as a reference. A synchronized AGC keyer is used for this purpose. The threshold level required to trigger the keyer is preset. A winding in the flyback transformer supplies the horizontal pulses needed to bias the keyer transistor. When the keyer is off, the AGC amplifier supplies the required voltage to bias the RF and IF amplifiers for maximum gain. When the signal from the video amplifier exceeds the threshold level during the horizontal sync pulse, the keyer turns on and biases the AGC off. This results in an increased AGC voltage to the RF and IF amplifiers and thus a reduction in gain.


Figure 3. Use of a PIN Diode Attenuator as an Interstage for Providing AGC.

When AGC is applied to a transistor, the optimum operating point is disturbed, and the input and output impedances change drastically. This change will, of course, adversely affect the associated tuned circuit. The use of a PIN diode attenuator as an interstage, as shown in Figure 3, will provide a wide range of gain control without disturbing the optimum operating point of the associated circuit elements. This minimizes changes in impedance levels, phase shift and tuning, while achieving the required change in gain.
When the basic requirements of an attenuator for AGC application in a receiver are considered, the reasons for the superiority of PIN diodes over other PN junction diodes will become obvious. In particular, consider the use of 3 low frequency diodes in a $\pi$ configuration attenuator as shown in Figure 4. The ratio of on to off resistance of PIN diodes is significantly greater than that of other diodes, so that the insertion loss is lower and the maximum attenuation is greater. In terms of AGC this means larger dynamic range. The linearity of resistance as a function of bias makes the PIN diode less susceptible to modulation distortion. In


Figure 4. 3 Diode $\pi$ Attenuator.
the VHF/UHF range distortion from partial rectification cannot be tolerated. The use of low frequency PIN diodes ensures that distortion be minimized at these low frequencies. HP 5082-3080 and 50823081 PIN diodes with lifetime, respectively, in excess of 1 and 1.5 microseconds are usable below 10 MHz .

## PERFORMANCE CHARACTERISTICS

A transistorized amplifier stage and a low frequency PIN diode attenuator built for AGC performance comparison are shown, respectively, in Figures 5 and 6. In each case there is a fixed supply voltage of 12 volts and a variable voltage for AGC control.
In the transistor circuit the principle of forward AGC is applied. In addition to the fixed 12 volts an AGC voltage of -4.5 volts is required to bias the


[^2]

Figure 6. PIN Diode Attenuator AGC Circuit.
transistor for maximum gain. Further increase in AGC voltage results in a larger collector current and a reduction in gain. A curve of Gain Reduction versus AGC voltage at 45 MHz is shown in Figure 7. A maximum gain of approximately 40 dB is obtained at an AGC voltage of -4.5 volts. With more AGC voltage the gain decreases until a gain reduction of 40 dB is achieved at about 11.5 volts of AGC voltage.


Figure 7. Gain Reduction Versus AGC Voltage Transistor AGC Circuit 45 MHz .


Figure 8. Attenuation Versus AGC Voltage PIN Diode Attenuator AGC Circuit 45 MHz .

Attenuation versus AGC voltage for the PIN attenuator circuit is shown in Figure 8. There is minimum attenuation when the AGC voltage is zero. The attenuation increases with AGC voltage until 40 dB of attenuation is obtained with 8.75 volts of AGC voltage. For 40 dB of attenuation the PIN attenuator requires 35 mW of power, while the transistor circuit consumes 120 mW for the same gain reduction.
Intermodulation and crossmodulation characteristics of the transistor and PIN attenuator AGC circuits are illustrated in Figures 9 through 14. A block diagram of the test equipment used for these distortion measurements is shown in Figure 15. The wave analyzer is used only for the crossmodulation tests. The tests are conducted with two equal amplitude input signals, one at 45 MHz and the other at 45.5 MHz . For the crossmodulation measurements one of the input signals is $100 \%$ modulated with a 15 KHz signal from the wave analyzer.
Examination of the distortion characteristics will reveal significant differences in performance of the two AGC circuits. Over a 30 dB dynamic range,


Figure 9. Second Order Intermodulation Versus Gain Reduction Transistor AGC Circuit.


Figure 10. Crossmodulation Versus Gain Reduction Transistor AGC Circuit.
it is seen that second order intermodulation distortion at the same level of fundamental output is less in the PIN attenuator than in the transistor circuit. The difference at some points in the range is in excess of 10 dB . Longer lifetime HP 50823081 PIN diodes definitely show more favorable intermodulation characteristics than the HP 50823080 diodes. The superiority of the PIN attenuator as an AGC circuit is even more apparent with comparison of the crossmodulation characteristics. At some power levels, crossmodulation in the transistor circuit is seen to be 50 dB worse. A comparison of Figure 12 and 14 indicates better crossmodulation rejection when using HP 50823080 PIN diodes.
A comparison of the PIN and transistor AGC circuit performance is shown in Table 1.

TABLE 1

	PIN Diode		Transistor
	$5082-3080$	$5082-3081$	
Power Consumption, mW   2nd Order Intermod, dB   (-20 dBm output)	35	35	120
Crossmodulation   ( -20 dBm output)	-59	-64	-55



Figure 11. 2nd Order Intermodulation Versus Attenuation PIN Diode Attenuator AGC Circuit Using HP 5082-3080.


Figure 12. Crossmodulation Versus Attenuation PIN Diode Attenuator AGC Circuit Using HP 5082-3080.


Figure 13. 2nd Order Intermodulation Versus Attenuation PIN Diode Attenuator AGC Circuit Using HP 5082-3081.


Figure 14. Crossmodulation Versus Attenuation PIN Diode Attenuator AGC Circuit Using HP 5082-3081.


Figure 15. Block Diagram of Test Equipment used for Distortion Measurement.

## CONCLUSION

Automatic gain control in a transistorized circuit requires that the optimum operating point of the AGC transistor be shifted. This produces a drastic change in the impedance level, which severely affects the adjoining tuned circuit.
The use of a PIN diode attenuator as the AGC
control element will provide the required gain control without the attendant problems of large impedance shift. The result is minimum distortion in the output coupled with low power consumption. The use of long lifetime PIN diodes gives added assurance of usefulness at low frequencies for low cost applications.


[^0]:    *Pin diodes were chosen for the switching since for a given forward current in the on condition they pass much higher signal levels without distortion than other types of diodes. This was verified by tests on other diodes including IN914, IN270 and 5082-2800. Aertech A5S139 is an equivalent replacement for H.P. 5082-3081.

[^1]:    *For final adjustment the gain at 50 MHz should be set 0.5 dB ( $6 \%$ in voltage) above that at the low end to allow for differential attenuation in the cables to the samplers.

[^2]:    Figure 5. Transistor AGC Circuit.

