GKE VERY LARGE ARRAY TECHNICAL REPORT

Note for VLA Technical Report #19:

Unofficial revision by GKB

date of revision unknown

P.O. Box O, Socorro, New Mexico 87801

OPERATED BY ASSOCIATED UNIVERSITIES, INC. UNDER CONTRACT WITH THE NATIONAL SCIENCE FOUNDATION Note for VLA Technical Report #19: Unofficial revision by GKB date of revision unknown

VLA TECHNICAL REPORT #19

MODULE F5

CONTROL INTERFACE MODULE MANUAL

Garey Barrell

September 1975

CONTENTS

- I. List of Related Documents
- II. Block Diagram
- III. Theory of Operation
- IV. Test and Troubleshooting
- V. Photographs
- VI. Logic Drawings
- VII. Bill of Materials
- VIII. Manufacturers Data

I. LIST OF RELATED DOCUMENTS

	Drawing Title	Number	REV.
1.	Panel, Front	C13170M63	
2.	Module Rear Panel	C13170M66	
3.	Modification, Rail		
4.	Right and Left Side Plates	B13050M18	
5.	Guides	B13050M4	
6.	Cover, Perforated	C13050M22-1	
7.	Spacer Rail		
8.	Unit Wire Wrap Field Dim. & Notation	C13170P3	
9.	Front Panel Wiring Detail		
10.	Module Block Diagram	C13170L10	
11.	Serial to Parallel & Control	A13170L4	
12.	CAL/REF Control	A13170L1	
13.	Command Word 320	B13170L5	B
14.	Command Word 321	B13170L6	
15.	Command Word 322	B13170L7	
16.	Command Word 323	B13170L8	
17.	Analog Multiplexer	C13170L9	
18.	Computer-Manual Control	A13170L2	
19.	Noise Temperature Monitor	A13170L3	
20.	DIGITAL MONITOR	C13170L11	A

III. THEORY OF OPERATION

The Control Interface module, F5, provides for both local (at the front end rack) and remote (at the central computer) control of the operation of the front end. Additionally, a series of analog AND DIGITAL monitor points within the front end may be remotely selected and displayed by the central computer. This module contains the circuitry to interface between the front end and the VLA monitor and control system.

Description of the monitor and control system, for the purposes of this manual, will be limited to the input/output interface between the Data Set and Control Interface module installed in the individual front end rack.

The data set module includes a variety of digital and analog circuitry to allow both digital and analog monitoring as well as digital control of the associated electronics. There are currently no requirements in this rack for digital monitoring capabilities, therefore only the analog monitor and digital control facilities are employed.

Computer data for the controls is presented to the Control Interface module in the form of a serial string of 24 bit digital words. Two control bits, CLKO \emptyset and STRO \emptyset are also provided. The remaining outputs from the data set are the four sub multiplex address bits, SMA \emptyset , SMA 1, SMA 2, and SMA 3. The SMA bits perform a dual function, enabling selection of a specific 24 bit digital control word as well as selecting a particular analog monitor point.

1. Serial to Parallel Converter and Control (DWG #A13170L4)

Control data from the data set is applied to this circuit and operated upon as follows. The digital input string (DIGO \emptyset) is inverted, buffered, and applied to the serial input of a 16 bit shift register. The data is clocked into the register via the CLKO \emptyset signal from the data set. Since only 16 of the 24 available bits are employed in this particular module, bit \emptyset (LSB) appears at parallel output B \emptyset and bit 16 appears at B15. Bits 17 through 24 (MSB) are shifted through and lost.

3-1

The sub multiplex address signals, SMA \emptyset - SMA3, are inverted and buffered and applied directly to the analog multiplexers. A fifth control is developed, SMA 3, and is used to inhibit unselected analog multiplexers. This data is also converted to a one-of-four word enable by a decoder and buffer under control of strobe signal STRO \emptyset . The enable signal is a 2.5µ sec. wide logic 1 coincident with the strobe pulse.

2. Command Word Latches and Controls (DWGS #A13170L5, L6, L7 & L8)

There are four essentially identical word latches in this module. The description that follows will be limited primarily to word 321 which contains a representative sample of circuitry contained in all four words.

Parallel data bits B Ø through B 15 are continuously applied to the inputs of a 16 bit latch consisting of four 7475¹IC's. The command word enable line is at a logic Ø normally until the SMA code for word 321 is received coincident with a STRO Ø pulse. When the command word enable line goes to a logic 1, the latch "looks" at the 16 input lines, and on the falling edge of this pulse, "holds" the data present at that time. This data is then held by the latch until the next command word enable is received. The timing relationships of these signals are shown in Figure 1. THE DATA SET MANUAL, VLA TECHNICAL REPORT NO. 30, TIMING DIAGRAM 8

The 16 bits of latched data are then presented to the inputs of a 2-in 16 bit digital selector consisting of four 74157 IC's. Inversion of data can be accomplished at this point by selection of either the inverting or non-inverting data outputs from the 7475 chips. The other set of inputs are connected to front panel switches to provide for manual control of all functions. Selection of manual (module front panel switches) or computer control is determined by the computer-manual switch on the module front panel (DWG. Al3170L2). The mode selected is displayed by two LED indicators on either side of this switch. Indication of the mode selected is also fed to the monitor system to allow the computer operator to determine that the switch has not been inadvertantly left in the manual position by service personnel. The 16 outputs of the digital selectors are then connected to appropriate interface circuits for the function to be controlled. In some cases no special signal conditioning is required and the TTL line is used directly. The 75461 is a dual open-collector output capable of sinking up to 300 MA and has a VCBO of 40V. The 75326 used as a coax switch driver is a quad open collector driver capable of sinking up to 600 MA and has a VCEO of 25V. Internal clamping diodes are included on this chip. The 75450 is a dual power driver capable of sinking 300 MA and has a VCEO of 30V. In this chip all three of the leads for each power transistor are brought out of the package. This feature is used to drive an external power transistor to sink the 1.0 amp current required to operate the LO waveguide swtich.

3. Calibration/Reference Control (DWG #A13170L1)

基金局稳定的合同提高资金。 放出 扬达 计约

The CAL/REF control is a special driver circuit designed to select between either an internally generated 9.6 Hz reference signal or an external reference of 1 Hz to 100 kHz. The desired reference source is selected by either grounding or floating pin J1-36. The internal reference is generated by a 555 IC with the period determined by the R-C network contained in dip header C5. Exact rate is trimmed by the 10K potentiometer. The rectangular waveform is then divided by four and made symmetrical by the 7474 IC, and applied to one input of digital selector IC 74157. The output of this selector connects to the input of a second digital selector which is controlled by the computer-manual bus and provides the selected reference or the computer reference to the reference bus, J1-J, and to the calibration control gates in the 7410 IC. The calibration control gates enable the operator to select either CAL. ON, CAL. OFF, or CAL. AUTO from the front panel or from the computer. The internal/external reference may only be selected while operating under manual control. The CAL signal is converted to a 0-15 volt square wave in dip header D2. This voltage then drives the noise diodes directly.

6. DIGITAL MONITOR (DWG, #C13170111)

THIS CRECUIT CONSISTS OF FOUR 16-BIT DIGITAL LATCHEZ AND THER ASSOCIATED CONTROL LOGIC. PEACH SIGNAL TO BE MONITORED IS APPLIED TO A LATCH INPUT IN ONE OF FOUR DIGITAL WORD GROUPS, A WORD CONSISTS OF TWO 74165 PARALLEZ -LOAD 8-BIT SHIFT REGISTER ICS. THE MONITOR WORD ENABLE LINE 15 AT A LOGIC 1' LEVE UNTIL THE SMA CODE FOR WORD 220 221, 222, OR 223 15 RECEVED COINCIDENT WITH A STRI-1 PULSE. WHEN THIS OCCURS, THE DATA PRESENT AT THE MONITOR POINTS IS LATCHED INTO THE SMIFT REGISTER AND A 24 PULSE CLEI-1 PULSE TRAIN SHIFTS THE DATA OUT IN SERIAL FORM VIA DIGI-1 THE TIMING RELATIONSHIPS OF TRAESE SIGNALS ARE SHOWN IN THE DATA SET MANUAL, VLA TECHNICAL REPORT NO. 30 TIMING DIAGRAM 9-

4. Analog Monitor Multiplexers (DWG #C13170L9)

The analog multiplexers are switched statically by the sub multiplexer address lines. The data set sequentially samples ALGI \emptyset through ALGI 5 and digitizes the voltage being monitored. Dip headers are included to provide for RC filtering of each input line. The input limitations are \emptyset to + 10 vdc.

5. Noise Temperature Monitor (DWG #A13170L3)

The noise temperature monitor circuit is comprised of an Analog Devices multifunction module AD433J and an external scaling resistor? Frequency converter A outputs TOTAL POWER and SYNCHRONOUS DETECTOR are sampled and converted to a voltage related to system noise temperature. This voltage is mode available at a front panel test point "NTM" and can be converted to noise temperature by the following equation:

Tsys = $10 \times E_{o} \times Tcal$

IV. TEST AND TROUBLESHOOTING

The majority of the Control Interface module circuitry may be tested on the bench without computer facilities, by operating the module in the manual control mode and manipulating the front panel switches. Most of the output drivers are open collector pull-downs which may be used to control a simple LED - 150 ohm series resistor combination from the +5 volt supply. Outputs which require special testing conditions are described below.

1. LO Waveguide Switch Driver

This driver may be tested by connecting a 10 ohm 10 watt resistor between pins J4-BB and J4-AA. When the digiswitch labeled "AB- λ " is moved to position "2", the voltage measured from J4-AA to chassis must be less than 0.8 volts DC.

2. Cal Switch Drivers

The cal switch drivers are open collector pull-<u>ups</u> to the +15 volt supply. Both drivers are controlled by a common signal line. They may be tested by connecting a 680Ω resistor in series with an LED to ground from pins J3-27 and J3-28. Both LED's should then be on, off, or flashing depending upon the position of the front panel switch.

3. LO Frequency Set

The LO frequency set drivers are TTL outputs controlled by the front panel digiswitches. If four LED-resistor combinations are connected simultaneously, position " \emptyset " of each switch will turn on all four LED's. Position "1" will cause LED "1" to go off, position "2" will turn off LED "2" and so on in a <u>BINARY</u> fashion.

4. Upconverter Control Drivers

The upconverter control drivers are essentially the same as the LO frequency set drivers but are only operative for the first four positions of each switch.

The analog monitor portion of the module circuitry may be tested statically by applying TTL level control signals to the four "SMA" lines. The "SMA" inputs are wired for negative, (low true), logic. Therefore TTL "l's" on all four inputs select switch position 1 on each of the six analog multiplexers. The checkout procedure, then, consists of applying a known

4-1

voltage in the range of 0 to $\pm 10V$ dC to an individual monitor input, setting in the proper SMA binary code, and measuring the output voltage appearing at the appropriate multiplexer output.

The internal reference signal period is controlled by potentiometer R2, located on dip header C5. The period should be set for 100 ms, as monitored at Pin J1-J.

A special pin numbering scheme is employed in this module. The analog monitor card, Group A, consists of 9 vertical rows marked A through J. Each row is then numbered 1 through 50 from top to bottom. On this card, each device will have its Pin 1 location described by that matrix. For example, analog IC AAØ1 is located with Pin 1 on Card A, Row A, and Socket 1. The other pin numbers of this IC are then counted in normal fashion around the package. All Group A pin number references in schematics and text are made to package pin numbers.

The other cards in this module consist of a series of 16 pin groups numbered 1 through 30. All IC's are identified by their location on the card, i.e., IC Cl0 is located on Card C, position 10. Pin 1 of each IC is always plugged into pin 1 of each socket. The 16 pin IC package and card numbers are identical but 8 and 14 pin packages require a modified numbering system. For a 14 pin package, pins 1 through 7 are as marked but pin 8 of the IC mates with pin 10 on the card. All Group B, C, and D pin number references in schematics and text are made to the <u>CARD</u> numbers rather than the package numbers.

NOTE

FIGURE 2

CAL/REF Frequency Adjust R2

-

.

.

.

BILL OF I. PERIAL

NATIONAL RADIO ASTRONOMY OBSERVATORY

ELECTRICAL	MECHANICAL B	ОМ #	REV	DATE	PAGE	1 OF 1
MODULE # F5 NAME	CONTROL INTERFACE	DWG #	SUB ASME	3		DWG #
SCHEMATIC DWG #	LOCATION FROM	TENO QUA/SY	STEM PREP	PARED BY G	KB. APPI	ROVED

ITEM #	REF DESIG	MANUFACTURER	MFG PART #	DESCRIPTION	TOTAL QUA	
1		NRAO		FRONT PANEL ASSEMBLY	1	
2		NRAO		CARD ASSEMBLY	1	
3		NRAO		REAR PANEL ASSEMBLY	1	
4		NRAO	B13050M18	RIGHT & LEFT SIDE PLATES	R	
5		NRAO	C13050M22-1	COVER PERFORATED	6	
6		NRAO	B13050M4	GUIDES	4	

			BILL OF . JRIAL						١
		NATIONAL	RADIO ASTRONOMY O	BSERVATORY					
ELECTRICAL	MECHANICAL	BOM #	REV	DATE	PAGE	<u>.</u>	07 <u> </u>	1	
MODULE # <u>F5</u>	NAME CONTROL INTE	REACE DING	# s	UB ASMB FRONT	OANEL	DWG #			
SCHEMATIC DWG # _	LOCATION	FRONT END	QUA/SYSTEM	PREPARED BY	<u>SKB</u> AP	PROVED	,		`

ITEM #	REF DESIG	MANUFACTURER	MFG PART #	DESCRIPTION	TOTAL QUA	
1		NRAO	C13170M63	FRONT PANEL BAR SHOL	/	5.00
2		JET	JMT 123	SWITCH, TOGGLE	19	.90
3		11	ISI TAT	SWITCH TOGGLE		1.85
4		U /	JMT 223	SWITCH, TOGGLE)	2.15
5		DIGITRAN	23011	SWITCH DIGITAL (6X)		22.00
6		μ[- ρ	5082-4860	DIODE, LED RED)	03.
87		H F	5082-4955	DIODE, LED GRN	1	. 80
8		E.F. JOMORTO	105-1050-001	TEST JACK (BIDE)	1	.30
9		R-N	WJC-163D-29T		B	500
10		SOUTHED	41-10-204-10	CAPTIVE FASTENER	4	
· · · · · · · · · · · · · · · · · · ·						
			x ¹			
haven strange of the second second	**************************************					, o, <u>oo</u>

,

BILL OF 1 ERIAL

NATIONAL RADIO ASTRONOMY OBSERVATORY

ELECTRICAL] MECHANICAL	вом #	an a	REV		DATE		PAGE	1	OF	3
MODULE # F5	NAME CO	NTROL INTE	RFACE D	WG #		SUB ASM	B WIRE	WRAP	CARDS	DWG #		
COURMANTO DUC #		ТОСАЩТОК			VCTTEM	- 1	ם השמות	GKT	۲ ۲	DDDOVED	•	

ITEM #	REF DESIG	MANUFACTURER	MFG PART #	DESCRIPTION	TOTAL QUA	
1		NRAO		SUPPORT BAR, MODIFIED	P	
y		NRAO		SPACER RAIL	2	

BILL	OF	M	ERIAL	
------	----	---	-------	--

		(b) A state of the state of	the second s
		S CONCOLLAR	OBSERVATORY
ΜΔΨΡΤΓΙΝΙΔΕ.	Panin	ASTRONOMY	OBSERVATORY
NUTTONUT	TUDTO	TOTIONT	

ELECTRICAL MECHANICAL BOM # ____ REV ___ DATE ___ PAGE 3 OF 3

ITEM #	REF DESIG	MANUFACTURER	MFG PART #	DESCRIPTION	total Qua	
16		TI	75450	ιc	tan ang ang ang ang ang ang ang ang ang a	1.03
17		TI	75461		7	.89
18		R-N	MPB-163	16 PIN PLATFORM	18	_ 22
19		BECKMAN	899-1-R-2.0K	2K~ RESISTOR PACKAGE		2.00
2.0		MOTOROLA	2N4238	TRANSISTOR, SILICON, NAN	1	1.55
21) /	1N4004	DIODE, SILICON	(.60
22		$\sum_{i=1}^{n-1} \left[\left($	2N3906	TRANSISTAR, SILICON, PNP	2	.29
2:		AB	RCOTGF202J	RESISTOR, 2K, 14, 5%	4	,04
24		DALE		RESISTOR, 165× 170	1	,60
3.)		TI	7407	1C	<u> </u>	.60
26		AD	4335	MULTITURCTION MOTULE	1	75-
27		R-N	PS-50-6-119-6	W/W SOCKETS	11	
			2			

ating			BILL OF " LR	IAL			~	
		NATIONAL R	ADIO ASTRONOM	Y OBSERVATORY				
ELECTRICAL	MECHANICAL	BOM #	REV	DATE		PAGE 2	OF 3	
MODULE # <u>FS</u> NI	ME CONTROL INTE	FACE DWG #		SUB ASMB WIR	EWRAP	CARDS DWG #		
SCHEMATIC DWG #	LOCATION		QUA/SYSTEM	PREPARED E	SY GKB	APPROVED		

ITEM #	REF DESIG	MANUFACTURER	MFG PART #	DESCRIPTION	TOTAL QUA	
1		GARRY		16 PIN WIRE WRAP CARD	34	37.22
2		GARRY	•	UNIVERSAL WIRE WRAP CARD	1	45,00
N)		AD	A07501	ANNLOG MUX	3	2000
4		A D	AD7506	ANALOG MUX	1	28-
5		AD	A07507	ANALOG MUX	2	28-
6		SIGNETICS	NE 555	TIMER	1	.75
7		TT	7404	10		.24
8			7410		1	.20
9			7428			.40
10			74514			.29
11			7475.		16	.48
12			74157		18	.83
13		TI	74164		2	1.20
14		SIGNETICS	8250A		3	2.26
15		TI	75326		2	2.75

BILL OF 1 ERIAL

NATIONAL RADIO ASTRONOMY OBSERVATORY

ELECTRICAL	MEC	HANICAL BOM	#	REV	DATE	PAGE	<u> 1 </u>	· <u> </u>
MODULE # $F5$	NAME CONTRO	DL INTERFACE	DWG #	SUB A	SMB <u>REAR</u>	PANEL	DWG #	
SCHEMATIC DWG #		LOCATION FRONT	END QUA/SY	STEM <u>1</u> P	REPARED BY	GKB APP	ROVED	

	ITEM #	REF DESIG	MANUFACTURER	MFG PART #	DESCRIPTION	total Qua	
	1		NRAO	C13170M66	MODULE REAR PANEL	1	
	A		AWb	204186-5	42 PIN CONNECTOR BLOCK		
	B			201358-3	50 PIN CONNECTOR BLOCK)	
	4			= 02394-2	42/50 PIN MODULE CONNECTOR HOOD	2	
	Ē			201357-3	34 PIN CONNECTOR BLOCK	2	
	6			202434-4	34 FIN MODULE CONNECTOR HOOD	2	
	γ			66460-6	WIRE WRAP CONNECTOR PINS	154	
	8			201143-5	COAXIAL CONNECTOR FINS	6	
	9			202514-1	GOLD GROUND PINS	4	
	10			200833-4	SILVER GUIDE PINS	4	
	11		AMP	203964-6	SILVER GUIDE SOCKETS	8	
ľ							
ľ							

TIMER

UPTION

1000

The NE/SE 555 monolithic timing circuit is a highly stable controller capable of producing accurate time delays, or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For a stable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output structure can source or sink up to 200mA or drive TTL circuits.

TURES

- . TIMING FROM MICROSECONDS THROUGH HOURS
- OPERATES IN BOTH ASTABLE AND MONOSTABLE
 MODES
- ADJUSTABLE DUTY CYCLE
- HIGH CURRENT OUTPUT CAN SOURCE OR SINK 200mA
- OUTPUT CAN DRIVE TTL
- TEMPERATURE STABILITY OF 0.005% PER °C
- . NORMALLY ON AND NORMALLY OFF OUTPUT

CATIONS

PRECISION TIMING PULSE GENERATION SEQUENTIAL TIMING TIME DELAY GENERATION PULSE WIDTH MODULATION PULSE POSITION MODULATION MISSING PULSE DETECTOR

DIAGRAM

LINEAR INTEGRATED CIRCUITS

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	an ag g		+18V	
Power Dissipation			600 mW	
Operating Temperature Range		A section		7
NE555		0°C	to +70 ⁰ C	
SE555		-55 ⁰ C t	o +125 ⁰ C	
Storage Temperature Range		-65 ⁰ C t	o +150 ⁰ C	
Lead Temperature (Soldering,	60 secon		+300°C	

LINEAR INTEGRATED CIRCUITS = 555

ELECTRICAL CHARACTERISTICS (TA = 25°C, VCC = +5V to +15 unless otherwise specified)

PARAMETER	TEST CONDITIONS	SE 555			NE 555			UNITS	
	1201 0000110003	MIN TYP		MAX	MIN	TYP	MAX	UNITS	
Supply Voltage		4.5		18	4.5		16	v	
Supply Current	V _{CC} = 5V RL = ∞	in in t	3	5		3	6	mA	
	VCC = 15V RL = 00		10	12		10	15	mA	
	Low State, Note 1			16, 199 (j					
Timing Error	RA, RB = 1KΩ to 100KΩ		1 1						
Initial Accuracy	C = 0.1 µF Note 2		0.5	2		1.1		%	
Drift with Temperature		1 :	30	100		50		ppm/ ⁰ C	
Drift with Supply Voltage			0.005	0.02		0.01	an gan i	%/Volt	
Threshold Voltage			2/3		1.1.1.1	2/3	1.11	X VCC	
Trigger Voltage	V _{CC} = 15V	4.8	5	5.2	1.1.1	5		v	
	V _{CC} = 5V	1.45	1.67	1.9	1.1	1.67		v	
Trigger Current			0.5			0.5		μA	
Reset Voltage		0.4	0.7	1.0	0.4	0.7	1.0	v	
Reset Current		1.1	0.1			0.1		mA	
Threshold Current	Note 3		0.1	.25		0.1	.25	μA	
Control Voltage Level	V _{CC} = 15V	9.6	10	10.4	9.0	10	11	v	
	V _{CC} = 5V	2.9	3.33	3.8	2.6	3.33	4	v	
Output Voltage Drop (low)	V _{CC} = 15V								
	ISINK = 10mA		0.1	0.15	1.20	0.1	.25	v	
	ISINK = 50mA		0.4	0.5	1.11	0.4	.75	V .	
	ISINK = 100mA	1. 1	2.0	2.2		2.0	2.5	V	
	SINK = 200mA		2.5			2.5			
그는 그는 것 같은 것 못 가운 것이?	V _{CC} = 5V	1							
	ISINK = 8mA		0.1	0.25	1 i -	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		v	
	ISINK = 5mA	1.1			1.1	.25	.35		
Output Voltage Drop (high)		1.1				1.1.1.5			
	ISOURCE = 200mA		12.5			12.5			
	V _{CC} = 15V		1.00	1 11 1					
	ISOURCE = 100mA		Same 1						
	V _{CC} = 15V	13.0	13.3	1 1 2	12.75	13.3	1. 1. 1.	V	
	V _{CC} = 5V	3.0	3.3		2.75	3.3	1.000	v	
Rise Time of Output			100		1.42.20	100		nsec	
Fall Time of Output			100	10.14		100	1	nisec	

NOTES:

1. Supply Current when output high typically 1mA less.

2. Tested at V_{CC} = 5V and V_{CC} = 15V

3. This will determine the maximum value of R_A + R_B For 15V operation, the max total R = 20 megohm.

EQUIVALENT C POULT

6-50

CALCENSTICS

6-51

TYPES SN55326, SN55327, SN75326, SN75327 Memory Drivers

BULLETIN NO. DL S 7312063, SEPTEMBER 1973

SERIES 55/75 MEMORY DRIVERS featuring

- SN55326, SN75326 PERFORMANCE
- Quad Positive-OR Sink Memory Drivers
- 600-mA Output Current Sink Capability
- 24-V Output Capability
- Clamp Voltage Variable to 24 V
- SN55327, SN75327 PERFORMANCE
- Quad Memory Switches
- 600-mA Output Current Capability
- VCC2 Drive Voltage Variable to 24 V
- Output Capable of Swinging Between
 VCC2 and Ground

description

The SN55326, SN55327, SN75326, and SN75327 are monolithic integrated circuit quadruple memory drivers. These devices accept standard TTL decoder input signals and provide high-current and highvoltage output levels suitable for driving magnetic memory elements. Output transistor selection is determined by using one of the four address inputs and the common timing strobe.

The SN55326 and SN75326 memory drivers can sink up to 600 milliamperes and operate from a single 5-volt supply. Each driver is similar to the sink drivers of the SN55325/SN75325. The four output transistors share a common base-drive resistor and it is recommended that only one of the four driver gates be selected at a time. Output-transistor base current may be increased by connecting an external resistor between R_{ext} (pin 4) and V_{CC}. Each output collector is protected from voltage surges during inductive switching by a clamp diode in parallel with its internal pull-up resistor. The two clamp pins may be returned to a power supply of from 4.5 volts to 24 volts.

The SN55327 and SN75327 memory switches can source or sink up to 600 milliamperes and operate from two supplies; one of five volts and the other from 4,5 volts to 24 volts. Each switch is similar to the source drivers of the SN55325/SN75325. They can function as either sink drivers or source drivers since the voltages at the output transistor terminals are capable of swinging between V_{CC2} and ground. The four output transistors share a common basedrive resistor and it is recommended that only one of the four outputs be selected at a time. An internal basedrive resistor is available on the chip and can be

EASE OF DESIGN

- High-Repetition-Rate Driver Compatible with High-Speed Magnetic Memories
- Inputs Compatible with TTL Decoders
- Minimum Time Skew between Strobe and Output-Current Rise
- Pulse-Transformer Coupling Eliminated
- Drive-Line Lengths Reduced

SN55326, SN75326 J. JB, OR N DUAL-IN-LINE OR SB FLAT PACKAGE (TOP VIEW)

NC-Nø internal connection

SB55327, SN75327 J, JB, OR N DUAL-IN-LINE OR SB FLAT PACKAGE (TOP VIEW)

825

TENTATIVE DATA SHEET 10.36 This document provides tentative information TEXAS INSTRUMENTS on a new product. Texas Instruments reserves the right to change specifications for this post office Box 5012 • DALLAS. TEXAS 75222 product in any manner without notice.

TYPES SN55326, SN55327, SN75326, SN75327 MEMORY DRIVERS

description (continued)

used by connecting Node R (pin 4) to Rint (pin 5). This resistor provides adequate base current to the output transistors for output sink currents up to 375 milliamperes with VCC2 at 15 volts or 600 milliamperes with VCC2 at 24 volts. Base current can be regulated to within ±5 percent by substituting for this resistor an external resistor connected between Node R (pin 4) and VCC2 with Rint (pin 5) remaining open. This method is preferable in highduty-cycle, high-power applications since the power dissipated in this resistor is outside the package. When a source current and VCC2 voltage other than the above values are required, it is recommended that the base drive be supplied through an external resistor of the appropriate value calculated using Equation 1 shown in the SN55325, SN75325 data sheet.

			s La sta		FUNCTION	TAB	LE		
ĺ		1. A	IN	PUT	S		OUT	PUTS	
	ADDRESS			S	STROBE			·	1997.0
-	A	B	C	D	S	W	X	Y	Z
	Ľ	H	Н	н	L	ON	OFF	OFF	OFF
	н.	L	H	H	L	OFE	ÖN	OFF	OFF
	้.ห	н	Ľ	н	L	OFF	OFF	ON	OFF
-	н	Н	Н	L	L.	OFF	OFF	OFF	ON
	н	Ĥ,	H	H	X	OFF	OFF	OFF	OFF
	X	X	X	x	H	OFF	OFF	OFF	OFF

H = high level, L = low level, X = irrelevant NOTE: Not more than one output is to be on at any one time.

The SN55326 and SN55327 circuits are characterized for operation over the full military temperature range of -55°C to 125°C; the SN75326 and SN75327 are characterized for operation from 0°C to 70°C.

					nerwise noted)	

	SN55326	SN75326	SN55327	SN75327	UNIT
Supply voltage, VCC or VCC1 (see Note 1)	7.	7	7	7	V
Supply voltage, VCC2			25	25	V
Input voltage, any address or strobe	5.5	5.5	5.5	5.5	V
Qupput collector voltage	25	25	25	25	ν.
Output clamp voltage	25	25			. V
Output collector current	750	750	750	750	mA
Continuous total dissipation at (or below) 100°C case temperature (see Note 2)	1. 1.	1	1	1	W
Operating free-air temperature range	-55 to 125	0 to 70	-55 to 125	0 to 70	°C
Storage temperature range	-65 to 150	-65 to 150	-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch from case for 60 seconds: J, JB, or SB package	300	300	300	300	°C
Lead temperature 1/16 inch from case for 10 seconds: N package	260	260	260	260	°C

recommended operating conditions

	SN55326	SN75325	SN55327	SN75327	UNIT
	MIN NOM MAX	MIN NOM MAX	MIN NOM MAX	MIN NOM MAX	UNIT
Supply voltage; VCC or VCC1	4.5 5 5.5	4.5 5 5.5	4.5 5 5.5	4.5 5 5.5	V.,
Supply voltage, VCC2			4.5 24	4.5 24	V
Output collector voltage	24	24	24	24	V
Output-clamp voltage, V(clamp)	4.5 24	4.5 24			V
Output collector current	600	6C0	600	600	mA
Operating free-air temperature, TA	-55 125	0 70	-55 125	0 70	°C

NOTES: 1. Voltage values are with respect to network ground terminal(s).

2. For operation above 100°C case temperature, refer to Dissipation Derating Curve, Figure 1. For dissipation ratings in free-air, see Figure 2.

TEXAS INSTRUMENTS INCORPORATED POST OFFICE BOX 5012 . DALLAS TEXAS 75122

TYPES SN55326, SN55327, SN75326, SN75327 **MEMORY DRIVERS**

SN55326, SN75326 electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

And the second states of the s			and a second						2.5		
	PARAMETE	9	TEST CO	NDITIONS		SN5532	6		SN7532	6	
	TANANG TE		1.01.00		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input v	voltage			2			2			v
VIL	Low-level input v	oltaga					0.8			0.8	v
V	Input clamp volt	3g e	V _{CC} = 4.5 V, T _A = 25°C	lj =10 mA,		-1	-1.7			-1.7	·V
VOH	High-level output	voltage	Vcc = 4.5 V,	10 = 0	19	23	ير د او اي بي اي مراجعة معن هي ا ر	19	23		V
······································	Saturation voltag	-	$V_{CC} = 4.5 V,$ I(sink) = 600 mA [§] ,	Full range			0.9			0.9	
V _(sat)	Saturation Voltag		See Note 3	T _A = 25°C		0.43	0.7		0.43	0.75	v
VF(clamp)	Output-clamp-dic forward voltage	ode	V _(clamp) = 0, T _A = 25°C	l _(clamp) = -10 mA,			1.5			1.5	v
(clamp)	Output-clamp cur	rrent,	l(sink) = 50 mA,	T _A = 25°C		5	7		5	7	mA
	Input current at	Address		1999 - Anima Anal Children and Alfred States and Antonia			1			1	
h) 2777	maximum input voltage	Strobe	V _I = 5.5 V				. 4			4	mA
	High-level	Address	- V1 = 2.4 V	· · · · · · · · · · · · · · · · · · ·		- 1 - 7	40	<u> </u>		40	
ін	input current	Strobe	- VI = 2.4 V				160			160	μA
	Low-level	Address	V1 = 0.4 V		·	1	-1.6		-1	-1.6	
11L	input current	Strobe	- VI - 0.4 V			-4	-6.4		-4	-6.4	mΑ
CC(off)	Supply current, a	Il outputs off	All inputs at 5 V,	TA = 25°C		. 18	25	1.	18	25	mA
ICC(on)	Supply current, o	ne output on	I(sink) = 50 mA,	T _A = 25°C	1	58	75		58	75	mA

SN55326, SN75326 switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER	TO (OUTPUT)	TEST CONDITIONS§	MIN TYP	MAX	UNIT
tPLH	W, X, Y, or Z		30	50	ns
IPHL	, , , , , , , , , , , , , , , , , , , 	$V_{S} = V_{(clamp)} = 15 V, R_{L} = 24 \Omega, C_{L} = 25 pF,$	25	50	61
Ͳϲͱ	W, X, Y, or Z	See Figure 5	5. St. 7	15	DS
tthr			10	20	1
ts	W, X, Y, or Z		24	35	, ns -
V _{OH}	W, X, Y, or Z	$V_S = V_{(clamp)} = 24 V, R_L = 47 \Omega, C_L = 25 pF,$ $I_{(sink)} \approx 500 mA, See Figure 5$	V _S -25		mV

¹Unless otherwise noted, $V_{CC} = 5.5 V$, $V_{(clamp)} = 24 V$, See Figure 3. ¹All typical values are at $T_A = 25^{\circ}C$. ⁸Under these conditions, not more than one output is to be on at any one time.

tpLH = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

 $t_{TLH} = propagatori tera, tow-to-high-level output$ $<math>t_{TLH} \equiv transition time, low-to-high-level output$ $<math>t_{fL} \equiv Storage time$ $V_{OH} \equiv High-level output voltage (after switching)$

NOTE 3: These parameters must be measured using pulse techniques. t_W = 200 µs, duty cycle \leq 2%.

For typical characteristic curves, Figures 11 through 14 of the SN55325/SN75325 data sheet apply for these circuits.

TEXAS INSTRUMENTS POST OFFICE BOX 5012 + DALLAS, TEXAS 75222

10-38

TYPES SN55326, SN55327, SN75326, SN75327 **MEMORY DRIVERS**

(unless otherwise noted)				
PARAMETER	TEST CONDITIONS	SN55327	SN75327	UNIT
FARAWEIGR		MIN TYPT MAX	MIN TYPT MAX	UNIT
VIH High-level input voltage		2	2	V
VIL Low-level input voltage		0.8	0.8	V

SN55327, SN75327 electrical characteristics over recommended operating free-air temperature range

VIL	Low-level input	/oltage			0.8	0.8	V
V _I	Input clamp volt	age	V _{CC} = 4.5 V, T _A = 25°C	l) = -10 mA	-1 -1.7	-1 -1.7	V
	Collectors termin	nal in in	V _{CC1} = 4.5 V,	Full range	500	200	
l(off)	off-state current		V(col) = 24 V	TA = 25°C	150	200	μA
	Saturation voltag		V _{CC1} = 4.5 V, V _O = 0,	Full range	0.9	0.9	
V _(sat)	Saturation volta	je	$I_{(source)} = -600 \text{ mA}^{\$}$, See Notes 3 and 4	T _A = 25°C	0.43 0.7	0.43 0.75	V
	Input current	Address	Vi = 5.5 V	·	1	1	
4	at maximum input voltage	Strobe	v] = 5.5 v		4	4	mA
	High-level	Address	N A.V.		40	40	
hH is	input current	Strobe	V ₁ = 2.4 V		160	160	μA
gine Na	Low-level	Address	N - 0 4 N		-1 -1.6	-1 -1.6	
Ч Е	input current	Strobe	Vj= 0.4 V	i san gen	-4 -6.4	-4 -6.4	mA
	Supply current,	From VCC1		T 05°0	7 10	7 10	
CC(off)	all outputs off	From VCC2	All inputs at 5 V,	T _A = 25°C	13 20	13 20	mA
	Supply current,	From VCC1	V(col) = 6 V,	I(source) = -50 mA.	8 12	8 12	
CC(on)	one output on	From VCC2	T _A = 25°C,	See Note 3	36 55	36 55	mA

SN55327, SN75327 switching characteristics, VCC1 = 5 V, TA = 25°C

PARAMETER 1	TO (OUTPUT)	TEST CONDITIONS§	MIN	TYP MAX	UNIT
WLH	Collectors	$V_{S} = V_{CC2} = 15 V$, $R_{L} = 24 \Omega$, $C_{L} = 25 pF$,		35 55	
^t PHL	W, Z or X, Y	See Figure 5 and Note 4		30 55	, ∩s
TLH	W, X, Y, or Z	$V_{(col)} = V_{CC2} = 20 V$, $R_L = 100 \Omega$, $C_L = 25 pF$.		30	ns
THL	II, X, I, UI 4	See Figure 6 and Note 4		10	1
Vон	Collectors W, Z or X, Y	$V_{S} = V_{CC2} = 24 V$, $R_{L} = 47 \Omega$, $C_{L} = 25 \rho F$, $I_{(sink)} \approx 500 \text{ mA}$, See Figure 5 and Note 4	V _S -25		mν

Unless otherwise noted, $V_{CC1} = 5.5 V$, $V_{CC2} = 24 V$. See Figure 3. -All typical values are at $T_A = 25^{\circ}$ C. Under these conditions, not more than one output is to be on at any one time.

 $\label{eq:propagation delay time, low-to-high-level output$ $<math display="block"> p_{HL} \equiv propagation \ delay \ time, \ high-to-low-level \ output \\ r_{TLH} \equiv transition \ time, \ low-to-high-level \ output$

 $t_{THL} \approx$ transition time, high-to-low-level output $V_{OH} \approx$ High-level output voltage (after switching)

0.07 These parameters must be measured using pulse techniques. $t_{\rm W}$ = 200 µs, duty cycle < 2%. 4. A 350- Ω resistor is connected between node R (pin 4) and V_{CC2} (pin 1) with R_{int} (pin 5) open

For typical characteristic curves, Figures 11 through 14 of the SN55325/SN75325 data sheat apply for these circuits.

TEXAS INSTRUMENTS T OFFICE BOX 1012 . DALLAS TEXAS 75222

10-39

10-40

Well grad

TEXAS INSTRUMENTS

SERIES 55450B/75450R DUAL PERIPHERAL DRIVERS BULLETIN NO. DL-S 7311798, SEPTEMBER 1973

PERIPHERAL DRIVERS FOR **HIGH-CURRENT SWITCHING AT HIGH SPEEDS**

performance

- 300-mA Output Current Capability
- **High-Voltage Outputs** ø
- No Output Latch-Up at 20 V
- **High-Speed Switching**

ease-of-design

- **Circuit Flexibility for Varied Applications** 6 and Choice of Logic Function
- **TTL or DTL Compatible Diode-Clamped** Inputs
- Standard Supply Voltages

SUMMARY OF SERIES 554508/754508

DEVICE	LOGIC OF	PACKAGES
SN55450B	Positive-AND [†]	J, J8
SN55451B	Positive-AND	JP, L
SN554528	Positive-NAND	JP, L
SN55453B	Positive-OR	JP, L
SN55454B	Positive-NOR	JP, L
SN754509	Positive-AND [†]	J, N
SN75451B	Positive-AND	L, P
SN75452B	Positive-NAND	L, P
SN754538	Positive-OR	L, P
SN754548	Positive-NOR	L, P

With output transistor base connected externally to output of gate.

description

Series 55450B/75450B dual peripheral drivers are a family of versatile devices designed for use in systems that employ TTL or DTL logic. The 55450B/75450B family is functionally interchangeable with and replaces the 75450 family and the 75450A family devices manufactured previously. The speed of the 55450B/75450B family is equal to that of the 75450 family and a test to ensure freedom from latch-up has been added. Diode-clamped inputs simplify circuit design. Typical applications include high-speed logic buffers, power drivers, relay drivers, lamp drivers, MOS drivers, line drivers, and memory drivers. Series 55450B drivers are characterized for operation over the full military temperature range of -55°C to 125°C; Series 75450B drivers are characterized for operation from 0°C to 70°C.

The SN55450B and SN75450B are unique general-purpose devices each featuring two standard Series 54/74 TTL gates and two uncommitted, high-current, high-voltage n-p-n transistors. These devices offer the system designer the flexibility of tailoring the circuit to the application.

The SN55451B/SN75451B, SN55452B/SN75452B, SN55453B/SN75453B, and SN55454B/SN75454B are dual peripheral AND, NAND, OR, and NOR drivers, respectively, (assuming positive logic) with the output of the logic gates internally connected to the bases of the n-p-n output transistors.

S	1.1							- (co	N	TE(NT	S						ŀ					Ċ.		÷.	- 17	PAGE
Maximum Ratings and	Re	ю	min	her	de	d.	Op	æŕ	ati	ng	Co	ond	liti	on	ŝ	• .	•		•		•		•			• ;		10-43
Definitive Specification	NIS.																1					÷.,			÷ -	21.		1013
Type SN554508		. • .	2				•	•		•		•			•	• •	•	•	•		• ,	•		•		•	•	10-44
Type SN754508		•	2		•	•						•			•		•	•		•		•	•	•		• .		10-46
Type SN554518	÷.		• •						۰.					•			•				•	•	•.		. •	•	•7	10-48
Type SN75451B						• .	÷					÷.		÷						•	•	•	•	•	•	•		10-49
Type SN55452B			•	•	• .	•,		÷				÷.,		•					•		•.	•				•.	1	10-50
Type SN75452B	· ·	•			•		÷				•		۰.	•.'	•	•		٠.	۰.	•			•		• •	•	•	10-51
Type SN55453B	Ξ.	4	÷.)	•.			•		÷	÷,			•	•••	٠.	•			•			•	•.	• 2	1	•		10.52
Type SN754538		. •.																										10.53
Type SN55454B	1	÷.																								, s .		10-54
Type SN75454B			•		•		•.		٠.		ч.					•.	•				10	•	. • ·	•	÷.,	•		10-55
D-C Test Circuits .																												10.56
Switching Time Test	Circ	uits	ar	d	Vc	al ta	age	N I	lav	efe	òrn	ns		÷.	÷	•										۰. '		10-58
Typical Characteristic	s	. . .				`		•		•	•	•	•	•			٠.		•	•						•	•	10 62
Typical Applications	S. 1		•	1	·			٠.			1	·.			۰.	•	•			·				۰.			1	10-63

10.42 This document provides tentative information TEXAS INSTRUMENTS on a new product. Texas Instruments reserves the right to change specifications for this POST OFFICE BOX 5312 • DALLAS. TEXAS 75222 product in any manner without notice.

SERIES 55450B/75450B **DUAL PERIPHERAL DRIVERS**

	SN55450	B SN55451B SN554528 SN55453B SN55453B	SN754508	SN75451B SN75452B SN75453B SN75454B	UNIT
Supply voltage, VCC (see Note 1)	7	7	7	7	V
Input voltage	5.5	5.5	5.5	5.5	V
Interemitter voltage (see Note 2)	5.5	5.5	5.5	5.5	· V
VCC-to-substrate vol tage	35		35		V
Collector-to-substrate vol tage	35		35		V .
Collector-base voltage	35		35		V
Collector-emitter voltage (see Note 3)	30		30		V
Emitter-base voltage	5	1	5		V
Output voltage (see Note 4)		30		30	V
Collector current (see Note 5)	300		300		mA
Output current (see Note 5)		300	1. N.A.	300	mA
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 6)	800	800	800	800	m₩
Operating free-air temperature range	-55 to 12	5 -55 to 125	0 to 70	0 to 70	°C
Storage temperature range	-65 to 15	0 -65 to 150	-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch from case for 60 seconds J, JB, JP, or L p	eckage 300	300	300	300	°C
Lead temperature 1/16 inch from case N or P package tor 10 seconds	260	260	260	260	°c

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values are with respect to network ground terminal unless otherwise specified.

2. This is the voltage between two emitters of a multiple-emitter transistor. 3. This value applies when the base-emitter resistance (R_{BE}) is equal to or less than 500 Ω . 4. This is the maximum voltage which should be applied to any output when it is in the off state.

This is the maximum voltage which should be applied to any output when it is in the orr state.
 Both halves of these dual circuits may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the continuous dissipation rated.
 For operation above 25°C free air temperature, refer to Dissipation Derating Curve, Figure 20. This rating for the L package requires a heat sink that provides a thermal resistance from case to free air, R_{BCA}, of not more than 95°C/W.

recommended operating conditions (see Note 7)

. 1		SERIES 55450B	SERIES 75450B	UNIT	1
14 - 14 - 14		MIN NOM MAX	MIN NOM MAX		1
i.,	Supply voltage, V _{CC}	4.5 5 5.5	4.75 5 5.25	V	ŀ.
	Operating free-air temperature, TA	-55 125	0 70	°C	ŀ

NOTE 7: For the SN55450B and SN75450B only, the substrate (pin 8) must always be at the most-negative device voltage for proper operation.

法法法

TYPE SN75450B DUAL PERIPHERAL POSITIVE-AND DRIVER

schematic

Resistor values shown are nominal.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

TTL gates

	PARAMETER		TEST FIGURE	TEST CONDITIONS	MIN TYPT MAX	UNIT
VIH	High-level input voltage		1		2	V
VIL	Low-level input voltage		2		0.8	V
٧ı	Input clamp voltage		3	V _{CC} = 4.75 V; I _I = -12 mA	-1.5	V
VOH	High-level output voltage		2	V _{CC} = 4.75 V, V _{IL} = 0.8 V, I _{OH} = -400 µA	2.4 3.3	v
VOL	Low-level output voltage		1	V _{CC} = 4.75 V, V _{IH} = 2 V, I _{OL} = 16 mA	0.22 0.4	v
۹,	Input current at maximum input voltage	input A input G	4	V _{CC} = 5.25 V, V _I = 5.5 V	1	mA
¶н.	High-level input current	input A input G	4	V _{CC} = 5.25 V, V ₁ = 2.4 V	40 80	μА
ΊL	Low-level input current	input A input G	3	V _{CC} = 5.25 V, V ₁ = 0.4 V	-1.6	mA
los	Short-circuit output current‡		5	V _{CC} = 5.25 V	-18 -55	mA
ICCH.	Supply current, outputs high			V _{CC} = 5.25 V, V _I = 0	2 4	mA
ICCL	Supply current, outputs low		6	V _{CC} = 5.25 V. V _I = 5 V	6 11	mA

[†]All typical values at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

TNot more than one output should be shorted at a time.

9:J

.

TYPE SN75450B DUAL PERIPHERAL POSITIVE-AND DRIVER

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

output transistors

	en an earlier an teacht an					
	PARAMETER	TES	T CONDITION	S .	MIN TYPT MAX	UNIT
V(BR)CBO	Collector-Base Breakdown Voltage	I _C = 100 μA,	1 _E = 0		35	V
V(BR)CER	Collector-Emitter Breakdown Voltage	A, 1 <u>c</u> = 100 μA	R _{BE} = 500 Ω		30	V
V(BR)EBO	Emitter-Base Breakdown Voltage	l _E = 100 μA,	IC = 0		5	V
		V _{CE} = 3 V, T _A = 25°C	IC = 100 mA,		25	
	Constant Constant Provide Restant	V _{CE} = 3 V, T _A = 25°C	IC = 300 mA,	Carning d	30	
hfe	Static Forward Current Transfer Ratio	V _{CE} = 3 V, T _A = 0°C	IC = 100 mA,	See Note 8	20	
		V _{CE} = 3 V, T _A = 0°C	IC = 300 mA,		25	
N/	Base-Emitter Voltage	1 _B = 10 mA,	Ic = 100 mA	See Note 8	0.85 1	1
VBE	Base-Emitter Voltage	1 _B = 30 mA,	Ic = 300 mA	See Note 6	1.05 1.2	- V
Neet 1	Collector-Emitter Saturation Voltage	Ig = 10 mA,	IC = 100 mA	See Note 8	0.25 0.4	
VCE(sat)	Conector-Emitter Saturation Voltage	1 _B = 30 mA,	Ic = 300 mA	See NOLE 8	0.5 0.7	- v

[†]All typical values are at V_{CC} = 5 V, T_A = 25°C. NOTE 8: These parameters must be massured using pulse techniques. t_w = 300 µs, duty cycle < 2%.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

TTL gates

	PARAMETER	TEST FIGURE	T	ST CONDITIONS		MIN	ТҮР	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output		Cլ=15 թ	F, Bi = 400 1			12	22	ns
TPHL	Propagation delay time, high-to-low-level output	12	UL = 15 p	F, HL ¥4003	14		8	15	ns
output transis	stors								2

ſ		PARAMETER	TEST FIGURE	TEST CONDITIONS [‡]	MIN TYP MA	X UNIT
Γ	ta	Delay time		$I_{C} = 200 \text{ mA}, I_{B(1)} = 20 \text{ mA},$	8 15	5 ns
Γ	tr	Rise time	13		12 20) ns
Γ	ts	Storage time		$I_{B(2)} = -40 \text{ mA}, V_{BE(off)} = -1 \text{ V},$ $C_{L} = 15 \text{ pF}, R_{L} = 50 \Omega$	7 15	i ns
Г	tj	Fall time	10	CL = 15 pr, nL = 50 st	6 15	i ns.

‡Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

gates and transistors combined

	수 있는 사람들은 것 같은 것 같은 것 같은 것 같은 것 같은 사람들은 것 같아요.				18 M 20 M 10
· · ·	PARAMETER	, TEST FIGURE	TEST CONDITIONS	MIN TYP MAX	UNIT
- 2	tpLH Propagation delay time, low-to-high-level output	1. A.		20 30	ns
	TPHL Propagation delay time, high-to-low-level output]	IC ≈ 200 mA, CL = 15 pF,	20 30	ns -
	TTLH Transition time, low-to-high-level output] '' ·	RL= 50 Ω	7 12	ns
C)	THL Transition time, high-to-low-level output			9 15	ns
	VOH High-level output voltage after switching	15	$V_S = 20$ V, $I_C \approx 300$ mA, R _{BE} = 500 Ω.	V _S -6.5	mV
	VOH High-level output voltage after switching	15		V _S -65	

SYSTEMS INTERFACE CIRCUITS

SERIES 55460/75460 DUAL PERIPHERAL DRIVERS BULLETIN NO. DL-S 7312055, SEPTEMBER 1973

PERIPHERAL DRIVERS FOR HIGH-VOLTAGE, HIGH-CURRENT DRIVER APPLICATIONS

performance

- 300-mA Output Current Capability
- High-Voltage Outputs
- No Output Latch-Up at 30 V
- Medium-Speed Switching

ease-of-design

- Circuit Flexibility for Varied Applications
 and Choice of Logic Function
- TTL or DTL Compatible Diode-Clamped
 Inputs
- Standard Supply Voltages

SUMA	ARY OF SERIES 5546	0/75460
DEVICE	LOGIC OF	PACKAGES
SN55460	ANDT	J, J8
SN55461	AND	JP, L
SN55462	NAND	JP, L
SN55463	OR	JP.L
SN55464	NOR	JP, L
SN75460	AND	J, N
SN75461	AND	L,P
SN75462	NAND	L,P
SN75463	OR	L, P
SN75464	NOR	L, P

[†]With output transistor base connected externally to output of gate

description

Series 55460/75460 dual peripheral drivers are functionally interchangeable with Series 55450B/75450B peripheral drivers, but are designed for use in systems that require higher breakdown voltages than Series 55450B/75450B can provide at the expense of slightly slower switching speeds. Typical applications include logic buffers, power drivers, relay drivers, lamp drivers, MOS drivers, line drivers, and memory drivers. Series 55460 drivers are characterized for operation over the full military temperature range of -55°C to 125°C; Series 75460 drivers are characterized for operation from 0°C to 70°C.

The SN55460 and SN75460 are unique general-purpose devices each featuring two standard Series 54/74 TTL gates and two uncommitted, high-current, high-voltage, n-p-n transistors. These devices offer the system designer the flexibility of tailoring the circuit to the application.

The SN55461/SN75461, SN55462/SN75462, SN55463/SN75463, and SN55464/SN75464 are dual peripheral AND, NAND, OR, and NOR drivers, respectively, (assuming positive logic) with the output of the logic gates internally connected to the bases of the n-p-n output transistors.

	an an an an Anna an Anna an Anna An Anna an Anna An Anna an Anna		CONTE	819-14		ng shé ĝ Pour se	PAGE
Maximum Rating	사람이 이야지 않는 것이 같아.	ended Ope	rating Con	ditions .	• • •		• 10-68
Definitive Specifi			e de sel				
Type SN5540	가슴가는 것 같아요. 가지 않는 것이 많이				•	•	• 10-69
Type SN7546	50						• 10-71
Type SN554	51		· · · · · ·	7	• • •		 . 10-73
Type SN754	31	i da iza					. 10-74
Type SN5540	52			· · · · ·			. 10-75
Type SN7540	52				3 .		- 10-75
Type SN5546	33						. 10.77
Type SN754	And the set of the set		1			· · · ·	. 10-78
Type SN5546			an a	21 - Sec.			. 10-79
Type SN754				s – 201 – 2			. 10-80
D-C Test Circuits		도 가 문제에 있는			19 - C. C.		. 10-81
Switching Time T	승규가 가져도 많이 주셨는데요.	1 2 3 1 2 3 4 5 5	The fat has a	2 - S.J S.			

TENTATIVE DATA SHEET This document provides tentative information on a new product. Texas instruments reserves the right to change specifications for this budget in any manar without notice.

TEXAS INSTRUMENTS

10-67

SERIES 55460/75460 **DUAL PERIPHERAL DRIVERS**

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

and the second		·			· ·
	SN55460	SN55461 SN55462 SN55463	SN75460	SN75461 SN75462 SN75463	UNI
		SN55464		SN75464	
Supply voltage, VCC (see Note 1)	7	7	7	7	V
Input voltage	5.5	5.5	5.5	5.5	V
Interemitter voltage (see Note 2)	5.5	5.5	5.5	5.5	V
VCC-to-substrate vol tage	40		40		V
Collector-to-substrate voltage	40		40		V
Collector-base voltage	40		40		V
Collector-emitter voltage (see Note 3)	40		40		V
Collector-emitter voltage (see Note 4)	25		25	•	V
Emitter-base voltage	5		5		V
Output voltage (see Note 5)		35		35	V
Collector current (see Note 6)	300		300		mA
Output current (see Note 6)		300		300	mA
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 7)	800	800	800	800	۳W
Operating free-air temperature range	-55 to 125	-55 to 125	0 to 70	0 to 70	°C
Storage temperature range	-65 to 150	-65 to 150	-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch from case for 60 seconds	300	300	300	300	°c
Lead temperature 1/16 inch from case N or P package for 10 seconds	260	260	260	260	°c

States.

NOTES: 1. Voltage values are with respect to network ground terminal unless otherwise specified.

2. This is the voltage between two emitters of a multiple-emitter transistor.

3. This value applies when the base-emitter resistance (R_{EE}) is equal to or less than 500 Ω . 4. This value applies between 0 and 10 mA collector current when the base-emitter diode is open-circulted.

5. This is the maximum voltage which should be applied to any output when it is in the off state.

6, Both halves of these dual circults may conduct rated current simultaneously: however, power dissipation averaged over a short time interval must fall within the continuous dissipation rating.

7. For operation above 25°C free-air temperature, refer to Dissipation Derating Curve, Figure 16. This rating for the L package requires a heat sink that provides a thermal resistance from case to free-air, Raca, of not more than 95°C/W.

recommended operating conditions (see Note 8)

N 1121 12	1.1
	2

10-68

	SERIES 55460 SERIES 75460	NIT
	MIN NOM MAX MIN NOM MAX	
Supply voltage, VCC	4.5 5 5.5 4.75 5 5.25	V
Operating free-air temperature, TA	-55 125 0 70 "	°C

NOTE 8: For the SN55450B and SN75450B only, the substate (pin 8) must always be at the most negative device voltage for proper operation.

973

TYPE SN75461 DUAL PERIPHERAL POSITIVE-AND DRIVER

1

ġ73

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN TYPT MAX	UNIT
VIH High-level input voltage	7		2	V
VIL Low-level input voltage	7		0.8	V
Vi Input clamp voltage	8	$V_{CC} = 4.75 V$, $I_{I} = -12 mA$	-1.2 -1.5	V
OH High-level output current	7	V _{CC} = 4.75 V, V _{IH} = 2 V, V _{OH} = 35 V	100	μА
	7	$V_{CC} = 4.75 V$, $V_{IL} = 0.8 V$, $I_{OL} = 100 \text{ mA}$	0.15 0.4	
VOL Low-level output voltage		V _{CC} = 4.75 V, V _{IL} = 0.8 V, I _{OL} = 300 mA	0.36 0.7	
Input current at maximum input voltage	9	V _{CC} = 5.25 V, V ₁ = 5.5 V	1	mA
IH High-level input current	9	V _{CC} = 5.25 V, V _I = 2.4 V	40	μA
Low-level input current	8	V _{CC} = 5.25 V, V _I = 0.4 V	-1 -1.6	mA
CCH Supply current, outputs high	10	V _{CC} = 5.25 V, V ₁ = 5 V	8 11	mA
CCL Supply current, outputs low	10	V _{CC} = 5.25 V, V ₁ = 0	61 76	mA

[†]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER	FIGURE	TEST CONDITIONS	MIN TYP MAX	UNIT
tpLH Propagation delay time, low-to-high-level output			45 55	ns
tPHL Propgation delay time, high-to-low-level output		$I_{O} \approx 200 \text{ mA}, C_{L} = 15 \text{ pF},$	30 40	ns
tTLH Transition time, low-to-high-level output	٦. '	RL = 50 Ω	8 20	ns
tTHL Transition time, high-to-low-level output			10 20	ns
VOH High-level output voltage after switching	.15	V _S = 30 V, I _O ≈ 300 mA	Vs-10	mν

TEXAS INSTRUMENTS

10.74

E

Programmable Multifunction Module

FEATURES

Versatility: Provides Transfer Characteristics of Several Function Modules

Divides Over a 100:1 Range With a Max Error of 0.25% (433B) Internal Voltage Reference

Hermetically Sealed Semiconductors No External Trims Required Low Noise Low Cost: \$75 (1-9) 433J

APPLICATIONS

Transducer Linearization Signal Processing Raising to Arbitrary Powers Vector Functions Trigonometric Functions (Sine, Cosine, Arctangent)

GENERAL DESCRIPTION

The model 433 is an extremely versatile function module which implements the transfer function:

$$e_{o} = \frac{10}{9} V_{y} \left(\frac{V_{z}}{V_{x}}\right)^{m}, \ 0.2 \le m \le 5.0$$

By either jumper connections on the pins, or selection of two external resistors the user can program the 433 to: multiply, divide, square, square root, root of a ratio, square of a ratio, or raise voltage ratios to an arbitrary power, m.

When used with a low cost op amp, such as AD741, the model 433 may be used to compute the true rms value of a varying signal. With two such op amps, the 433 can be used to perform accurate vector computations over wide ranges of the vector sum.

Due to its log/antilog circuit approach, signal levels of 100 mV to 10V may be processed with a maximum output error of 0.25% F.S. (433B). The allowable input range for the three input variables is 0.01 to +10V, for which there is a typical error of $\pm 5 \text{mV} \pm 0.3\%$ of the theoretical output voltage for model 433J, and $\pm 1 \text{mV} \pm 0.15\%$ for 433B.

Because of its small size, accuracy, versatility, and speed (and all at low cost), the model 433 will prove to be an essential component in equipment requiring on-the-spot computations in real time, or for linearizing a wide range of transducer characteristics in medical, industrial, and process control equipment. Designed with the OEM's needs in mind, the model 433 is attractively priced for new equipment designs.

PRINCIPLE OF OPERATION

The model 433 is comprised of log and antilog circuits interconnected as shown in Figure 1. The log ratio circuit provides

Information furnished by Analog Davices is beliaved to be occurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

the log of V_x/V_z to terminals A, B, C where, for exponents other than unity, it is scaled by two external programming resistors (see hook-up diagrams for connection and values of these two resistors). The scaled log ratio from terminal C is subtracted from a signal proportional to the log of V_y . The resulting expression is operated on by the antilog circuit, yielding an output of

$$e_0 = \frac{10}{9} V_y \left(\frac{V_z}{V_x}\right)^{-1}$$

The voltage reference circuit is a high stability $(0.005\%)^{\circ}C)$ voltage source which is generated internally. It is provided as an output terminal for user convenience, and may be used as a constant at any of the input terminals.

ONE-QUADRANT DIVIDER

When connected as a divider, the model 433B has less than 4% output error over an input signal range of 100:1. This performance is obtained with no external trims, and is nearly twenty times better than that attainable with a 0.1% multiplier/divider connected in a feedback loop.

 Tel:
 617/329-4700
 TWX:
 710/394-6577

 West Coast
 Tel:
 213/595-1783

 Mid-West
 Tel:
 312/297-8710

SPECIFICATIONS (typical @ +25°C and ±15V unless otherwise noted)

Model	433]	433B	OUTLINE DIMENSIONS
Transfer Function	$e_{o} = + \frac{10}{9} V_{y} \left(\frac{V_{z}}{V_{x}} \right)^{m}$		Dimensions shown in inches and (cm).
Rated Output ¹	+10.5V @ \$mA, min		<u>→ 1.50 (3.81)</u> → 1
Input Simul D			0.62 MAX
Signal Range	$0 \leq V_{x}, V_{y}, V_{z} \leq 10V,$	•	(1.58)
Max Safe Input Resistance	$V_x, V_y, V_z \leq \pm 18V$		
X Terminal	100kΩ ±1%		$\overline{\mathbf{T}}$
Y Terminal	90kΩ ±10%		T → 0.04 DIA
Z Terminal	$100k\Omega \pm 1\%$	•	0.20 to 0.25 (1.02 mm)
External Adjustment of the			(0.5 to 0.64)
Exponent, m			
Range for m <1 (Root)	$1/5 \le m \le 1, m = \frac{R_2}{R_1 + R_2}$		
	$R_1 + R_2$		┠────┼┼┼┼┼┼┼┼
			100Y
Range for $m > 1$ (Power)	$1 \leq m < 5, m = \frac{R_1 + R_2}{R_2}$		90x
	R ₂		
	(R ₁ + R ₂)≤200Ω	•	
Accuracy (Divide Mode)2,3			60Z
Total Output Error @ +25 C		<u>a serie de la companya de la company</u>	
(for specified input range)			Bottom View -0.10 GRID
Typical (RTO)	±5mV ±0.3% of output	±1mV ±0.15% of output	에 가지 않는 것 같아요. 그는 것 같아요. 정말 것 같아요. 이 것 같아요. 가지 않는 것 않는 것 같아요. 가지 않는 것 같아요. 가지 않는 것 같아요. 가지 않는 것 않는
Max Error (RTO)	±50mV	±25mV	Mating Socket AC 1038 (0.25)
Input Range $(V_z \leq V_x)$	0.01V to 10V, Vz		\$3.00 (1-9)
	그는 것 같은 것 같이 많이 가지 않는 것 같이 많이	•	이 가슴 그는 것은 것을 가슴을 가지 않는 것을 하는 것이다.
Quer Specified Temp Barro	0.1V to 10V, V _x ±1%	±1% max	WIRING CONNECTIONS
Over Specified Temp. Range	- 1 70	-170 max	Bottom View Shown in All Cases
Output Offset Voltage			
(Not Adjustable) Initial @ +25°C	±5mV	±2mV max	DIVIDE MODE $m = 1$
Offset vs Temp.	±1mV/°C	±1mV/°C max	
Noise, 10Hz to 1kHz			REF 11 5-0+Vs
$V_x = +10V$	100µV rms		сом 4 — О сом
$V_{x} = +0.1V$	300µV rms	an ∎ana ang kanalan ang ka Nagarang kanalang kana	Vx 0
Bandwidth, V _v , V _z			0 • • • • • • • • • • • • • • • • • • •
Small Signal (-3dB), 10%			
of DC Level	Vy or Vz		Vz 0 6
$V_v = V_z = V_x = 10V$	100kHz		
$V_y = V_z = V_x = 1V$	50kHz		e _o = 10Vz/Vx
$V_y = V_z = V_x = 0.1V$	5kHz		그는 가슴 걸렸다. 아님들은 모님 것이
$V_y = V_z = V_x = 0.01V$	400Hz		$\mathbf{DOWFDS} = 1$
Full Output (V_y or $V_z = 5VDC$	(V _x) x (5kHz)		POWERS m ≥ 1
±5VAC)			m = (R + R)/R R
Reference Terminal Voltage ¹	<u></u>		- (R + R) ≤ 200:
V _{ref} (Internal Source)	+9.0V ±5% @ 1mA	a ∎fra traditi ang sa sa sa sa sa	REF 0 11 S 0+ VS
vs Temp (0 to +70°C)	±0.005%/°C		
Power Supply Range			
Rated Performance	±15VDC @ 10mA		Vx 0 9 433 3 0 - Vs
Operating	±(12 to 18)VDC	•	
Temperature Range	-(12 to 10) / 20		
Rated Performance	0 to +70°C	-25°C to +85°C	
Storage	-55°C to +125°C	-55°C to +125°C	
			$\mathbf{e}_{o} = \frac{10}{9} \text{Vy} \left(\frac{\text{Vz}}{\text{VX}} \right)^{m}$
Mechanical	1		
Case Size	1.5" x 1.5" x 0.62"	anton en la substanta de la fase de la s En p ersente en la substanta de la fase	ROOTS m ≤ 1
Mating Socket	AC1038		m = R /(R, + R;)
Price		a sector plana a sector a	(R, • R,) 200:!
(1-9)	\$75	\$87	REF 0-11 5-0+Vs
(10-24)	\$69	S77	Vy Q10
			- V ₄ О 9 3ОVs\$ я
*Same specifications as 433].			

¹ Terminals short circuit protected to ground.

² Accuracy is specified in divide mode which is a worst case condition. Input range is 10mV to 10V for specified accuracy when connected as a multiplier.

³ Error is defined as the difference between the measured output and the theoretical output for any given pair of specified input voltages.

Specifications subject to change without notice.

-2-

 $e_0 = \frac{10}{9} VY \left(\frac{VZ}{VX} \right)$

⊃ eo

CORVENTIONAL 0 1 MULTIPLIER/DIVIDER ENTERNALLY TRIMMED TO 0 055 150 MODEL 433J WITH NO EXTERNAL TRIM 0.1 DENOMINATOR INPUT IVOIS

UNPUTERROW INV

DIVIDER

Figure 2. Comparison of Divider Error vs. Denominator Level for Model 433J and a Conventional Mult./Div.

Figure 3. 433 Small Signal Bandwidth vs. Input Voltage

Figure 4. Varying the I xponent, m

Applying the Multifunction Module

MODEL 433B – 0.25% DIVIDER, WIDE DYNAMIC RANGE Probably the most impressive performance improvement owing to model 433's log/antilog circuit approach, is its ability to hold high divider accuracies over a wide 100:1 input signal range.

When using a conventional multiplier/divider as a divider, accuracy, offset drift, and noise performance are all degraded as the denominator is decreased.

For model 433, accuracy, offset drift, and noise performance are all virtually independent of denominator level as illustrated in Figure 2 and this performance is obtained with no external trims.

FREQUENCY RESPONSE

A curve of amplitude vs. bandwidth for model 433 is shown in Figure 3. For all input terminals, the small signal frequency response (-3dB point) is signal level dependent, decreasing from 100kHz for a 10V input to 400Hz for a 10mV input. These small signal measurements are made by superimposing a 10% small signal amplitude on the DC level being characterized.

Full output for a ± 5 volt signal superimposed on a 5VDC level is 50kHz for the multiplier, and $V_X \times 5$ kHz for the divider.

VARYING THE EXPONENT, m

Presented in Figure 4 is a family of curves which illustrates the effect of varying the exponent, m. All curves have been scaled for the full scale output of 10V by reducing the 433's transfer equation to $e_0 = 10 (V_Z/V_X)^m$. For applications where a continuous variation in m is desired, connections should be made as shown in Figure 5C. Model 433 features very small accuracy changes ($\approx 0.1\%$) as m is adjusted over the entire range from 0.2 to 5.

Figure 5. Resistor Programming for the Exponent, m.

Various values of m are programmed by two external resistors, R₁ and R₂. For values of m < 1 resistor connections are made to terminals, 1, 7, 8 as shown in Figure 5A. For values of m> 1, see Figure 5B. For m = 1, connect terminals 1, 7 and 8 together.

NOISE PERFORMANCE

The curves shown in Figure 6 are for output noise vs. signal level in a 1kHz BW for worst case conditions. These conditions exist when V_X is equal to V_Z and is varied over the specified range. It should be noted that for 0.1V inputs the effective gain is 100. To retain the full performance capability of model 433, all external noise sources should be isolated from the input terminals.

An exceptional advantage of the 433 over other means of dividing is revealed by these curves. That feature being that noise is virtually independent of signal level. For a 100:1 signal level change of the denominator, the output noise is changed only 3:1. Division by using a multiplier in the feedback loop exhibits a 100:1 increase in output noise for a denominator signal level change of 100:1.

When connected as a divider as shown above, the 433 has less than ½% error (50mV) for input signals from 100mV to 10V. Output noise, offset drift and accuracy are all virtually independent of signal level and no trims are required.

Figure 8. Transducer Linearization

A transducer's output may be linearized by utilizing the 433 as an exponentiator. In the example above, a transducer is used to convert a force, F, to a voltage, V. The desired relationship being V directly proportional to F; i.e., V = CF where C is constant.

The actual output for this example is proportional to F, but is a nonlinear relation which can be approximated by $CF^{1/2.2}$. Connecting the 433 as shown with m = 2.2 provides the desired relation of $e_0 = CF$.

Figure 9. Square Root

The square root of a single variable may be obtained with no external components when connected as shown above. Noise performance is even better than that for the multiply or divide mode.

Figure 10. True RMS

By combining the 433 with a simple filter, using an external op amp as shown above, the true RMS value of a one quadrant input signal may be computed. Accuracy is not degraded by crest factor, provided the maximum input is 10V or less. 0.013-2-5-12/0.0

PPINITED IN USA.

The 433 output is applied to an integrator to average the signal and is then fed back to the X input to obtain the square root of the mean square of the input.

Accuracy of 5mV + 0.1% of reading may be achieved over an input range of 500:1.

Figure 11. Vector Computation $V_C = \sqrt{V_A^2 + V_B^2}$

The vector computation circuit shown in Figure 11 illustrates the extreme versatility of model 433. Used with two inexpensive op amps the 433 is used as a basic building block, which in this case, provides the square root of the sum of the squares.

This application is based on the identity for the difference of squares. The derivation is shown by the equations above and the final equation for V_c is implemented.

Due to the excellent inherent accuracy of the above circuit (error = 0.1% of reading), matched resistors with a low T.C. should be used. Errors of only 0.1% of the theoretical output may be achieved over signal levels of +100mV to +10V.

The usefulness of model 433 extends beyond the illustrative examples shown above. Model 433 may also be used to generate basic trigonometric functions (sine, cosine, arctangent). Further detailed applications information on model 433 is provided in the Nonlinear Circuits Handbook, published by Analog Devices.

-4-

CMOS 8 and 4 Channel Analog Multiplexers

GENERAL DESCRIPTION

ANALOG DEVICES

The AD7501 is an 8 channel analog multiplexer which switches one output to one of 8 inputs depending on the state of 3 binary inputs. An "enable" control allows for disconnecting the output regardless of the digital input states. The AD7502 is identical to the AD7501 except it has 2 outputs switched to two of 8 inputs depending on 2 binary inputs.

ORDERING INFORMATION

AD7501J: 0 - +75°C	AD7502J:	0 - +75°C	- 1- 1 -	
AD7501K: 0-+75°C	AD7502K:	0 - +75°C	. •	
AD7501S: -55°C - +125°C	AD7502S:	-55°C - +125°C	÷.	AD7502

PACKAGE VERSIONS

Suffix "D": Ceramic Dip Suffix "N": Plastic Dip

ABSOLUTE MAXIMUM RATINGS

V_{DD} - (to Gnd)	+17V
V_{SS} - (to Gnd)	-17V
Switch Voltage (to V _{SS})	+27V
Switch Current	10mA
Digital Input Voltage Range	V _{DD} to GND
Power Dissipation (package)	
up to +75°C	450mW
derates above +75°C at	6mW/°C
Operating Temperature	-55°C to +125°C
Storage Temperature	-65°C to +150°C

CAUTION:

- 1. Do not apply voltages higher than V_{DD} and V_{SS} on any other terminal, especially when $V_{SS} = V_{DD} = 0V$ all other pins should be at 0V.
- 2. The digital control inputs are zener protected. However, permanent damage can occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.

BONDING DIAGRAM

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL DIAGRAMS

AD7501

TRUTH TABLES

		1.1	1. 1.			1.1	1.1		·	1 1 1 E.C.
e f	· · · · · · · ·	5.5	AD75	01				AD	7502	
	A2	Â ₁	A ₀	EN	ON		A	A ₀	EN	ON
	L	L	L	H	1		L	L	н	1 & 5
	L	Ľ	H	Ĥ,	2	1.1	L	н	Н	2 & 6
	-E	H.	L	H	343	1.1	Н	L	H	3 & 7
	L.	H	н	H	4	1	H	н	H	4 & 8
	н	L	ΞĒ.	Н	5		X	x	L	NONE
÷ .	н	L	н	H.	6	1.0	عليجا	- in the second s		
	H	H.	L	H	7	1.	da k		i,	
	Н	Н	Н	н	8		1	R .		
	x	x	` X .	L	NONE	1.1	-			

PIN CONFIGURATION (TOP VIEW)

Route 1 In	dustrial Parl	k; P.O. Box 2	80; Norwood	d, Mass. 02062
Tel: 617/32				710/394-6577
West Coast			Tel:	213/595-1783
Mid-West			Tel:	312/297-8710

	ETER		SWITCH	Т _А (°С)	MIN	TYP	MAX	UNIT	TEST CONDITIONS
ANALO	<u>G SWITCH</u>				n na na na				-10V ≤V _S ≤+10V
R _{ON}			ON	+25		170	300	Ω	$l_{\rm S} = 1 {\rm mA}$
RON VS.	Vs		ON	+25		20		%	$V_S = -10V \text{ to } +10V$ $I_S = 1\text{mA}$
	Temperature		ON			0.5		%/°C	
요즘 감독 가지 않는 것이 없다.	ween Switches		ON	+25		4		%	$V_{S} = 0V$
	Temperature		A			1		a. 1 ⁰ m	$I_S = 1mA$
Detwee	n Switches		ON		• • • ,	±0.01	·	%/°C	مستوسفي والمراجع الراجين المروا بمتعا والمعارية ومتعارفه
		Commercial	OFF OFF	+25		0.2	2	'nA	$V_{S} = -10V, V_{OUT} = +10V$
Is			OFF	0 to +75			50 0.5	nA	and
		Military	OFF	+25 -55 to +125	· .		0.5 50	nA nA	$V_{\rm S} = +10V, V_{\rm OUT} = -10V$
، میں برجی			OFF	+25	and the second	1.0	10	nA	
	ADDEOL	Commercial	OFF	0 to +75		1.0	250	nA	
	AD7501	Military	OFF	+25			5	nA	V _S = -10V, V _{OUT} = +10V
OUT	ويستعيد للماضع بمحادثهم مرتبع مراجع		OFF	-55 to +125	 	مادر میشد در مادر میشود ماد	250	nA	$v_{\rm S} = -10v$, $v_{\rm OUT} = +10v$
IOUT		Commercial	OFF	+25	1.11	0.6	5	nA	$V_{S} = +10V, V_{OUT} = -10V$
	AD7502		OFF	0 to +75			125	пА	"enable" low
		Military	OFF	+25			3	nA	
•	for a more companyation		OFF	-55 to +125			125	nA	n na
IOUT -	IS I		ON	+25			511	nA	V _S = 0
DIGITA	L CONTROL					· .`			
VINL	a an			+25			0.8	v	
	AD7501J AD7502J			+25	4	· · · ·		v	SEE NOTE
INH	AD7501K AD7501S AD7502K			+25	2.4			v	
s di la constante de la consta	AD7502S	سيبه مهموني عبو والاستراب ال	بالمراجع والمشهون				ta Ny sama ara	an a	
INL				+25		10		nA	
or		Commercial		0 to +75		100	a dhan an Anns an an	nA μA	
INH	and the state of the second	Military	. Saman start	-55 to +125		1		рF	a and a second a second se
CIN		محمد بالألحاد أأستر بوايد	and the second	+25	1.1	3	المراجعة بمكر	pr	دىي ئىلى مۇڭى بار سەرىيىي شاپارىمىمىيە 🗉 🗄 د
YNAM	IC CTERISTICS								
ON		an da na sina sina. An angana		+25		0.8		μs	
OFF		an an an an Array an Array an Array an Arr	المحمد والألجاني	+25	1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	0.8		μs	
Cs			OFF	+25		5		pF	
COUT	an a		OFF	+25		30		pF	
S-OUT		din dati ka di	OFF	+25		0.5		pF	
wo swit	veen any ches	and the state of the	OFF	+25		0.5		pF	
e se e se	SUPPLY	te ga an	n a shi da na shi na shi sa shi sa s	e get mine and en line			in an		na balan karang mangan bang balan dari dari dari dari dari dari dari dari
An end an end of	iescent)		OFF	+25	na tra Na Na tra	1	100	μA	ALL DIGITAL
ss (Qui			OFF	+25	•	1	100	μA	INPUTS LOW
DD	و میشدهای وی دی از این کار با میشود از این از ای این از این از		ON	+25		0.2	0.5	mA	ALL DIGITAL
SS		an a	ON	+25		1	100	μA	INPUTS HIGH
PRICE	(1-49)	ana anatar anatar					an ta she An ta she she		
177	JD/AD7502JI	, 			a stri	28.00		\$	an an tha an an tha an an tao an t
			유가 집			18.00		S	
AD7501JN/AD7502JN						30.00		\$	
AD7501KD/AD7502KD AD7501KN/AD7502KN					20.00				

SPECIFICATIONS (

 $(V_{DD} = +15V, V_{SS} = -15V \text{ unless otherwise noted})$

NOTE : A pull-up resistor, typically 1-2kΩ, is required to make the AD7501J and AD7502J compatible with TTL/DTL levels. The maximum value is determined by the output leakage current of the driver gate when in the high state.

Specifications subject to change without notice.

PRINTED IN U.S.V.

CMOS DEVICES 8 and 16 Channel Analog Multiplexers

PRELIMINARY DATA SHEET

FEATURES

300Ω

1.5 mW

R_{ON} Power Dissipation TTL/DTL/CMOS Compatible Break Before Make Switching Silicon Nitride Passivation Replaces DG506/DG507

GENERAL DESCRIPTION

The AD7506 is a monolithic CMOS 16-channel analog multiplexer packaged in a 28-pin DIP. It switches a common output to one of 16 inputs, depending on the state of four address lines and an "enable". The AD7507 is identical to the AD7506 except it has two outputs switched to two of 16 inputs depending on three binary address states and an "enable".

The AD7506 and AD7507 are excellent examples of a high breakdown CMOS process combined with a double layer interconnect for high density. Both units are silicon/nitride passivated featuring increased stability and reliability.

ORDERING INFORMATION

AD7506J	0°C to +75°C
AD7506K	0°C to +75°C
AD7506S	-55°C to +125°C
AD7506T	-55°C to +125°C
AD7507J	0°C to +75°C
AD7507K	0° C to +75 $^{\circ}$ C
AD7507S	
AD7507T	-55°C to +125°C

PACKAGE VERSIONS

Suffix "D":

28-pin Ceramic DIP

PIN CONFIGURATION (TOP VIEW)

AD7506

5.	ίŝε.	٠£	ND	1	5	U	1

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

AD7506/AD7507

AD7506			AD7	507
12 11 10 En 5	US WITCH	Ą2	. 1 46	En SWILC
		Н Н	0.0 0.1 1.0	1 13 1 231 1 381
gan angarang Marangkang Marangkang Marangkangkang		4 4 1		1 421
and na hailin 1987 an 1981 an 2987 an 1987 an	tan ing pangang pangan Pangang pangang pangang Pangang pangang	x	1 .1 X X	1 851 9 NON

ABSOLUTE MAXIMUM RATINGS

bbobb i b mitalinour latinido	
V_{DD} (to GND)	+17 V
V_{SS} (to GND)	17 V
Switch Voltage (to V_{SS})	+27 V
Digital Input Voltage Range	DD to GND
Switch Current	10 mA
Power Dissipation (Package)	
$To + 70^{\circ}C$. 1200 mW
Derate Above $+70^{\circ}$ C by	. 10 mW/°C
Operating Temperature	C to +125°C
Storage Temperature	C to +150°C

Route 1 Industrial Park; P.O. Box 280; Norwood, Mass. 02062 Tel: 617/329-4700 TWX: 710/394-6777

SPECIFICATIONS ($V_{DD} = +15 V$, $V_{SS} = -15 V$ unless otherwise noted)

PARAMETER	VERSION	SWITCH	@ 25 °C				Specified . Range	UNITS	TEST CONDITIONS
		CONDITION	MIN	TYP	MAX	MIN	MAX	UNITS	
ANALOG SWITCH					1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				
	J.K	ON		300	450		550		
RON	, к S, Т	ON		300	450		500		$V_{S} = -10 V$ to +10 V, $I_{S} = 1 mA$
R _{ON} vs. V _S	All	ON	· ·	15	+00	1 A.	500	%	
RON VS. VS RON VS. Temperature	All	ON		0.5		<u></u>	i san sa	%/°C	
RON Between Switches	All	ON		4				⁷⁰ / C	$V_{S} = 0 V, I_{S} = 1 mA$
RON Between Switches vs. Temperatur		ON		0.05		· ·		%/°C	$v_{S} = 0 v$, $v_{S} = 1 mA$
n an	J, K	OFF		0.05	5	·	50	πA	
\$	S, T	OFF		0.05	1		50	nA	$V_{S} = -10 V, V_{OUT} = +10 V$
and the second secon	J, K	OFF		0.03	20		500	nA	$v_{S} = -10^{\circ} v_{1} + 001^{\circ} = +10^{\circ} v_{1}$
AD7506	S, T	OFF		0.3	10		500	nA	$V_{S} = +10 V, V_{OUT} = -10 V$
Ουτ	J, K	OFF		0.3	10		250	nA	"Enable" Low
AD7507	S, T	OFF		0.3	5		250	nA	Linable Low
na in the second se	J, K	ON		0.3	20		500	nA	
AD7506	S, T	ON		0.3	10		500	nA	
OUT - IS	<u>ј, к</u>	ON		0.3	10		250	nA	V _S = 0
AD7507	S, T	ON		0.3	5		250	nA	
DIGITAL CONTROL				0.5					
VINL				ľ .		1.1.1	0.8	V	
V _{INH}	J, S			1. 11		3.0		V	Note 2
	К, Т				<u></u>	2.4		v	**************************************
INL or INH	All				10	ļ	30	μΛ	
2 _{IN}	All			3				рF	
DYNAMIC CHARACTERISTICS				· · .					
	J, S			700				ns	
transition	К, Т			700	- 1000	ļ		ns	V _{IN} : 0 to 3.0 V
topen	All			100				ns	
	J, S			0.8			1	μs	
^t on(En)	К, Т				1.5		1	μs	V _{EN} : 0 to 3.0 V
t-curr >	J, S			0.8			1. S. 1.	μs	EN. 0 10 3.0 V
^c off(En)	К, Т				1	1	1. a. 40 1.	μs	
"OFF" Isolation	All			70				dB	$V_{EN} = 0, R_L = 200 \Omega, C_L = 3.0 \text{ pF}$
			k i				1		$V_{S} = 3.0$ VRMS. f = 500 kHz
c _s	All	OFF		5				pF	
Cour	All	OFF		40				pF	
cs-out	All	OFF		0.5				pF	*
CSS Between Any Two Switches	All	OFF		0.5				pF	
POWER SUPPLY									
	Ј.К	OFF		0.05	1			mA	
IDD (Standby)	S. T	OFF		0.05	1		2	mA	
	Ј, К	OFF		0.05	1		1	mA	All Digital Inputs Low
ISS (Standby)	S, T	OFF		0.05	1		2	mA	
	J, K	ON	1	0.3	1		1.1.1	mA	
l _{DD}	S. T	ON		0.3	1		2	mA	All Digital Inputs High
Ínn	Ј. К	ON		0.05	1			mA	All Digital Inputs High
TSS		ON	•	0.05	1		2	mA	
PRICE (1-49)		1	.					1	
БСКР. Б. (1-47).	J			38.00				S	
AD7506	К	T		40.00		·		S	
	S		· · ·	76.00				S	
in the second	Ť			80.00				S	
	J			38.00				s	
AD7507	К		, est	40.00		t i sa		S	
	S			76.00		an a		•	
n en la substance 🖬 a substance de la s	T I	T State		80.00		1 - 1 - 1 - 4	ter de la c	5	

NOTES

Specifications subject to change without notice.
 A <u>pull-up resistor</u>, typically 1-2 kΩ is required to make the <u>Fand S</u> versions compatible with <u>TTL/DTL</u>. The maximum value is determined by the output leakage current of the driver gate when in the high state.