## VLA TECHNICAL REPORT \#4

MODULES T4A and T4B
LO OFFSET
A. R. Thompson
I. Related Material Not Included in the Manual
(a) Drawings and Parts Lists
(b) Publications and Memoranda
II. Operation and Circuit Description
III. Spurious Responses
IV. Bills of Materials
V. Data Sheets and Specifications

M1J J
Specification Al3450N1
Avantek UTO Modules

## FIGURES

1. Schematic Diagram of L.O. Offset Module

I (a). L.O. OFFSET MODULE (T4A \& T4B), DRAWINGS AND PARTS LISTS

Schematic Diagram
L.O. Offset Schematic Cl3450s2

Parts List
L.O. Offset Module Al3450Z4.

Module, Mechanical
Front Panel Bl3450M21 (Parts 1\&2)
Rear Panel
Top and Bottom Support Bar
Left Side Plate
Perforated Cover
Fastener for Perforated Cover
Guide
B13450M20
B13050M3
Cl3450M22
Cl3050M7

Mixer Mounting Blocks
C13050M17

Assembly Drawing for L.O. Offset Module Bl3050m4
Al3050M33
Dl3450p5

I (b). RELATED PUBLICATIONS AND MEMORANDA

## VLA Electronics Memo \#116

Some Tolerances Relating to Spurious Responses
A. R. Thompson August 29, 1973

Addendum to VLA Electronics Memo \#116
A. R. Thompson September 6, 1973

## II. Operation and Circuit Description

The LO Offset module provides the oscillator signals for converting the IF signals from the modem down to base-band. This conversion is performed in the IF Receiver modules. The IF bands are 1300-1350, 1400-1450, 1550-1600, and $1650-1700 \mathrm{MHz}$, and when using the full bandwidths of the IF Receiver modules the required 10 frequencies are $1300,1400,1550$, and 1650 MHz . When using the narrower IF Receiver bandwidths it is necessary to be able to select the signal from any part of the 50 MHz wide band, and this requires that the four LO frequencies also be variable over $\pm 25 \mathrm{MHz}$.

In transmission along the waveguide the $1300-1350$ and $1400-1450 \mathrm{MHz}$ signals effectively become sidebands to a 1200 MHz subcarrier, and hence share with that signal some of the instrumental phase shifts that may occur in the transmission. To remove these unwanted phase shifts the received 1200 MHz signal is subtracted from the two IF bands by deriving the local oscillator for the IF Receivers from the same 1200 MHz . This is done in an LO Offset module, the circuit of which is shown in Figure 1 . The 1200 MHz input at JI is divided in a power splitter and fed into two mixers. The mixers also receive signals at $100 \pm 25 \mathrm{MHz}$ from J 2 and $200 \pm 25 \mathrm{MHz}$ from J4. The sum frequencies are selected by appropriate filters F1 and F2 and the outputs at $1300 \pm 25 \mathrm{MHz}$ and $1200 \pm 25 \mathrm{MHz}$ are amplified and appear at J3 and J5. These outputs go to the $L 0$ inputs of two IF Receiver modules, The amplifiers, Avantek ASD 8199M, were supplied in accordance with specification no. Al3450Nl and contain one each UT02011, UT02002 and UTO2003 module (see Section V.)

In an exactly similar way, the IF bands at 1550-1600 and 1650-1700 MHz act as sidebands on an 1800 MHz subcarrier in the waveguide transmission. The LO signals for these channels are derived by subtracting $250 \pm 25 \mathrm{MHz}$ and $150 \pm 25 \mathrm{MHz}$ from 1800 MHz in another LO offset module. The LO offset module

which produces the two lower LO signals is designated T4A and the one which produces the two higher frequency signals $T 4 B$. The $T 4 A$ and $T 4 B$ modules differ only in the center frequencies of the filters Fl and F2 as shown in Figure 1.

In the central control building the equipment that receives the signals from each antenna is called the IF Receiver sybsystem. It contains one T4A and one T4B module which together produce the LO signals for 4 IF Receiver modules. The T4A and T4B modules are located in slots 1 and 2 respectively of bin $S$, rack N .

The LO Offset module is so simple that test procedures are rather obvious, A signal at 1200 or 1800 MHz is injected at Jl and a signal variable over the appropriate frequency range at J2 or J4. The output at J3 or J5 is best displayed on a spectrum analyzer, so that as well as checking that the wanted frequencies are present at the correct level, the presence of any unwanted signals can also be detected. For a correctly operating module, avoidance of unwanted responses is the main constraint on the input power levels, as discussed in the following section.

Power requirements for each $T 4 \mathrm{~A}$ and $T 4 \mathrm{~B}$ module are 140 ma at +15 V . III. Spurious Responses

Let $\mathrm{f}_{1}$ indicate the frequency 1200 or 1800 MHz entering Jl and $\mathrm{f}_{\mathbf{2}}$ denote the frequency entering $J 3$ or $J 4$, The spurious responses with which we are concerned are of two kinds. The first occurs when $2 f_{1}-\mathrm{mf}_{2}$ falls within the passband of the appropriate filter F1 or F2. The second occurs when $n f_{2}$ falls within the filter passband. Here $m$ and $n$ are integers, and both responses depend upon the production of harmonics of $f_{2}$ within the mixer. The strengths of these harmonics fall off as the harmonic number $m$ or $n$ increases, and thus the most serious unwanted signals are expected when $m$ or $n$ have the lowest value. Note that the two kinds of responses can be identified on the spectrum analyzer
by watching how much they increase or decrease in frequency for a given change in $\boldsymbol{f}_{2}$.

The lowest troublesome harmonic turns out to be the fifth, and it results in a spurious response of the first kind which occurs in the second highest LO channel; $2 \times 1200-5 \times 200=1400 \mathrm{MHz}$. Measurements on modules (Serial Number Al of both T4A and T4B types) confirm that this is the strongest unwanted response. The level of this response relative to the wanted output depends upon the input levels of $f_{1}$ and $f_{2}$. The relative strength of the unwanted response decreases as $f_{2}$ is decreased, but we cannot make $f_{2}$ much less than -10 dBm unless a higher gain output amplifier is used to compensate for loss in strength of the required output. With $f_{2}$ at a level of -10 dBm the unwanted response was found to be a minimum when the 1200 MHz level at $J 1$ was 8.5 dBm , and for a range of levels between 7 and 10 dBm the unwanted response was 65 dB below the wanted output.

What is the maximum tolerable level of the spurious response? The discussion in VLA EM \#ll6 (see case (c) on pp,6-7) plus the addendum to that memorandum indicates that the resulting signal in the IF should be 62 dB below the total IF signal in the 50 MHz bandwidth. The IF level at the mixer inputs of the IF receivers is approximately -20 dBm , so the maximum tolerable strength for an unwanted signal is -82 dBm at the signal input of the mixer or -57 dBm at the $L 0$ input, taking the $R F-L O$ isolation as 25 dB . The -57 dBm level is -65 dB relative to the wanted $L 0$ signal. Thus the observed level of -65 dB should be just about tolerable. If further suppression is found to be necessary, reduction of the $f_{2}$ level would be a possible approach.

For the second kind of spurious response the lowest harmonic that will be encountered is the seventh; $7 \times 200 \phi=1400 \mathrm{MHz}$. Measurements indicate that this response is about 10 dB below the one discussed above. Unwanted responses in the other three LO frequency channels were all found to be of negligible level.

The required input power levels to the module are summarized in the table in Figure 1. The levels at $J 2$ and $J 4$ should not exceed the -10 dBm figure by more than one or two dBm but can be lower so long as sufficient output is obtained at J3 and J5. The output levels given, $8 \pm 4 \mathrm{dBm}$, represent the tolerable range of input power at the mixers in the IF Receiver modules.

|  | ELECTRICAL | MECHANICAL | BOM \# | A1345074 | REV | DATE | PAGE | 1 | Or | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |



| $\underset{\#}{\text { ITEM }}$ | $\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$ | MANUFACTURER | MFG PART \# | DESCRIPTION | TOTAL .QUANT. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | -T4A | T4B |
| 1 |  | N.R.A.O. |  | L.O. Offset Ass'y. | -- | - |
| 2 |  | Omni-Spectra | 20493 | Isolated Power Divider | 1 | 1 |
| 3 |  |  |  |  |  |  |
| 4 |  | " " | OSM 218 | Straight R.F. Adapter | 2 | 2 |
| 5 |  | " " | OSM 201-1A | ! R.F. Connector | 13 | 13 |
| 6 | $\frac{1}{J 5} \text { thru }$ | " | OMQ 3043-75 | R.F. Connector | 5 | 5 |
| 7 |  | Avantek | ASD-8199M | $1-2 \mathrm{GHz}$ Amp | 2 | 2 |
| 8 |  |  |  |  |  |  |
| 9 |  | K\&L Microwave, Inc. |  | Filter Clips | 4 | 4 |
| 10 |  | Relcon | M1J | Mixer | 2 | 2 |
| 11 |  | AMP Special Industries | 201355-3 | Connector, 14 Pin | 1 | 1 |
| 12 |  | " " " | 201347-4 | Connector Shield | 1 | 1 |
| 13 |  | " " | 202512-1 | Ground Guide Socket | 1 | 1 |
| 14 |  | " " | 202514-1 | Guide Pin | 1 | 1 |
| 15 |  | " " | 201578-1 | Crimp Pins | 2 | 2 |

$\square$ MECHANICAJ
BOM \# Al3450Z4 REV $\qquad$ DATE $\qquad$ PAGE $\qquad$ 2 Or $\qquad$ 4

| $\underset{\#}{\text { ITEM }}$ | $\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$ | MANUFACTURER | MFG PART \# | DESCRIPTION | TOTAL QUANT. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | T4A | T4B |
| 16 |  | Uniform Tubes | UT 141 | R.F. Cable, $8 \mathrm{ft}$. | 1 | 1 |
| 17 |  |  | \#2 ${ }_{4}$ AWG, Blk. | Wire, Multi-Strand, PVC Insul. | 1 | 1 ft |
| 18 |  |  | \#24 AWG, Rd. | " " $\quad$ " $\quad$ " $\quad$ " 1 ft. | 1 | 1 |
| 19 |  |  |  | Solder | A/R | A/R |
| 20 |  | K\&L Microwave | 6B120 1.300/100-0 | Filter T4A | 1. |  |
| 21 |  | K\&L. Microwave | 6B120-1400/100-0 | Filter " | 1 |  |
| 22 |  | K\&L Microwave | 6B120-1550/100-0 | Filter T4B |  | 1 |
| 23 |  | KiL Microwave | 6B120-1650/100-0 | Filter " |  | 1 |
| 24 |  | Panduit | SST 1M | WIRE TIE | 2 | 2 |
| 25 |  |  |  |  |  |  |
| 26 |  |  |  |  |  |  |
| 27 |  |  |  |  |  |  |
| 28 |  |  |  |  |  |  |
| 29 |  |  |  |  |  |  |
| 30 |  |  |  |  |  |  |
| 31 |  |  |  |  |  |  |
| 32 |  |  |  |  |  |  |



| ELECTRICAL | XX | MECHANICAI | BOM \# | A1345024 | REV | $B$ | DATE | PAGE | 4 | OF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| ITEM | $\begin{gathered} \operatorname{REF} \\ \text { DESIG } \end{gathered}$ | MANUFACTURER | MFG PART \# | DESCRIPTION | TOTAT QUANT. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# |  |  |  |  | 74A | 74B |
| 50 |  |  | \#4-40 | Hex Nut, St. St'l. | 8 | 8 |
| 51 |  |  | \# 4 | Washer, Flat | 8 | 8 |
| 52 |  |  | \#2-56 | Hex Nut, St. St'l. | 2 | 2 |
| 53 |  |  | \#6 | Washer, Flat | 4 | 4 |
| 54 |  | NRAO | B13050M33 | Mixer support | 4 | 4 |
| 55 |  | NRAO | B13450M20-1 | Panel, Front | 1 |  |
| 56 |  |  | B13450M21-2 | " |  | 1 |
| 57 |  |  |  |  |  |  |
| 58 |  |  |  |  |  |  |
| 59 |  |  |  |  |  |  |
| 60 |  |  |  |  |  |  |
| 61 |  |  |  |  |  |  |
| 62 |  |  |  |  |  |  |
| 63 |  |  |  |  |  |  |
| 64 |  |  |  |  |  |  |
| 65 |  | . |  |  |  |  |
| 66 |  |  |  |  |  |  |



DC TO 2.0 GHz DOUBLE-BALANCED MIXER MODEL M1J

## - HIGH ISOLATION: >50 dB (TYP.) <br> - LOW NOISE FIGURE: 6 dB (TYP.) <br> - WIDE-BAND $I_{F}$ : DC to 1.0 GHz <br> - HERMETICALLY SEALED

Introduction The Model M1J is a wide-band double-balanced mixer in a hermetically sealed package. This mixer is designed to provide maximum isolation of the local oscillator (LO) signal for best possible suppression of internally generated harmonics and LO leakage. It is also designed for a low noise figure.

Mixing When two signals are fed to the mixer, sum and difference frequencies are produced at the third port. Best isolation is achieved by feeding the high-level LO signal to the L-port. Both L- and Rports are ac-coupled and have a 0.3 to 2.0 GHz frequency response. The 1 -port is dc-coupled and has dc to 1 GHz frequency response. For downconverting applications, feed the input signal into the $R$-port and take the output from the 1 -port. For up-converting applications, feed the input signal into the I-port and take the output from the R-port. Minimum conversion loss is achieved by providing a LO level of +7 dBm or greater. At this level, conversion loss is typically 6 dB for an $I_{F}$ frequency less than 200 MHz . For minimum intermodulation products, the input signal level should be as low as possible.

Pulse Modulation For best modulation performance, feed the unmodulated signal to the L-port and the modulating signal to the I-port. An unlimited pulse length is possible as the 1 -port is direct coupled. Reversal of the modulating signal's polarity will allow the output to be shifted by 180 degrees.

A modulating signal level of 20 mA will minimize insertion loss. As the mixer is constructed with Schottky Barrier diodes, rise and fall times less than 1 nsec. can be achieved.

Amplitude Modulation To amplitude modulate, insert a dc off-set current along with the modulating signal at the I -port. The carrier signal is inserted at the L-port and the modulated signal is taken from the R-port. The dc-current controls the amount of carrier present in the output.

Phase Detection The mixer's excellent balance eliminates null balance adjustments and minimizes interaction between the signal sources. With identical frequencies fed to the R - and L -ports, a dc-output related to the phase difference between the two signals will appear at the I-port. A maximum positive dc-output indicates the signals are in phase; zero dc-output indicates the signals are separated by 90 degress; and, a maximum negative dc-output indicates the signals are 180 degrees out of phase.
Current-Controlled Attenuation In this mode of operation, a dc-current into the 1 -port determines the amount of signal passed from the L-port to the R-port. Maximum attenuation, corresponding to the mixer's isolation, is achieved with no dccurrent. Minimum attenuation is achieved with dc-current equal to, or greater than, 20 mA .
Note: Avoid damage to the mixer diodes by always driving the 1 -port with a current-limited source.

*Measured in a 50 -ohm system with $\mathrm{f}_{\mathrm{L}}$ at +7 dBm .

## ABSOLUTE MAXIMUM RATINGS

Storage Temperature . . . . . . . $-65^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Operating Temperature . . . . $-54^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Peak Input Power $\qquad$ 400 mW max. at $25^{\circ} \mathrm{C}$ Derate to 50 mW at $100^{\circ} \mathrm{C}\left(4.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\right)$
Peak Input Current 50 mA

## ENVIRONMENTAL

The Model M1J Mixer will meet its specifications over the temperature range of $-54^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ and after exposure to any or all of the following tests per MIL-STD-202D:

| Exposure | Method | Test Condition |
| :--- | :---: | :---: |
| Thermal Shock | 107 C | B |
| Altitude | 105 C | G |
| H.F. Vibration | 204 B | D |
| Mechanical Shock | 213 A | C |
| Random Vibration <br> $\quad(15$ minute per | 214 | 11 F |
| $\quad$axis) |  |  |
| Humidity <br> Temperature Cycle | 106 C |  |

The M1J will meet the environmental requirements of MIL-E-16400F, Class 1 and MIL-E-5400L Class 2.

| WEIGHT | 31 grams (1.1 oz.) maximum |
| :--- | :--- |
| CONNECTORS | SMA |
| WARRANTY | 1 Year |



NOTE: DIMENSIONS ARE IN INCHES

## TYPICAL PERFORMANCE AT $\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Mixer Test Circuit: When terminated as shown, the mixer impedance at the $R$ - and I-ports is 50 ohms. The impedance at the $L$-port is nonlinear and is a function of the $f_{L}$ level. For most applications, the $f_{L}$ level should be as shown. This is equivalent to delivering 5 milliwatts ( +7 dBm ) into a $50-\mathrm{ohm}$ load. The $f_{R}$ level should be below 1 milliwatt ( 0 dBm ) in order to avoid conversion compression.


Drive Level: The minimum recommended drive level is +4 dBm . This level has been established on the premise that a lower drive level will degrade the conversion loss and noise figure over the full temperature and frequency range. Operation at +4 dBm is recommended to reduce the level of the intermodulation products in the lower two rows of the intermodulation chart. It will also minimize the output noise below 2 kHz .

The maximum recommended drive level is +13 dBm . This upper level has been established by the desire to avoid a serious increase in noise figure and a loss of isolation. Operation at +13 dBm is recommended to achieve best two-tone performance and best suppression of the intermodulation products in the rows above the second row in the intermodulation chart.


Conversion Loss vs. Input Frequency: Conversion loss of the mixer when used in an SSB system. The frequency ordinate refers to the R-port $\left(f_{R}\right)$ with $f_{i}$ at 150 MHz . Data plotted with an $f_{L}$ level of +7 dBm .


Conversion Loss vs. fi Frequency: Conversion loss of the mixer when used in a SSB system. The frequency ordinate refers to the 1 -port $\left(f_{1}\right)$ with $f_{R}$ at 1200 MHz and $f_{L}$ swept from 200 to 1100 MHz .


Isolation vs. Frequency: Level of the $f_{L}$ signal fed through to the $R$ - and I-ports with respect to the level of the $f_{L}$ signal at the L -port.


VSWR vs. Frequency: VSWR of the L-, I- and R-ports in a 50 -ohm system with $f_{L}$ at +7 dBm . Some variation in the R-port VSWR will occur as a function of the L-port frequency. Curves for the R-port VSWR are plotted for L-port frequencies of 0.6 and 1.6 GHz . Also shown are the L-port VSWR and the l-port VSWR with $f_{L}$ at 0.6 GHz .


Harmonic Intermodulation Products: Intermodulation signals which result from the mixing of mixer generated harmonics of the input signals are shown below. Mixing product suppression is indicated by the number of $d B$ below the desired output level, $f_{R} \cdot f_{L}$. Products are for the difference frequencies $\mathrm{nf}_{\mathrm{L}}-\mathrm{mf}_{\mathrm{R}}$ and $\mathrm{mf}_{\mathrm{R}}-\mathrm{nf}_{\mathrm{L}}$. The performance was measured with $f_{R}$ at $300 \mathrm{MHz},-10 \mathrm{dBm} ; \mathrm{f}_{\mathrm{L}}=299$ $\mathrm{MHz},+7 \mathrm{dBm}$ for light area and +13 dBm for shaded area.

| 5f $\mathrm{f}_{\text {R }}$ | $>71$ | $>71$ | $>71$ | $>71$ | $>71$ | $>71$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $>71$ | $>71$ | $>71$ | $>71$ | $>71$ | $>71$ |
| 4fR | $>71$ | $>71$ | $>71$ | $>71$ | $>71$ | $>71$ |
|  | $>71$ | $>71$ | >71 | $>71$ | $>71$ | $>71$ |
| 3fR | $>71$ | 53 | 68 | 56 | 71 | 51 |
|  | $>71$ | 63 | 67 | 61 | $\geq 71$ | 69 |
| 2fR | 61 | 50 | 65 | 50 | 67 | 66 |
|  | 63 | 55 | 64 | 64 | 70 | 66 |
| $f_{R}$ | 28 | 0 | 40 | 12 | 41 | 26 |
|  | 29 | 0 | 41 | 10 | 42 | W 19 |
|  | - | 7 | 43 | 29 | 54 | 30 |
|  | - | 3 | 36 | 27 | 54 | 29 |

$f_{l} \quad 2 f_{L} \quad 3 f_{L} \quad 4 f_{L} \quad 5 f_{L}$

## Thin Film Unit Amplifiers-MICeamp® Modules



## ARRANGEMENT OF MODULES FOR SYSTEMS USE

In a normal cascade, UTO Series modules are arranged in ascending order, according to output power, to achieve the desired level of gain. UTF Series attenuators can be placed in cascade for the purpose of gain control. Their position in the cascade of amplifier modules is determined by the user's dynamic range and noise figure requirements.

BONUS FEATURE
Up to three of most of the MIC-amp substrates may be cascaded within the new miniature Dual-In-Line (DIP).
THIN FILM ATTENUATORS (TO-8 Package)

| Model | Frequency Range (MHz) |  | Attenuation (dB) Minimum | VSWR Maximum | Contro <br> Volts DC <br> TTypical | Power Current mA (Typical) | $\begin{gathered} \operatorname{lnp}^{\text {Volts }} \\ \text { DC } \end{gathered}$ | Power Current mA (Typical) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { UTF-015 } \\ & \text { UTF-040 } \end{aligned}$ | $\begin{aligned} & 5-1000 \\ & 5-1000 \end{aligned}$ | $\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & 151 \\ & 30^{1} \end{aligned}$ | $\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$ | $\begin{aligned} & -10 \\ & -10 \end{aligned}$ | $\begin{array}{r} 75 \\ 45 \end{array}$ | $\begin{aligned} & +15 \\ & +15 \end{aligned}$ | $10$ |
| UTF-2015 | 500-2000 | 2.5 | 15 | 2.0 | -10 | 7 | +15 | 7 |

${ }^{1} 35 \mathrm{~dB}$ min. $10-500 \mathrm{MHz} ; 40 \mathrm{~dB}$ min. $20-250 \mathrm{MHz}$

| Mlodel | Frequency <br> Response <br> $(\mathrm{MHz})$ <br> Plinimum | Gain <br> (dB) <br> Minimum | Flatness $( \pm d B)$ <br> Maximum | Noise <br> Figure (dB) <br> Maximum | VSWR <br> ( 50 ohms) <br> Maximum |  | Power Output <br> For 1 dB <br> Gain Compression (dBm) <br> Minimum | Typical Intercept n Point For liM Products ( 13 m ) | Input Power ( $11 \%$ Regulation) Volts Curreat ma DC (Typical) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UTL-502 | 5-500 Limiting Amplifier | 7 <br> Small <br> Signal | 1.0 | 11 | 2.0 | 2.0 | $\begin{aligned} & \text { (Sat Power) } \\ & -4 \mathrm{dBm} \text { (min) } \\ & -2 \mathrm{dBm} \text { (typ) } \end{aligned}$ | Even harmonics 15 dB down w/input from -50 to +7 dBm | +15 -15 | 15 15 |
| UTO-510 | 5-500 | 15 | 1.0 | 3.0 | 2.0 | 2.0 | -2 | +8 | +15 | 10 |
| UTO-511 | 5-500 | 15 | 1.0 | 2.5 | 2.0 | 2.0 | -2 | +8 | +15 | 10 |
| UTO-501 | 5-500 | 14 | 1.0 | 4.0 | 2.0 | 2.0 | -2 | +11 | +15 | 10 |
| UTO-502 | 5-500 | 14 | 1.0 | 5.5 | 2.0 | 2.0 | +7 | +21 | +15 | 23 |
| UTO-503 | 5-500 | 9.0 | 1.0 | 7.0 | 2.0 | 2.0 | $+13$ | +27 | +24 | 50 |
| UTO-504 | 5-500 | 6.0 | 1.0 | 11 | 2.0 | 2.0 | $+17$ | +31 | +24 | 100 |
| UTO-512 | 5-500 | 20 | 1.0 | 4.5 | 2.0 | 2.0 | +7 | +20 | +15 | 23 |
| UTO-513 | 5-500 | 16 | 1.0 | 6.0 | 2.0 | 2.0 | +14 | $\begin{aligned} & \text { + } 36 \text { even } \\ & +27 \text { odd } \end{aligned}$ | +24 | 50 |
| UTO-521 | 5-500 | 27 | 1.0 | 5.5 | 2.0 | 2.0 | +6 | +18 | +15 | 38 |
| UTO-523 | 5-500 | 23 | 1.0 | 7.0 | 2.0 | 2.0 | $+12$ | $\begin{aligned} & \text { + } 36 \text { even } \\ & \text { +25 odd } \end{aligned}$ | +15 | 80 |
| UTO-551 | 5-500 | 15 | 1.0 | 4.0 | 2.0 | 2.0 | -5 | +10 | +5 | 7 |
| UTO-1001 | 5-1000 | 14 | 1.0 | 5.0 | 2.0 | 2.0 | -2 | +11 | +15 | 10 |
| UTO-1002 | 5-1000 | 14 | 1.0 | 6.5 | 2.0 | 2.0 | +7 | +21 | +15 | 23 |
| UTO-1003 | 5-1000 | 9.0 | 1.0 | 8.0 | 2.0 | 2.0 | +13 | +27 | +24 | 50 |
| UTO-1051 | 5-1000 | 10 | 1.0 | 5.0 | 2.0 | 2.0 | -5 | $+10$ | $+5$ | 7 |
| UTO-1511 | 5-1500 | 10 | 0.5 | 4.5 | 2.0 | 2.0 | -9 | +1 | +15 | 7 |
| UTO-1501 | 5-1500 | 9.0 | 0.5 | 5.5 | 2.0 | 2.0 | -3 | $+10$ | +15 | 10 |
| UTO-1502 | 5-1500 | 9.0 | 0.5 | 7.5 | 2.0 | 2.0 | +6 | +19 | +15 | 23 |
| UTO-1503 | 5-1500 | 6.0 | 0.5 | 9.0 | 2.0 | 2.0 | +12 | +25 | +24 | 50 |
| UTO-2011 | 1000-2000 | 7.5 | 0.5 | 5.0 | 2.0 | 2.0 | -3 | +10 | +15 | 12.5 |
| UTO-2001 | 1000-2000 | 7.5 | 0.5 | 6.0 | 2.0 | 2.0 | -3 | +10 | +15 | 12.5 |
| UTO-2002 | 1000-2000 | 8.0 | 0.5 | 7.0 | 2.0 | 2.0 | +3 | +16 | +15 | 20 |
| UTO-2003 | 1000-2000 | 8.0 | 0.5 | 8.0 | 2.0 | 2.0 | +7 | +20 | +15 | 30 |
| UTO-2311 | 1700-2300 | 8.0 | 0.5 | 5.0 | 2.0 | 2.0 | -3 | +10 | +15 | 15 |
| UTO-2302 | 1700-2300 | 8.0 | 0.5 | 6.5 | 2.0 | 2.0 | +3 | +13 | +15 | 18 |
| UTO-2303 | 1700-2300 | 8.0 | 0.5 | 8.0 | 2.0 | 2.0 | +10 | +20 | +15 | 30 |

## UTO "R" SERIES

The UTO "R" Series MIC-amps offer all the circuit performance advantages and specifications of their counterparts, the standard, premium commercial grade UTO. In addition, each of the " $R$ " Series MIC-amps has been
screened in accordance with MIL-STD-883 procedures. Reliability, therefore, is established and MTBF (in accordance with the criteria of MIL-HDBK-217A) is predicted to be in excess of ten million hours at $25^{\circ} \mathrm{C}$.

Each UTO "R" Saries unit is screened $100 \%$ to the Class B level assurance tests included in the following:

| TES | COMDITiOus | AETHOS | STu-833 <br> CONDITIONS |
| :---: | :---: | :---: | :---: |
| 1. Precan Visuat | Saz Note 1 |  |  |
| 2. Preseal Bake | 2 hrs, min. at $150^{\circ} \mathrm{C}$ |  |  |
| 3. Seal |  |  |  |
| 4. Stabilizotion Bake | 24 hrs at $125^{\circ} \mathrm{C}$ | 1008 | B |
| 5. Temperature Cycling | 10 cycles | 1010 | B |
| 6. Centrifuge | $\mathrm{Y}_{1}$, direction only: $20,000 \mathrm{G}$ 's | 2001 | 0 |
| 7. Fine Leak |  | 1014 | A $\left(5 \times 10^{\circ 8} \mathrm{cc} / \mathrm{sec}\right.$ max $)$ |
| 8. Gross Leak |  | 1014 | C (Step 1) |
| 9. Burn-In | 168 hrs | 1015 | Note 2 |
| 10. Final Electrical | Go-No-Go at $25^{\circ} \mathrm{C}$ | Note 3 |  |
| 11. External Visual |  | 2009 |  |

NOTES: ${ }^{1}$ internal Visual (Precap): Consistent with the intent of Method 2010, MIL-STD-883, as applicable to UTO MIC-amp fabrication techniques. Specific visual inspection criteria applied are described in Avantek's Quality Asturance Standard Workmanship Manual. Section XVI.
${ }^{2}$ See specific UTO "R" Series specifications for burn-in temperature and bias conditions.
3 See specific UTO specification for test conditions and limits.

It is important to realize that both the commercial grade and "R" Series UTO-MIC•amps are manufactured on the same production line. The " $R$ " Series receives the additional screening process described above. Therefore, the commercial grade UTO will also demonstrate a very high degree of reliability. (M.T.B.F. of one million hours is predicted from MIL-HDBK-217A). The augmenting screening procedures of the " $R$ " Series adds the final degree of confidence to the UTO product line when high reliability becomes imperative.
NOTE: All UTO models and specifications listed on the previous page are available in " $R$ " Series versions.

## CASCADING MIC•amps

The patented circuit design of the MIC-amp permits cascading of units to achieve added gains.

The MIC.amps may be cascaded in 50 ohm microstrip systems using printed circuits. Also, special hardware is available from Avantek for mounting one to four MIC. amps in aluminum cases to provide a complete, shielded amplifier. Also up to three of most of the MIC•amp sapphire substrated modules may be cascaded in the new Avantek Dual-In-Line (DIP) package (see page 14).
The complete accessory package, which includes an aluminum case, RF connectors and a DC feed-through filter. may be ordered. The printed circuit boards and the MIC.amps are specified separately. Detailed installation instructions are supplied with each unit. TC case dimensions are $0.84^{\prime \prime}$ high, $1.5^{\prime \prime}$ wide (mounting plate), and length, TC-2, 1.37"; TC-4, 2.4" plus connectors.
Amplifier assemblies may be ordered with MC•amps installed in the aluminum cases by factory technicians.

Test data consisting of noise figure, gain, VSWR, and power output measurements over the specified bandwidth will be provided with each amplifier assembly.

Expected typical operating performance of MIC.amp cascades are derived from the simple rules shown below. Complete amplifier cascades of up to four modules assembled at the factory will typically meet the specifications listed below:
Frequency - Units are available for operation over various frequency ranges from 5 to 2000 MHz . Minimum bandwidth is established by the specification of the most narrow member of the cascade.
Gain - Minimum cascade gain is the sum of minimum unit gains.
Gain Flatness - Cascaded flatness will typically be less than the sum of individual module flatness specifications. The individual module data sheets show the very low actual typical module flatness.
Noise Figure - The cascaded noise figure in the TC-cases will be about $1 / 2 \mathrm{~dB}$ greater than that of the input MIC-amp noise figure due to the second stage noise contribution and some connector and TB-board losses at higher frequencies.
Power Output at 1 dB Gain Compression Point - Typical cascade output power is 1 dB less than that of the lowest module output with all modules referred to the output of the cascade.
VSWR - VSWR's of cascades will not exceed 2.5:1. Most VSWR's will be less than 2.0:I.

NOTE: The information listed above applies to cascades of four units or less. For performance information on Larger cascades, consult factory.

## NATIONAL RADIO ASTRONOMY OBSERVATORY

NAME: Solid State Amplifier
DATE: February 5, 1974
PREPARED BY:


APPROVED BY:


1. FREQUENCY RANGE: $1.0-2.0 \mathrm{GHz}$
2. GAIN: $23.5-30 \mathrm{~dB}$ (gain of individual units of given type to be equal within $\pm 1 \mathrm{~dB}$ ).
3. GAIN FLATNESS: $\pm 1 \mathrm{~dB}$
4. POWER OUTPUT: +7 dBm minimum at 1 dB compression
5. NOISE FIGURE; $6 \mathrm{~dB} \max$.
6. VSWR: 2.0 max. (input and output)
7. GATING SPEED: The amplifier must switch on or off in less than 10 microseconds when the power supply voltage is gated on and off. Switching time is defined as rise or fall time from 10\% to 90\% of final RF power. Insertion loss should be greater than 13 dB from 1 to 2 GHz when gated off.
8. INPUT POWER: +15 V
9. CONNECTORS: SMA Female
10. Manufacturer is to state whether unit is discrete component construction and whether it is reparable in the event of a transistor failure.
