VLA TECHNICAL REPORT #17

MODULE F6

RF SPLITTER

Sander Weinreb

July 1975

TABLE OF CONTENTS

Figure 1 1 Figure 2 1 Figure 3 1 Figure 4 1 Figure 4.1	RF Splitter Front Panel RF Splitter Side View RF Splitter Block Diagram Log Detector output voltage etc. Input and output connections on and Adjustment	2- 2-
Figure 2 H Figure 3 H Figure 4 H Figure 4.1	RF Splitter Side View RF Splitter Block Diagram Log Detector output voltage etc. Input and output connections	2- 2- 2- 2-
Figure 3 H Figure 4 H Figure 4.1	RF Splitter Block Diagram Log Detector output voltage etc. Input and output connections	2 2 2
Figure 4 1 Figure 4.1	Log Detector output voltage etc. Input and output connections	_
Figure 4.1	Input and output connections	2-
•		2- 3-
nplementatio	on and Adjustment	3-
		5-
Figure 5 S	Splitter Network Interior View	3-
Figure 6 J	RF Splitter Switch Driver	3-
Figure 7 H	RF Splitter Attenuator Driver	3-
Figure 8	Log Detector Amp for RF Splitter	3-
Figure 9 I	Detector output as function of load resistance, etc.	3-
	Figure 6 Figure 7 Figure 8 Figure 9	Figure 5 Splitter Network Interior View Figure 6 RF Splitter Switch Driver Figure 7 RF Splitter Attenuator Driver Figure 8 Log Detector Amp for RF Splitter Figure 9 Detector output as function of load resistance, etc. ill of Materials, Specifications and Manufacturers' Data

I.	RELATED DOCUMENTS		
	TITLE		NRAO NUMBER
	Block Diagram		
	Block Diagram, RF Splitter		C13170B3
	Bill of Materials		
	Driver Circuit		A13170Z42
	Log Amplifier Major Parts		
	-		
	Schematic Diagrams		
	Driver Circuit Schematic		C13170S9
	Log Amplifier Schematic		C13170S10
•	Assembly Drawings		
	Driver Circuit		C13170P4
	Log Amplifier		0152/014
	Printed Circuit Boards		
		Artwork	Mechanical
	Driver Circuit	B13170AB3	C13170M84
	Log Amplifier	A13170AB4	
	Mechanical Drawings		
		2	51 61 Found
	Plate, Side Left Front		B13179M81 C13170M82
	Bar, Support, Top and Bottom Plate, Side, Left Rear		C13170M82 C13170M83
	Panel, Front		B13170M85
	Enclosure, Log Amplifier		C13170M87
	Guide		B13050M4
	Fastener, Perforated Cover		B13050M17
	Perforated Cover		C13050M7
	Panel, Rear		B13180M1
	RF Network Drawings		
			010170011
	RF Splitter Schematic		Cl3170S11 Al3170A5
	AB Detector/Coupler CD Detector/Coupler		A13170A5 A13170A6
	AB Attenuator		A13170A8
	CD Attenuator		A13170A8
	Transfer Switch		A13170A9
	Transfer Switch		A13170A10
	Power Dividers		A13170A11
	Drawing List, RF Splitter Network,	CMI4352	A13170245
	Darte List DE Colittar Natwork		A13170245

A13170246

Parts List, RF Splitter Network

RF Network Drawings (continued)

Access Port Cover, RF Splitter Network	A13170M91
RF Splitter Network, CMI4352, Outline/Mounting	B13170M92
Housing and Covers, RF Splitter Network, CMI4352	C13170M93
AB and CD Channel Attenuator S/A's RF Splitter Network	C13170M94
AB and CD Channel Detector/Monitor Coupler S/A	C13170M95
Transfer Switch S/A, RF Splitter Network	C13170M96
Power Divider S/A, RF Splitter Network	C13170M97

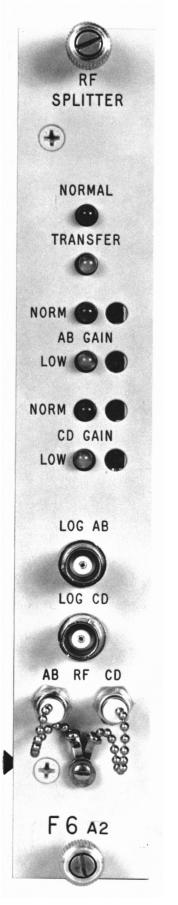
II. FUNCTION

The RF Splitter Module couples two front-end dewar outputs, AB and CD, into four Frequency Converter inputs, A, B, C, and D. Each dewar-output is at 4.5 to 5.0 GHz and has passed thru the cooled paramp (+30 dB), transistor amplifier (+35 dB), isolator (-0.5 dB), and ~1.5m of 3mm-coaxial cable (-1.5 dB). This 63 dB of gain produces a Splitter input level of -22 dBm with 300° system temperature and 800 MHz of RF bandwidth. Specifications and data sheets for the transistor amplifier and isolator are included in Section IV of this manual.

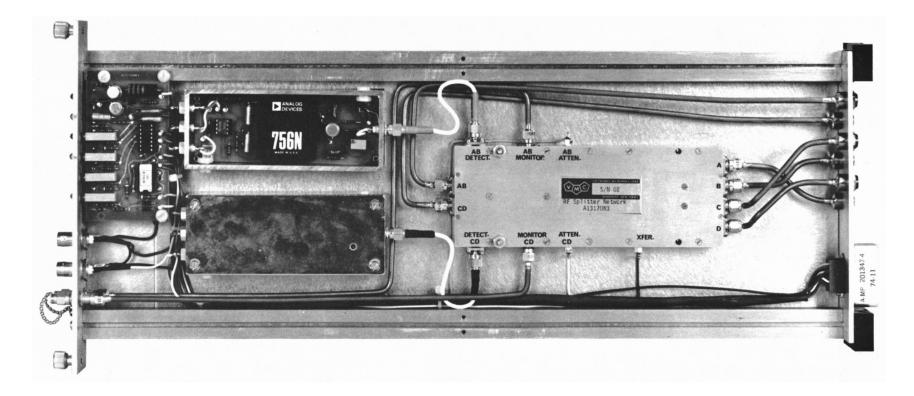
Photographs of the module are shown in Figures 1 and 2 and a block-diagram is presented in Figure 3. The functions of the Splitter are as follows:

a) Log Detector Monitoring - Each input is coupled to a detector and logarithmic amplifier to provide a DC output as shown in Figure 4. This output is within a few percent of 10 dB per volt for input levels of -33 dBm to -3 dBm (output level of -3 volts to 0 volts). This signal is for swept frequency testing of the front-end; the sweep generator output level should be adjusted so the peak Log Detector output level is ∿0 volts.

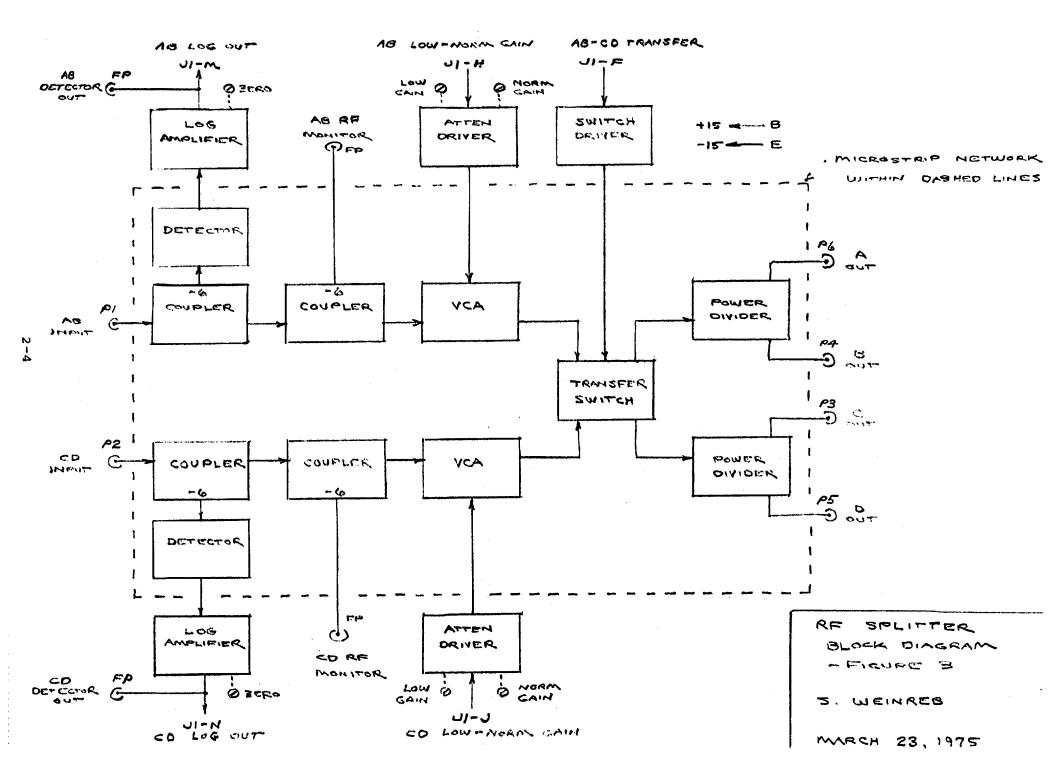
b) <u>RF Monitoring</u> - RF samples approximately 8 dB below the input signal levels are available on front-panel SMA connectors for the purpose of spectrum analyzer RFI Analysis or for phase stability testing.


c) Level Adjustment - A voltage-controlled attenuator is provided in each signal path to allow front-panel adjustment of output signal level. The attenuators can be switched between two settings, NORMAL GAIN and LOW GAIN, under computer control. The total loss of the splitter can be adjusted from ~ 9 to ~ 20 dB with the NORMAL GAIN range pots (initial adjustment, 13 dB) and ~ 9 to ~ 30 dB with the LOW GAIN pots (initial adjustment, 23 dB). The switch-able gain is needed to allow solar observations.

d) <u>Transfer Switch</u> - In NORMAL mode the AB input is connected to A and B outputs whereas in TRANSFER mode it is connected to C and D outputs; the complementary statement applies to the CD input. The purpose of this switch is to facilitate calibration of polarization measurements and to aid in isolation of malfunctions.


e) <u>Power Division</u> - Each front-end channel must feed two Frequency Converters; the Splitter contains isolated power dividers to accomplish this task.

Input and output connections are given in Figure 4.1.


2-1

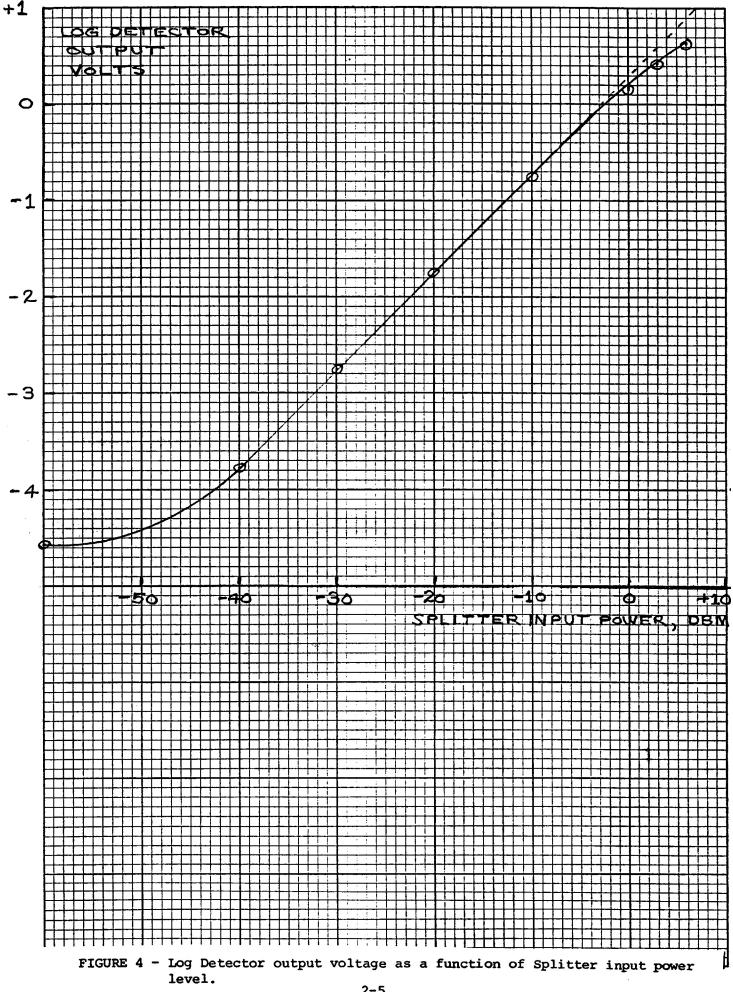


FIGURE 1 RF SPLITTER FRONT PANEL

FIGURE 2 RF SPLITTER SIDE VIEW

RACK		MODULE:	RF Splitter	TYPE: F6
LIST		BY:		
	ECTOR TYPE: 14 PIN	CONNECTOR PAG		
PIN	FUNCTION	WIRE TYPE	External Connection	Internal Connection
A				
В	+15	Red		Driver - E5
С	+5	Orange		Driver - E8
D	GND	Black		
E	-15	Yellow		Driver - E9
F	Transfer Control	Brown	G10J1-z	Driver - El
н	AB Attenuator Control	Red	G10J1-a	Driver - E2
J	CD Attenuator Control	Orange	G10J1-b	Driver - E2
ĸ				
L				
М	AB Log Out	Blue	G10J2-AA	Log amp - out
N	CD Log Out	White	G10J2-BB	Log amp - out
Р				
R				
Pl	AB Input	.141	ZDP1	
P2	CD Input	.141 😽	ZDP2	
Р3	C Output	.141	G8P2	
P4	B Output	.141	G6P2	
P5	D Output	.141	G9P2	
P6	A Output	.141	G5P2	

FIGURE 4.1 - Input and output connections.

III. IMPLEMENTATION AND ADJUSTMENT

The heart of the RF Splitter Module is an integrated microstrip network which performs all of the required RF functions in an economical, compact manner. A photograph of the interior of the network is shown in Figure 5. Specifications (Al3170N3) of the network and manufacturers data are included in Section IV. If there is a malfunction in the network it should be examined under a lower-power microscope for loose connections (especially at SMA connector interface) and diodes should be checked with an ohmmeter. If this does not reveal the fault the unit should be returned to the manufacturer.

The network transfer switch and attenuators are driven by driver circuits shown in Figures 6 and 7. The transfer-switch driver translates a TTL input ("1" = NORMAL, "0" = TRANSFER) into +3 volts (NORMAL) and -3 volts (TRANSFER) into a 50 ohm switch-control input. The attenuator driver allows either a NORMAL GAIN pot or a LOW GAIN pot to control the current thru PIN diodes in the network; the current is varied from 0 to 4 mA for 0 to 20 dB of attenuation.

A schematic of the Log Detector Amplifier is shown in Figure 8. Tests of square-law detector error vs detector load resistance revealed that a load resistance of 1K gave least error as shown in Figure 9. The first-stage of the Log Detector Amplifier presents this load resistance and provides a gain of -30 in a low drift $(1\mu V/^{\circ}C)$ operational amplifier. The amplifier output is applied to a plug-in logarithmic conversion module (AD756N) which is described in the manufacturers data sheet included in Section IV. The log module output is inverted and offset by an output op amp, A3. A log module output of +4 to +1 volts produces -3 to 0 volts output of A3. A maximum output of 0 volts for good square-law accuracy has been chosen so the top of a response curve can be expanded by increasing oscilloscope gain without getting a large offset; i.e. 0.1 volt per division gives 1 dB per division.

Tests of the RF Splitter Module are performed by connecting DC power and +3 or OV control signals for transfer and gain control. A 4.5 to 5.0 GHz generator is connected to AB or CD input and the appropriate otuputs are measured with a power meter as controls signals are switched and gain pots are varied. For initial adjustment the NORMAL GAIN and LOW GAIN pots are adjusted for 13 dB and 23 dB total insertion loss, respectively. The frontpanel indicator LED's should follow the applied control signal; improper initial operation is usually caused by a reversed LED or incorrect rear panel to circuit board wiring.

3-1

The only internal adjustment in the RF Splitter Module is the Log Amplifier zero, RlO. This should be adjusted to give a one volt output change as input level is changed from -30 dBm to -20 dBm; the absolute level need not be accurate but the 10 dB change should be accurate to ± 1 dB. If RF equipment is not available an approximate zero adjustment can be made by adjusting RlO to give -4.3 volts log output with no network input signal. The adjustment is accessible through a small hole in the side of the log amplifier module.

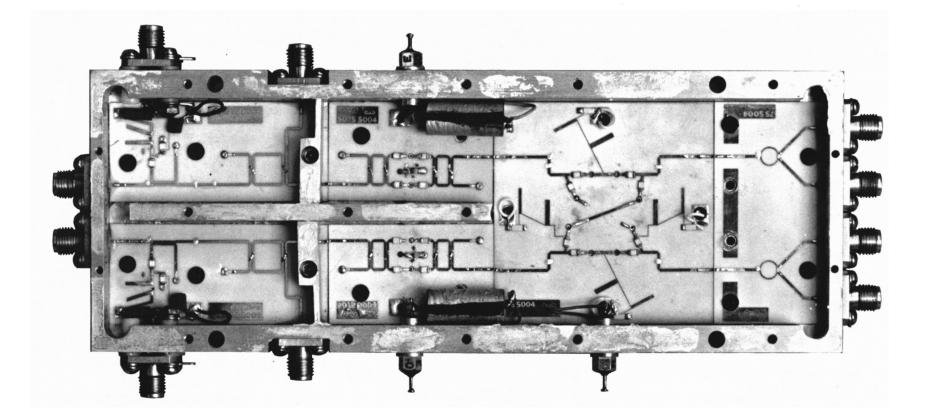
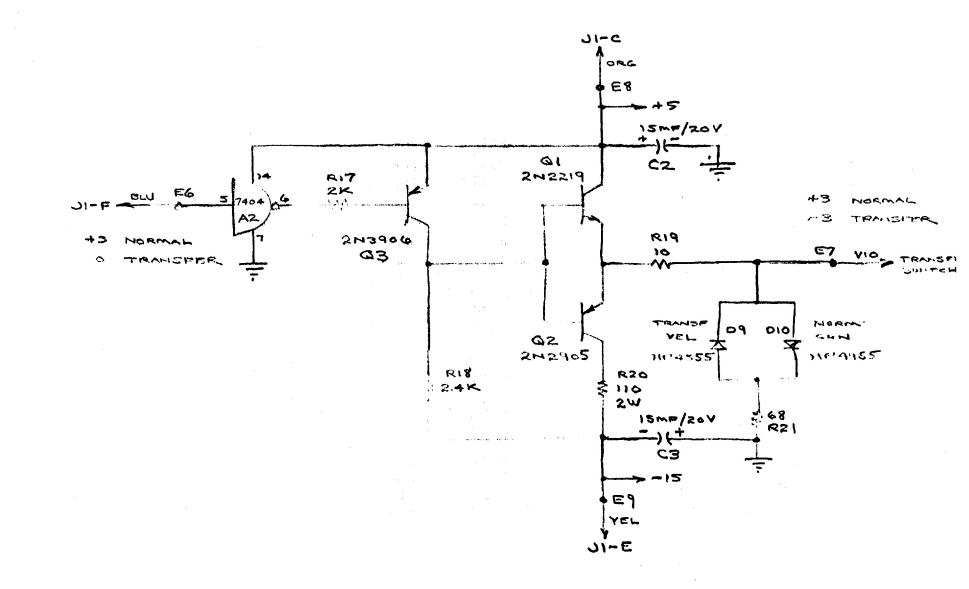
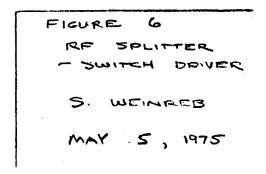




FIGURE 5 SPLITTER NETWORK INTERIOR VIEW

3-4

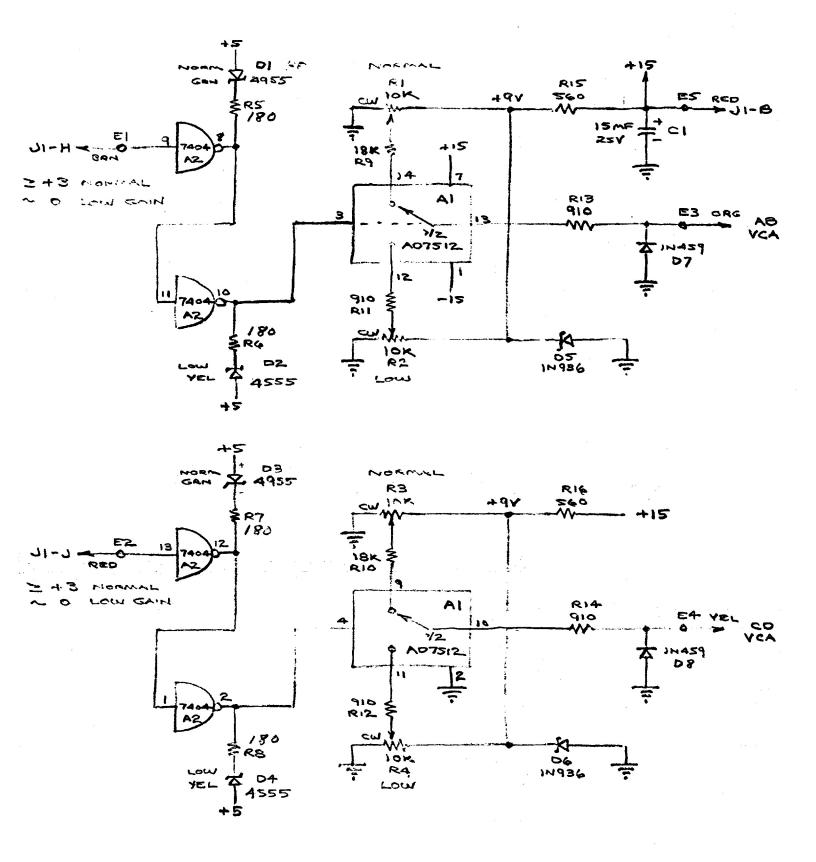
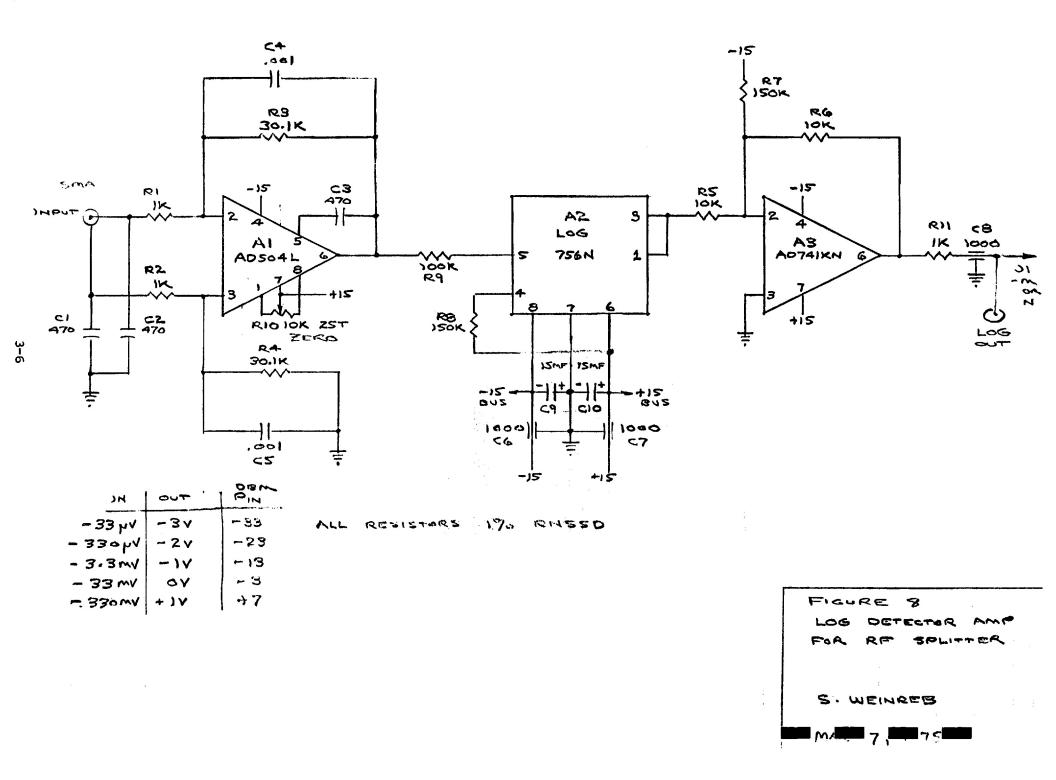



FIGURE 7 R.= SPLITTER - ATTENUATOR DRIVER S. WEINREB MORIL 1, 1975

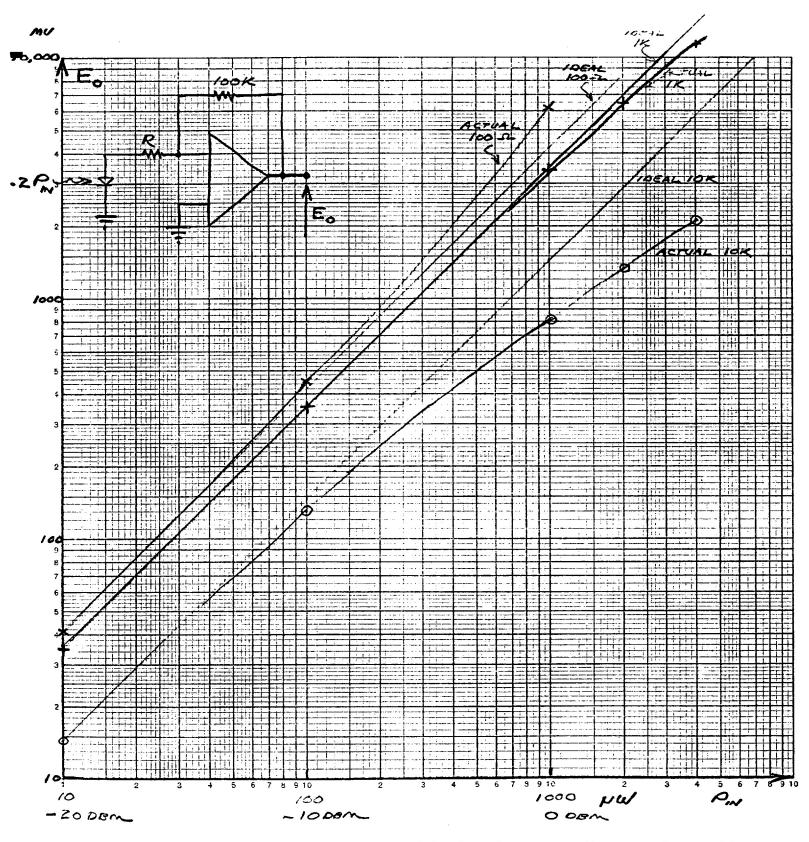


FIGURE 9 - Detector output as function of load resistance, R for Aertech zero-bias Schottky-diode.

IV. BILL OF MATERIALS, SPECIFICATIONS, AND MANUFACTURERS' DATA

ELECTRICAL	MECHANICAL	BOM #	REV	DATE	PAGE 1	OF
MODULE # <u>FG</u> NA	ME <u>RF</u> SPLITTER	DWG #	ŧ Sub .	ASMB MAIN	DWG #	
SCHEMATIC DWG #	LOCATION		QUA/SYSTEM	PREPARED BY	APPROVED _	

ITEM #	REF DESIG	MANUFACTURER	MFG PART #	DESCRIPTION	TOTAL QUA	
	-	VECTRONICS	A13170N3	RF SPLITTER NErwork	1	
	-	ANV	B13170 AB3	ORIVER PC BOARD	1	
	-	ANY	A13170 A84	LOG AMP PC BOARD	2	
	-	Моорак	708-100-0000	Box	2	
		AMPHENOL	74868	UG-625/U BNG VACK	γ	
		OMNI SPECTRA	209	OSM FEEDTHRU	2	
		OMNI SPECTRA	20020 P/C	TERMINATION WITH CHAIN	2	5

ELECTRICAL	MECHANICAL BOM	# REV	DATE	PAGE OF
MODULE # <u>F6</u> NAME	RF SPLITTER	DWG # SUE	ASMB. ORIUER	DWG #
SCHEMATIC DWG #	LOCATION	QUA/SYSTEM /	PREPARED BY	APPROVED

ITEM #	REF DESIG	MANUFACTURER	MFG PART #	DESCRIPTION	TOTAL QUA	
1	AI	ANY	7404N	10	1	7
2	A2	ANALOG DEVICES	AD7512 KN	10	1	7
3	Q1	Amy	2N2219	TRANSISTOR	1	7
4	QZ	ANY	2~2905	TRANSISTOR	1	7
5	03	ANY	2N3906	TRANSISTOR	1	7
4	DI, 03 010	HEW PAC	5082-4955	GREEN LED	З	18
7	D2,04 09	n	5082-4555	YELLOW LED	3	18
8	05,04	ANY	1~936	ZENER DIODE	2	
9	07,08	ANY	1~ 459	01000	ス	14
10		ROBINSON - NUGENT	ICN 143 - 53	14 PIN DIL SOCKET	2	14-
11	C1, C2 C3	Kemet	CSRIJEIS6KL	15 ME/201 TANFALUM CAP	૩	PR 4+69
12	-	KEYSTONE	1562-2	TERMINAL	10	
13	R1, R2 R3, R4	BECKMAN	89PRIOK	IOR POT	4	
14	R5, R6 R7, R8	A-B		180 ohm, 1/4w, 5%	4	STOCK
15	K9, R10	A-8		18K, 14W, 5%	2	STACK

ELECTRICAL	MECHAN	NICAL BOM #	REV	DATE	PAGE <u>2</u> OF <u>2</u>
MODULE # <u>Fø</u>	NAME AF S	DWG	# SUB	ASMB DRIVER	DWG #
SCHEMATIC DWG #	IO	OCATION	QUA/SYSTEM	PREPARED BY	APPROVED

ITEM #	REF DESIG	MANUFACTURER	MFG PART #	DESCRIPTION	TOTAL QUA	-
16	RII, RIZ RI3, RI4	A-0		910 oHm, 1/4W, 570	4	STOCK
17	R15, R16	A-B		560 OHM, 1/4W, 570	2	
18	RIT	A-8		2K, 1/4W, 570	1	
19	RIS	A-B		2.4K, 1/4W, 570	1	
20	RIG	A-B		10 OHM, 1/4W, 5%	1	
21	R20	A-B		110 OHM; ZW, 570	1	
22	R21	A-B		68 OHM, 1/4W, 570	1	
					•	

ELECTRICAL	MECHANICAL	BOM #	REV	DATE	PAGE <u>1</u>	OF
MODULE # <u>F6</u>	NAME RF SPLITTER	DWG #	SUB ASMB	LOG DEFECT	OR DWG #	
SCHEMATIC DWG #	LOCATION	QUA/SYS	stem <u>2</u> prep	ARED BY	APPROVED	

ITEM #	REF. DESIG	MANUFACTURER	MFG PART #	DESCRIPTION	TOTAL QUA	
1	AI	ANALOG DEVICES	ADSO4L	op Amp	1	12
2	AZ	ANALOG DEVICES	756N	OP AMP	1	13
૩	AЭ	ANALOG DEVICES	HO741KN	OP AMP	1	7
4	-	ROBINSON - NUCENT	DP-5178-F	8 PIN TO-5 SOCKET	1	8
5	-	n 11	101083 - 53	8 PIN DIL SOCKET	1	8
4	-	CAMBION	ASO-3388-01-03	Socket PINS	9	
7	-	OMNI - SPECERA	osm 21/	OSM BULKHEAD VACK	1	
8	C1, C2 C3	ERIE	8101-100-651-471	4 TO PE/1000 CAPACITOR	З	12.
9	C#, CS	ERIE	8101-050-651-102m	1000 PF/SOV "	2	20
10	<4,<7 ⊂8	SPECTRUM CONTROL	FB-38-102W	1000 PF FEED-THRU CAPACITOR	3	30
11	C9, C10	Kemer	CSRIBE 156KL	ISME/201 TANALUM	2	
12	RI, RZ RS, RG	ANY	RNSTO	10K 170	4	PR 4469
13	R3, R4 R9	ANY	RNSSD	100× 1%	3	"
14	R7, R8	ANY	RN550	150K 170	2	"
15	R10	BEGRMAN	63WRIOK	lok 22 TURN POT	1	
16 47	RII	ANY	RNSSO	1K 170 / 1415 - 170 13 13 16 K 1910	 4	25

NATIONAL RADIO ASTRONOMY OBSERVATORY Charlottesville, Virginia VERY LARGE ARRAY PROJECT

SPECIFICATION NO: A13170N1, Rev. B

NAME: 4.4 - 5.1 GHz Transistor Amplifier

DATE: March 4, 1975 PREPARED BY: MU APPROVED BY: XIU

1. FREQUENCY RANGE AND GAIN

Within the 4.4 to 5.1 GHz range the gain must be 35 ± 1 dB. The gain must be less than 37 dB at any frequency outside of this band.

2. NOISE FIGURE

Less than 7 dB.

3. POWER OUTPUT

+10 dBm at 1 dB compression.

4. INPUT AND OUTPUT VSWR

Less than 2:1.

5. DC POWER

+15 volts.

6. TEMPERATURE

15°C to 35°C

7. CONNECTORS

Type SMA female.

8. MOUNTING PROVISION

Tapped holes on one surface.

9. GAIN TEMPERATURE COEFFICIENT

The temperature coefficient of gain shall be less than 0.1 dB/°C from 20° C to 35° C.

MEASURED DATA LOCUS Model RF-623A

Frequency	Gain (dB)	Noise Figure (dB)	Input	Output	Output Power at 1.0dB
(G,Hz)	(ub)	(ub)	VSWR	VSWR	Gain Compression (dBm)
		_			
4,4	35,1	5.8	<1.5:1	<1,48	+ 12.9
4.5	35.3	5:8			+ 13.4
4.6	35.6	5,9			+ 12.8
4,7	35,6	6.0			+ 12.3
4.8	35,2	6.2			+ 11.9
4.9	34.9	6.4			+12.0
5.0	35.3	6:8			+//./
5,1	34.9	le.9	ł	L L	+10.3
1					
	Í				
	1				
	i				
· · · · · · · · · · · · · · · · · · ·	1				
		i		l	

Test Performed By: RM Sackman Approved By: R. L. Ounkle Date: Now 15-1975 -----

Serial #_____ +15 Vac @ 154 ma

NATIONAL RADIO ASTRONOMY OBSERVATORY Charlottesville, Virginia VERY LARGE ARRAY PROJECT

SPECIFICATION NO: A13170N3, Rev. A

NAME: RF Splitter Network

DATE: July 14, 1975

PREPARED BY:

APPROVED BY:

1. General Description

A microwave integrated circuit containing four directional couplers, two PIN diode attenuators, two detectors, a diode transfer switch, and two power dividers is required; the desired configuration is shown in Figure 1. A deviation from this configuration in which monitor and detector couplers are exchanged in position is allowed. The unit will be used at power levels \leq +20 dBm, at a temperature of 25 \pm 5°C, and must meet all specifications in the 4.3 to 5.2 GHz range.

2. Attenuation and Return Loss

The maximum loss from either input to a desired output is 10 dB with PIN diode attenuators at minimum attenutation. The minimum return loss at any RF input or output shall be 15 dB.

3. Detectors

The detector sensitivity into a 1K load shall be 20 to 40 μ V per μ w of network input power. The detector shall be unbiased, have negative output, and shall have a DC to 1 MHz frequency response. The detector shall be square-law within <u>+1</u> dB for network input powers of up to -3 dBm and for a detector load resistor of 1K.

4. PIN Attenuator

The PIN attenuator shall be controllable from a single control terminal and shall have a 20 dB attenuation range. The frequency variation of loss at any attenuator setting shall be $\leq \pm 0.5$ dB and the return loss specification must be met at any attenuation. The switching speed shall be $\leq 100 \ \mu$ s. An input current of 4 mA shall produce ≥ 15 dB of attenuation.

5. Transfer Switch

The diode transfer switch must provide a minimum of 35 dB isolation and a switching speed of $\leq 100 \ \mu$ s. The control voltage shall be +3 volts for normal and -3 volts for transfer into a load resistance ≥ 50 ohms.

6. Monitor Couplers

The monitor couplers shall have coupling of 8 \pm 2 dB referred to input and isolation \geq 15 dB.

7. Output Power Dividers

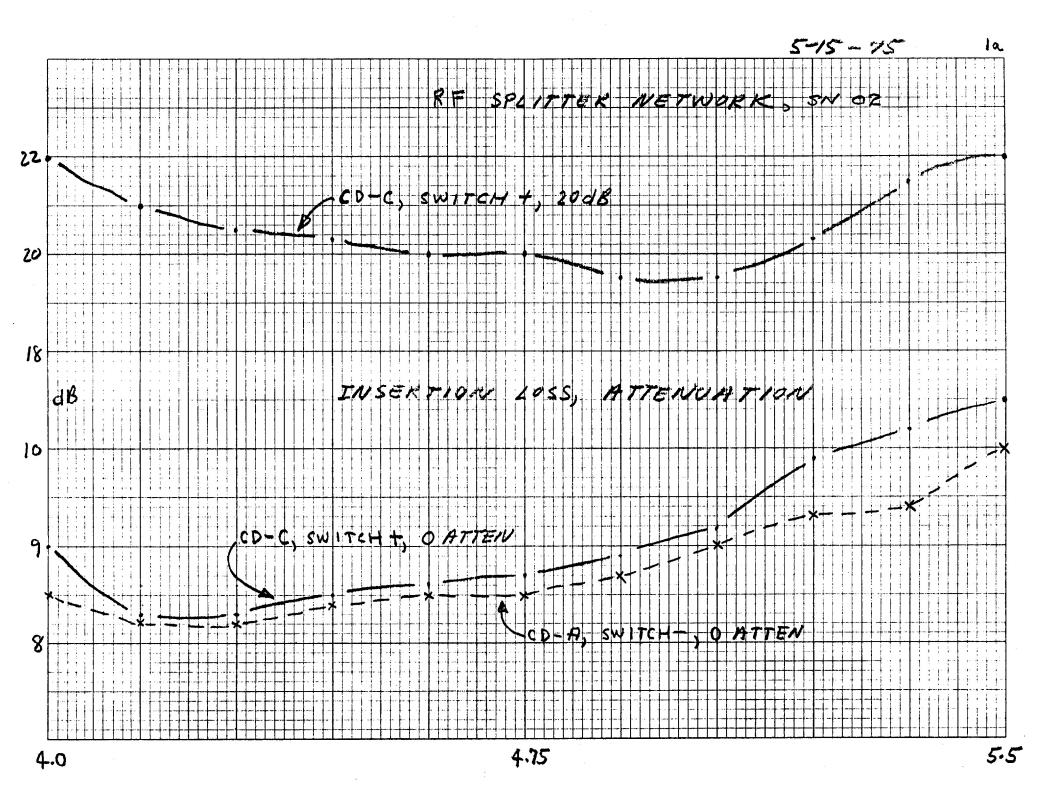
The output power dividers shall have an isolation \geq 20 dB and produce equal power within \pm 0.5 dB.

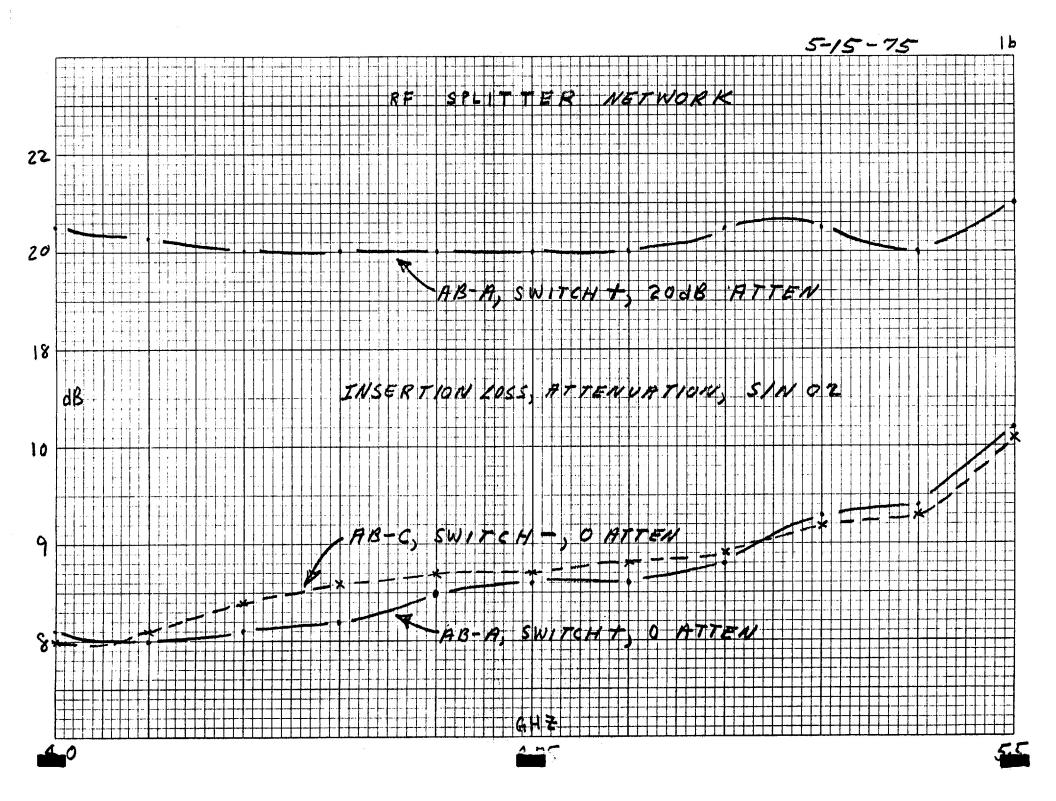
8. Construction

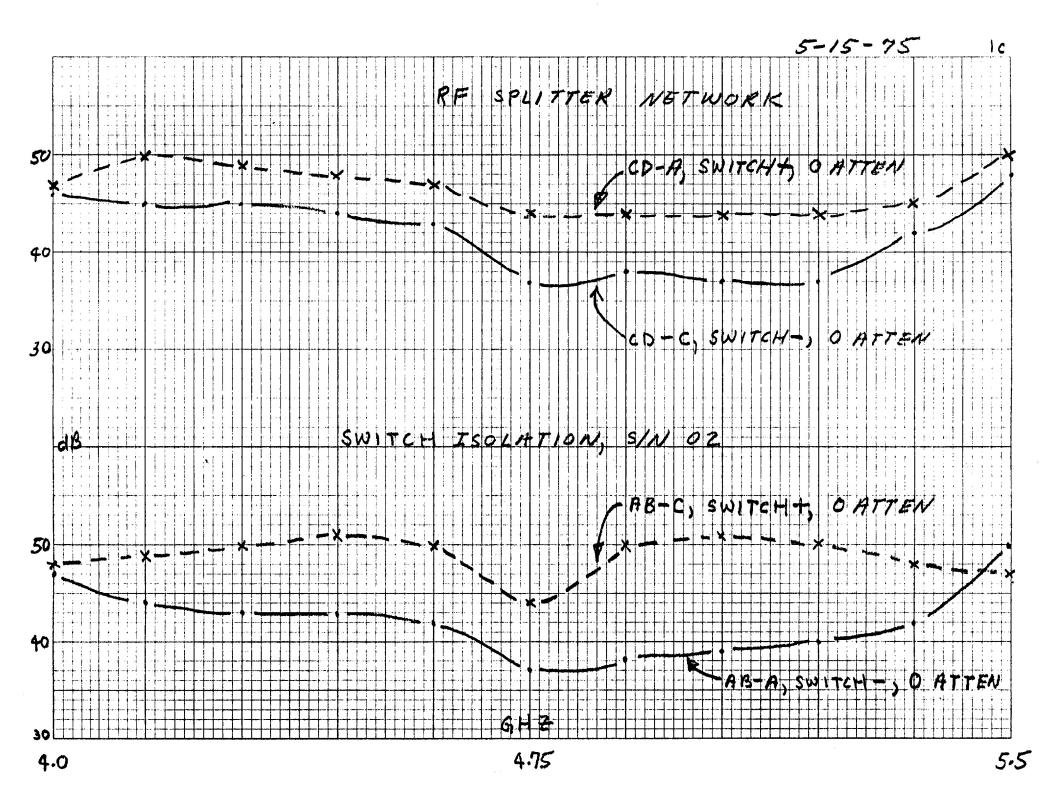
The unit must be housed in an RFI-tight aluminum case having dimensions 0.69"x2.5"x6.75" excluding connectors. The printed circuit must be of rigid construction with high quality solder joints.

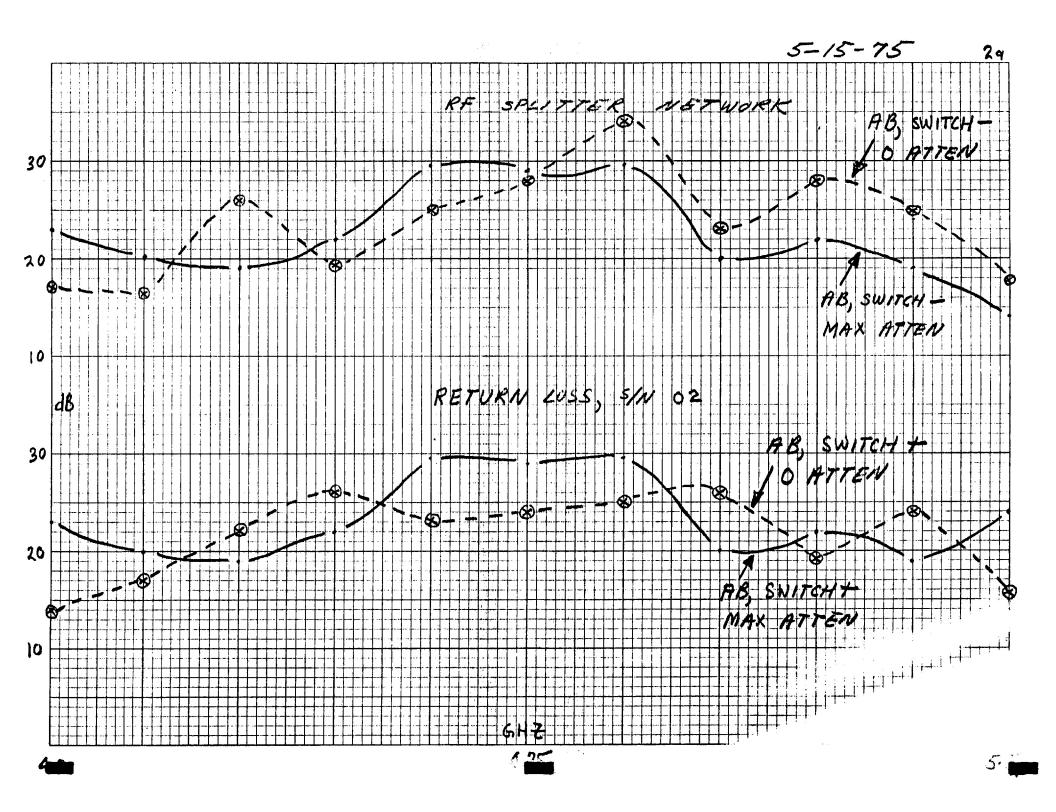
9. Connectors

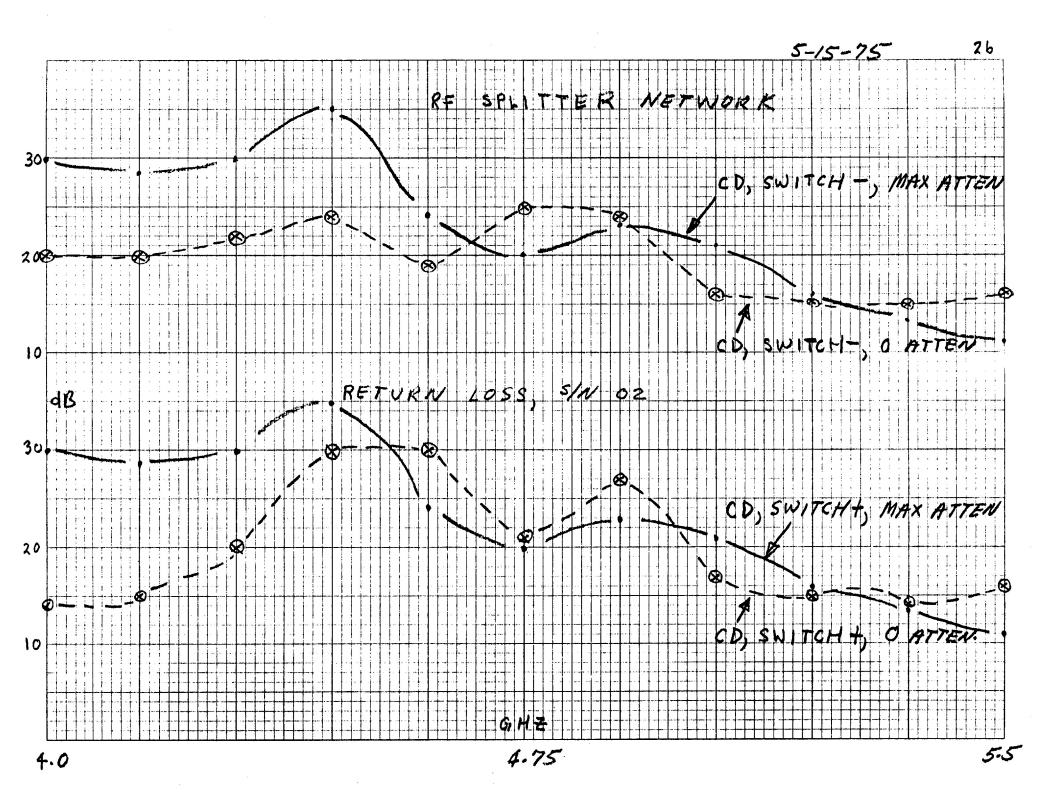
All RF connections and detector outputs shall be type SMA female. Control lines shall be feed-thru capacitor solder terminals.

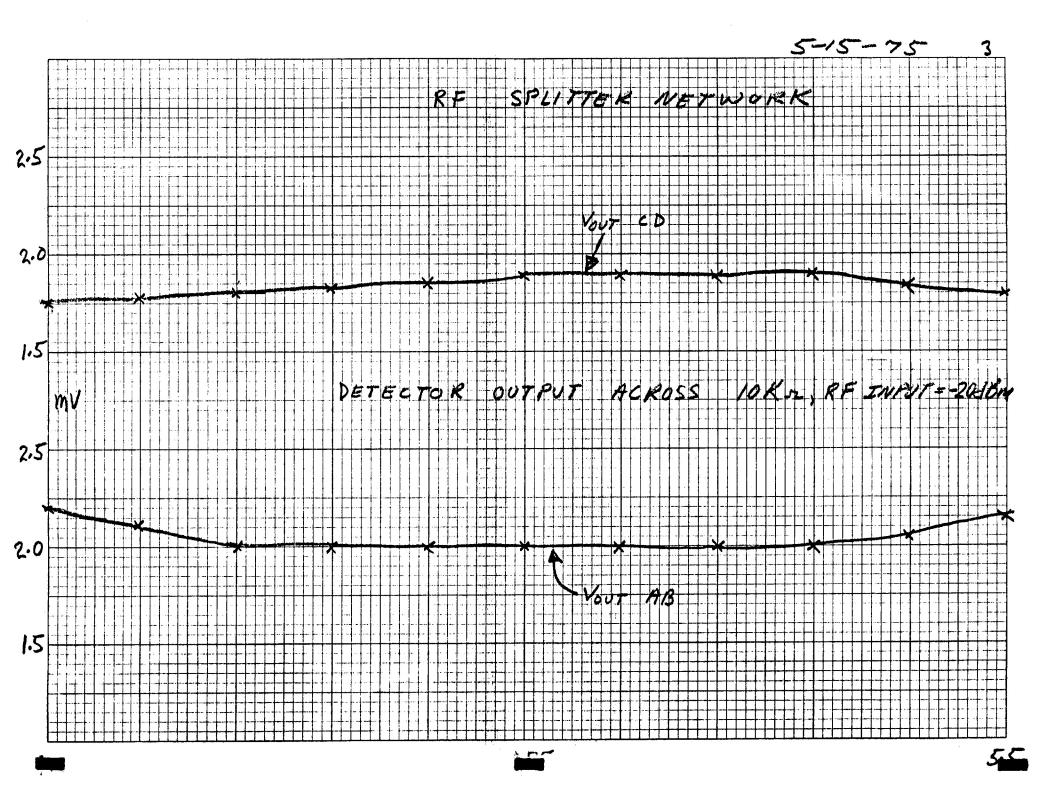

10. Drawings


All artwork and reproducible copies of all drawings generated in manufacture shall be delivered with hardware.


11. Test Data


The following data must be provided for each unit in the 4.0 to 5.5 GHz range.


- AB and CD return loss in normal and transfer mode with 0 dB and 20 dB PIN attenuator settings (8 curves).
- AB to A and CD to C insertion loss in normal and transfer mode with 0 dB and 20 dB PIN attenuator settings (8 curves).
- AB and CD detector output voltage at input levels of -20 dBm (2 curves).



CMOS Dual SPDT Analog Switch

PRELIMINARY DATA SHEET

AD7512

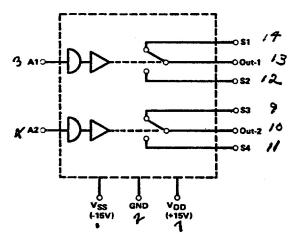
FUNCTIONAL DIAGRAM

Two Independent SPDT Switches TTL/DTL/CMOS Direct Interface Power Dissipation: 30μW "ON" Resistance: 75Ω Silicon Nitride Passivation

GENERAL DESCRIPTION

FEATURES

The AD7512 consists of two independent analog SPDT switches switches on a monolithic CMOS chip. Packaging is a 14-pin ceramic or plastic DIP. All digital inputs are TTL/DTL and CMOS compatible with at least $10^9\Omega$ input impedance. The extremely low power dissipation of 30μ W is achieved by combining unique circuit design with state-of-the-art CMOS technology.


 $(T_A = +25^{\circ}C \text{ unless otherwise noted})$

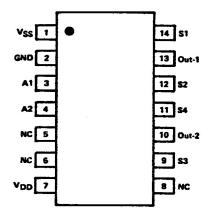
V _{DD} (to GND)+17V
V _{SS} (to GND)17V
Switch Voltage (to VSS) +27V
Switch Voltage (to VDD)
Switch Current (ID-out, Continuous) 30mA
Switch Current (ID-out, Surge)
1ms duration, 10% duty cycle 150mA
Digital Input Voltage Range VSS to VDD
Power Dissipation (Package)
14-pin Plastic DIP
Up to +70°C 670mW
Derates above +70°C by 8.3mW/°C
14-pin Ceramic DIP
Up to +75°C 450mW
Up to +75°C
Operating Temperature
Storage Temperature

CAUTION:

1. Do not apply voltages higher than V_{DD} and V_{SS} to any other terminal, especially when $V_{SS} = V_{DD} = 0V$ all other pins should be at 0V.

The digital control inputs are zener protected; however, permanent damage may
occur on unconnected units under high energy electrostatic fields. Keep unused
units in conductive foam at all times.

Address "High" makes SZ to Out-1 and S3 to Out-2.


ORDERING INFORMATION

AD7512J:	0°C to +75°C
AD7512K:	0°C to +75°C
AD7512S:	-55°C to +125°C
AD7512T:	-55°C to +125°C

PACKAGE VERSIONS

Suffix "N"	Plastic DIP
Suffix "D"	Ceramic DIP
Suffix "F"	Flatpack (Special Request)

PIN CONFIGURATION (Top View)

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
 Tel:
 617/329-4700
 TWX:
 710/394-6577

 West Coast
 Tel:
 213/595-1783

 Mid-West
 Tel:
 312/297-8710

SPECIFICATIONS (V_{DD} = +15 V, V_{SS} = -15 V, T_A = +25° C unless otherwise noted)

PARAMETER	VERSION	SWITCH	5	e 25° (RANGE		TEST CONDITIONS	
			MIN	TYP	MAX	MIN	MAX			
ANALOG SWITCH										
R _{ON}	Àll	ON		70	100			Ω		
RON VS. VS	Ali	ON		20				%	$-10 \text{ V} \le \text{V}_{\text{S}} \le +10 \text{ V}, \text{ I}_{\text{S}} = 1.0 \text{ mA}$	
ΔR _{ON}				<u> </u>						
	Ali	ON		+0.5				%∕°C	V _S = 0, I _S = 1.0 mA	
RON Mismatch Between Switches	All	ON		1				%		
RON Mismatch Between Switches vs. Temperature		ON		0.01				%/°C		
_	Ј, К	OFF		0.5	5		500	nA		
IS	S, T	OFF		0.2	3		200	nA	$-10 V \le V_{S} \le +10 V$	
_	Ј, К			1.5	15		1500	пA	and	
IOUT	S, T			0.6	9		600	nA	$-10 V \le V_{OUT} \le +10 V$	
IOUT – IS	All				20			nA	V _D = 0	
DIGITAL CONTROL										
	Ali	1	1				0.8	v		
V _{INL}	J, S		<u> </u>			3.0		v		
VINH Note 1	,, 5 К, Т			1		2.4		v		
IINL or INH	All			10			<u> </u>	nA		
INL OF INH	J, K	ł					100 тур	nA		
	5, T						1 typ	μA		
C _{IN}	All	<u> </u>	\vdash	5				pF		
			<u> </u>				<u> </u>			
DYNAMIC										
CHARACTERISTICS		1	ł			1				
^t Transition	All		<u> </u>	1.2			ļ	μs		
C _S	All	ON		28				pF		
CS	All	OFF		8			1	pF		
COUT	All	-	1	28			1	pF		
C _S -OUT	All	OFF	l .	0.5				pF		
CSS Between Switches	All	-	ļ	0.5				pF		
COUT-OUT	All	- 1	ł	0.5				pF		
Between Switches			<u> </u>							
POWER SUPPLY										
IDD				1	100	}	1	μA	All Digital Inputs Low	
I _{SS}	· · · · ·			1	100			μA		
I _{DD}				0.15	0.5		1	mA	All Digital Inputs High	
ISS			L	1	100		<u> </u>	μA		
PRICE (1-49)						2010 2020				
	AD7512JN			8	.00			s		
	AD7512JD			13	.00			s		
	AD7512KN			9	.00)			s	ł	
	AD7512KD			15	.00			s		
	AD7512SD	2		22	.00			s	· · ·	
	AD7512TD			24	.00			s		

NOTES:

A pullup resistor, typically 1-2 kΩ, is required to make the AD7512J and AD7512S compatible with TTL/DTL levels. The maximum value is determined by the output leakage current of the driver gate when in the high state.
 Specifications subject to change without notice.

Complete Log Ratio Module

PRELIMINARY TECHNICAL DATA

FEATURES

Complete Log Ratio Module Provides Log Ratio of Current Provides Log Ratio of Voltage Dynamic Range of 7 Decades of Ratio

APPLICATIONS

Log Ratio or Antilog Ratio of Voltages Log Ratio or Antilog Ratio of Currents Absorbance Measurements (see Figure 2)

$$R \approx \left(\frac{15k\Omega}{V}\right) \ K_{DES}$$

where R represents the total feedback resistance of A_3 , and K_{DES} is the desired scale factor.

Figure 1. Functional Block Diagram of Model 756

VOLTAGE LOG RATIO

The principle of operation for voltage log ratio is identical to that of current log ratio after the voltage signal has been converted to a current. To accomplish this conversion, an external resistor is attached from the voltage signal to the appropriate input current terminal of the 756. Input currents are then determined by:

$$I_{sig} = \frac{e_1}{R_1}$$
, $I_{ref} = \frac{e_2}{R_2}$

 rate
 Route 1 Industrial Park; P.O. Box 280; Norwood, Mass. 02062

 vices
 Tel: 617/329-4700
 TWX: 710/394-6577

 hird
 West Coast
 Tel: 213/595-1783

 ices.
 Mid-West
 Tel: 312/297-8710

GENERAL DESCRIPTION

Model 756 is a complete temperature compensated DC log ratio module, containing two channels for processing input variables. Channel 1 features a high quality FET amplifier with bias current of only 10pA. Using this input, signals spanning 4 decades can be processed with less than 1% error. By applying signals spanning up to 3 decades to channel 2, overall performance of 1% can be achieved for ratios covering a dynamic range of 10 million to 1 (7 decades).

Designed primarily for photometer applications, model 756 replaces two log modules, a subtractor, and associated circuitry. The signal sources for these applications are usually photo diodes which should be operated in the zero-volt mode (short circuit current). When connected as shown in Figure 2, the summing junctions provide virtual grounds, thereby forcing the input currents to be the short circuit current of the photo diodes.

PRINCIPLES OF OPERATION CURRENT LOG RATIO

Current log ratio is accomplished by model 756 when two currents, I_{sig} and I_{ref} , are applied directly to the input terminals (see Figure 1). The two log amps process these signals providing voltages which are proportional to the log of their respective inputs. These voltages are then subtracted and applied to an output amplifier. The scale factor, when connected as shown, is 1V/dec. However, other scale factors may be achieved by using an external/feedback resistor for A₃ instead of the internal $15k\Omega$. The governing equation for this optional adjustment is:

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

SPECIFICATIONS (typical at +25°C and ±15V unless otherwise noted)

Current Log Ratio $e_0 = -K \log \frac{i_1}{i_2}$, $i_1 = sig$ $i_2 = i_2 = ref$ Transfer Equation Transfer Equation including Error Terms Voltage Log Ratio Transfer Equation $\frac{R_1}{c_2 - E_{os2}}$ c₀ = - K log Transfer Equation including Error Terms Value Parameter Signal Current, i1 Reference Current, i2 Log Conformity² Scale Factor, K1,3 Bias Current, Ib1 Bias Current, 1b2 Offset Voltage, Eos1 3 Offset Voltage, Eos2 Output Offset, Eos3 Small Signal Response ft im 1kHz 1nA 1µA 8kHz 25kHz 100µA Slew Rate iin (decreasing) time im (increasing) time 10nA to 1nA 200µs InA to 10nA 70µs 50µs 100nA to 10nA 10nA to 100nA 25µs 1µA to 100nA 25µs 100nA to 1µA 25µs 1µA to 100µA 100µA to 1µA 20µs 20µs Noise in 10kHz B.W. V_n, INPUT 1 3µV rms Vn, INPUT 2 3µV rms In, INPUT 1 0.1pA rms In, INPUT 2 20pA rms Rated Output ±10V at 5mA Log Mode Antilog Mode ±10V at 4mA Power Quiescent Current 3mA at ±15V Recommended Supply Model 915⁴ 54dB PSRR 1.5" x 1.5" x 0.4" Package Size Price (1-9) \$75 (10-24) \$65 * Positive for positive inputs (N type), negative for negative inputs (P type).

² The log conformity specification is referred to input (R.T.I.). Note: 1% error R.T.I. is equivalent to 4.3mV of error at output for K = 1V. ³Externally trimmable.

⁶Model 915 is a 0.1% regulated dual 15V supply at 25mA. 1-9 price is \$23. For higher current capability consider models 904 (50mA), 902 (100mA) or 920 at 200mA.

Specifications subject to change without notice.

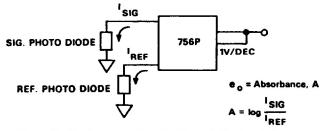
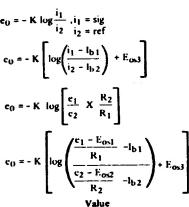
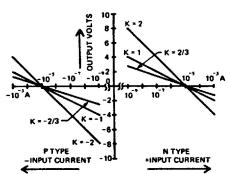
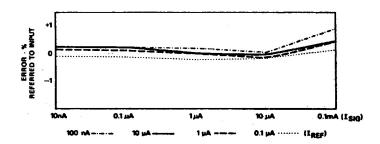
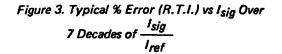
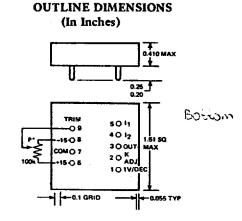




Figure 2. Photometry Application of Model 756

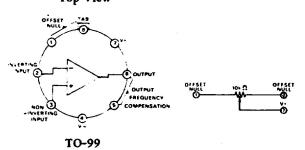



10nA to 100µA (4 decades) 100nA to 100µA (3 decades) ±0.5% (2 decades, is constant) ±1.0% (4 decades, i2 constant) 1V ±1% ±0.04%/°C 10pA, doubles/10°C 10nA, max, ±1%/°C ±1mV, max, 25µV/°C 0.5 mV, max, $30 \mu \text{V/}^{\circ}\text{C}$ max ±10mV, max, 85µV/°C


TRANSFER CURVES

Plot of output voltage vs. input current for Model 756 connected in log mode and I ref = 10μ A. To use the same curve for input voltage, calculate in as e1/R1 (see Figure 1).

PIN VIEW


Pins: 0.040 +0.002 dia. spherical radius on ends, half-hard brass, gold plated per QQ-B-626.

Mating Socket AC1039 @ \$3.00 *Ext 100k pot available from ADI Model #79PR100K at \$3.00

LOW DRIFT, LOW NOISE OP AMP PIN CONFIGURATION AD504

ENERAL DESCRIPTION

⇒ AD504J, AD504K, AD504L, and AD504M are moderately d operational amplifiers which combine ultra-low drift and noise and extremely high gain with the frequency response and slew rate of general purpose I.C. op amps. A new double integrator circuit concept combined with a precise thermallybalanced layout achieves maximum nulled offset drift below $.5\mu V/^{\circ}C$, max input noise voltage of $0.6\mu V$ (p-p), and mininum gain of 10^{6} . Unity gain small signal bandwidth is 300kHz and the slew rate is $1.2V/\mu$ sec at a gain of 10. The amplifier is externally compensated for unity gain with a single 390pF caacitor; no compensation is required for gains above 500. The AD504 has fully protected inputs, which permit differential input voltages of up to $\pm V_S$ without voltage gain or bias current degradation due to reverse breakdown. The output is also proPIN CONFIGURATION Top View

tected from short circuits to ground and/or either supply voltage, and is capable of driving 1000pF of load capacitance. All models are specified for operation over the 0 to +70°C temperature range, and are supplied in the TO-99 can package.

MODEL	AD504J	AD504K	AD504L	AD504M
OPEN LOOP GAIN				
$V_{os} = \pm 10V, R_L \ge 2k\Omega$ @ T _A = 0°C to +70°C	250,000 min 125,000 min	500,000 min 250,000 min	10 ⁶ min 500,000 min	10 ⁶ min 500,000 min
	123,000 min	230,000 min	500,000 min	300,000 min
OUTPUT CHARACTERISTICS			-	-
Voltage (a) $R_L \ge 2k\Omega$, $T_A = 0^{\circ}C$ to $+70^{\circ}C$	1000pF			
Load Capacitance Output Current	10mA min	•	•	
Short Circuit Current	25mA	•	•	•
FREQUENCY RESPONSE			»	
Unity Gain, Small Signal, C _c = 390pF	300kHz	•	•	•
Full Power Response, C _c = 390pF	1.5kHz	•	•	•
Slew Rate, Unity Gain, $C_c = 390 pF$	0.12V/µsec	٠	•	•
INPUT OFFSET VOLTAGE				
Initial Offset, $R_S \le 10k\Omega$	2.5mV max	1.5mV max	0.5mV max	0.5mV max
vs. Temp., $T_A = 0^\circ C$ to +70°C, V_{os} nulled	5.0µV/°C max	3.0µV/°C max	1.0µV/°C max	0.5µV/°C max
$T_{\rm A} = 0^{\circ} {\rm C} \text{ to } +70^{\circ} {\rm C},$				
Vos unnulled (Note 1)	10µV/°C max	5.0µV/°C max	2.0µV/°C max	1.0µV/°C max
vs. Supply	25µV/V max	15µV/V max	10µV/V max	10µV/V max
P T _A = 0°C to +70°C	40µ√/V	25µV/V max	$15\mu V/V max$	15µV/V max
vs. Time	20µ√/mo	15µV/mo	10µV/mo	10µV/mo
INPUT OFFSET CURRENT				
@ T _A = +25°C	40nA max	15nA max	10nA max	10nA max
INPUT BIAS CURRENT				
Initial	200nA max	100nA max	80nA max	80nA max
$\mathbf{P} \mathbf{T}_{\mathbf{A}} = 0^{\circ} \mathbf{C}$ to +70°C	300nA max	150nA max	100nA max	100nA max
vs. Temp., $T_A = 0^{\circ}C$ to +70°C	300pA/ [*] C	250pA/°C	200pA/°C	200pA/°C
INPUT IMPEDANCE				
Differential	0.5MΩ	1.0MΩ	1.3MΩ	1.3ΜΩ
Common Mode	100MΩ 4pF	•	•	6
INPUT NOISE				
Voltage, 0.1Hz to 10Hz	1.0μV (p-p)	•	•	0.6µV (p-p) max
f = 100Hz	$10nV/\sqrt{Hz}$ (rms)			10nV/VHz (rms) max
f = 1kHz	8nV/VHz (rms)		•	9nV/VHz (rms) max
Current, $f = 10Hz$	$1.0pA/\sqrt{Hz}$ (rms)	•		1.3pA/VHz (rms) max 0.6pA/VHz (rms) max
f = 100Hz f = 1kHz	0.6pA/√Hz (rms) 0.5pA/√Hz (rms)			$0.3pA/\sqrt{Hz}$ (rms) max
	0.5pA/\ n2 (ms)			0.5pA/V nz (ms) max
INPUT VOLTAGE RANGE Differential or Common Mode, max safe	±Vs	•	•	•
Common Mode Rejection, $V_{in} = \pm 10V$	94dB min	100dB min	110dB min	110dB min
POWER SUPPLY				······································
Rated Performance	±15V-	•	•	•
Operating	±(5 to 18)V		٠	•
Current, Quiescent	±4.0mA max	±3.0mA max	±3.0mA max	±3.0mA max
TEMPERATURE RANGE				
Operating, Rated Performance	0 to +70°C	•	•	•
Storage	-65°C to +150°C	•	•	•
PRICE				
(1-24)	\$11.20	\$19.80	\$28.00	\$30.00
(25-99)	9.55	16.80	21.80	23.80
(100–999) NOTES:	8.40	15.30	20.40	22.00

Lowest Cost High Accuracy IC Op Amps

FEATURES

Precision Input Characteristics Low Vos: 0.5mV max (L) Low V_{os} Drift: $5\mu V/^{\circ}C$ max (L) Low Ib: 50nA max (L) Low Ios: 5nA max (L) High CMRR: 90dB min (K, L) **High Output Capability** $A_{ol} = 25,000 \text{ min}, 1k\Omega \text{ load } (J, S)$ T_{min} to T_{max} $V_0 = \pm 10V \text{ min}, 1k\Omega \text{ load } (J, S)$ Low Cost (100 pieces) AD741J \$1.25 \$2.25 AD741K AD741L \$6.00 AD741S \$3.30

GENERAL DESCRIPTION

The Analog Devices AD741J, AD741K, AD741L and AD741S are specially tested and selected versions of the popular AD741 operational amplifier. Improved processing and additional electrical testing guarantee the user precision performance at a very low cost. The AD741J, K and L substantially increase overall accuracy over the standard AD741C by providing maximum limits on offset voltage drift. and significantly reducing the errors due to offset voltage, bias current, offset current, voltage gain, power supply rejection, and common mode rejection (see Error Analysis). For example, the AD741L features maximum offset voltage drift of $5\mu V/^{\circ}C$, offset voltage of 0.5mV max, offset current of 5nA max, bias current of 50nA max, and a CMRR of 90dB min. The AD741S offers guaranteed performance over the extended temperature range of -55°C to +125°C, with max offset voltage drift of $15\mu V/^{\circ}C$, max offset voltage of 4mV, max offset current of 25nA, and a minimum CMRR of 80dB.

HIGH OUTPUT CAPABILITY

Both the AD741J and AD741S offer the user the additional advantages of high guaranteed output current and gain at low values of load impedance. The AD741J guarantees a minimum gain of 25,000, swinging $\pm 10V$ into a $1k\Omega$ load from 0°C to +70°C. The AD741S guarantees a minimum gain of 25,000, swinging $\pm 10V$ into a $1k\Omega$ load from -55°Cto +125°C.

All devices feature full short circuit protection, high gain, high common mode range, and internal compensation. The AD741J, K and L are specified for operation from 0°C to +70°C, and are available in both the TO-99 and mini-DIP packages. The AD741S is specified for operation from -55°C to +125°C, and is available in the TO-99 package.

GUARANTEED ACCURACY

The vastly improved performance of the AD741J, AD741K, AD741L and AD741S provides the user with an ideal choice when precision is needed and economy is a necessity. An error budget is calculated for all versions of the AD741 (see page 3); it is obvious that these selected versions offer substantial improvements over the industry-standard AD741C and AD741. A typical circuit configuration (see Figure 1) is assumed, and the various errors are computed using maximum values over the full operating temperature range of the devices. The results indicate a factor of 8 improvement in accuracy of the AD741L over the AD741C, a factor of 5 improvement using the AD741K, and a factor of 2.5 improvement using the AD741J. The AD741S. similarly, achieves a factor of 3.5 improvement over the standard AD741. Note that the total error has been determined as a sum of component errors, while in actuality, the total error will be much less. Also, while the circuit used for the error analysis is only one of a multitude of possible applications, it effectively demonstrates the great improvement in overall 741 accuracy achievable at relatively low cost with the AD741J, K, L or S.

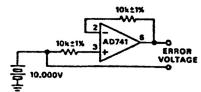


Figure 1. Error Budget Analysis Circuit

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

Route 1 Industrial Park; P.O. Box 280; Norwood, Mass. 02062 Tel: 617/329-4700 TWX: 710/394-6577

SPECIFICATIONS (typical @ +25°C and ±15VDC, unless otherwise specified)

MODEL	AD741J	AD741K	AD741L	AD741S
OPEN LOOP GAIN	······································			
$R_L = 1k\Omega, V_0 = \pm 10V$	50,000 min (200,000 typ)		· .	•
$R_L = 2k\Omega, V_0 = \pm 10V$		50,000 min (200,000 typ)	50,000 min (200,000 typ)	
Over Temp Range, Tmin to Tmax,				
same loads as above	25,000 min	•	•	•
OUTPUT CHARACTERISTICS		,		
Voltage @ $R_L = 1k\Omega$, T_{min} to T_{max}	±10V min (±13V typ)			•
Voltage @ $R_L = 2k\Omega$, T_{min} to T_{max}		±10V min (±13V typ)	±10V min (±13V typ)	
Short Circuit Current	25mA	•	•	•
FREQUENCY RESPONSE				
Unity Gain, Small Signal	1MHz	2 .	•	•
Full Power Response	10kHz	•	•	•
Slew Rate, Unity Gain	0.5V/µsec	•	•	•
INPUT OFFSET VOLTAGE				
Initial, $R_S \le 10 k\Omega$ (adjustable to zero)	3mV max (1mV typ)	2mV max (0.5mV typ)	0.5mV max (0.2mV typ)	2mV max (1mV typ)
T _{min} to T _{max}	4mV max	3mV max	1mV max	•
Avg vs Temperature (untrimmed)	20µV/°C max	$15\mu V/^{\circ}C max (6\mu V/^{\circ}C typ)$	$5\mu V/^{\circ}C max (2\mu V/^{\circ}C typ)$	15μV/°C max (6μV/°C typ)
vs Supply, Tmin to Tmax	100μV/V max (30μV/V typ)	$15\mu V/V \max(5\mu V/V typ)$	15µV/V max (5µV/V typ)	•
INPUT OFFSET CURRENT				
Initial	50nA max (5nA typ)	10nA max (2nA typ)	5nA max (2nA typ)	10nA max (2nA typ)
T _{min} to T _{max}	100nA max	15nA max	10nA max	25nA max
Avg vs Temperature	0.1nA/°C	$0.2n\Lambda/^{\circ}C \max (0.02nA/^{\circ}C typ)$	0.1nA/°C max (0.02nA/°C typ)	0.25nA/°C max (0.1nA/°C typ)
INPUT BIAS CURRENT				
Initial	200nA max (40nA typ)	75nA max (30nA typ)	50nA max (30nA typ)	75nA max (30nA typ)
T _{min} to T _{max}	400nA max	120nA max	100nA max	250nA max
Avg vs Temperature	0.6nA/°C	1.5nA/°C max (0.6nA/°C typ)	1nA/°C max (0.6nA/°C typ)	2nA/°C max (0.6nA/°C typ)
INPUT IMPEDANCE				
Differential	1ΜΩ	2ΜΩ	2ΜΩ	2ΜΩ
INPUT VOLTAGE RANGE (Note 1)				
Differential, max safe	±30V	•	•	•
Common Mode, max safe	±15V	•	•	•
Common Mode Rejection,	-101			
$R_S \le 10k\Omega$, T_{min} to T_{max} , $V_{in} = \pm 12V$	80dB min (90dB typ)	90dB min (100dB typ)	90dB min (100dB typ)	•
POWER SUPPLY			,	
Rated Performance	±15V	•	•	• ·
Operating	±(5 to 18)V	±(5 to 22)V	±(5 to 22)V	±(5 to 22)V
Current, Quiescent	3.3mA max (2.0mA typ)	2.8mA max (1.7mA typ)	2.8mA max (1.7mA typ)	\pm (5 to 22)V 2.8mA max (2.0mA typ)
TEMPERATURE RANGE			2.01125 max (1./mrs typ/	2.0ma max (2.0ma typ)
Operating, Rated Performance	0°C to +70°C		•	
Storage	-65°C to +150°C	•	•	55°C to +125°C
				•

Note 1: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

*Specifications same as AD741J.

Specifications subject to change without notice.

OUTPUT CHARACTERISTICS

The AD741J and AD741S are specially selected for high output current capability. High efficiency output transistors, thermally balanced chip design and precise short circuit current control insure against gain degradation at high current levels and temperature extremes. The AD741J guarantees a minimum gain of 25,000, swinging $\pm 10V$ into a $1k\Omega$ load from 0°C to ± 70 °C. The AD741S guarantees minimum gain of 25,000, swinging $\pm 10V$ into a $1k\Omega$ load from ± 55 °C to ± 125 °C. The AD741K and AD741L are guaranteed with the standard $2k\Omega$ load.

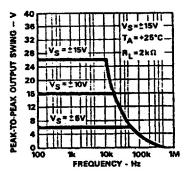


Figure 8. Output Voltage Swing vs. Frequency

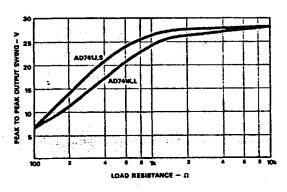


Figure 9. Output Voltage Swing vs. Load Resistance

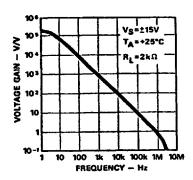
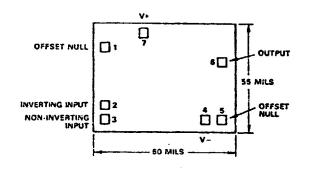
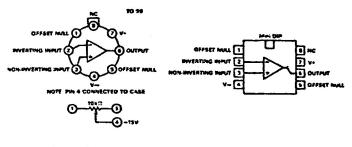
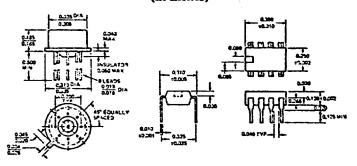



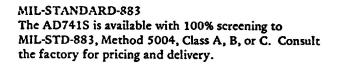
Figure 10. Open Loop Gain vs. Frequency


BONDING DIAGRAM

All versions of the AD741 are available in chip or wafer form, fully tested at +25°C. Because of the critical nature of using unpackaged devices, it is suggested that the factory be contacted for specific information regarding price, delivery and testing.

CONNECTION DIAGRAMS


(Top View)



(H package)

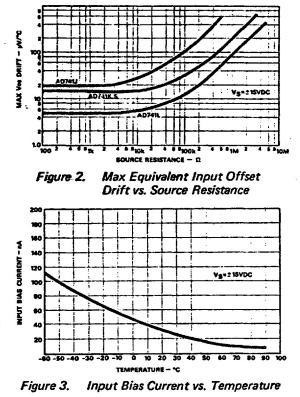
(N package)

PHYSICAL DIMENSIONS (In Inches)

ORDERING GUIDE

MODEĻ	TEMP. RANGE	ORDER NUMBER	PRICE (1-24)	PRICE (2599)	PRICE (100—999)
AD741J AD741K	0°C to +70°C 0°C to +70°C	AD741J* AD741K*	\$1.85 \$3.40	\$1.50 \$2.70	\$1.25 \$2.25
AD741L	0°C to +70°C	AD741L*	\$9.00	\$2.70 \$7.20	\$2.25 \$6.00
AD741S	-55°C to +125°C	AD741SH	\$4.95	\$4.00	\$3.30

*Add Package Type Letter; H = TO-99, N = Mini-DIP.


Tellenneshe

CODOD DUDCET ANALVEIC

	AD741J AD741K		1K	AD74	1L	AD741		AD7415				
PARAMETER	SPEC (0°C to +	ERROR 70°C)	SPEC	ERROR 70°C)	SPEC	ERROR 70°C)	SPEC (0°C to 4	ERROR	SPEC (-55°C to	ERROR +125°C)	SPEC (-55°C to	ERR +125°
Gain (Error = 10Vin/G)	15,000	660µV	25,000 ¹	400µV	25,000	400µV	25,000	400µV	25,000	400µV	25,0001	400µV
1 _b (Error = 1 _b x resistor mismatch)	800nA	160µV	400nA	80µV	120nA	24µV	100nA	20µV	1500nA	300µV	250nA	50µV
l _{os} (Error = l _{os} x 10kΩ)	300nA	3000µV	100nA	1000µV	15nA	150µV	10nA	100µV	500nA	5000µV	25nA	250µV
$\Delta V_{os} / \Delta T \ (Error = \Delta V_{os} / \Delta T \times \Delta T)$	25µV/°C²	1125µV	20μV/°C	900µV	15µV/°C	675µV	5µV∕°C	225µV	25µV/°C²	2500µV	15 <u>µV/</u> °C	1500µV
CMRR (Error = 10V/CMRR)	70dB	3300µV	80dB	1000µV	90dB	330µV	90dB	330µV	70d B	3300µV	80dB	1000µV
PSRR (assume a ±5% power supply variation)	150µV/V	450µV	100µV/V	300µV	15µV/V	45µV	15µV/V	45µV	150µV/V	450µV	100µV/V	300µV
TOTAL		8.7mV		3.7mV		1.6mV		1.1mV		12.0mV		3.5mV
PRICE (100 pieces)	\$1.00		\$1.25		\$2.25		\$6.00		\$2.00		\$3.30	

2

AD741J and AD741S...Open Loop Gain is guaranteed with a 1k Ω load. AD741C and AD741... $\Delta V_{os} / \Delta_T$ is not guaranteed (for complete specifications, contact the factory for data sheet).

104 8 **REJECTION RATIO** 70 -50 NODE V8=115VOC 34 COMMON 20 100 TH FREQUENCY - He 100% 10%

Figure 4. Common Mode Rejection vs. Frequency

INPUT CHARACTERISTICS

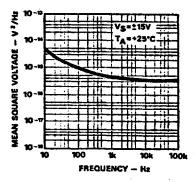
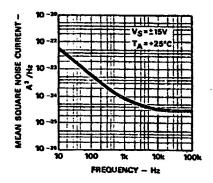



Figure 5. Input Noise Voltage vs. Frequency

Input Noise Current vs. Frequency Figure 6.

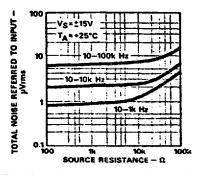


Figure 7. Broadband Noise vs. Source Resistance