VLA TECHNICAL REPORT \#16

DIGITAL DELAY AND MULTIPLIER SYSTEM TWO ANTENNA PROTOTYPE OBSERVER'S MANUAL
A. M. Shalloway and R. P. Escoffier May 1975

I. INTRODUCTION

The digital delay and multiplier system, under instructions from the on-line computer system:
a. accepts digitized data from the samplers,
b. delays the data,
c. cross multiplies the data,
d. preprocesses the data,
e. and transmits the data to the on-line computer system.

This report will describe, in block diagram form, the system's theory and operation. Although the operation is completely automatic once the power switches are turned on, it is felt that many observers will want to know the systems theory of operation to know its influence on their total VLA results; and if there is a question about the systems operation, the observer may want to know how to run some of the diagnostic tests.

This report is divided into six sections:
a. Introduction
b. Specifications
c. Digital Delay System
d. Multipliex System
e. System Controller
f. Appendix

There are only two main interfaces, the input from the samplers and the input-output to the on-line computer system. The only other connections are a 100 MHz clock and a data invalid signal from the VLA $L 2$ and L8 modules in control room rack M. The data invalid signal will henceforth, in this report, be referred to as blanking time (BT) signal, as that is its main purpose in the system.

1. Detailed Specifications

Number of Antennas: 2
Bandwidth per Signal: 50 MHz (actual input $=49 \mathrm{MHz}$)
Multiplication Rate: 100×10^{6} per second
Signal Composition: 2 bits, 3 level
Sensitivity Relative to a Continuous Correlator: 0.81
Delay Resolution: Digital $=10 \mathrm{~ns}$ Analog (before samplers) $=625 \mathrm{ps}$
Range of Delays: 70 ns to 163.83 ms
Timing Rates and Periods: Maximum rate at which delay lines may be changed $=19.2$ times per second (52.08333 ms period).

Continuous Integration Period: 50.48 ms .

Blanking Time: 1.60333 ms .
Maximum number of Integration Periods that can be stored in System Controller: 6 (13 with modification of System Controller).

Dump Time to Computer: $\mathrm{n}(52.08333)$ where $n=$ any integer from 1 to 6. (1 to 13 with modification of system controller).
2. Breakdown of Antenna Outputs, Delays and Multipliers

Antennas: Each antenna will produce two right (R) and two left (L) polarization outputs. The two signals for each polarization will consist of two adjacent 49 MHz bandwidth signals (hereafter referred to as A and B). Each signal produces a sine (S) and cosine (C) output from the samplers. Thus there are a total of sixteen signals (two bits, three levels each) to be delayed:

AlLS	BlLS	AlRS	B1RS	AlLC	BlLC	AlRC	B1RC
A2LS	B2LS	A2RS	B2RS	A2LC	B2LC	A2RC	B2RC

Delays: Each sampler signal output requires two delay cards - one for each bit. Because the sine and cosine signals are generated just prior to the samplers, associated sine
2. (continued)

Delays: (continued)
and cosine signals (e.g. AlLS and AlLC) from the same antenna receive the same delay. Therefore in the digital delay system there are 8 different delays possible; thus the system is designed with 8 control
units which control the delay for 16 delay lines
which consist of 32 delay cards (one card per bit).
Multipliers: The following multiplications are provided:
SIN x COS for each signal - total of eight. SELF MULTIPLICATIONS (e.g. AlRS x AIRS) for each signal - total of sixteen.

CROSS MULTIPLIERS - consist of the following
sets for each of the 49 MHz bandwidths (A \& B):
$1 R S \times 2 R S$ 1RS x 2RC $1 L S \times 2 L S$ 1LS $x 2 L C$
1RC x 2LC 1RC x 2LS ILC x 2RC ILC x 2RS
Racks: 2. One contains the delays, multipliers and integrators. The other contains the System Controller and the samplers.

The Digital Delay System provides variable delays for each of the 32 digital outputs of the sampler system. Each of the sampler digital outputs is a 100 MHz data rate ECL logic signal. The logic to provide 0 to $163.83 \mu \mathrm{~s}$ of delay in 10 ns increments for a single 100 MHz logic signal is contained on a single multilayer delay line card. The 32 delay line cards and associated control logic cards are interconnected on two multilayer mother boards. See Figure III-1.

The sampler outputs consists of groups of 4 signals that correspond to two bits each for two quadrature signals. Since these four digital outputs have a common analog path equal delays are provided thru the four corresponding delay line cards. The delay programming signals for four delay line cards thus come from common control logic. The logic required to provide control for two independent groups of four delay line cards is contained on a single multilayer PC card. This card accepts, for each quad of delay line cards, a 20-bit delay program word that contains 14 bits of delay information and several bits of program data. The 14 bit delay word is a binary progression to program the 0 to $163,830 \mathrm{~ns}$ delay with the LSB being weighted at 10 ns . Each delay line has a minimum thru-put time of approximately $40 \mu s$, thus a delay line thru-put varies from 40 to $203.83 \mu s$ in 10 ns steps.

Each delay line card contains ECL, TTL, and MOS logic to optimize cost and performarice, bulk delay being provided in low speed parallel path MOS logic, intermediate resolution at higher speed TTL circuits and the fine 10 ns timing accomplished in ECL logic. Each delay line card has a single 100 MHz logic undelayed input port and two auxiliary digital inputs to allow system testing capacity and self healing capability. Delay card outputs include an undelayed output to allow self test capability and eight parallel delayed digital outputs to provide fan out to the many multiplier loads.

The self test and self healing feature is accomplished by having a quad of unassigned delay line cards to verify correct operation. The test delay line inputs are connected through an input multiplexer to the undelayed output of any given dedicated delay line and its output checked against that of the dedicated delay line. If error is indicated the test delay line is itself checked against the other delay lines and if satisfactory operation is indicated the delayed output of the test delay line is substituted for that of the delay line under test. The cabling delays encountered in such an arrangement require that the delay used to program the test delay line be smaller by a
constant number than the delay used to program the delay line under test, hence a minimum delay value equal to this constant (70 ns) is required by the delay system and the delay range of the delay system is more accurately stated as 70 to 163830 ns in 10 ns increments.

Included in the self test circuitry is a multiplier test capacity. The cabling used to carry data, from test delay lines, that is to be substituted for that of detected bad delay lines can also be used to carry the logic data of a pseudorandom data generator. By substituting this data for all delay line outputs all multipliers can be made to see identical data inputs and their outputs checked for uniformity. Thus all multipliers, including the sine-cosine multipliers, will produce the same integration results. The 8 -wired self multipliers are an exception to the above statement since wired self multipliers have only one set of inputs and their integration result, during multiplier test, will be themselves uniform but different from all other multiplier results.

Advantage is also taken of the fact that all delayed outputs of the delay system appear at the GO/NO GO detector of the delay line self test circuitry. The sine-cosine outputs of each antenna are multiplied together at this point to provide calibration information for the VLA computer. Since the sine-cosine multiplier results are not needed continuously only two sinecosine multipliers exists and their inputs are time shared between the antennas. These two sine-cosine multipliers are always connected in parallel and provide redundant information about the same sampler.

In general a 300 ms dump time is used and between each dump time the four delay line cards of one of the eight samplers is paralleled and checked by the test delay lines and their sine-cosine multiply product integrated. During the next dump time the next four delay line cards in line are checked and their sine-cosine product integrated. A closed loop of 27 sets of four delay line cards around which the test delay lines circulate exists in the hardware. In the two antenna system only eight of these 27 stops have active data; thus delay line test and sine-cosine integration produce valid information 30% of the time. If a bad delay line is detected and exchanged, the sine-cosine cycle is still performed and this information is not lost.

If more than one delay line is flagged as defective by the test delay lines in their circulation thru the system the System Controller will take this as an indication that the test delay line is itself defective and substitution is inhibited.

IV. MULTIPLIER SYSTEM

A two bit, three level digital signal is produced by the samplers. For details on this type of signal, reference should be made to:

Australian Journal of Physics; Correlators With Two-Bit Quantization,
B.F.C. Cooper; 1970, 23, p.521-7.

The output code of the samplers indicate that the signal is in one of three levels as follows:

Arbitrary Designations: M=MSB \quad I=LSB $\mathrm{A}=$ Antenna Number

The value 0.612 was obtained from the above reference along with the assigned values of $+1,0$ and -1 to provide the best combination of digital simplicity and high receiver sensitivity.

The output code is chosen arbitrarily to simplify the logic. A normal multiplication table for the above would be:

ANT. A \rightarrow ANT. B +	-0	0	+1
-1	+1	0	-1
0	0	0	0
+1	-1	0	+1

To perform this multiplication and integrate the results would require reversible counters. To simplify the system, an altered multiplication table is used in which +1 is added to each multiplication result:

Al A0 (output code)		10	00	01
B1 B0 (output code)	ANT. A \rightarrow ANT. B \downarrow (output value)	-1	0	+1
10	-1	2	1	0
00	0	1	1	1
01	+1	0	1	2

The control section can correct for this change simply:

$$
v_{n}^{\prime}-v_{s}=v_{n}
$$

(IV-1)
where $V_{n}^{\prime}=$ results of integration of multiplier N after a period T,
$\mathbf{V}_{\mathbf{s}}$ = number of multiplications performed (also number of samples taken) during T, and
$\mathbf{V}_{\mathrm{n}}=$ results desired; that is, the results that would have been obtained with the unmodified multiplication table.
A block diagram of the multiplier card is shown in Figure IV-1A. Each multiplier card contains 14 multipliers. One multiplier is a self multiplier and thirteen multipliers are cross multipliers. This arrangement and the arrangement of the mother boards in the system were designed for the final system of 27 antennas. Because of this, an optimum arrangement of multipliers for two antennas is not obtained, and there are many redundant and illegal multiplications generated, which are ignored.

A block diagram of one multiplier and its integrator is shown in Figure IV-1B. As can be seen, the first seven-least significant-stages of the integrator are thrown away. Nineteen stages - one of which is considered an overflow-bit are saved and sent to the core computer.

With a minimum integration period of 50.48 ms :

$$
\text { RMS NOISE }=\sqrt{\text { fs } \cdot I}=\sqrt{\left(10 \times 10^{7}\right)\left(50.48 \times 10^{-3}\right.}=2247
$$

where fs $=$ sampling frequency, $I=$ integration period.
dELAY LINE

$$
C=\overline{A_{0} \cdot A_{1}}+\overline{B_{0} \cdot B_{1}}
$$

$E=\left(\overline{A_{0} \cdot A_{1}}+\overline{B_{0} \cdot B_{1}}\right) \cdot D+A_{0} \cdot B_{0}+A_{1} \cdot B_{1}$

NOTE: : LOGIC "AND"; +=LOGIC "OR"; A LOGIC I (OR TRUE) ON THE COUNTER COUNTROL CAUSES it tO COUNT WHEN A CLOCK OCCURS. figure it-ia

note; if $2^{\circ}=1$ at the beginning of bt, there will be a carry to 2^{\prime} When bt resets 2°.

MULTIPLIERS \& INTEGRATORS

Therefore, the eleven least significant bits of the counters (integrators) contain mostly noise. By throwing away only seven of the least significant bits, we are introducing very little error in the final results.

As shown in Figure IV-1B, the two counter flip-flops associated with the multiplier are reset every BT. The remaining counters are reset each DT after the data is removed from the counters. The Vs counters are not reset at any time, their inputs are merely gated off during BT and DT. The Vs counter is a 19 stage counter (one of which is considered an overflow bit) fed by the system 100 MHz clock.

In systems beyond the prototype, some multiplier outputs will have to be negated because of the resultant multiplication received due to hardware considerations as shown in the following table:

$$
\begin{aligned}
& \text { MRS } \times \text { NRC }=- \text { NRS } \times \text { MRC } \\
& \text { MLS } \times \text { NLC }=-N L S \times M L C \\
& \text { MRC } \times \text { NLS }=- \text { NLC } \times M R S \\
& \text { MLC } \times \text { NRS }=-N R C \times M L S
\end{aligned}
$$

$$
\text { MLS } \times \text { NLC }=- \text { NLS } \times \text { MLC } \quad \text { where } M \text { and } N \text { represent }
$$

$$
\text { MRC } \times \text { NLS }=- \text { NLC } \times \text { MRS } \quad \text { two different antennas. }
$$

In the prototype this need only be done on certain redundant multipliers which are not normally used. When the multipliers are negated, the result sent to Core computer is in one's complement instead of two's complement. The reasoning for this and for the fact that the Vs counteres are not reset are covered in a memo dated March 6, 1975, to A. Shalloway from B. Clark, Subject: Systematic Effects in the VLA Correlator.

If pulsar observations are to be made with the VLA, certain limitations must be considered. The following statements assume that the necessary hardware changes could be made to change the VLA timing beyond those listed in the specifications of Part II. To send a full set of multipliers associated with 27 antennas from the delay-multiplier system to the computers require approximately 25 ms . Therefore, in the final system, unless a smaller number of multipliers is acceptable, the minimum integration period would be 25 ms . In the prototype, the transfer of multipliers to the computers is less than 2.5 ms . If we consider a minimum integration time of 5 ms - which will cover practically all pulsars - we obtain an RMS noise of:

$$
\text { RMS NOISE }=\sqrt{\left(10 \times 10^{7}\right)\left(5 \times 10^{-3}\right)}=710.5>2^{9}
$$

Therefore, since we throw away seven bits, observations could be made but with some error influencing the final results.

V. SYSTEM CONTROLLER

The System Controller (SC) is a computer which can be programmed to a limited extent by changing programmable read only memories (PROM's). The SC is electrically between the sampler-delay-multiplier systems and the on-line computing system. It performs the following control, test and display functions:

1. CONTROL:
a. Distributes delay values to delay line control cards and samplers every blanking time (BT).
b. Disables delay card outputs as required.
c. Inverts sampler output signals as required.
d. Detects delay line GO/NO GO exrors and transmits the data to the front panel and the core computer. Makes a decision about the cause of the error, and if it is one or more delay line cards associated with one output from one antenna, substitutes the test delay line(s) for the defective line(s).
e. Accepts the integrated data from the multipliers, and Vs counters every dump time (DT) and stores the data.
f. Checks the Vs data to upper and lower limits. If the Vs data is out of specification, the theoretical value, which the data should be for the integration period being used, is substituted for the bad data.
g. Subtracts the Vs value from each multiplier value. This returns the multiplier value to normal as indicated by equation IV-1.
h. Transmits all necessary data to the core computer once per DT.
i. Receives from the core computer, the delays and other data once per BT.
2. TEST:

Tests may be carried out by use of the CRT terminal or the Monty computer. A special message from the Boss computer to the SC will turn over the CRT terminal input of the SC to the Monty computer (see Appendix). Monty computer can then carry out the tests, and the communications between the Monty computer and the SC can be monitored by the SC's CRT terminal if it is put "on-line".

A summary of the tests possible are:
a. Enter a control sord (computer word 0, see Appendix).
b. Enter delays into one or more delay lines and samplers.
c. Lock up test delay lines so they continually check one set
of delay lines.
d. Replace from one to four delay cards of a set-associated with one output from one antenna-with the test delay cards.
e. Run a multiplier test. In this test a random noise generator is fed into all multipliers and aknown output is obtained.
f. Runs a delay line test by varying the delay in a known fashion to test all possible combinations of delay. This may be done on one delay line set continuously; that is, the test is run over and over again. It may also be set to rotate to the next delay line set as soon as the test is campleted on the first set, and continue this procedure until stopped.

Certain tests are running all the time in normal operation: These are:
a. Comparison of test delay lines with operating delay lines as described in Section III.
b. Tests every DT of Vs values to see that they are within specified limits.
c. Parity checks - VLAC to SC, SC to VLAC, temporary storage to SC, and CRT terminal to SC.
d. Overflow of Vs and multiplier counters.
e. System monitor section of the SC, checks all voltages, 100 MHz clock amplitudes and temperatures throughout the racks.
f. SC clock oscillator. If this oscillator misses a cycle, a monitoring system switches over to a spare oscillator and the system continues to operate.

As part of the testing capabilities, the CRT terminal can display much of the information contained in the delay-multiplier system. The front panel of the $S C$ is designed as a diagnostic device only. If an error is detected, one of the lights in the column of lights on the left will light up, the ring of lights around the alarm will light up and the alarm will sound. This will indicate the area of the problem and the CRT terminal display can then be used to pinpoint the problem. To stop the alarm but leave the lights on, depress the switch below the alarm. To test the alarm and lights depress the "indicator test" button in the left column of switch-lights. After a fault has been
repaired, the lights and stored indicating data can be reset by depressing and holding the appropriate switch in the left column while simultaneously depressing momentarily the "function reset interlock" switch on the right side of the panel. As soon as the "function reset interlock" light goes out, the switch in the left column may be released.

A summary of the CRT terminal displays possible are:
a. Control word
b. Multipliers
c. Delays
d. System Monitor
e. GO/NO GO Data
f. VIAC \rightarrow SC Parity Error Address
g. Addresses of Multipliers Requested

A switch on the left of the power control panel, just above the system controller, connects the CRT terminal to either the SC input or the Monty computer input. A light above the switch indicates the connection. If Core computer connects the Monty computer to the SC's CRT interface, it over-rides the switch and both the upper and lower portion of the light is illuminated.

CRT terminal entries required for all of the previously described tests and displays are covered in the specification in the index. This specification also describes all data transferred between the VLAC and the SC.

NATIONAL RADIO ASTRONOMY OBSERVATORY
Charlottesville, Virginia VERY LARGE ARRAY PROJECT

SPECIFICATION NO.: Al3500N3, Rev. B

NAME: Communications Between Digital Delay-Multiplier System and VLA Synchronous Computers

DATE: May 8, 1975

PREPARED BY:

$\frac{\text { linin } N \text { - PRakinnage }}{V}$

APPROVED BY:

DESCRIPTION:

All data between the Digital Delay-Multiplier System and the VLA Synchronous Computer (VLAC) will be controlled by a unit referred to as the System Controller (SC), which is the interface into and out of the Delay -Multiplier System. The only exceptions are monitored from the Samplers and, in the two antenna systems, one analog signal which is a combined total power signal. The exceptions will not be covered by this specification.

A block diagram of the communication system is shown in Figure 1. Two System Controllers (SC) are shown -- one for each 50 MHz system. In the prototype -- two antenna system -- there is only one SC, and all delays and multipliers are handled as though they were in the left polarization rack.

The System Controller CRT can be switched between the System Controller and Monty Computer. Thus the CRT can be used to communicate with the computer system in the same manner as other CRT's in the VLA. A CRT output of Monty Computer can also communicate directly with the SC. This connection is made whenever bit 2^{2} (C) of the first word sent by Boss Computer to SC is a 1. This mode allows the online computer system to control the SC tests in the same manner that the SC's CRT terminal controls tests. The data input to the SC's CRT terminal controls tests. The data input to the SC's CRT input required for each test is listed in Table 6. Table 5 shows how Monty Computer could receive data back through its CRT input; however, this mode is not required by the on-line computer system since the same data is available to Core Computer via its connection to the SC. Table 7 is the format for Table 5.

To operate the SC in test mode, Boss Computer should send two complete sets of data as shown in Tables 2 and 4. In addition to delay data, the two sets should contain the following:

First Set of Data:
Word $0: \quad A=1, B=1, C=1$
Words 55: Multiplier Sets Desired During Test
Second Set of Data:
Word $0: \quad A=0, B=0, C=1$
DO NOT SEND WORDS 55 THRU 405. (55 thru 60 in case of prototype).
Each of the communication networks to the Core computers and from the Boss computer consists of three signals:

1. Clock - maximum of 5 MHz
2. Data
3. Ready Line

The inputs to Core Computers are double buffered and when one buffer is full and the second begins receiving data the Ready Line changes state to "Not Ready". The sending block continues to send to the end of the present word, then stops and waits for the line to go "Ready" again.

Each of the three lines are twisted pair coaxial cable (RG-22) which is driven and received differentially with ECL logic. The transmission system has been tested with 500 ft . of cable and operation was excellent with considerable safety margin.

Tables 1 through 4 list all data transmitted to and from the System Controller, excluding the CRT, as follows:
Table 4 - Two Antenna System -VLAC to SC

The following rules are to be observed:

1. No transmission of data from VLAC to SC is to occur during blanking time. Therefore during blanking time the ready line from SC to VLAC is held "not ready".
2. Data transmission from VLAC to SC can be absorbed at the maximum rate (5 MHz clock rate) by the SC.
3. The block of data (VLAC to SC) shown in Tables 2 and 4 must be sent complete betiveen two adjacent blanking times. This includes the first block sent before an observation is begun.
4. After a dump time, data from SC to VLAC may be taken at any rate and may extend across blanking times, but must be completed at least 2 microseconds prior to the beginning of the next dump time. Dump Time refers to the blanking time following completion of an integration period by the multipliers. Blanking time is referred to in the VLA system as "data invalid time" (1.603 ms).
5. Format of data in both directions:

$$
\begin{aligned}
& 000000, P, D_{23}, D_{22} \cdots \cdots \cdots D_{1}, D_{0}, 1 \\
& p=\text { parity } \quad D_{n}=\text { data } \quad D_{0}=L S B \quad D_{23}=M S B \quad 1=\text { start bit }
\end{aligned}
$$

Transmission is serial, starting at "1". A minimum of one clock time will exist between words. The clock from SC to VLAC will be continuous ($5 \mathrm{MHz}, 80 \mathrm{~ns}$ positive, 120 ns negative - negative going edge centered on data bit at transmitter). The clock from VLAC to SC same as above except discontinuous 32 clock pulses per 32 bit data word. The data word length and number of clock pulses may be as short as 30 , leaving off the last two zeros.
6. For each observation the VLAC will send a block of data between every set of blanking times, the first being before the blanking time which precedes the start of an observation (integration) and the last being before the blanking time which follows the end of the observation (integration).
7. The relationships between when the different sets of data sent to the VLAC are obtained and to what they apply is shown in Figure 2.
8. The delay data should never contain a delay value of less than 70 ns.
9. Data in the tables which indicate errors - such as parity, overflow, etc. - are indicated thus:

$$
\text { NO ERROR }=0 \quad \text { ERROR }=1
$$

SYSTEM CONTROLLER $-V L A C(C O R E A B)$

FINAL SYSTEM
SYSTEM CONTROLLER——VAC (COREA\&B)

$X P R O T O T Y P E$ (2 ANTENNA) SYSTEMK
SYSTEM CONTROLLER \longrightarrow LAC (CORE A)

DESCRIPTION IGNORE G-WILL ALTERNATE UNLESS VS BAD. NC- SPARE WORD N C- SPARE WORD NC -THEORETICAL VALUE OF V_{s}. Do There is only one Vo counter in D_{0} THE SYStem, THE OUTPUT OF THE COUNTITR D_{0} IS SENT TO 4 INTEGRATOK'S, ALL OF WHICH Do should have the same value. (Binary). According to following Table:

$A-A_{0}$	$A N T . N o$	$50 \mathrm{M} \mu_{4}$ SYsTeM
19	$1 R$	A
20	$1 R$	B
21	$2 R$	A
22	$2 R$	B
23	$1 L$	A
24	$1 L$	B
25	$2 L$	A
26	$2 L$	B

\qquad $N C=S P A R E$ WORD
$N C-S P A R E$ WORD
$N C$-SPARE WORD Multiplier 1) actualalio

NOTE: $N C=$ NO CHANGE FROM FINAL SYSTEM.

$$
F L=K I G H T \quad L=\angle E G T
$$

REV, B 5/7/75eme A,M. SHALLOWAY

XPROTOTYPE (2 ANTENNA) SYSTEMK
$S Y S T E M$ CONTROLLER $\longrightarrow V L A C$ (COREA)

PROTOTYBE R ANTENNA)SYOTENK
SYSTEM CONTROLLER \longrightarrow VLAC (CORE A)

$P R O T O T$ Y PE (2 ANTENNA) SYSTEMK.
SYSTEM CONTROLLER \simeq VLAC (CORE A)

A. In each instruction below, the first heading (e.g. DB 0000.7137) is used to display the desired information in octal and the second heading (e.g. DC 0000.7137) is used to display the information in decimal. If only one heading is shown, the information is available only in octal.
B. At the end of each display instruction, the ENTER key must be depressed to transfer the instruction from the CRT to the SC. This function will appear on the CRT screen as a backwards letter L (e.g. DB 0000.7137」).
C. Spaces within an instruction have no effect and may be used as desired for clarity (e.g. DBOO00.7137 or DB 0000.7137).
D. To continually update the data display, prefix the desired instruction by one of the following letters:
LETTER UPDATE PERIOD

R	0.8 sec
S	1.6 sec
T	3.2 sec
U	6.4 sec
V	12.8 sec
W	25.6 sec
X	51.2 sec
Y	102.4 sec

For faster update periods, sone displays will not have time to complete between updates depending on the length of the display and the baud rate.
E. To stop an updating display (necessary before entering new instructions) use the DA instruction.
F. Each instruction for displaying multiplier results (instructions 3 thru 6) contains one or more octal number XXXX which is a starting address for a group of 8 multiplier results. These may be interpreted in two ways:

$$
\text { XXXX }=\text { Octal number of starting RAM address }
$$

or if the least significant digit is taken as zero:

TABLE 5 (continued)
\qquad DATA TO BE DISPLAYED

1. DA

STOP UPDATE and RESET DISPLAY LOGIC
(No data will be displayed by this instruction)
2. DB

DC 0000.7137 CONTROL and TIME WORDS
3. DD MULTIPLIER RESULTS, SEQUENTIAL

DE XXXX BEFORE VS SUBTRACTION
(128 sequential multiplier results starting at SC
\uparrow See Note F Ram address XXXX)
4. DF
DG XXXX. ... $\operatorname{XXXX} .1000$

MULTIPLIER RESULTS, GROUPS OF 8
BEFORE Vs SUBTRACTION
(Maximum of 16 groups, each group consisting of 8 sequential multiplier results starting at SC Ram address XXXX)
5. DH XXXX MULTIPLIER RESULTS, SEQUENTIAL AFTER Vs SUBTRACTION
6. DI XXXX. ... XXXX. 10000

MULTIPLIER RESULTS, GROUPS OF 8 AFTER VS SUBTRACTION
7. DL

DM 6000
DELAY and DISABLE DATA
EXCHANGE DATA AND MUX ADDRESSES
(54 delay words; 2 test delay words; left and right exchange data in the order CM, CL, SM, SL; input and output mux addresses)
8. DN SYSTEM MONITOR DATA

DO 6100
(64 words)
9. DP 6200

GO/NO GO DATA
(Delay Line Self Test Results 54 words $=216$ delay Iines)
10. DQ XXXX

RAM DATA SET
(8 sequential words starting at Ram octal address XXXX, bits 0 thru 21 displayed in octal)
11. DR

PARITY ERROR ADDRESSES
DS 6300
(64 words, contains computer word number for parity error and the BT in which it occurred BOSS computer to SC)
12. DT

DU 6400
ADDRESSES OF MULTIPLIERS REQUESTED
(Maximum of 351 words, each representing one multiplier set requested by VIAC)

NOTES :
A. All numbers indicated by X are in octal.
B. At the end of each entry instruction, the ENTER key must be depressed to transfer the instruction from the CRT to the SC. This function will appear on the CRT screen as a backwards letter L (e.g. EE XX」).
C. Spaces within an instruction have no effect and may be used as desired for clarity (e.g. EXX or EE XX).
D. The following table gives the delay word number for each of the eight prototype delay words and the corresponding multiplexer address that tests the associated delay lines:

DELAY WORD NUMBER		DELAY		MULTIPLEXER ADDRESS	
Decimal	Octal	Ant. No.	50 MHz System	Decimal	Octal
37	45	1R	A	19	23
39	47	1 R	B	20	24
41	51	2R	A	21	25
43	53	2R	B	22	26
45	55	1L	A	23	27
47	57	1L	B	24	30
49	61	2L	A	25	31
51	63	2L	B	26	32

E. The following table gives the GO/NO GO logic tests for mux addresses 0 and 28-31.

MUX ADR	INPUT MUX DATA	OUTPUT MUX DATA	GO/NO GO RESULTS
0	0	0	GO
28	1	1	GO
29	0	1	NO GO
30	1	0	NO GO
31	Random Data	Random Data	NO GO

TABLE 6 (continued)

1. EA XXXX

CONTROL WORD

$\uparrow \uparrow \uparrow$ Observation/Test Status
Bits CBA (see Table 2)
Parity Error Status = Bits FED (see Table 2)
1 thru $6=50 \mathrm{~ms}$ thru 300 ms Dump Period $=$ Bits $\mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0}$ (see Table 2)
-1 = Disable Neg Sampler 2 = Disable Pos Sampler $3=$ Both: Bits $\mathrm{S}_{7} \mathrm{~S}_{5} \mathrm{~S}_{4}$ (see Table 2)
2. EB X XXXXX XX

DELAY DATA, SAME TO ALL DELAY CONTROLS
$\left\{\begin{array}{l}\quad\left[\begin{array}{l}\text { Lampler delay in } 625 \text { picosecond steps } \\ \text { Delay Line Delay in } 10 \text { nanosecond steps }\end{array}\right. \\ 0=\text { Normal } 1=\text { Delay Line Disable } 2=\text { Sampler Invert } 3=\text { Both }\end{array}\right.$

54 delay words
each as in EB
4. ED XX.X XXXXX XX DELAY DATA TO ONE DELAY CONTROL
\uparrow Same as in EB
Octal delay word number
(In decimal $1=1 \mathrm{~L} \cdot . .53=27 \mathrm{~L}$
$2=1 R \cdots 54=27 R$
See Note D for prototype)
5. EE XX

HOLD MUX ADDRESSES
Octal mux address to hold
(In decimal $1=$ Ant $127=$ Ant 27
0 and $28-31=$ Tests of GO/NO GO Logic) See Note E.
6. EF XXXX EXCHANGE DELAY LINE (S) AT ONE MUX ADR

$\uparrow \uparrow$ Octal mux adr to hold \quad| Exchange data $1=S L \quad 2=\mathrm{SM} \quad 3=$ Both |
| :--- |
| Exchange data $1=\mathrm{CL} \quad 2=\mathrm{CM} \quad 3=$ Both |

7a. EG 3317
MULTIPLIER TEST-RANDOM NOISE GENERATOR (All multiplier terminated inputs receive the same data pattern and all bridging inputs receive the same data pattern but different from the terminated inputs)
7b. EG XXXX7317 MULTIPLIER TEST-STATIC PATTERN

\uparrow| Bridging LSB Input |
| ---: |
| Terminated ISB Input |
| $\left.\begin{array}{r}\text { Terminated MSB Input }\end{array}\right)$ |

(As above except the inputs receive static data determined by XXXX.)

TABLE 6 (continued)

8. EH $\underbrace{X X}_{t}$ Octal mux address to hold	DELAY LINE TEST-HOLD MUX ADR SHORT PATTERN
9. EI XX L Octal mux address at which test starts	DELAY LINE TEST-ROTATE MUX ADR SHORT PATTERN (One complete cycle $=$ 20 seconds for $D T=50 \mathrm{~ms}$)
10. EJ XX t Octal mux address to hold	DELAY LINE TEST-HOLD MUX ADR LONG PATTERN
11. EK XX Octal mux address at which test starts	DELAY LINE TEST-ROTATE MUX ADR LONG PATTERN (One complete cycle $=5.7 \mathrm{~min}$ for DT $=50 \mathrm{~ms}$)
12. EL	RESET FROM COMPUTER (Left GO/NO GO and Exchange Data)
13. EM	RESET FROM COMPUTER (Right GO/NO GO and Exchange Data)
14. EQ	RESET TEST INSTRUCTIONS 5 THRU 11 (Resets storage flip flops F13 thru Fl7 on L31 but does not reset the TEST indicator)
15. ER	RESET ALL TESTS (Same as EQ but also resets the TEST indicator)

NOTES :

1. The following table is intended to aid the user of the System Controller CRT to interpret the displayed information. This table is intended to be used along with Tables $1-6$ to provide a complete users description of the display functions available.
2. For each type display instruction an example display or partial display is shown, and where appropriate, the associated 24 bit computer word is shown to indicate which bits of the word are represented by each character displayed on the CRT screen.
3. If certain conditions are present in the displayed information, the associated character is displayed on the CRT screen as a reverse flashing character. In the display examples these characters are shown with an underline. For certain test conditions that are not errors, the associated display character appears on the screen as a reverse character but without flashing.

EXAMPLES: 2 indicates error condition
2* indicates test condition

DISPLAY EXAMPLES

1. CONTROL and TIME WORDS

Octal

```
DB 0000.7137
    l 2 2 2 2 2 2** 6 2 5 7777 (tens of seconds)
```

Decimal

```
DC 0000.7137
    1\underline{2}\underline{2}\underline{2}\underline{2}2**6\underline{2}5 5110 SEC
```

2. MULTIPLIER RESULTS
```
Octal
DD XXXX (seq. before V }\mp@subsup{\textrm{V}}{\mathbf{S}}{}\mathrm{ )
DH XXXX (seq. after }\mp@subsup{V}{\textrm{s}}{}\mathrm{ )
DF xxxx.10000 (non-seq. before V V )
DI xxxx.10000 (non seq. after V (S)
    7 1777777 $8 per line \ 7 1777777
```

Decimal
DE XXXX (seq. before V_{S})
DG XXxX. 10000 (non-seq. before V_{S})
6 524287 +8 per line $-\underline{6} 524287$

Control Word Only

Multiplier Result


```
        3. DELAY VALUES and EXCHANGE DATA
        Octal
        DL 6000
            LEFT - - - - - - - - - - - - - - - RIGHT
    1 1_ 3 377 3 3 17 t4 per line+ 1 1 
14 Lines Total: Line l = 1 left 1 right 2 left 2 right
        Line 14 =27 left 27 right Left Right
                                    Test Test
                                    Delay Delay
\begin{tabular}{|c|c|}
\hline LEFT & RIGHT \\
\hline \(\underline{1} 11137\) & \(\underline{1} 11137\) \\
\hline 37 & 37 \\
\hline 37 & 37 \\
\hline 37 & 37 \\
\hline
\end{tabular}
Decimal
    DM 6000
        LEFT - - - - - - - - - - - - . - - RIGHT
    1 1 16383 15 +4 per line-> 1 \ 16383 15
14 lines total in same order as above
\begin{tabular}{|c|c|}
\hline LEFT & RIGHT \\
\hline \(\underline{1} 11131\) & \(\underline{1} 11131\) \\
\hline 31 & 31 \\
\hline 31 & 31 \\
\hline 31 & 31 \\
\hline
\end{tabular}
```


Delay Word

$$
\begin{aligned}
& 1100 \mathrm{~S}_{6} \mathrm{AD}_{13} \mathrm{D}_{12} \mathrm{D}_{11} \mathrm{D}_{10} \mathrm{D}_{9} \mathrm{D}_{8} \mathrm{D}_{7} \mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4} \mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0} \mathrm{~S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0} \\
& \begin{array}{c}
\uparrow \begin{array}{|cc|}
\hline-1 \text { of } 4 \text { ECL Strobes } \\
-1 \text { of } 4 \text { TTL Strobes } \\
\text { Variable Delay MOS }
\end{array} \\
\text { Bulk MOS }
\end{array}
\end{aligned}
$$

Exchange Data

CM CL SM SL
Sin Input Mux Adr Cos Input Mux Adr Sin Output Mux Adr Cos Output Mux Adr

```
Delay Word
    \(\underbrace{1100 S_{6}{ }^{A D}{ }_{13} D_{12} D_{11} D_{10} D_{9} D_{8} D_{7} D_{6} D_{5} D_{4} D_{3} D_{2} D_{1} D_{0} S_{3} S_{2} S_{1} S_{0}}_{1} \underbrace{15}_{16383}\)
```

Exchange Data
Same as for octal
4. SYSTEM MONITOR MEASUREMENTS (2 ANT PROTOTYPE)

DN 6100	(octal)							
DO 6100 ((decimal)							
1	2	3	4	5	6	7	8	Out of Spec Code:
1. $\frac{0}{(+5 \mathrm{SC})}$	$\frac{0}{(+5 \mathrm{D} / \mathrm{M})}$	$\underline{0} \operatorname{xxXX}$	$\begin{gathered} \frac{0}{2600 *} \\ (-5.2 \mathrm{D} / \mathrm{M}) \end{gathered}$	$\frac{0}{(-5.2600 *}$	$\left.\frac{0}{(-1200} 1200\right)$	$\frac{0}{(-12 \mathrm{SC})}$	$\begin{aligned} & \underline{0} 2800 \\ & (+28 \mathrm{D} / \mathrm{M}) \end{aligned}$	$\begin{aligned} & 0=\text { In spec } \\ & 3=\text { Emergency Low } \end{aligned}$
2. $\begin{array}{cc}\frac{0}{1500} \\ (+15 & \mathrm{SC})\end{array}$	$\left(\begin{array}{ll} 0 & 1500 \\ -15 & \mathrm{SC}) \end{array}\right.$	$\begin{aligned} & \underline{0} 900 \\ & (-9 \mathrm{SC}) \end{aligned}$	$\underline{0} \mathrm{XXXX}$	$\begin{aligned} & 5=\text { High } \\ & 7=\text { Low } \end{aligned}$				
3. $\frac{0}{(02 \mathrm{~V}} \mathbf{1 0 0 0}$ (M)	O XXXX	$\underline{0} \mathrm{xxxx}$	$\underline{0} \mathrm{XXXX}$	0 xXXX	0 OXXX	$\underline{0} \mathrm{XXXX}$	$\underline{0} \mathrm{XXXX}$	For an Emergency High condition in either the SC or D/M rack, the
4. 0 XXXX	$\underline{0} \mathrm{XXXX}$	D/M rack will be automatically powered down						
5. $\frac{0}{(M 50 *}$ Clk)	$\begin{aligned} & 0_{\text {O 71 }}^{750 *} \\ & \text { Clk) } \end{aligned}$	$\begin{aligned} & 0 \text { 750* } \\ & \text { (Cont A } \\ & \text { Clk) } \end{aligned}$	$\underline{0} \mathrm{xxxx}$	and all error codes will contain either an 8 or 9 or a punctuation character.				
6. 0 XXXX	O XXXX	$\underline{0} \mathrm{XXXX}$	$\underline{0}$ XXXX	$\underline{0} \mathrm{XXXX}$	$\underline{0} \mathrm{XXXX}$	$\underline{0} \mathrm{XXXX}$	$\underline{0} \mathrm{XXXX}$	
7. $\frac{0}{1100 *}$	$\frac{0}{\text { en }} 1100 *$	$\frac{0}{(\mathrm{D} / \mathrm{M} \mathrm{Tem}}$	${ }_{n p} \underline{0} x X X X$	$\underline{0} \mathrm{XXXX}$	$\underline{0} \mathrm{XXXX}$	$\underline{0} \mathrm{XXXX}$	$\underline{0} \mathrm{XXXX}$	
8. $\underline{O}_{\text {XXXX }}$	$\underline{0}$ XXXX	$\underline{0} \mathrm{XXXX}$	$\underline{0} \mathrm{XXXX}$	O XXXX	$\underline{0} \mathrm{XxXX}$	O XXXX	$\underline{0} \mathrm{XXXX}$	

NOTES :

1. The nominal measurement is shown above in decimal. For octal display, only the measurement is in octal.
2. Measurements marked * must be doubled to obtain the value.
3. The user must enter the decimal point mentally.
4. Clock measurements are of the peak value of the sinewave 100 MHz clock.
5. $S C=$ System Controller Rack $\quad D / M=$ Delay-Multiplier Rack.
6. $X X X X=$ Inputs not used in 2 Ant Prototype and spare inputs. These are not all zero on the display.
7. Full range temperature $=81.90^{\circ} \mathrm{C}$.
8. GO/NO GO RESULTS

DP 6200 (octal only)

6. RAM DATA SET

DQ XXXX (octal only)

17777777

\downarrow Total of 8 words 17777777
7. PARITY ERROR ADDRESSES

DR 6300 (octal)
pS 6300 (decimal)
$6677+8$ per line $\rightarrow \frac{6}{4} 677$
\qquad Computer Word No. Boss \rightarrow SC
Blanking Time in which error occurred (1 thru 6)
8. ADDRESSES OF MULTIPLIERS REQUESTED

```
DT 6400 (octal)
DU 6400 (decimal)
```

$677 \leftarrow 16$ per line $\max \rightarrow 677 \quad$| Multiplier set number requested by BOSS Computer |
| :--- |
| (decimal set numbers are 32 thru 382) |

22 lines total maximum
351 total addresses maximum

FIGURE I
COMMUNICATIONS SYSTEM BETWEEN SYSTEM CONTROLLER AND VLA SYNCHRPNOUS COMPUTERS

NOTE: ABOVE COVERS DATA FROM SC TO CORE COMPUTER-SEE TABLES 183. COLUMN 1 INDICATES WHEN THE SC's Storage receives the bata-From hither core computer, delay mulituitn or shia imicrinal control. COLUMN 2 INDICATES WHEN THIS DATA WAS USED OK GENERATED.
BiTS AEB IN TABLES $2 \& 4$, COMPUTER WORD 0 , WILL FOLLOW, A PATTERN AS SHOWN WW WW:

SC TO VLAC DATA RELATIONSHIPS

Figure

