VLA TECHNICAL REPORT \#10

PUMP REGULATOR

Stephen Burgan
March 1975

PAGE

I. List of Related Documents 1-1
II. Functional Block Diagram 2-1
III. Theory of Operation 3-1
IV. Test and Calibration 4-1
V. Installation/Replacement 5-1
VI. Schematic 6-1
VII. Photographs and PC Data 7-1
VIII. Wiring List 8-1
IX. Bill of Materials 9-1
X. Manufacturers Data 10-1

I. LIST OF RELATED DOCUMENTS

Drawing Title	Number
1. Pump Controller Box	Cl3110M18
2. A-B Plate, Pump Source Mounting	Cl3170M71
3. A-B Bracket, Pump Source Angle	Cl3170M72
4. C-D Plate, Pump Source Mounting	Cl3170M77
5. C-D Bracket, Pump Source Angle	Cl3170M79
6. Bracket, Mounting Temperature Sensor	Bl3140M3
7. Pump Power Supply and Temperature	Cl3140M2
8. Pump Power Supply and Temperature	

FIGURE 1. Pump Power Supply and Temperature Regulator Block Diagram

NOTES :

1. The heat current is obtained by dividing the voltage by the heater resistor value (i.e. V_{H}).
$\overline{12 \Omega}$
2. The source temperature in ${ }^{\circ} \mathrm{C}$ is obtained by multiplying the temperature monitor voltage by 10 .
3. The source current can be obtained (in amps) by subtracting the pump voltage from the supply voltage.
4. The temperature sensor, pump source, and heater resistor are all thermally coupled on the pump source mounting plate.
5. If the pump is shut down for more than a few seconds up to 10 minutes may be required for temperature restabilization of the pump source.
6. Pump Power Supply

The power supply portion of the Pump Power Supply and Temperature Regulator consists of a Motorola MPCl000 voltage regulator I.C. and related outboard components. To allow for component variations, and variations in the voltage required by different pump sources, the output of the regulator has been made adjustable from a minimum of 5.1 V to a maximum of 8.4 V . This is accomplished by varying R_{18} which, with R_{19} makes up a voltage divider. A second voltage divider (R_{15}, R_{16}) is connected to the non-inverting input of the I.C. The minimum output voltage is set by this second voltage divider. The output of the regulator will be that voltage required to bring the inverting and non inverting inputs to equal potentials.

$$
v_{0}=\frac{v_{\text {ref }} R_{16}}{R_{15}+R_{16}} \times \frac{R_{18}+R_{19}}{R_{19}}
$$

Current limiting is accomplished by setting the value of $R_{17^{\circ}} \quad I_{\max }=\frac{0.66}{R_{17}}$. The value used for $R_{17}(.24 \Omega)$ gives $I_{\max }$ of 2.75 A .

2. Temperature Controller

In order to keep the power output from the pump source constant, it must be thermally stabilized. The temperature controller used to accomplish this is of the proportional type, that is, the heater power is automatically adjusted to that value that will just replace the heat lost at the stabilized temperature. There are three basic elements in the temperature controller; the temperature sensor, the temperature sensor amplifier, and the heater amplifier.

The temperature sensor used is the LX5600A temperature transducer by National Semiconductor (see data sheet). This I.C. provides a voltage output which changes linearly with temperature at a rate of $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.

The Temperature Sensor amplifier is an AD506KH op amp connected as a gain-of-ten inverting amplifier. An offset circuit is included at the input to allow the circuit to give a reading proportional to the temperature in ${ }^{\circ} \mathrm{C}$. This also allows corrections to be made for errors in the sensor output. The final output of this amplifier is $100 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ which is fed to the monitor system and to the heater amplifier.

The heater amplifier consists of an AD741KN op amp (I.C. ${ }_{2}$) connected as a differential amplifier, followed by a Darlington pair emitter follower $\left(Q_{1}, Q_{2}\right)$ and the heater resistor $\left(R_{14}\right)$. A reference voltage (5 V nom) is provided to the positive input of $I C_{2}$ by voltage divider R_{9}, R_{8}. The heater circuit will try to raise the temperature of the source-heater-sensor plate to $50^{\circ} \mathrm{C}$ (5V out) in order to reduce the voltage differential between + and inputs of IC_{3} to zero. An extremely large $D C$ gain for the circuit is insured by blocking the DC action of C_{1}, resulting in high precision for the temperature of the plate. Oscillation of the circuit is prevented by choosing C_{1} so that the gain of the circuit at frequencies comparable to $\frac{1}{\tau}$ (τ is the thermal timeconstant of the plate) is greatly reduced.

Initial Test
Apply power to the unit through the input connector ZDP4/ZDP6 (see wiring list). The following voltages should be measured at the five test points on top of the unit; and on the connectors:
TEST POINT COLOR VOLTAGE INDICATED VALUE

1. Black
0.00
2. Brown
≈ 14
3. Red
≈ 13
4. Orange
5. Yellow Same as above CONNECTOR ZDP4/ZDP6
$\frac{\text { PIN \# }}{1} \quad \frac{\text { VOLTAGE }}{+15}$
20 3 4 5 6 7 8
-15
≈ 14
≈ 13
$\approx .1$
5.1-8.4
5.1-8.4

CONNECTOR ZDJ5/ZDJ7

PIN \#	VOLTAGE	INDICATED VALUE
	-2	IC $_{2}$ Input
2	+15	+15 Supply
3	$5.1-8.4$	Pump Voltage
4	≈ 13	Heater Voltage
5	0	Gwound

Turn the regulator voltage adjust pot, R_{18}, counterclockwise for minimum voltage as monitored at test point 5, (yellow). This voltage should be approximately 5.1 volts.

Calibration

Connect an LX5600A temperature sensor to the output connector ZDJ5/ZDJ7 (see wiring list). Thermally couple the sensor to something of known temperature (i.e. a thermometer), and apply power as in the in Initial Test section. While monitoring the voltage at the Brown test point, adjust the sensor cal pot until ten times this voltage gives the temperature in ${ }^{\circ} \mathrm{C}$ (i.e. 2.4 volts $=24^{\circ} \mathrm{C}$). Keep the sensor with the unit, as calibration is difficult after installation.

CAUTION

1. DO NOT PLUG IN PUMP SOURCE CONNECTOR UNTIL THE PUMP SOURCE VOLTAGE HAS BEEN REDUCED TO MINIMUM. THIS VOLTAGE IS MONITORED AT TEST POINT 5 , (YELLOW), AND IS ADJUSTED BY THE REGULATOR VOLTAGE POT, R18.
2. Install the temperature sensor for which the unit is calibrated in the sensor mount on the pump source. Connect ZDJ8/ZDJ9 to the sensor taking care to see that the tabs are aligned.
3. Install the unit with the adjustment holes facing away from the dewar. Use $8-32 \times 3 / 4^{\prime \prime}$ panhead screws to attach it to the dewar mount plate. Connect $P 5 / P 7$ and $J 4 / J 6$ to the unit.
4. Apply power and monitor the temperature. The temperature should imediately begin increasing. Check the I HTR test point; it should give a reading of approximately 13 V . If either of these conditions is not met, remove power and find out why.
5. While monitoring the pump voltage $\left(V_{s}\right)$, turn the regulator adjust pot clockwise until the voltage is correct for the pump source being used. Check the pump source current to verify proper operation (Supply V - Pump V).
6. After the temperature has stabilized (≈ 10 minutes) again check the pump voltage to insure that it is correct, making whatever minor adjustment is needed.

II PUMP POWER SUPPLY AND TEMPERATURE REGULATOR SCHEMATIC

7-1

DWG C13140P1 - Pump Power Supply and Temperature Regulator Component Layout Diagram

PC WIRING LIST

FROM	COLOR	то
ZDP4/ZDP6		
PIN		
1	Brown	E12
2	Red	E13
3	Orange	E14
4	Yellow	E15
5	Green	E16
6	Blue	E17
7	Violet	El8
8	Grey	E19
ZDJ5/ZDJ7		
1	Brown	E28
2	Red	E27
3	Orange	E26
4	Yellow	E25
5	Green	E24
FUSE HOLDER		
1	White	E10
2	Black	E11
MPCIOOO SOCKET		
1	Brown	E5
2	Red \& Bare \#22 Buswire	E6 Case terminal nearest
3	Orange	E7
4	\#22 Buswire	MPC1000 Socket, Pin 1
5	Green	E8
6	Blue	E1
7	Violet	E2
8	Grey	E3
9	White	E4
D44C5 TRANSISTOR		
Base	Brown	E23
Collector	Red	E22
Emitter	Orange	E21

FROM	COLOR	TO
E20	Insulated \#22 Buswire	E26
R22		
1	Violet	E20
2	Blue	E9
TP1	Brown	E13
TP2	Red	E15
TP3	Orange	E16
TP4	Yellow	E18
TP5	Green	E19

 SCHEMATIC DWG \# \qquad LOCATION \qquad QUA/SYSTEM \qquad PREPARED BY S D. BURGAN APPROVED \qquad

BILE OF N_{L} RIAL
NATIONAL RADIO ASTRONOMY OBSERVATORY
ELECTRICAL \square MECHANICAL
BON \# \qquad REV \qquad DATE \qquad
PAGE
\qquad OF \qquad

BILL OF N. ARIAL
NATIONAL RADIO ASTRONOMY OBSERVATORY
\triangle ELECTRICAL
\square MECHANICAL BOM \# \qquad REV \qquad DATE \qquad PAGE \qquad Or \qquad

$\underset{\#}{\text { ITEM }}$	$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	manufacturer	mpg part 非	DESCRIPTION	total QUA	
30	R_{19}	TRW-IRC		20K 1\% RN55	1	
31	R_{4}	CADDOCK		1 M 190 MKI32 RESISTOR	1	
32	D_{2}, D_{3}	MOTOROLA		IN. 914 DIODE	2	
33	C,	SPRAGUE	M39003/01-2061	$100 \mu \mathrm{~F} 20 \mathrm{~V}$ TANTALUM CAPACITOR	1	
34	C_{4}	',	M39003/01-2046	$10 \mu \mathrm{~F} 20 \mathrm{~V}$	1	
35	C_{2}	ERIE	2131-050-651-104m	. 1 MF SOV REOCAP CAPACITOR	1	
36	C_{3}	11	8101-050-651-102m	. 01 nF"	1	
37	D_{1}	MOTOROLA		IN937B ZENER REFERENCE DIODE	1	
38	R18	POURNS	3339 P	10K 4 T POTENTIOMETES	1	\checkmark
39	R_{3}	"	11	200k 4T	1	\checkmark
40		KEYSTONE	1562-2	TURRET TERMINALS	28	
41		GC ELECTRONICS	$6262-C$	ANGLE BRACKETS	3	
42		ROBINSON NUGENT	ICN-083-53	M (N)-DIP SOCKET	1	
43		"	SD-5178	TO-99 SOCKET	1	

FEATURES
Precision Input Characteristics Low V_{05} : 0.5 mV max (L) Low $V_{\text {os }}$ Drift: $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max (L)
Low I_{b} : 50nA max (L) Low $l_{\text {os: }}$ 5nA max (L) High CMRR: $90 \mathrm{~dB} \min (K, L)$
High Output Capability
$A_{\text {ol }}=25,000 \mathrm{~min}, 1 \mathrm{k} \Omega$ load (J, S)
$T_{\text {min }}$ to $T_{\text {max }}$
$V_{0}= \pm 10 \mathrm{~V} \min , 1 \mathrm{k} \Omega$ load (J, S)
Low Cost (100 pieces)

AD741J	$\$ 1.25$
AD741K	$\$ 2.25$
AD741L	$\$ 6.00$
AD741S	$\$ 3.30$

GENERAL DESCRIPTION

The Analog Devices AD741J, AD741K, AD741L and AD741S are specially tested and selected versions of the popular AD741 operational amplifier. Improved processing and additional electrical testing guarantee the user precision performance at a very low cost. The AD741J, K and L substantially increase overall accuracy over the standard AD741C by providing maximum limits on offset voltage drift, and significantly reducing the errors due to offset voltage, bias current, offset current, voltage gain, power supply rejection, and common mode rejection (see Error Analysis). For example, the AD741L features maximun offset voltage drift of $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, offset voltage of 0.5 mV max, offset current of 5nA max, bias current of 50 nA max, and a CAIRR of 90 dB min. The AD741S offers guaranteed performance over the extended temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, with max offset voltage drift of $15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, max offset voltage of 4 mV , max offset current of 25 nA , and a minimum CMRR of 80 dB .

HIGH OUTPUT CAPABILITY

Both the AD741J and AD741S offer the user the additional advantages of high guaranteed output current and gain at low values of load impedance. The AD741J guarantees a minimum gain of 25,000 , swinging $\pm 10 \mathrm{~V}$ into a $1 \mathrm{k} \Omega$ load from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The AD741S guarantees a minimum gain of 25,000 , swinging $\pm 10 \mathrm{~V}$ into a $1 \mathrm{k} \Omega$ load from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

All devices feature full short circuit protection, high gain, high common mode range, and internal compensation. The $A D 741 \mathrm{~J}, \mathrm{~K}$ and L are specified for operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, and are available in both the TO-99 and mini-DIP packages. The AD741S is specified for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, and is available in the TO-99 package.

GUARANTEED ACCURACY

The vastly improved performance of the AD741J, AD741K, AD741L and AD741S provides the user with an ideal choice when precision is needed and economy is a necessity. An error budget is calculated for all versions of the AD741 (see page 3); it is obvious that these selected versions offer substantial improvements over the industry-standard AD741C and AD741. A typical circuit configuration (see Figure 1) is assumed, and the various errors are computed using maximum values over the full operating temperature range of the devices. The results indicate a factor of 8 improvement in accuracy of the AD741L over the AD741C, a factor of 5 improvement using the AD741K, and a factor of 2.5 improvement using the AD741J. The AD741S, similarly, achieves a factor of 3.5 improvement over the standard AD741. Note that the total error has been determined as a sum of component errors, while in actuality, the total error will be much less. Also, while the circuit used for the error analysis is only one of a multitude of possible applications, it effectively demonstrates the great improvement in overall 741 accuracy achievable at relatively low cost with the AD741J, K, L or S.

Figure 1. Error Budget Analysis Circuit

[^0]| MODEL | AD741J | AD741K | AD741L | AD741S |
| :---: | :---: | :---: | :---: | :---: |
| OPEN LOOP GAIN | | | | |
| $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{V}_{0}= \pm 10 \mathrm{~V}$ | 50,000 min (200,000 typ) | | | * |
| $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$ | | 50,000 min (200,000 typ) | 50,000 min (200,000 typ $)$ | |
| Over Temp Range, $T_{\min }$ to $T_{\text {max }}$, same loads as above | 25,000 min | - | - | * |
| OUTPUT CHARACTERISTICS | | | | |
| Voltage © $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ | $\pm 10 \mathrm{~V} \min (\pm 13 \mathrm{~V}$ typ) | | | * |
| Voltage @ $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\max }$ | | $\pm 10 \mathrm{~V} \min (\pm 13 \mathrm{~V}$ typ) | $\pm 10 \mathrm{~V}$ min ($\pm 13 \mathrm{~V}$ typ) | |
| Short Circuit Current | 25 mA | * | * | * |
| FREQUENCY RESPONSE | | | | |
| Unity Gain, Small Signal | 1 MHz | * | * | * |
| Full Power Response | 10 kHz | * | * | - |
| Slew Rate, Unity Gain | $0.5 \mathrm{~V} / \mu \mathrm{sec}$ | * | * | - |
| INPUT OFFSET VOLTAGE, | | | | |
| Initial, $\mathrm{RS}_{S} \leqslant 10 \mathrm{k} \Omega 2$ (adjustable to zero) | $3 \mathrm{mV} \max (1 \mathrm{mV}$ typ) | 2 mV max (0.5 mV typ) | $0.5 \mathrm{mV} \max (0.2 \mathrm{mV}$ typ) | 2 mV max (1 mV typ) |
| $T_{\min }$ to $T_{\max }$ | 4 mV max | 3 mV max | 1 mV max | |
| Avg vs Temperature (untrimmed) | $20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max | $15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max ($6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typ $)$ | $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \max \left(2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right.$ typ $)$ | $15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \max \left(6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right.$ гуp $)$ |
| vs Supply, $\mathrm{T}_{\min }$ to $\mathrm{T}_{\max }$ | $100 \mu \mathrm{~V} / \mathrm{V} \max (30 \mu \mathrm{~V} / \mathrm{V}$ typ) | $15 \mu \mathrm{~V} / \mathrm{V} \max (5 \mu \mathrm{~V} / \mathrm{V}$ typ) | $15 \mu \mathrm{~V} / \mathrm{V} \max (5 \mu \mathrm{~V} / \mathrm{V}$ typ) | * |
| INPUT OFFSET CURRENT | | | | |
| Initial | $50 n \wedge \max (5 n \wedge$ typ $)$ | $10 n A \max (2 \mathrm{nA}$ typ) | $5 \mathrm{nA} \max (2 n A t y p)$ | $10 n A \max (2 \mathrm{n} \lambda \mathrm{typ})$ |
| $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ | 100 nA max | $15 n A$ max ${ }^{\circ}$ | 10 nA max | $25 n \wedge$ max |
| Avg vs Temperature | $0.1 \mathrm{nA} /^{\circ} \mathrm{C}$ | $0.2 \mathrm{n} / /^{\circ} \mathrm{C} \max \left(0.02 \mathrm{nA} /{ }^{\circ} \mathrm{C}\right.$ typ) | $0.1 \mathrm{nA} 1^{\circ} \mathrm{C}$ max ($0.02 \mathrm{nA} /^{\circ} \mathrm{C}$ typ) | $\underline{0.25 n A / 1} \mathrm{C} \max \left(0.1 \mathrm{nA} /{ }^{\circ} \mathrm{C}\right.$ typ $)$ |
| InPUT BIAS CURRENT | | | | |
| Initial | $200 \mathrm{n} \wedge$ max (40nAtyp) | 75 nA max (30 nA typ) | 50nA max (30nA typ) | $75 \mathrm{nA} \max$ (30 nA typ) |
| $\mathrm{T}_{\min }$ to $\mathrm{T}_{\text {max }}$ | 400 nA max | $120 \mathrm{n} \Lambda$ max | 100 nA max | $250 n A$ max |
| Avg vs Temperature | $0.6 \mathrm{n} / /^{\circ} \mathrm{C}$ | $1.5 \mathrm{nM} /{ }^{\circ} \mathrm{C} \max \left(0.6 \mathrm{nN} /{ }^{\circ} \mathrm{C}\right.$ typ $)$ | $\ln \mathrm{A}{ }^{\circ} \mathrm{C} \max \left(0.6 \mathrm{n} \Lambda /^{\circ} \mathrm{C}\right.$ typ $)$ | $2 \mathrm{nA} 1^{\circ} \mathrm{C}$ max ($0.6 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ ryp) |
| INPUT IMPEDANCE | | | | |
| Differential | $1 \mathrm{M} \Omega$ | $2 \mathrm{M} \Omega$ | $2 \mathrm{M} \Omega$ | $2 \mathrm{M} \Omega$ |
| INPUT VOLTAGE RANGE (Notc 1) | | | | |
| Differential, max safe | $\pm 30 \mathrm{~V}$ | * | * | * |
| Common Mode, max safe | $\pm 15 \mathrm{~V}$ | * | * | * |
| Common Mode Rejection, \quad, | | | | |
| $\mathrm{RS}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega, \mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}, V_{\text {in }}= \pm 12 \mathrm{~V}$ | $80 \mathrm{~dB} \min (90 \mathrm{~dB}$ typ) | $90 \mathrm{~dB} \min (100 \mathrm{~dB}$ typ) | $90 \mathrm{~dB} \min (100 \mathrm{~dB}$ typ) | * |
| POWER SUPPLY | | | | |
| Rated Performance | $\pm 15 \mathrm{~V}$ | * | * | * |
| Operating | $\pm(5$ to 18)V | \pm (S to 22)V | $\pm(5$ to 22$) \mathrm{V}$ | $\pm(5$ to 22$) \mathrm{V}$ |
| Current, Quieseent | $3.3 \mathrm{~mA} \max (2.0 \mathrm{~m} \wedge$ typ $)$ | $2.8 \mathrm{~mA} \mathrm{max}(1.7 \mathrm{~mA} \mathrm{typ})$ | $2.8 \mathrm{~mA} \max (1.7 \mathrm{~mA} \mathrm{typ})$ | $2.8 \mathrm{~mA} \max (2.0 \mathrm{~mA}$ typ $)$ |
| TEMPERATURE RANGE Operating, Rated Performance Storage | $\begin{aligned} & 0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} \\ & -65^{\circ} \mathrm{C} 10+150^{\circ} \mathrm{C} \end{aligned}$ | - | | $-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$ |

Note 1: For stpply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
-Specifications same as $A D 7+11$,
Specifieations subjeet to change without notice.

ERROR blldGET ANALYSIS

	AD741C		AD741J		AD741K		AD7411		AD741		AD7415	
PdKAMETER	SPEC $10^{\circ} \mathrm{C} \text { to }+$	$\begin{aligned} & \text { ERROR } \\ & 70^{\circ} \mathrm{C} \text {) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SPEC } \\ & 10^{\circ} \mathrm{C} \text { to } \end{aligned}$	$\begin{aligned} & \text { ERROR } \\ & ? \mathrm{C} \end{aligned}$	SPEC $10^{\circ} \mathrm{C} 10$	$\begin{aligned} & \text { ERROR } \\ & \left.70^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	SPEC $10^{\circ} \mathrm{C} 8$	$\begin{aligned} & \text { ERKOR } \\ & \left.70^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SPEC } \\ & \left(-55^{\circ} \mathrm{C}\right. \text { to } \end{aligned}$	$\begin{aligned} & \text { ERROR } \\ & \left.+125^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SPEC } \\ & \left(-55^{\circ} \mathrm{C}\right. \text { to } \end{aligned}$	$\begin{aligned} & \text { ERROR } \\ & \left.+125^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$
Cisin (k ror = $10 V_{i n} / G$)	15,000	$660 \mu \mathrm{~V}$	25,000 ${ }^{1}$	$400 \mu \mathrm{~V}$	25,000 ${ }^{1}$	$400 \mu \mathrm{~V}$						
$\mathbf{l}_{\mathrm{b}}\left(\right.$ Error $=\mathrm{I}_{b} \times$ resistor mismarch $)$	800nA	$160 \mu \mathrm{~V}$	400n.t	$80 \mu \mathrm{~V}$	120nA	$27 \mu \mathrm{~V}$	100:A	$20 \mu \mathrm{~V}$	1500nA	$300 \mu \mathrm{~V}$	250nA	SOHV
$\mathrm{I}_{\text {OS }}\left(E \mathrm{rror}=\mathrm{I}_{\text {OS }} \times 10 \mathrm{R} \Omega\right)$	300nA	$3000 \mu V^{*}$	$100 n d$	$1000 \mu \mathrm{~V}$	15nA	$150 \mu \mathrm{~V}$	10 nA	$100 \mu \mathrm{~V}$	500nA	$5000 \mu \mathrm{~V}$	25nA	250رV
$\Delta V_{o s} / \Delta \mathrm{T}\left(E r r o r=\Delta V_{o s} / \Delta_{T} \times \Delta_{T}\right)$	$25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}^{2}$	1125\%V	$20 ; \mathrm{Vi}^{\circ} \mathrm{C}$	$900 \mu \mathrm{~V}$	$15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$675 \mu \mathrm{~V}$	$5 \mu \mathrm{~V}{ }^{\circ} \mathrm{C}$	$225 \mu \mathrm{~V}$	$25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}^{2}$	$2500 \mu \mathrm{~V}$	$15 \mu \mathrm{~V} 7^{\circ} \mathrm{C}$	1500 $\mu \mathrm{V}$
CMRR (Error $=10 V / C M R R$)	70dB	$3300 \mu \mathrm{~V}$	80 dB	$1000 \mu \mathrm{~V}$	90 dB	$330 \mu \mathrm{~V}$	90 dB	$330 \mu \mathrm{~V}$	70dB	$3300 \mu \mathrm{~V}$	80dB	$1000 \mu \mathrm{~V}$
PSRR (assume a $\pm 5 \%$ pover supply variation)	$150 \mu \mathrm{VN}$	450uV	100 12 V	$300 \mu \mathrm{~V}$	$15 \mu \mathrm{~V} / \mathrm{V}$	45uV	15 $\mu \mathrm{V} / \mathrm{V}$	$45 \mu \mathrm{~V}$	150HV/V	450رV	100\%V/V	3004V
TOTAL		8.7 mV		3.7 mV		1.6 mV		1.1 mV		12.0 mV		3.5 mV
PRICE (100 pieces)	\$1.00		\$1.25		\$2.25		\$6.00	-	\$2.00		\$3.30	

${ }_{2}^{1}$ AD741J and AD741S...Open Loop Gain is guaranteed with a $1 \mathrm{k} \Omega$ load.
2 AD741C and AD741.. $\Delta V_{o s} / \Delta_{\mathrm{T}}$ is not guaranteed (for complete specifications, contact the factory for data sheet).

INPUT CHARACTERISTICS

Figure 2. Max Equivalent Input Offset Drift vs. Source Resistance

Figure 3. Input Bias Current vs. Temperature

Figure 4. Common Mode Rejection vs. Frequency

Figure 5. Input Noise Voltage vs. Frequency

Figure 6. Input Noise Current vs. Frequency

Figure 7. Broadband Noise vs. Source Resistance

OUTPUT CHARACTERISTICS

The AD741J and AD741S are specially selected for high outpur current capability. High efficiency output transistors, thermally balanced chip design and precise short circuit current control insure against gain degradation at high -urrent levels and temperature extremes. The AD741J -uaranters a minimum gain of 25,000 , swinging $\pm 10 \mathrm{~V}$ into a $1 \mathrm{k} \Omega$ load from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The AD741S guarantees minimum gain of 25,000 , swinging $\pm 10 \mathrm{~V}$ into a $1 \mathrm{k} \Omega$ load from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The AD741K and AD741L are guaranteed with the standard $2 \mathrm{k} \Omega$ load.

Figure 8. Output Voltage Swing vs. Frequency

Figure 9. Output Voltage Swing vs. Load Resistance

Figure 10. Open Loop Gain vs. Frequency

BONDMNG DIAGRAM
All versions of the AD741 are available in chip or wafer form, fully tested at $+25^{\circ} \mathrm{C}$. Because of the critical nature of using unpackaged devices, it is suggested that the factory be contacted for specific information regarding price, delivery and testing:

CONNECTION DIAGRAMS

(Top View)

(H package)
(N package)

PHYSICAL DIMENSIONS

(In Inches)

MLL-STANDARD-S33
The AD741S is available with 100% screening to MIL-STD-883, Merhod 5004, Class A, B, or C. Consult the factory for pricing and delivery.

ORDERING GUIDE

MODEL	TEMP. RANGE	ORDER NUMBER	PRICE $(1-24)$	PRICE $(25-99)$	PRICE $(100-999)$
AD741J	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AD741J *	$\$ 1.85$	$\$ 1.50$	$\$ 1.25$
AD741K	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AD741K	$\$ 3.40$	$\$ 2.70$	$\$ 2.25$
AD741L	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AD741L		$\$ 9.00$	$\$ 7.20$
AD741S	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AD741SH	$\$ 4.95$	$\$ 4.00$	$\$ 3.30$

*Add Package Type Letter $; \mathrm{H}=$ TO-99, $\mathrm{N}=$ Mini-DIP.

PRODUCT DESCRIPTION

The AD503J/AD506J, AD503K/AD506K, and AD503S/AD506S are IC FET input op amps which provide the user with input currents of a few pA, high overall performance, low cost, and accurately specified, predictable operation. The devices achieve maximum bias currents as low as 10 pA , minimum gain of 50,000 , CMRR of 80 dB , and a minimum slew rate of $3 \mathrm{~V} / \mu \mathrm{sec}$. They are free from latch-up and are short circuit protected. No external compensation is required as the internal $6 \mathrm{~dB} /$ octave rolloff provides stability in closed loop applications.

The AD503 is suggested for all general purpose FET input amplifier requirements where low cost is of prime importance. The AD506, with specifications otherwise similar to the AD503, offers significant improvement in offset voltage and nulled offset voltage drift by supplementing the AD503 configuration with internal laser trimming of thin film resistors to provide typical offset voltages below 1 mV .

Both the AD503 and AD506 provide performance comparable to modular FET op amps. Because of their monolithic construction, however, their cost is significantly below that of modules, and becomes even lower in large quantities.

All the circuits are supplied in the TO-99 package; the AD503J and AD506J and the AD503K and AD506K are specified for $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range operation; the AD503S and AD506S for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

PRODUCT BENEFITS

1. The AD503 and AD506 op amps meet their published input bias current and offset voltage specs after full warmup. Conventional high speed IC testing does not allow for self-heating of the chip due to internal power dissipation under operating conditions.
2. The bias currents of the AD503 and AD506 are specified as a maximum for either input. Conventional IC FET op amps generally specify bias currents as the average of the two input currents.
3. Offset voltage nulling of the AD503 and AD506 is accomplished without affecting the operating current of the FET's and results in relatively small changes in temperature drift characteristics. The additional drift induced by nulling is only $\pm 0.8 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ per millivolt of nulled offset for the AD506 and $\pm 2.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ per millivolt of nulled offset for the AD503, compared to several times this for other IC FET op amps.
4. The gain of the AD503 and AD506 is measured with the offset voltage nulled. Nulling a FET input op amp can cause the gain to decrease below its specified limit. The gain of the AD503 and AD506 is fully guaranteed with the offset voltage both nulled and unnulled.
5. Bootstrapping of the input FET's achieves a superior CMRR of 80 dB , while reducing bias currents and maintaining them constant through the CMV range.
6. To maximize the reliability inherent in IC construction, every AD503/AD506 is stored for 48 hours at $200^{\circ} \mathrm{C}$, temperature cycled from $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, and receives a high impact shock test. All guaranteed DC parameters are 100% computer tested, including offset voltage drift. AC performance and noise parameters are continually reviewed.

APPLYING THE AD503 AND AD506

The AD503 and AD506 are especially designed for applications involving the measurement of low level currents or small voltages from high impedance sources, in which bias current can be a primary source of error. Input bias current contributes to error in two ways: (1) in current measuring configurations, the bias current limits the resolution of a current signal; (2) the bias current produces a voltage offset which is proportional to the value of input resistance (in the case of an inverting configuration) or source impedance (when the non-inverting "buffer" connection is used). The AD503 and AD506 IC FET input amplifiers, therefore, are of use where small currents are to be measured or where relatively low voltage drift is necessary despite large values of source resistance.

OPEN LOOP GAIN (Note 1)
$V_{\text {out }}= \pm 10 \mathrm{~V}, R_{L} \geqslant 2 \mathrm{k} \Omega$
$T_{A}=\min$ to \max
$20,000 \min (50,000 \mathrm{typ}) \quad 50,000 \mathrm{~min}(120,000 \mathrm{typ}) \quad 50,000 \mathrm{~min}(120,000 \mathrm{typ})$ 15.000 min
$40,000 \mathrm{~min}$
$25,000 \mathrm{~min}$

OUTPUT CHARACTERISTICS

Voltage @ $R_{L}=2 k \Omega, T_{A}=\min$ to max $@ R_{L}=10 k \Omega, T_{A}=\min$ to \max Load Capacitance (Note 2)
Short Circuit Current
$\pm 10 \mathrm{~V} \min (\pm 13 \mathrm{~V}$ typ)
$\pm 12 \mathrm{~V} \min (\pm 14 \mathrm{~V}$ typ) 750pF
25 mA

FREQUENCY RESPONSE

Unity Gain, Small Signal
Full Power Response
Slew Rate, Unity Gain
Settling Time, Unity Gain (to 0.1\%)

INPUT OFFSET VOLTAGE (Note 3)
vs. Temperature, $T_{A}=\min$ to \max
vs. Supply, $T_{A}=\min$ to \max

1.0 MHz	$*$	$*$
100 kHz	$*$	$*$
$3.0 \mathrm{~V} / \mu \mathrm{sec} \min (6.0 \mathrm{~V} / \mu \mathrm{sec}$ typ $)$	$*$	$*$
$10 \mu \mathrm{sec}$	$*$	$*$

$10 \mu \mathrm{sec}$
$50 \mathrm{mV} \max (20 \mathrm{mV}$ typ) $\quad 20 \mathrm{mV} \max (8 \mathrm{mV}$ typ) $\quad 20 \mathrm{mV} \max (8 \mathrm{mV}$ typ) $75 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \max \left(30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right.$ typ) $25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \max \left(10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right.$ typ) $50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \max \left(20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right.$ ty $400 \mu \mathrm{~V} / \mathrm{V} \max (200 \mu \mathrm{~V} / \mathrm{V}$ typ) $200 \mu \mathrm{~V} / \mathrm{V} \max (100 \mu \mathrm{~V} / \mathrm{V}$ typ) $200 \mu \mathrm{~V} / \mathrm{V} \max (100 \mu \mathrm{~V} / \mathrm{V}$ ty

INPUT BIAS CURRENT

Either Input (Note 4)
15pA $\max (5 p A t y p) \quad 10 p A \max (2.5 p A$ typ $)$
10pA max (2.5pA typ)

INPUT IMPEDANCE
Differential
Common Mode

$$
\begin{array}{lll}
10^{11} \Omega \| 2 p F & * & * \\
10^{12} \Omega \| 2 p F & * & *
\end{array}
$$

INPUT NOISE
Voltage, 0.1 Hz to 10 Hz

$15 \mu \mathrm{~V}(\mathrm{p}-\mathrm{p})$	$*$	$*$
$5.0 \mu \mathrm{~V}$ (rms $)$	$*$	$*$
$30.0 \mathrm{nV} / \mathrm{V} \mathrm{Hz}$	$*$	$*$

$30.0 \mathrm{nV} / \sqrt{\mathrm{Hz}}$

INPUT VOLTAGE RANGE
Differential (Note 5)
Common Mode, $\mathrm{T}_{\mathrm{A}}=\min$ to \max
Common Mode Rejection, $\mathrm{V}_{\text {in }}= \pm 10 \mathrm{~V}$
$\pm 3.0 \mathrm{~V}$
$\pm 10 \mathrm{~V} \min (\pm 12 \mathrm{~V}$ typ)
$70 \mathrm{~dB} \min (90 \mathrm{~dB}$ typ)

$80 \mathrm{~dB} \min (90 \mathrm{~dB}$ typ) $\quad 80 \mathrm{~dB} \min (90 \mathrm{~dB}$ typ)

POWER SUPPLY
Rated Performance
Operating
Quiescent Current
$\pm 15 \mathrm{~V}$
$\pm(5$ to 18$) \mathrm{V}$
$7 \mathrm{~mA} \max (3 \mathrm{~mA}$ typ)

* $\pm(5$ to 22$) \mathrm{V}$

TEMPERATURE
Operating, Rated Performance
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

PARAMETER	AD506J	AD506K	AD506S		
OPEN LOOP GAIN (Note 1) $\begin{aligned} & \mathrm{V}_{\text {out }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega \\ & \mathrm{~T}_{\mathrm{A}}=\min \text { to } \max \end{aligned}$	$\begin{gathered} 20,000 \min (50,000 \mathrm{typ}) \\ 15,000 \text { min } \end{gathered}$	$\begin{gathered} 50,000 \min (120,000 \text { typ }) \\ 40,000 \text { min } \end{gathered}$	$\begin{gathered} 50,000 \min (120,000 \text { typ }) \\ 25,000 \text { min } \end{gathered}$		
OUTPUT CHARACTERISTICS Voltage @ $R_{L}=2 k \Omega, T_{A}=\min$ to max $@ R_{L}=10 k \Omega, T_{A}=\min$ to \max Load Capacitance (Note 2) Short Circuit Current	$\begin{gathered} \pm 10 \mathrm{~V} \min (\pm 13 \mathrm{~V} \text { typ }) \\ \pm 12 \mathrm{~V} \min (\pm 14 \mathrm{~V} \text { typ }) \\ 1000 \mathrm{pF} \\ 25 \mathrm{~mA} \end{gathered}$				
FREQUENCY RESPONSE Unity Gain, Small Signal Full Power Response Slew Rate, Unity Gain Settling Time, Unity Gain	1.0 MHz 100 kHz $3.0 \mathrm{~V} / \mu \mathrm{sec} \min (6.0 \mathrm{~V} / \mu \mathrm{sec}$ typ $)$ $10 \mu \mathrm{sec}$				
INPUT OFFSET VOLTAGE (Note 3) vs. Temperature, $T_{A}=\min$ to \max vs. Supply, $T_{A}=\min$ to \max	$3.5 \mathrm{mV} \max (1.0 \mathrm{mV}$ typ) $75 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \max \left(30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right.$ typ) $200 \mu \mathrm{~V} / \mathrm{V} \max (100 \mu \mathrm{~V} / \mathrm{V}$ typ)	$1.5 \mathrm{mV} \max (0.5 \mathrm{mV}$ typ) $25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \max \left(10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right.$ typ $)$ $100 \mu \mathrm{~V} / \mathrm{V} \max (50 \mu \mathrm{~V} / \mathrm{V}$ typ $)$	$1.5 \mathrm{mV} \max (0.5 \mathrm{mV}$ typ) $50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \max \left(20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right.$ typ $)$ $100 \mu \mathrm{~V} / \mathrm{V} \max (50 \mu \mathrm{~V} / \mathrm{V}$ typ)		
INPUT BIAS CURRENT Either Input (Note 4)	15pA max (5pA typ)	10pA max (2.5pA typ)	10pA max (2.5pA typ)		
INPUT IMPEDANCE Differential Common Mode	$\begin{aligned} & 10^{11} \Omega \\| 2 \mathrm{pF} \\ & 10^{12} \Omega \\| 2 \mathrm{pF} \end{aligned}$		*		
INPUT NOISE $\begin{aligned} \text { Voltage, } & 0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & 5 \mathrm{~Hz} \text { to } 50 \mathrm{kHz} \\ & f=1 \mathrm{kHz} \text { (spot noise) } \end{aligned}$	$\begin{aligned} & 40 \mu \mathrm{~V}(\mathrm{p}-\mathrm{p}) \\ & 8 \mu \mathrm{~V}(\mathrm{rms}) \\ & 80 \mathrm{nV} / \sqrt{ } \mathrm{Hz} \end{aligned}$		*		
INPUT VOLTAGE RANGE Differential (Note 5) Common Mode, $\mathrm{T}_{\mathrm{A}}=\min$ to \max Common Mode Rejection, $\mathrm{V}_{\text {in }}= \pm 10 \mathrm{~V}$	$\begin{gathered} \pm 4 \mathrm{~V} \\ \pm 10 \mathrm{~V} \min (\pm 12 \mathrm{~V} \text { typ }) \\ 70 \mathrm{~dB} \min (90 \mathrm{~dB} \text { typ }) \end{gathered}$	$80 \mathrm{~dB} \min (90 \mathrm{~dB}$ typ)	$80 \mathrm{~dB} \min (90 \mathrm{~dB}$ typ)		
POWER SUPPLY Rated Performance Operating Quiescent Current	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm(5 \text { to } 18) \mathrm{V} \\ 7 \mathrm{~mA} \max (5 \mathrm{~mA} \text { typ }) \end{gathered}$	*	$\pm(5 \text { to } 22) \mathrm{V}$		

TEMPERATURE
Operating, Rated Performance $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad * \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

APPLICATIONS CONSIDERATIONS

Bias Current

Most IC FET op amp manufacturers specify maximum bias currents as the value immediately after turn-on. Since FET bias currents double every $10^{\circ} \mathrm{C}$ and since most FET op amps have case temperature increases of $15^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ above ambient, initial "maximum" readings may be only $1 / 4$ of the true warmed up value. Furthermore, most IC FET op amp manufacturers specify I_{b} as the average of both input currents, sometimes resulting in twice the "maximum" bias current appearing at the input being used. The total result is that 8 X the expected bias current may appear at either input terminal in a warmed up operating unit.

The AD503 and AD506 specify maximum bias currents at either input after warmup, thus giving the user the values he expected.

Improving Bias Current Beyond Guaranteed Values

Bias currents can be substantially reduced in the AD503 and AD506 by decreasing the junction temperature of the device. One technique to accomplish this is to reduce the operating supply voltage. This procedure will decrease the power dissipation of the device, which will in turn result in a lower junction temperature and lower bias currents. The supply voltage effect on bias current is shown in Figure 1.

Figure 1. Normalized Bias Current vs. Supply Voltage
Operation of the $A D 503 \mathrm{~K}$ and $A D 506 \mathrm{~K}$ at $\pm 5 \mathrm{~V}$ reduces the warmed up bias current by 70% to a typical value of 0.75 pA .

A second technique is the use of a suitable heat sink. Wakefield Engineering Series 200 heat sinks were selected to demonstrate this effect. The characteristic bias current vs. case temperature above ambient is shown in Figure 2. Bias current has been normalized with unity representing the $25^{\circ} \mathrm{C}$ free air reading. Note that the use of the Model 209 heat sink reduces warmed up bias current by 60% to 1.0 pA in the AD503/506K.

Figure 2. Normalized Bias Current vs. Case Temperature

Both of these techniques may be used together for obtaining lower bias currents. Remember that loading the output can also affect the power dissipation.

Figure 3. Input Bias Current vs. Temperature

Input Considerations

The common mode input characteristic is shown in Figure 4. Note that positive common mode inputs up to +13.5 volts and negative common mode inputs to $-V_{S}$ are permissible, without incurring excessive bias currents. To prevent possible damage to the unit, do not exceed $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}}$.

Figure 4. Input Bias Current vs. Common Mode Voltage

Like most other FET input op amps, the AD503 and AD506 display a degraded bias current specification when operated at moderate differential input voltages. The AD503 maintains its specified bias current up to a differential infput voltage of $\pm 3 \mathrm{~V}$ typically, while the AD506's bias current performance is not significantly degraded for $V_{\text {diff }} \leqslant 4 \mathrm{~V}$ typically. Above $V_{\text {diff }}= \pm 3 \mathrm{~V}$ in the AD503 and $V_{\text {diff }}= \pm 4 \mathrm{~V}$ in the AD506, the bias current will increase to approximately $400 \mu \mathrm{~A}$. This is not a failure mode. Above $\pm 10 \mathrm{~V}$ differential input voltage, the bias current will increase $100 \mu \mathrm{~A} / \mathrm{V}_{\text {diff }}$ (in volts), and other parameters may suffer degradation. If these effects are undesirable, the user should investigate the AD513 or AD516 as a possible alternative.

Most commercially available IC FET op amps are nulled by djusting the FET operating currents, causing the offset voltage pmperature coefficients to vary 3 to $6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ per millivolt of offset nulled. Thus a FET op amp with a 20 mV initial offset, when nulled may display an additional offset drift of 60 to $20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, in addition to its unnulled value.
The AD503 and AD506 achieve nulling without disturbing the -perating currents of the FET's, which reduces the additional rift substantially. In addition, the AD506 includes a temperature compensated current source for the differential input stage, further reducing the offset voltage drift over emperature. In Figure 5, data is displayed to demonstrate the ffset drift performance of the AD503 and AD506 when nulled. The AD503 and AD506 nulled drift contributions liffer since the AD506 is constructed with low temperature oefficient $\left(200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$ thin film resistors, and the AD503 uses a diffusion process resulting in $2000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ resistors. It fan be shown that the additional drift induced by nulling a hin film amplifier with an industrial potentiometer is Considerably less than that induced by nulling a diffused amplifier. There are two curves each for the AD503 and D506 to account for both positive and negative offset drifts. From the curves in Figure 5 it is possible to determine $\Delta V_{\text {OS }} / \Delta T$ for both the AD503 and AD506. The AD503 has an hitial offset of 20 mV and initial offset drift of $-20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. The AD506 has an initial offset voltage of 1 mV and initial offset drift of $-20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. It can be determined that the dditional drift induced by nulling the AD506 is only $0.8 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ per millivolt of offset voltage, and $\pm 2.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ per millivolt for the AD503. Both of these curves indicate gerformance considerably better than many other IC FET op mps which null $V_{0 s}$ by varying the operating currents of the ET's.

Noise Performance

The noise spectral density vs. frequency for the AD503 and AD506 is given in Figure 6. The curve for the AD503 shows approximately $300 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 10 Hz , declining in a I / f fashion (l / f for power, $1 / \sqrt{\mathrm{f}}$ for voltage) to approximately $12 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at higher frequencies.
Current noise in the AD503 and AD506 is approximately $0.001 \mathrm{pA} / \sqrt{ } \mathrm{Hz}$ at low frequencies. Above 300 Hz , the current noise generated by the op amp increases at a 3 dB /octave rate, determined by $\omega e_{n} C_{i n}$, where $e_{n}=$ spectral noise density and $\mathrm{C}_{\mathrm{in}}=$ input capacitance. In most practical applications, the current noise from source or feedback resistors will be larger than the low frequency current noise from the amplifier.
At high frequencies, the total circuit current noise is equal to $\omega e_{n} C$, where C is the sum of all input and feedback capacitors. In well-shielded circuits, C is usually 10 to 100 pF , so that the $\omega e_{n} C$ can be a significant factor. Thus the user should attempt to minimize C.

Figure 6. Noise Spectral Density vs. Frequency

Dynamic Performance

The AD503 and AD506 are internally compensated to achieve a -3 dB bandwidth of 1 MHz (see Figure 7). At unity gain the full power bandwidth is 50 kHz . minimum, and typically 100 kHz . Slew rates are $3 \mathrm{~V} / \mu \mathrm{sec}$ minimum and $6 \mathrm{~V} / \mu \mathrm{sec}$ typical (see Figure 8 and Figure 9).

Figure 7. Small Signal Gain vs. Frequency

Figure 8. Voltage Follower Step Response

Figure 9. P-P Output vs. Frequency

Common Mode Rejection Ratio

The high CMRR of both the AD503 and AD506 (see Figure 10) minimizes common mode error. For example, when either is connected as a unity gain non-inverting amplifier with a $\pm 10 \mathrm{~V}$ input signal, the resultant common mode error referred to the input is only $0.01 \%(1 \mathrm{mV})$.

Figure 10. CMRR vs. Frequency

Supply Characteristics

Figure 11. PSRR vs. Frequency

Figure 12. Supply Voltage vs. Supply Current Output Characteristics

Figure 13. Output Voltage vs. Supply Voltage

Figure 14. Output Voltage vs. Output Current

Outline Dimensions \& Pin Designations

LX5600/LX5600A, LX5700/LX5700A temperature transducers

general description

The LX5600/LX5700 series temperature transducers are highly accurate temperature measurement or control systems for use over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. Fabricated on a single monolithic chip they include a temperature sensor, stable voltage reference and operational amplifier.

The output of the LX5600/LX5700 is directly proportional to temperature in degrees Kelvin at $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$. Using the internal op amp with external resistors any temperature scale factor is easily obtained. By connecting the op amp as a comparator, the output will switch as the temperature transverses the set-point making the device useful as an on-off temperature controller.

An active shunt regulator is connected across the power leads to the LX5600/LX5700 to provide a stable voltage reference. In addition to providing a reference, it regulates the operating voltage to 6.8 V . This allows the use of any power supply voltage with suitable external resistors.

The op amp can amplify the $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$ from the sensor to almost any desired output. The input bias current is low and relatively constant with temperature, ensuring high accuracy when high source impedance is used. Further, the output collector can be returned to a voltage higher than 6.8 V allowing the LX5600/LX5700 to drive lamps and relays from a 28 V supply.

The LX5600 uses the difference in emitter-base voltage of transistors operating at different current densities as the basic temperature sensitive element. Since this output depends only on transistor matching the same reliability and stability as present op amps can be expected.

The LX5600 and LX5600A operate over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range and are available in 4 lead TO-5 package. The LX5700 and LX5700A also operate over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range and are available in the 4 lead TO-46 package.

features

- Calibration accuracy of $\pm 4^{\circ} \mathrm{C}$ over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Internal op amp with frequency compensation
- Linear output of $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}\left(10 \mathrm{mV} /{ }^{\circ} \mathrm{C}\right)$
- Directly calibrated in degrees Kelvin
- Output can drive loads up to 35 V
- Internal stable voltage reference
- Four lead device-minimizing wiring

block and connection diagrams

TO-5 Metal Can Package

NOTE: PIN 4 CONNECTED TO CASE

TO-46 Metal Can Packagé

TOP VIEW
NOTE: PIN 4 CONNECTED TO CASE

absolute maximum ratings

Supply Voltage	Internally Regulated	Output Short Circuit Duration	Indefinite
Supply Current (Externally Set)	10 mA	Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Output Collector Voltage	36 V	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Input Voltage Range	$0 V$ to +7.0 V	Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

electrical characteristics (Note 1)

PARAMETER	CONDITIONS	LX5600A/LX5700A			LX5600/L×5700			UNITS
		$\begin{aligned} & \text { TYP } \\ & \text { VOLTS } \end{aligned}$	ERROR $\pm m V$	ERROR \pm \% OF SPAN		ERROR $\pm m V$	ERROR $\pm \%$ OF SPAN	
Output Voltage (Note 2)	$\mathrm{T}_{\mathrm{A}}=+.25^{\circ} \mathrm{C}$	2.98	40	2.22	2.98	80	4.44	
Output Voltage (Note 2)	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	2.18	40	2.22	2.18	80	4.44	
Output Voltage (Note 2)	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	3.98	40	2.22	3.98	80	4.44	
Linearity	$\Delta T \leq+180^{\circ} \mathrm{C}$	0.018			0.018			
Long Term Stability	$T_{A}=125^{\circ} \mathrm{C}$	± 0.002			± 0.002			
Repeatability	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	± 0.002			± 0.002			
VOLTAGE REFERENCE		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Reverse Breakdown Voltage	$1 \mathrm{~mA} \leq \mathrm{l}_{2} \leq 5 \mathrm{~mA}$	6.68	6.85	7.12	6.55	6.85	7.25	V
Reverse Breakdown Voltage Change With Current	$1 \mathrm{~mA} \leq \mathrm{I}_{2} \leq 5 \mathrm{~mA}$		10	25		10	35	$m \mathrm{~V}$
Temperature Stability			20	60		20	85	$m \mathrm{~V}$
Dynamic Impedance	$\mathrm{I}_{\mathrm{z}}=1 \mathrm{~mA}$		3.0			3.0		Ω
RMS Noise Voltage	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		30			30		$\mu \mathrm{V}$
Long Term Stability	$T_{A}=+125^{\circ} \mathrm{C}$		6.0			6.0		mV
OP AMP								
Input Bias Current	$\mathrm{T}_{\mathbf{A}}=+25^{\circ} \mathrm{C}$		35	75		35	150	nA
Input Bias Current			45	150		45	250	$n \mathrm{~A}$
Voltage Gain	$\mathrm{R}_{\mathbf{L}}=36 \mathrm{k}, \mathrm{V}^{++}=36 \mathrm{~V}$	2000	15000		1500	15000		V / V
Output Leakage Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 3)		0.2	1.0	2.0	0.2		$\mu \mathrm{A}$
Output Leakage Current	(Note 3)		1.0	5.0	8.0	1.0		μA
Output Source Current	$V_{\text {OUT }} \leq 4.05$	10			10			μA
Output Sink Current	$1 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 36 \mathrm{~V}$	2.0			2.0			mA

Note 1: These specifications apply for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ and $0.9 \mathrm{~mA} \leq{ }^{1}$ SUPPLY $\leq 1.1 \mathrm{~mA}$ unless otherwise specified.
Note 2: The output voltage applies to the basic thermometer configuration with the output and feedback terminals shorted and a load resistance of $\geq 1.0 \mathrm{M} \Omega$. This is the feedback sense voltage and includes errors in both the sensor and op amp. This voltage is specified for the sensor in a rapidly stirred oil bath.
Note 2: The output leakage current is specified with $\geq 100 \mathrm{mV}$ overdrive. Since this voltage changes with temperature, the voltage drive for turn-off changes and is defined as VOUT (with output and input shorted) -100 mV . This specification applies for $V_{\text {OUT }}=36 \mathrm{~V}$.

application hints

Although the LX5600/LX5700 were designed to be as trouble-free as possible, certain precautions should be taken to insure the best possible performance.

Like any temperature sensor, internal power dissipation will raise the sensor temperature above ambient. Nominal operating current for the shunt regulator is 1.0 mA and causes 7.0 mW of power dissipation. In free, still, air this raises the package temperature by about $1.2^{\circ} \mathrm{K}$. Although the regulator will operate at higher reverse currents and the output will drive loads up to 5.0 mA , these higher currents can raise the sensor temperature over $19^{\circ} \mathrm{K}$ above ambient-degrading accuracy. Therefore, the sensor should be operated at the lowest possible power level.

With moving air, liquid or surface temperature sensing, self heating is not as great a problem since the measured
media will conduct the heat from the sensor. Also, there are many small heat sinks designed for transistors which will improve heat transfer to the sensor from the surrounding medium. A small finned clip-on heat sink is quite effective in free-air. It should be mentioned that the LX5600 die is on the base of the package and therefore coupling to the base is preferrable.

The internal reference regulator provides a temperature stable voltage for offsetting the temperature output or setting a comparison point in temperature controllers. However, since this reference is at the same temperature as the sensor temperature changes will also cause reference drift. For application where maximum accuracy is needed an external reference should be used. Of course, for fixed temperature controllers the internal reference is adequate.

Thermal Time Constant
in Stirred Oil Bath

Thermal Time Constant in
Still Air

Temperature Rise

Reference Requiation

Temperature Conversion
$T_{C E N T I G R A D E}=T_{C}$
$T_{\text {FARENHEIT }}=T_{\text {F }}$
$T_{K E L V I N}=T_{K}$
$T_{K}=T_{C}+273$
$T_{C}=\left(40+T_{F}\right) \frac{5}{9}-40$
$T_{F}=\left(40+T_{C}\right) \frac{9}{5}-40$

schematic diagram

typical applications

Basic Thermometer for Negative Supply

$\left.R_{S}=1 V^{-}-6.2 V\right) \times 10^{3} \Omega$

Basic Thermometer for Positive Supply

Increasing Gain and Output Drive

$R_{s}=\left\{\mathrm{V}^{+}-6 . \mathrm{BV}\right) \times 10^{3} \mathrm{~S}$

typical applications (con't)

Two Terminal Temperature to Current Transducer*

typical applications (con't)

Thermometer With Meter Output

-VALUES SHOWN FOR
$T_{0}=300 \mathrm{~K}, ~ \mathrm{~T} T=100 \mathrm{~K}$.
$\mathrm{I}_{\mathrm{M}}=1.0 \mathrm{~mA}, \mathrm{t}_{\mathrm{O}}=100 \mathrm{MA}$
$R 1^{\circ}=\frac{\left(V_{7}\right)(10 \mathrm{mV})\{\Delta T \mid}{I_{M}\left(V_{2}-0.01 T_{0}\right)}$
$R 2=\frac{0.01 \mathrm{I}_{0}-I_{0} R 1}{I_{0}}$
$R 3=\frac{V_{2}}{I_{0}}-R 1-R 2$
$\left(1 a \leq \frac{2 V}{R 1}\right)$
$V_{z}=$ SHURT REGULATOR VOLTAGE (USE 6.85)
$\Delta T=$ METER TEMPERATURE SPAN (K)
$I_{M}=$ METER FULL SCALE CURRENT (A)
To $_{0}=$ METER ZERO TEMPERATURE (${ }^{\prime} \mathrm{K}$)
$I_{0}=$ CURRENT THRDUGH RI R2 R3 AT ZERO METER CURAENT $(10 \mu A$ TO 1.0 mA$)$ (A)

Meter Thermometer With Trimmed Output

-SELECTEO AS FOR METER THERMOMETER EXCEPT To SHOULD SE S'K MORE THAN DESIRED AND IO $=190$ A. tCALIBRATES \mathbf{T}_{0}.

Ground Referred Thermometer

$A 1=\frac{\left(V_{2}\right)(10 \mathrm{mV})(\mathrm{IT})}{\frac{V_{0}}{R_{2}}\left(V_{2}-0.01 T_{0}\right)}$
$R 2=\frac{0.01 T_{0}-I_{0} R 1}{I_{0}}$
$R 3=\frac{V_{Z}}{I_{0}}-R_{1}-R_{2}$
$V_{2}=$ Shunt regulator voltage
IT = TEMPERATURE SPAN (K)
$T_{0}=$ temperature for zero output (K)
$v_{0}=$ fult scale output voltage $\leq 10 \mathrm{~V}$
$t_{0}=$ CURRENT THROUGH RI, R2. R3. AT ZERO OUTPUT VOLTAGE (TYPICALLY 100, A TO $1.0 \mathrm{~mA})$

Three Wire Electronic Thermostat

Over Temperature Detectors With Common Output

Temperature Controller Driving TRIAC

Low Duty Cycle Thermometer

typical applications（con＇t）

$V_{\text {OUT }}=(10 \mathrm{mV} / \mathrm{C})\left(\frac{R_{1}+R_{2}}{R_{1}}\right)\left(T_{2}-\mathrm{T}_{1}\right)$
OUTPUT CAN SWING $\pm 3 V$ AT $\pm 50 \mu A$ WITH LOW OUTPUT IMPEDANCE．

definition of terms

Output Voltage：The voltage referred to the V^{+} terminal from the output terminal with the input and output connected．（This voltage is the temperature out－ put of the LX5600 and so includes errors in the sensor section and op amp section．）

Linearity：The deviation in output voltage from a straight line output over a specified temperature excursion．

Reverse Breakdown Voltage：The voltage appearing between the V^{+}and V^{-}terminals at a specified current．

Temperature Stability：The percentage in output voltage for a thermal variation from room temperature to either temperature extreme．

Output Source Current：The current available to flow into a load from the output to V^{-}，over a specified output voltage range．

Output Sink Current：The current available to flow into a load from a positive supply over a specified output voltage range．

physical dimensions

TO－5 Metal Can Package（H）
Order Number LX5600AH or LX5600H

mates：all dimensions in inches．－
ALL DIMENSIOAS IN INCHES．－－
LEAOS ARE GOTDPLATED XOVAR

TO－46 Metal Can Package（H）
Order Number LX5700AH or LX5700H

National Semiconductor GmbH
National Semiconductor GmbH
Bos Fuerstenfeldbruck，Indusiriestrasse 10，West Germany，Tele．（08141）1371／Telex 05－27649

INTRODUCTION

These instructions provide basic information for installing and operating the standard Varian solid state CW Gunn Effect oscillator. Following is a brief discussion of some of the general characteristics of this type of device. The specific characteristics of your solid state oscillator are given in the Test Performance Sheet enclosed in the shipping package.

PROTECTIVE MEASURES

The operating simplicity of this device ensures satisfactory performance and maximum life with a minimum amount of protective circuitry. A simple low voltage de bias potential is all that is necessary to create oscillations within the specified frequency range. However, the following precautions must be observed in order to protect the oscillator from possible damage.
In attaching the bias voltage to the oscillator the proper direction of polarity must be observed. The white lead or solder pin must be positive with respect to the ground lug. Reversing the polarity can permanently damage the oscillator.

Large voltage transients, such as those which might occur during bias voltage turn-on, or an accidental shorting of the positive bias lead to the oscillator body, can be damaging. A voltage-limiting zener diode has been placed in the oscillator to help reduce these transients, but if the bias voltage maximum rating is exceeded, the protective diode may be destroyed. Additional protective circuitry is advisable to restrict the applied voltage to the maximum value specified on the Test Performance Sheet. Proper voltage clamping of the zener diode requires a minimum of one ohm of series resistance in the external power supplyzener diode circuit. If a lower series resistance is used, adequate transient protection is not guaranteed. Consistent with the requirements of the foregoing, the oscillator may be turned on at any speed.
The oscillator is conduction cooled through the output flange. Under normal operating conditions adequate heat sinking is provided by the system waveguide. If, in certain restrictive environments, the waveguide flange temperature should approach or exceed approximately $85^{\circ} \mathrm{C}\left(185^{\circ} \mathrm{F}\right)$ additional cooling methods will be required.

OPERATING CHARACTERISTICS

A typical current vs voltage curve is shown below. As you will note, the bias voltage for operation is between two and three times higher than the threshold voltage, and the peak current drawn at the threshold point is higher than the operating current. Because of this, the bias power supply must be capable of supplying not only the operating voltage and current but also the peak current required at threshold.
;BIAS CHARACTEMISTICS

Figure 1

Since this type of solid state oscillator exhibits a negative differential resistance, certain bias circuit impedances can cause low frequency spurious oscillations. A filter network has been built into the oscillator to eliminate these spurious oscillations at the rated bias voltage.
All the tests indicated on the Test Performance Sheet have been made with the oscillator operating into a load VSWR of $1.1: 1$, or less. A greater VSWR will not damage the device but performance will deviate from that indicated.

INSTALLATION AND OPERATION

Remove the protective cover from the output flange and bolt the oscillator to the mating waveguide. Any mounting position can be used. Connect the white lead to the positive side and the ground lug to the negative side of the bias supply (see Figure 2). Apply the specified voltage as indicated on the Test Performance Sheet

Figure 2

After applying the proper voltage, the oscillator will operate within the specified frequency range. Frequency changes can be accomplished by adjusting the tuning screw. A clockwise rotation will lower the frequency and a counterclockwise rotation will increase the frequency. Although the oscillator normally will tune beyond the specified frequency range, the performance characteristics will change from those specified.

Should any difficulties or questions arise while installing or operating the Varian CW solid state oscillator, please contact:

Varian Associates Solid State West
Application Engineering 611 Hansen Way
Palo Alto, California 94303

SPECIAL INSTRUCTIONS FOR VOLTAGE TUNABLE OSCILLATORS

For oscillators with provisions for voltage tuning, the following additional instructions must be complied with.
a. The Gunn oscillator should be operated as described above.
b. Voltage tuning is accomplished by applying a POSITIVE bias voltage of the specified amplitude to the center conductor of the coaxial lead. Unless specifically noted on the Test Performance Sheet provided with the oscillator, never apply a negative bias or exceed the specified value.
c. If the voltage tuner is not used, it is recommended that the center conductor be short circuited to the outer (shield braid) conductor. This procedure will prevent FM modulation which could be caused by ac pickup on the lead.

HIGH POWER POSITIVE VOLTAGE REGULATOR

The MPC1000 is a positive voltage regulator designed to deliver load current to 10 Adc. Output current capability can be increased further through use of one or more external pass transistors. The MPC1000 is specified for operation over the junction temperaure range $\left(-55\right.$ to $\left.+175^{\circ} \mathrm{C}\right)$

- 100 Watr Power Capability
- Output Voltage Adjustable - 2 to 35 Vde
- Outpur Current to 10 Ade Without External Pass Transistors
- 0.1\% Line and Load Regulation
- Temperature Srability $0.005 \% /{ }^{\circ} \mathrm{C}$ Typ
- Adjustable Overioad Protection

MAXIMUM RATINGS TTC ${ }^{-1}+25^{\circ} \mathrm{C}$, unlesis otherwis noted.)			
Rating	Symbol	Value	Unit
Pulse Voltage from Vin2 ${ }^{\text {co }}$ VEE (50 ms)	$V_{\text {in } 201}$	50	$V_{\text {peak }}$
	$V_{i r} 2$	40	vide
Input-Outpur Voltage Dilferential	$V_{\text {in }}+v_{0}$	60	$V d e$
Output Curient	I_{1}	10	Ade
Current from Vrel	Iref	15	$m A$
Internal Power Dissipsion e $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$\begin{gathered} P_{D} \\ 1 / R_{0 j c} \end{gathered}$	$\begin{gathered} 100 \\ 0.667 \end{gathered}$	Watls $W{ }^{\circ}{ }^{\circ} \mathrm{C}$
Operatine Junction Temperoture Range	T_{1}	$-5510+175$	${ }^{\circ} \mathrm{C}$
Storage Termesrature Range	T_{583}	-65 to +175	${ }^{\circ} \mathrm{C}$
Opersting Case Temperature Range	TC	-55 to +150	${ }^{\circ} \mathrm{C}$

P1PC1000

Voltage regulator

HIGH-CURRENT 10 AMPERE

NCTE:

1. Leads vithen 0.13 mer (0.cos) dia of true positicitat maximum material comohtion. CASE G6209

SOCKETNNASHER NOTE:
Mica Intulating Washer: Electionic Estentials Pert Na MI.9-1000
Socket: Electranic Excantisht Part No. MS 9. 3000 Electronic Essontists, ine. 49 Blecher Streot
Now York. Now Yoll 10012
The Case 66201 pive configuration is compatible with 9 pin.minieltue vecuum the sockars.

?. "ivinimum Inout Voltage" is the minimum "total instantaneous input voltage" requirad to properly bias the internal zener reference diode.
2. Set $R_{s C}=0$ (short circuit)
3. $V_{r e f}$ voltage is measured from Pin 2 to Pin 3.
4. Pulse test conditions: Load current must be switched from minimum to maximum value at a repetition rate of 10 pps or less with a duty cycle of 1% or less in order to minimize heating effects.
5. The temperature coefficient of output voltage is defined as:
$T_{C V O}=\frac{ \pm\left(V_{O \text { max }}-V_{O \text { min }}\right)(100)}{\left(\Delta T_{C}\right)\left(V_{O} @ T_{C}=25^{\circ} \mathrm{C}\right)}$
6. The input line regulation is defined as:
$R^{2} g_{i n}=\frac{ \pm\left(V_{O} @ V_{\text {in }} \text { high }-V_{O} @ V_{\text {in low }}\right)}{V_{O} @ V_{\text {in low }}} \times 100$
7. Load regulation is defined as:
$R_{\text {egload }}=\frac{ \pm\left(V_{O} @ I_{\text {Llow }}-V_{O} @ l_{\text {Lhigh }}\right)(100)}{\left(V_{O} \text { @ } I_{\text {Llow }}\right)}$
8. Standby current drain is defined as that value of current measured at Pins 6 and Case when R_{L} is open circuited.

FIGURE 3 - ACTIVE-REGION SAFE OPERATING AREA

There are two limitations on the power handling ability of a power semiconductor: aserage junction temperature and second breakdown. Safe operating area curves indicate $I_{L}\left(V_{\text {in } 1}-V_{O}\right)$ limits of the circuit that must be observed for reliable operation:

FIGURE 5-CURRENT LIMITING CHARACTERISTICS

FIGURE 6- LINE REGULATION AS A FUNCTION OF INPUT-OUTPUT VOLTAGE DIFFERENTIAL

FIGURE 8 - LOAD TRANSIENT RESPONSE

FIGURE $10-5$ VOLT 10 AMPERE HIGH EFFICIENCY REGULATOR

Regulator is protected by current limiting if input 1 is removed.

FIGURE T - STANDBY CURRENT DRAIN AS A FUNCTION OF INPUT VOLTAGE

FIGURE 9 - LOAD REGULATION CHARACTERISTICS WITHOUT CURRENT LIMITING

FIGURE 11 - 5 VOLT, 50 AMPERE POWER REGULATOR WITH REMOTE SENSE

[^0]: Iniormation furnished by Analog Devices is 0 deved to be accurate and relneble. However, no responsibility is assurted by Analog Devices for $1:$ uso: nor for any infringaments of paients or o:ter rights of third perties whict may result from its use. No license is $£$ ezned by implication of oiherwisa under any paient or patent risints o: Analog Devices.

