Very Large Array TECHNICAL REPORT

 Note for VLA Technical Report \#19:Unofficial revision by GKB
date of revision unknown

NATIONAL RADIO ASTRONOMY OBSERVATORY

P. O. Box O, Socorro, New Mexico 87801

OPERATED BY ASSOCIATED UNIVERSITIES, INC.

Note for VLA Technical Report \#19: Unofficial revision by GKB
date of revision unknown

VLA TECHNICAL REPORT \#19
MODULE F5
CONTROL INTERFACE MODULE MANUAL
Garey Barrell
September 1975I. List of Related Documents
II. Block Diagram
III. Theory of Operation
IV. Test and Troubleshooting
V. Photographs
VI. Logic Drawings
VII. Bill of Materials
VIII. Manufacturers Data
I. LIST OF RELATED DOCUMENTS

Drawing Title	Number	REV.
1. Panel, Front	Cl3170M63	
2. Module Rear Panel	C13170M66	
3. Modification, Rail		
4. Right and Left Side Plates	B13050M18	
5. Guides	B13050M4	
6. Cover, Perforated	C13050M22-1	
7. Spacer Rail		
8. Unit Wire Wrap Field Dim. \& Notation	C13170P3	
9. Front Panel Wiring Detail		
10. Module Block Diagram	Cl3170L10	
11. Serial to Parallel \& Control	Al3170L4	
12. CAL/REF Control	Al3170L1	
13. Command Word 320	B13170L5	B
14. Command Word 321	B13170L6	
15. Command Word 322	B13170L7	
16. Command Word 323	B13170L8	
17. Analog Multiplexer	C13170L9	
18. Computer-Manual Control	A13170L2	
19. Noise Temperature Monitor	Al3170L3	
20. DIGITAL MONITOR	C13170 LII	A

III. THEORY OF OPERATION

The Control Interface module, F5, provides for both local (at the front end rack) and remote (at the central computer) control of the operation of the front end. Additionally, a series of analog ANA DIGITAL monitor points within the front end may be remotely selected and displayed by the central computer. This module contains the circuitry to interface between the front end and the VLA monitor and control system.

Description of the monitor and control system, for the purposes of this manual, will be limited to the input/output interface between the Data Set and Control Interface module installed in the individual front end rack.

The data set module includes a variety of digital and analog circuitry to allow both digital and analog monitoring as well as digital control of the associated electronics. There-are-currently no requirements in this rack for digital monitoring capabilities, therefore only the analog monitor and digital control facilities are-employed.

Computer data for the controls is presented to the Control Interface module in the form of a serial string of 24 bit digital words. Two control bits, CLKO \varnothing and STRO \varnothing are also provided. The remaining outputs from the data set are the four sub multiplex address bits, SMA \varnothing, SMA 1, SMA 2, and SMA 3. The SMA bits perform a dual function, enabling selection of a specific 24 bit digital control word as well as selecting a particular analog monitor point.

1. Serial to Parallel Converter and Control (DWG \#Al3170L4)

Control data from the data set is applied to this circuit and operated upon as follows. The digital input string (DIGO \varnothing) is inverted, buffered, and applied to the serial input of a 16 bit shift register. The data is clocked into the register via the CLKO \varnothing signal from the data set. Since only 16 of the 24 available bits are employed in this particular module, bit \varnothing (LSB) appears at parallel output B \varnothing and bit 16 appears at B15. Bits 17 through 24 (MSB) are shifted through and lost.

The sub multiplex address signals, SMA Ø - SMA3, are inverted and buffered and applied directly to the analog multiplexers. A fifth control is developed, $\overline{\text { SMA 3 }}$, and is used to inhibit unselected analog multiplexers. This data is also converted to a one-of-four word enable by a decoder and buffer under control of strobe signal STRO \varnothing. The enable signal is a $2.5 \mu \mathrm{sec}$. wide logic 1 coincident with the strobe pulse.
2. Command Word Latches and Controls (DWGS \#Al3170L5, L6, L7 \& L8)

There are four essentially identical word latches in this module. The description that follows will be limited primarily to word 321 which contains a representative sample of circuitry contained in all four words.

Parallel data bits B \varnothing through B 15 are continuously applied to the inputs of a 16 bit latch consisting of four 7475 LS's. The command word enable line is at a logic \varnothing normally until the SMA code for word 321 is received coincident with a STRO \varnothing pulse. When the command word enable line goes to a logic l, the latch "looks" at the 16 input lines, and on the falling edge of this pulse, "holds" the data present at that time. This data is then held by the latch until the next command word enable is received. The timing relationships of these signals are shown in Figure 1. THE DATA SET MANUAL, VLA TECHNICAC REPORT NO 30 , TIMING DIAGRAM 8

The 16 bits of latched data are then presented to the inputs of a 2-in 16 bit digital selector consisting of four 74157 IC's. Inversion of data can be accomplished at this point by selection of either the inverting or non-inverting data outputs from the 7475 chips. The other set of inputs are connected to front panel switches to provide for manual control of all functions. Selection of manual (module front panel switches) or computer control is determined by the computer-manual switch on the module front panel (DWG. Al3l70L2). The mode selected is displayed by two LED indicators on either side of this swit.ch. Indication of the mode selected is also fed to the monitor system to allow the computer operator to determine that the switch has not been inadvertantly left in the manual position by service personnel.

The 16 outputs of the digital selectors are then connected to appropriate interface circuits for the function to be controlled. In some cases no special signal conditioning is required and the TTL line is used directly. The 75461 is a dual open-collector output capable of sinking up to 300 MA and has a VCBO of 40 V . The 75326 used as a coax switeh driver is a quad open collector driver capable of sinking up to 600 MA and has a VCEO of 25 V . Internal clamping diodes are included on this chip. The 75450 is a dual power driver capable of sinking 300 MA and has a VCEO of 30 V . In this chip all three of the leads for each power transistor are brought out of the package. This feature is used to drive an external power transistor to sink the 1.0 amp current required to operate the LO waveguide swtich.
3. Calibration/Reference Control (DWG \#A13170L1)

The CAL/REF control is a special driver circuit designed to select between either an internally generated 9.6 Hz reference signal or an external reference of 1 Hz to 100 kHz . The desired reference source is selected by either grounding or floating pin J1-36. The internal reference is generated by a 555 IC with the period determined by the $R-C$ network contained in dip header C5. Exact rate is trimmed by the l0 potentiometer. The rectangular waveform is then divided by four and made symmetrical by the 7474 IC, and applied to one input of digital selector IC 74157 . The output of this selector connects to the input of a second digital selector which is controlled by the computer-manual bus and provides the selected reference or the computer reference to the reference bus, Jl-J, and to the calibration control gates in the 7410 IC. The calibration control gates enable the operator to select either CAL. ON, CAL. OFF, or CAI. AUTO from the front panel or from the computer. The internal/external reference may only be selected while operating under manual control. The CAL signal is converted to a 0-15 volt square wave in dip header D2. This voltage then drives the noise diodes directly.
6. DIGITAL MONITOR (DWG \#C1317OLII)

THIS CRECUT CONSISTS OF FOUR RE-BIT DIGITAL LATCHES AND THE GR ASSOCIATED CONTROL LOGIC. H EACH SIGNAL TO BE MONITORED IS APPLET TO A LATCH LNPUT IN ONE OF

FOUR DIGITAL WORD GROUPS. A WORD CONSISTS OF TWO 74165 PARALCEL-LOAD 8-BIT SHIT REGISTER IC'S. THE MONITOR WORD ENABLE LINE SS AT A LOGIC 'I' LEVEL UNTI THE SMA CODE FOR WORD 220, 22), 222, OR 223 IS RECEDED COINCDENT WITH A STRI-1 PULSE. WHEN THIS OCCURS, TME DATA pRESENT AT THE MONITOR POINTS IS LATCHED INTO THE SHIFT REGISTER AAND A 24 PULSE CLKI-1 PULSE TRAN
SHIFTS THE

DATA OUT IN SERIAL FORM KIA DIGI-1
THE TIMING RELATIONSHIPS OF THEBE SIGNALS
ARE SHOWN U THE DATA SET MANUAL,
VIA TECHNICAL RETORT NO 30 TIMING DIAGRAM 9 -
4. Analog Monitor Multiplexers (DWG \#Cl3170L9)

The analog multiplexers are switched statically by the sub multiplexer address lines. The data set sequentially samples ALGI \varnothing through ALGI 5 and digitizes the voltage being monitored. Dip headers are included to provide for RC filtering of each input line. The input limitations are \varnothing to ± 10 vdc.
5. Noise Temperature Monitor (DWG \#Al3170L3)

The noise temperature monitor circuit is comprised of an Analog Devices multifunction module AD433J and an external scaling resistor', Frequency converter A outputs TOTAL POWER and SYNCHRONOUS DETECTOR are sampled and converted to a voltage related to system noise temperature. This voltage is MUN,TORED THROUGH THE DCS AND IS ALSO THIS VOLTAGE MAY made available at a front panel test point "NTM". andican be converted to noise temperature by the following equation:

$$
\text { Tsys }=10 \times \mathrm{E}_{\mathrm{O}} \times \text { Tcal }
$$

The majority of the Control Interface module circuitry may be tested on the bench without computer facilities, by operating the module in the manual control mode and manipulating the front panel switches. Most of the output drivers are open collector pull-downs which may be used to control a simple LED - 150 ohm series resistor combination from the +5 volt supply. Outputs which require special testing conditions are described below.

1. LO Waveguide Switch Driver This driver may be tested by connecting a 10 ohm 10 watt resistor between pins $J 4-B B$ and J4-AA. When the digiswitch labeled "AB- λ " is moved to position " 2 ", the voltage measured from J4-AA to chassis must be less than 0.8 volts DC.
2. Cal Switch Drivers

The cal switch drivers are open collector pull-ups to the +15 volt supply. Both drivers are controlled by a common signal line. They may be tested by connecting a 680Ω resistor in series with an LED to ground from pins J3-27 and J3-28. Both LED's should then be on, off, or flashing depending upon the position of the front panel switch.
3. LO Frequency Set

The LO frequency set drivers are TTL outputs controlled by the front panel digiswitches. If four LED-resistor combinations are connected simultaneously, position " \varnothing " of each switch will turn on all four LED's. Position "l" will cause LED "l" to go off, position "2" will turn off LED "2" and so on in a BINARY fashion.
4. Upconverter Control Drivers

The upconverter control drivers are essentially the same as the LO frequency set drivers but are only operative for the first four positions of each switch.

The analog monitor portion of the module circuitry may be tested statically by applying TTL level control signals to the four "SMA" lines. The "SMA" inputs are wired for negative, (low true), logic. Therefore TTL "l's" on all four inputs select switch position 1 on each of the six analog multiplexers. The checkout procedure, then, consists of applying a known
voltage in the range of 0 to $\pm 10 \mathrm{~V}$ dC to an individual monitor input, setting in the proper SMA binary code, and measuring the output voltage appearing at the appropriate multiplexer output.

The internal reference signal period is controlled by potentiometer R2, located on dip header C5. The period should be set for 100 ms , as monitored at Pin Jl-J.

A special pin numbering scheme is employed in this module. The analog monitor card, Group A, consists of 9 vertical rows marked A through J. Each row is then numbered 1 through 50 from top to bottom. On this card, each device will have its Pin l location described by that matrix. For example, analog IC AAØl is located with Pin 1 on Card A, Row A, and Socket l. The other pin numbers of this IC are then counted in normal fashion around the package. All Group A pin number references in schematics and text are made to package pin numbers.

The other cards in this module consist of a series of 16 pin groups numbered 1 through 30. All IC's are identified by their location on the card, i.e., IC ClO is located on Card C, position 10. Pin 1 of each IC is always plugged into pin 1 of each socket. The 16 pin IC package and card numbers are identical but 8 and 14 pin packages require a modified numbering system. For a 14 pin package, pins 1 through 7 are as marked but pin 8 of the IC mates with pin 10 on the card. All Group B, C, and D pin number references in schematics and text are made to the CARD numbers rather than the package numbers.

FIGURE 2

NATIONAL RADIO ASTRONOMY OBSERVATORY
\square ELECTRICAL
MECHANICAL SOM \# \qquad REV \qquad DATE \qquad PAGE \qquad 1 OF \qquad
MODULE \# 5 NAME CONTROL INTERFACE DG \# \qquad SUB ASMB \qquad DG \# \qquad SCHEMATIC DWG \# \qquad LOCATION FRONT END QUA/SYSTEM \qquad PREPARED BY GK. APPROVED \qquad

BI_工 $\mathrm{OF}, J_{\mathrm{RI}} \mathrm{A}_{\text {L }}$
NATIONAL RADIO ȦSTRONOMY OBSERVATORY
$\square \operatorname{mecharcn}$ \square mechanichis BOM \# \qquad REV \qquad date \qquad PAGE \qquad 1 03 \qquad NODULE: F5 Mas CONTDOC InTERFACE DNG \# \qquad sub asmb Fronm onnjer DE:G \# \qquad scmanic dwg : \qquad LOCnITON Ffore eno QUN/SYSTEM \qquad prepared by \qquad CKB APPROVED \qquad

BILI OF 1. ERIAL
NATIONAL RADIO ASTRONOMY OBSERVATORY

```
QELECTRICAL
\(\square\) MECHANICAL BOM \#
``` \(\qquad\)
``` REV DATE
``` \(\qquad\)
``` PAGE 1 OF 3
```


$\underset{\text { ITEM }}{\substack{\text { \# }}}$	$\underset{\text { desig }}{\text { Ref }}$	MANUFACTURER	MFG PART \#	DESCRIPTION	TOTAL Qua	
1		NRAO		SUPRORT BAR, MODIFIED	2	
2		NRAO		SPACER RALL	2	

BILL OF M RIAL
NATIONAL RADIO ASTRONOMY OBSERVATORY
\square ELECTRICAL \square MECHANICAL BOM 非 \qquad REV \qquad DATE \qquad PAGE \qquad 3 OF 3

BILL UF ${ }^{\text {e }}$ bRIA
NATIONAL RADIO ȦSTRONOMY OBSERVATORY
\square eiecmaical
$\because O D U E:$ FE NANE COMTROE ICREAFACE DWG \# \qquad SUB ASMB GIRE WRAP CARDS DWG \# \qquad schimatic dig \# \qquad IOCATION \qquad QUA/SYSTEM \qquad prepared by \qquad $G K B$ APPROVED \qquad

BILL OF 1 RIAL
NATIONAL RADIO ASTRONOMY OBSERVATORY
\square ELECTRICAL \square MECHANICAL BIM \# \qquad REV \qquad DATE \qquad PAGE \qquad 1 OF \qquad 1 MODULE \# FF NAME CONTROL INTERFACE DWG \# \qquad SUB ASMB REAR PANEL
\qquad DEG \# \qquad SCHEMATIC DEG \# \qquad LOCATION FRONT END QUA/SYSTEM 1 \qquad PREPARED BY \qquad GKB APPROVED \qquad

ELECTRICAL CHMHACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, V_{C C}=+5 \mathrm{~V}\right.$ to +15 unless otherwise specified)

NOTES:

1. Supply Current when output high typically 1 mA less.
2. Tested at $V_{C C}=5 V$ and $V_{C C}=15 V$
3. This will determine the maximum value of $R_{A}+R_{B}$ For $15 V$ operation, the max total $R=20$ magohm.

EQUMaLE日TCMOUT

6.50

CU!

HIGH OUTPUT VOLTAGE vs OUTPUT

SN55326, SN75326 PERFORMANCE

- Quad Positive-OR Sink Memory Drivers
- 600-mA Output Current Sink Capability
- 24V Output Capability
- Clamp Voltage Variable to 24 V SN55327, SN75327 PERFORMANCE
- Quad Memory Switches
- 600-mA Output Current Capability
- VCC2 Drive Voltage Variable to 24 V
- Output Capable of Swinging Between VCC2 and Ground

description

The SN55326, SN55327, SN75326, and SN75327 are monolithic integrated circuit quadruple memory drivers. These devices accept standard TTL decoder input signals and provide high-current and high. voltage output levels suitable for driving magnetic memory elements. Output transistor selection is determined by using one of the four address innuts and the common timing strobe.

The SN55326 and SN75326 memory drivers can sink up to 600 milliamperes and operate from a single 5-volt supply. Each driver is similar to the sink drivers of the SN55325/SN75325. The four output transistors share a common base-drive resistor and it is recommended that only one of the four driver gates be selected at a time. Output-transistor base current may be increased by connecting an external resistor between $R_{\text {ext }}$ (pin 4) and $V_{\text {CC }}$. Each output collector is protected from voltage surges during inductive switching by a clamp diode in parallel with its internal pull-up resistor. The two clamp pins may be returned to a power supply of from 4.5 volts to 24 volts.

The SN55327 and SN75327 memory switches can source or sink up to 600 milliamperes and operate from two supplies; one of five volts and the other from 4.5 volts to 24 volts. Each switch is similar to the source drivers of the SN55325/SN75325. They can function as either sink drivers or source drivers since the voltages at the output transistor terminals are capable of swinging between VCC2 and ground. The four output transistors share a common basedrive resistor and it is recommended that only one of the four outputs be selected at a time. An internal base-drive resistor is available on the chip and can be

EASE OF DESIGN

- High-Repetition-Rate Driver Compatible with High-Speed Magnetic Memories
- Inputs Compatible with TTL Decoders
- Minimum Time Skew between Strobe and Output-Current Rise
- Pulse-Transformer Coupling Eliminated
- Drive-Line Lengths Reduced

SN55326, SN75326
J. JB, OR N DUAL-IN-LINE OR SB FLAT PACKAGE (TOP VIEW)

$\mathrm{NC}-\mathrm{N} \infty$ internal connection

SB55327, SN75327
J, JB, OR N DUAL-IN-LINE OR SB FLAT PACKAGE (TOP VIEW)

PIN 8 OF JB AND SB PACKAGES IS IN ELECTRICAL CONTACT WITH THE METAL BASE
used by connecting Nodo R (pin 4) to Rint (pin 5). This resistor provides adequate base current to the output transistors for output sink currents up to 375 milliamperes with VCC2 at 15 volts or 600 milliamperes with VCC2 at 24 volts. Base current can be regulated to within ± 5 percent by substituting for this resistor an external resistor connected between Node R (pin 4) and VCC2 with Rint (pin 5) remaining open. This method is preferable in high-duty-cycle, high-power applications since the power dissipated in this resistor is outside the package. When a source current and VCC2 voltage other than the above values are required, it is recommended that the base drive be supplied through an external resistor of the appropriate value calculated using Equation 1 shown in the SN55325, SN75325 data sheet.

FUNCTION TABLE

INPUTS					OUTPUTS			
ADDRESS				$\begin{gathered} \text { STROBE } \\ \mathrm{S} \\ \hline \end{gathered}$				
A	B	C	D		W	x		2
L	H	H	H	L	ON	OFF	OFF	OFF
H	L	H	H	L	OFF	ON	OFF	OFF
H	H	L	H	L	OFF	OFF	ON	OFF
H	H	H	L	L	OFF	OFF	OFF	ON
H	H	H	H	x	OFF	OFF	OFF	OFF
\times	\times	\times	\times	H	OFF	OFF	OFF	OFF

$H=$ high level, $L=$ low level, $X=$ irrelevant
NOTE: Not more than one output is to be on at any one time.

The SN55326 and SN55327 circuits are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the SN75326 and SN75327 are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	SN55326	SN75326	SN55327	SN75327	UNIT
Supply voltage, $\mathrm{V}_{\text {CC }}$ or $\mathrm{V}_{\text {CCi }}$ (see Note 1)	7	7	7	7	V
Supply voltage, $\mathrm{VCC2}$			25	25	V
Input voltage, any address or strobe	5.5	5.5	5.5	5.5	V
Qupur collector voltage	25	25	25	25	V
Output clamp voltage	25	25			V
Output collector current	750	750	750	750	mA
Continuous total dissipation at lor belowl $100^{\circ} \mathrm{C}$ case temperature Isee Note 2)	1	1	1 -	1	W
Operating frea-air temperature range	-55 to 125	08070	-55 80125	0 to 70	${ }^{\circ} \mathrm{C}$
Storage temparature range	-65 to 150	-65:0.150	-65 to 150	-65 to 150	${ }^{\circ} \mathrm{C}$
Lead temperature $1 / 16$ inch from case for 60 seconds: J, JB, or SB package	300	300	300	300	${ }^{\circ} \mathrm{C}$
Lead temperature $1 / 16$ inch from case for 10 seconds: N package	260	260	260	260	${ }^{\circ} \mathrm{C}$

recommended operating conditions

	SN55326			SN75325			SN55327			SN75327			UNIT
	MIN	NOM	MAX										
Supply voltage, V_{CC} or V_{CC}	4.5	5	5.5	4.5	5	5.5	4.5	5	5.5	4.5	5	5.5	V
Supply voltage, $\mathrm{V}_{\text {cci }}$.	4.5		24	4.5		24	V
Output collector voltege			24			24			24			24	V
Outpur-clamp voitage, V(clamp)	4.5		24	4.5		24							V
Output collector current			600			600			600			600	mA
Operating free-air temperature, T_{A}	-55		125	0		70	-55		125	0		70	${ }^{C}$

Vores: 1. Volfage values are with respect to network ground terminal(s).
2. For oparstion above $100^{\circ} \mathrm{C}$ case temparature, refar to Dissip stion Darat ng Curve, Figure 1. For dissipation ratings in frea-air; soe Figura 2.

TYPES S*y55326, SN55327, SN75326, S 2475327 MEMORY DRIVERS

SN55326, SN75326 electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\text { }}$		SN55326		SN75326		UNIT		
			MIN	TYP \ddagger MAX	Min	TYP! MAX					
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voitage						2		2		V
$V_{\text {IL }}$	Lowdevel inpur voltage					0.8		0.8	\checkmark		
v_{i}	Input clamp voltage		$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$I_{1}=-10 m A$		-1 -1.7		-1 -1.7	V		
VOH	High-level output voltage		$V_{C C}=4.5 \mathrm{~V}, \quad 1$	$10=0$	19	23	19	23	v		
$V_{\text {(sat) }}$	Saturation voitage		$V_{C C}=4.5 V_{0}$	Full range		0.9		0.9	v		
			See Note 3	$T_{A}=25^{\circ} \mathrm{C}$		$0.43 \quad 0.7$		0.430 .75			
VF(clamp)	Output-clamp-diode forward voltage		$\begin{aligned} & V_{(\text {clamp })}=0, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\text { (clamp })=-10 \mathrm{~mA} \text {. }$		1.5		1.5	V		
'(clamp)	Output-clamp current, one output on		$1($ sink $)=50 \mathrm{~mA},{ }^{T}$	$T_{A}=25^{\circ} \mathrm{C}$		57		57	mA		
11	Input current at maximum inpue voltage	Address	$v_{1}=5.5 \mathrm{~V}$			1		1	mA		
		Strobe				4		4			
	High-leve! input current	Address	$V_{1}=2.4 \mathrm{~V}$			40.		40	$\mu \mathrm{A}$		
		Strobe				160		160			
11	Low-level input current	Address	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-1-1.6		-1 -1.6	mA		
		Strobe				$\begin{array}{lll}-4 & -6.4\end{array}$		-4 -6.4			
Iccloff)	Supply current, all outputs off		All inputs at 5 V . T	$T_{A}=25^{\circ} \mathrm{C}$		18. 25		18.25	mA		
Iccion)	Supply current, one output on		1 (sink) $=50 \mathrm{~mA}, \mathrm{~T}^{\text {a }}$	$T_{A}=25^{\circ} \mathrm{C}$		58.75		$58 \quad 75$	mA		

SN55326, SN75326 switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {¢ }}$	TO (OUTPUT)	TEST CONDITIONS§	MIN	TYP	MAX	UNIT
tPLH	$W, X, Y, o r z$	$V_{S}=V_{(\text {clamp })}=15 \mathrm{~V}, \quad R_{L}=24 \Omega, C_{L}=25 \mathrm{pF} .$ See Figure 5		30	50	
${ }^{\text {PPHL}}$				25	50	ns
TLLH	W, X, Y, or Z			7	15	n
thiL				10	20	
t_{5}	W, X, Y, or Z			24	35	ns
$\therefore \mathrm{VOH}$	W, X, Y, or Z	$\begin{aligned} & V_{S}=V_{(\text {clamp })}=24 V_{i}, R_{L}=47 \Omega, C_{L}=25 p F, \\ & l_{\text {(sink })} \approx 500 \mathrm{~mA}, \end{aligned} \quad \text { See Figure } 5 .$	$\mathrm{V}_{\mathrm{S}}-25$			mV

Unless otherwise noted, $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {(clamp) }}=24 \mathrm{~V}$. See Figure 3.
\ddagger All typical values are at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$.
§Under these conditions, not more than one output is to be on at any one time
$I_{\text {tPLH }}$ Epropagation delay time, low-to-high-level output
$t_{P H L} \equiv$ propagation delay time, high.to-low loval output
tTLH = transition time, low-to-high:level output
tTHL \equiv transition time, high-to-low-level output
$t_{s} \equiv$ Storaga time
VOH \equiv High-level output voltage (after switching)
NOTE 3: These parameters must be masured using pulse techniques. $z_{w}=200 \mu \mathrm{~s}$, duty cycla $\leq \mathbf{2 \%}$.

For typical characteristic curves, Figures 11 through 14 of tha SN55325/SN75325 data shaet apply for these circuits.

TYPES SN55326, SN55327, SN75326, SN75327 MEMORY DRIVERS

SN55327, SN75327 electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

SN55327, SN75327 switching characteristics, $\mathrm{VCC1}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$

PARAMETER:	TO IOUTPUT)	TEST CONDITİONS ${ }^{\text {S }}$	MIN	TYP	MAX	$\begin{array}{\|l\|} \hline \text { UNIT } \\ \text { ns } \end{array}$
${ }^{1} \mathrm{~L}$ LH	Collectors W, Z or X,Y	$V_{S}=V_{C C 2}=15 \mathrm{~V}, \quad R_{L}=24 \Omega, C_{L}=25 \mathrm{pF} .$ See Figure 5 and Note 4		35	55	
PPHL				30	55	
TLLH	$W_{i}, \mathbf{X}, \mathrm{Y}$, or \mathbf{Z}	$V_{\text {(col) }}=V_{C C 2}=20 V_{i} R_{L}=100 \Omega 2, C_{L}=25 p F .$ See Figure 6 and Note 4		30		ns
THL				10	\therefore	
V_{OH}	Collectors W, Z or X, Y	$V_{S}=V_{C C 2}=24 \mathrm{~V}$, $R_{L}=47 \Omega, C_{L}=25 p F_{i}$ $l_{\text {(sink) }}=500 \mathrm{~mA}$. See Figure 5 and Note 4.	$\mathrm{V}_{\mathrm{S}}-25$			mV

Uniess otherwise noted, $V_{C C 1}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=24 \mathrm{~V}$. See Figure 3.
All typical values areat $T_{A}=25^{\circ} \mathrm{C}$.
Under these conditions, not more than one output is to be on at any one time
${ }^{\text {IP }}$ LH propagation delay time, low-to-high-leval output
tpil 포 propagation dalay time, high-to-low-level output
TTLH \equiv transition time, low-to-high-level output
'THL $¥$ transition time, high.to-lowlevel output
$V_{\mathrm{OH}}=$ High-level ourput volrage (after switching)
-OTES: 3. These parameters must be measured using pulse techniques. $q_{w y}=200 \mu \mathrm{~s}$, dury cyele $<\mathbf{2 \%}$.
4. A 350- Ω resistor is connected between node $R\left(\right.$ pin 4) and $V_{C C 2}$ (pin 1) with $R_{\text {int }}$ (pin 5) open

For iypical characteristic curves, Figures 11 through 14 of the SN55325/SN75325 data sheer apply for these circuits.

TYPES SN55326, SN55327, SN75326, SN75327 MEMORY DRIVERS

NOTE A Aated operating troe-air temperature ranges must be observed ragardiass of haar-sinking.
figure 1
FIGURE?

PERIPHERAL DRIVERS FOR HIGH-CURRENT SWITCHING AT HIGH SPEEDS

performance

- 300-mA Output Current Capability
- High-Voltage Outputs
- No Output Latch-Up at 20 V
- High-Speed Switching
ease-of-design
- Circuit Flexibility for Varied Applications and Choice of Logic Function
- TTL or DTL Compatible Diode-Clamped Inputs
- Standard Supply Voltages

DEVICE	LOGIC OF COMPLETE CIRCUIT	PACKAGES
SN554508	Positive-AND ${ }^{+}$	J, J8
SN554518	Positive-AND	JP, L
SN55452B	Positive-NANO	JP, L
SN554538	Positive-OR	JP, L
SN554548	Positive-NOR	JP, L
SN754509	Positive-AND ${ }^{\dagger}$	J, N
SN754513	Positive-AND	L.P
SN754528	Positive-NAND	L, P
SN754538	Positive-OR	L. P
SN754548	Positive-NOR	L. P

TWith outpur transistop base connected externally to output of gate.

description

Series $55450 B / 75450 B$ dual peripheral drivers are a family of versatile devices designed for use in systems that employ TTL or DTL logic. The 55450B/754508 family is functionally interchangeable with and replaces the 75450 farnily and the 75450 A family devices manufactured previously. The speed of the $554508 / 75450 \mathrm{~B}$ family is equal to that of the 75450 family and a test to ensure freedom from latch-up has been added. Diode-clamped inputs simplify circuit design. Typical applications include high-speed logic buffers, power drivers, relay drivers. lamp drivers, MOS drivers, line drivers, and memory drivers. Series 554508 drivers are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; Series 75450 B drivers are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$,

The SN55450B and SN75450B are unique general-purpose devices each featuring two standard Series $54 / 74$ TTL gates and two uncommitted, high-current, high-voltage n-p-n transistors. Thase devices offer the system designer the flexibility of tailoring the circuit to the application.

The SN55451B/SN75451B, SN55452B/SN75452B, SN55453B/SN754538, and SN55454B/SN75454B are dual peripheral AND, NAND, OR, and NOR drivers, respectively, (assuming positive logic) with the output of the logic gates internally connected to the bases of the n-p-n output transistors.

SERIES 55450B/75450B DUAL PERIPHERAL DRIVERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		SN55450B	$\begin{array}{\|l\|} \hline \text { SN554518 } \\ \text { SN55A528 } \\ \text { SN55A53B } \\ \text { SN55454B } \end{array}$	SN4754508	SN75451B SN75452B SN754538 SN754548	UNIT
Supply vol tage, VCC (see Note 1)		7	7	7	7	V
Input voltago		5.5	5.5	5.5	5.5	V
Interemitter voltage (see Note 2)		5.5	5.5	5.5	5.5	V
VCC-to-substrate voltage		35		35		V
Collector-to-substrate voltage		35		35		v
Collector-base voltage		35		35		v
Collector-emitter vol tage (see Note 3)		30		30		v
Emitter-base voltage		5		5		V
Output voltage (see Note 4)			30		30	V
Collector current (see Note 5)		300		300		mA
Ourput current (see Nota 5)			300		300	mA
Continuous total dissipation at (or below) $25^{\circ} \mathrm{C}$ free-air temperature (see Note 6)		800	800	800	800	mW:
Operating freeair temperature range		-55 to 125	-55. 20125	0 to 70	0 to 70	C
Storage temperature range		- -55 to 150	-65 to 150	-65 to 150	-65 to 150	${ }^{6} \mathrm{C}$
Lead temperature $\mathbf{1 / 1 6}$ inch from case for 60 seconds	J, JP, JP, or L package	300	300	300	300	${ }^{\circ} \mathrm{C}$
Lead temperature $1 / 16$ inch from case for 10 seconds	N or P package	260	260	260	260	${ }^{\circ} \mathrm{C}$

NOTES: 1. Voltage values are with respect to network ground terminal unlass othenvise specified.
2. This is the vol tage batween tuo emittaps of a multiplatemitter trarisistor.
3. This value applies when the base-ernitrer resistance $\left(R_{B E}\right)$ is equal to or less than 500Ω.
4. This is the maximum vol tage which should be apoliad to any outpist inhen it is in the off state
5. Both halves of these dual circuits may conduet rated current sim.jligneously: however, powar dissipation bveraged over ashort sime intervalimust fall within the continuous dissipstion ratiry.
6. For operation above $25^{\circ} \mathrm{C}$ freozir temperature, pefer to Dissipation Derating Curve, Figure 20 . This rating for the L package requires a heat sink that provides a thermal resistance from case to freezair. $\mathrm{R}_{\theta \mathrm{CA}}$. of not more than $95^{\circ} \mathrm{C} / \mathrm{W}$.
recommended operating conditions (see Note 7)

	SERIES 55450B	SERIES 754503	UNIT	
	MIN NOM MAX	MIN NOM MAX		
Supply voltage, VCC	4.5	5	5.5	4.75
Operating free-air temparature, TA	5.25	V		

NOTE 7: For the SN554508 and SN75450B only, the substrate (pin 8) must aiw 3 ys bat at most-negative device voltage for proper operation.
schematic

Pesistor values shown are nominal.

JORN
DUAL-IN-LINE PACKAGE ITOP VIEW)

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)
TTL gates

PARAMETER		TEST FIGURE	TEST CONDITIONS	MIN TYPT MAX	UNIT
Hightevel input voltage		1	B \therefore ?	2	V
Low-level input voitage		2		0.8	V
Input clamp voltage		3	$V_{C C}=4.75 \mathrm{~V}, \quad 11=-12 \mathrm{~mA}$	-1.5	\checkmark
High-level output voltage		2	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V} \quad V_{I L}=0.8 \mathrm{~V} \\ & \mathrm{VOH}=-400 \mu \mathrm{~A} \end{aligned}$	$24 \quad 33$	\checkmark
Low-level ou tput voltage		1	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V}, \quad V_{i H}=2 \mathrm{~V} \\ & \mathrm{OL}=16 \mathrm{~mA} \end{aligned}$	0.220 .4	v
1. Input current at maximum input voltage	input A	4	$v_{C C}=5.25 v^{\prime}, v_{1}=5.5 v$	1	
	input G:			2	ma
High level input current	input A	4	$\mathrm{V}_{\mathrm{Cc}}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{1}=2.4 \mathrm{~V}$	40	$\mu \mathrm{A}$
	input G			80	ب
1IL Low-leval input current	input A	3	$v_{C C}=5.25 \mathrm{~V} . \quad V_{1}=0.4 \mathrm{~V}$	-1.6	A
	input G			-32	A
Short-circuit output current ${ }^{\ddagger}$		5	$V_{C C}=5.25 \mathrm{~V}$	$-18,-55$	mA
Supoly current, outputs high Supply current, outputs low		6.	$V_{C C}=5.25 \mathrm{~V}, \quad V_{1}=0$	$2 \quad 4$	mA
		$V_{C C}=5.25 V_{0} \quad V_{1}=5 \mathrm{~V}$	611	mA	

All typical values at $V_{C C}=5 V_{0} T_{A}=25^{\circ} \mathrm{C}$.
INot more than one output should be shorted at a tima.

TYPE SN754508 DUAL PERIPHERAL POSITIVE-AND DRIVER

eloctrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

output transistors

${ }^{\dagger}$ All tvpical valúnes aréat $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 8: These parameters must be miesured using pulse rechniques. $I_{w}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
switching characteristics, $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$
TTL gates

output transistors

\ddagger Voltage and current values shown are nominal; exact values vary sligntly with transistor parametars.
gates and transistors combined

PARAMETER.	. TEST FIGURE	TEST CONDITIONS	MIN TYP MAX	UNIT
PPLH Propagation delay time, low-to-high-level output	14	$\begin{aligned} & I_{C}=200 \mathrm{~mA}, C_{L}=15 \mathrm{pF} . \\ & R_{L}=50 \Omega \end{aligned}$	$20 \quad 30$	ns
TPHL Propagation delay time, high-to-low-level output			20. 30	ns
TLH Transition time, lowto-high-level output.			- 712	ns
THL Transition time, high-tolowlevel output			9.15	ns
V_{OH} Highlevel output voltage after switching	15	$\begin{aligned} & V_{S}=20 \mathrm{~V} \quad I \mathrm{C}=300 \mathrm{~mA} . \\ & R_{B E}=500 \Omega \end{aligned}$	$v_{S}-6.5$	mV

SERIES 55460/75460

PERIPHERAL DRIVERS FOR

HIGH-VOLTAGE, HIGH-CURRENT DRIVER APPLICATIONS

performance

- 300-mA Output Current Capability
- High-Voltage Outputs
- No Output Latch-Up at 30 V
- Medium-Speed Switching

ease-of-design

- Circuit Flexibility for Varied Applications and Choice of Logic Function
- TTL or DTL Compatible Diode-Clamped Inputs
- Standard Supply Voltages

SUMMARY OF SERIES 55460/75460		
DEVICE	LOGIC OF	
COMPLETE CIRCUIT	PACKAGES	
SN55460	AND	
SN55461	AND	$J, J B$
SN55462	NAND	$J P, L$
SN55463	OR	$J P, L$
SN55464	NOR	$J P, L$
SN75460	AND	$J P, L$
SN75461	AND	J, N
SN75462	NAND	L, P
SN75463	OR	L, P
SN75464	NOR	L, P

TWith output transistor base connected externally to output of gate

description

Series $55460 / 75460$ dual peripheral drivers are functionally interchangeable with Series $554508 / 75450$ peripheral drivers, but are designed for use in systems that require higher breakdown voltages than Series $554508 / 754508$ can provide at the expense of slightly slower switching speeds. Typical applications include logic buffers, pawer drivers, relay drivers, lamp drivers, MOS drivers, line drivers, and memory drivers. Series 55460 drivers are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; Series 75460 drivers are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

The SN5 5460 and SN75460 are unique general-purpose devices each featuring tivo standard Series $54 / 74$ TTL gates and two uncommitted; high-current, high-voltage, n-p-n transistors. These devices offer the system designer the flexibility of tailoring the circuit to the application.

The SN55461/SN75461, SN55462/SN75462, SN55463/SN75463, and SN55464/SN75464 are dual peripheral AND. NAND, OR, and NOR drivers, respectively, (assuming positive logic) with the output of the logic gates internally connected to the bases of the n-p-n output transistors.

TEXAS INSTRUMENTS
IVCTRPORATED
POST OFFCE 30× 5012 - DAHAS TEXAS 5222

SERIES 55460/75460 dUAL PERIPHERAL DRIVERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		SN55460	SN55461 SN55462 SN55463 SN55464	SN75460	SN75461 SN75462 SN75463 SN75464	UNIT
Supply vol tage, VCC (see Note 1)		7	7	7	7	V
Inpuz voltage		5.5	5.5	5.5	5.5	v
Interemitter voltage (see Note 2)		5.5	5.5	5.5	5.5	V
$\mathrm{V}_{\text {CC }}$ to-substrate voltage		40		40		v
Collector-to-substrate voltage		40		40		V
Collector-base voltage		40		40		v
Collector-emitter voltage (see Note 3)		40		40		V
Collector-emitter voltage (see Note 4)		25		25		V
Emitter-base voltage		5		5		V
Ouput voltage (see Note 5)			35		35	v
Collector current (see Note 6)		300		300		m
Output current (see Note 6)			300		300	$m A$
Continuous total dissipation at (or below) $25^{\circ} \mathrm{C}$ free-air temperature (see Note 7)		800	800	800	800	mW
Operating freeair temperature range		-55 to 125	-55 to 125	0 to 70	0 to 70	${ }^{\circ} \mathrm{C}$
Storage temperature range		-65 to 150\|	-65 to 150	-65 to 150	-65 50.150	${ }^{3} \mathrm{C}$
Lead temperature $1 / 16$ inch from case for 60 seconds	J, J8, JP, or L'package	300	300	300	300	${ }^{\circ} \mathrm{C}$
Lead temperature $1 / 16$ inch from case for 10 seconds	N or P package	260	260	260	260	${ }^{\circ} \mathrm{C}$

NOTES: 1. Voltage values are with respect to network ground terminal unless otherwise specifiec
2. This is the voltage between two emitters of a multip:--mittar transistor.
3. This valua applies when the base-mitter resistance (ReE) is equal to or less than 500Ω.
4. This value opplies between 0 and 10 mA collgctor cu:rens whan the base emitser diode is open-circuited.
5. This is the maximum volrage which should be applied to any oistout when it is in the off state.
6. Both halves of these dual circults may conduct rated eurrent simultaneously: however, power dissipation averagad over a shor? time in terval must fall within the continuous dissipation rating.
7. For operation above $25^{\circ} \mathrm{C}$ freeair temperature, refer to Dissipation Derating Curve, Figure 16 . This rating for the L Dackage requires a heat sink that provides a thermal resistan=e fron case to free-air, R $\theta C A$, 0° not more than $95^{\circ} \mathrm{C} / \mathrm{W}$.
recommended operating conditions (see Note 8)

NOTE 8: For the SN554508 and SN754508 only, the substate (pin 8) must alovays be at the most negative device voltage for proper operation.

TYPE SN75461
DUAL PERIPHERAL POSITIVE-AND DRIVER

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN TYPt MAX	UNIT
$V_{1 H}$ High-level input voltage	7		2	v
$V_{\text {IL }}$ Low-level inpur voltage	7		\% 0.8	v
V_{1}. Input clamp voltage	8	$V_{C C}=4.75 \mathrm{~V}_{0} \quad 11=-12 \mathrm{~mA}$	$-1.2-1.5$	v
IOH High-level output current	7	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V}, \quad V_{i H}=2 \mathrm{~V}_{i} \\ & V_{O H}=35 \mathrm{~V} \end{aligned}$	100	$\mu \mathrm{A}$
		$\begin{array}{ll} V_{C C}=4.75 V_{0} & V_{1 L}=0.8 \mathrm{~V} \\ I_{O L}=100 \mathrm{~mA} \end{array}$	$0.15 \quad 0.4$	\checkmark
	7	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V}, \quad V_{I L}=0.8 \mathrm{~V} \\ & I_{O L}=300 \mathrm{~mA} \end{aligned}$	$0.36: 0.7$	v
II Input current at maximum input voltage	9	$V_{C C}=5.25 \mathrm{~V} . \quad V_{1}=5.5 \mathrm{~V}$	1	mA
lit High-level input current	9	$\mathrm{V}_{C C}=5.25 \mathrm{~V} . \quad V_{1}=2.4 \mathrm{~V}$	40	μ^{\prime}
IIL Low-level input current	8	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \quad V_{1}=0.8 \mathrm{~V}$	-1 -1.6	mA
ICCH Supply current, outputs high	10	$\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V} . \quad V_{1}=5 \mathrm{~V}$	811	mA
ICCL Supply current, outputs low		$V_{C C}=5.25 V_{0}, \quad V_{1}=0$	6176	mA

${ }^{\top}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$

PARAMETER	$\begin{gathered} \text { TEST } \\ \text { FIGURE } \end{gathered}$	TEST CONDITIONS	MIN TYP	MAX	UNIT
TPLH Propagation delay time, low-to-high-leval ou ¢.Jt	- 14	$\begin{aligned} & I_{0}=200 \mathrm{~mA}, \quad C_{L}=15 \mathrm{pF} . \\ & R_{L}=50 \Omega \end{aligned}$	45	55	ns
TPHL Propgation delay time, high-to-low-level output			30.	40	ns
TLH Transition time, low-to-high-level outpu:			8	20	ns
THL. Transition time, high-to-low-level output			10	20	ns
V OH . Hightevel oumput voltage after switching	15	$\mathrm{V}_{S}=30 \mathrm{~V}, \quad 10=300 \mathrm{~mA}$	$V_{s}-10$		mV

FEATURES

Versatility: Provides Transfer Characteristics of Several
Function Modules
Divides Over a 100:1 Range With a Max Error of 0.25\% (433B)

Internal Voltage Reference
Hermetically Sealed Semiconductors
No External Trims Required
Low Noise
Low Cost: \$75 (1-9) 433J
APPLICATIONS
Transducer Linearization
Signal Processing
Raising to Arbitrary Powers
Vector Functions
Trigonometric Functions (Sine, Cosine, Arctangent)

GENERAL DESCRIPTION

The model 433 is an extremely versatile function module which implements the transfer function:

$$
e_{o}=\frac{10}{9} V_{y}\left(\frac{V_{z}}{V_{x}}\right)^{m}, 0.2 \leqslant m \leqslant 5.0
$$

By either jumper connections on the pins, or selection of two external resistors the user can program the 433 to: multiply, divide, square, square root, root of a ratio, square of a ratio, or raise voltage ratios to an arbitrary power, m.

When used with a low cost op amp, such as AD741, the model 433 may be used to compute the true rms value of a varying signal. With two such op amps, the 433 can be used to perform accurate vector computations over wide ranges of the vector sum.
Due to its log/antilog circuit approach, signal levels of 100 mV to 10 V may be processed with a maximum output error of 0.25% F.S. (433B). The allowable input range for the three input variables is 0.01 to +10 V , for which there is a typical error of $\pm 5 \mathrm{mV} \pm 0.3 \%$ of the theoretical output voltage for model 433 J , and $\pm 1 \mathrm{mV} \pm 0.15 \%$ for 433 B .
Because of its small size, accuracy, versatility, and speed (and all at low cost), the model 433 will prove to be an essential component in equipment requring on-the-spot computations in real time, or for linearizing a wide range of transducer characteristics in medical, industrial, and process control equipment. Designed with the OEM's needs in mind, the model +33 is attractively priced for new equipment designs.

PRINCIPLE OF OPERATION

The model 433 is comprised of log and antilog circuits interconnected as shown in Figure 1. The log ratio circuit provides

Figure 1. Functional Block Diagram
the \log of $V_{\mathbf{x}} / V_{\mathbf{z}}$ to terminals A, B, C where, for exponents other than unity, it is scaled by two external programming resistors (see hook-up diagrams for connection and values of these two resistors). The scaled \log ratio from terminal C is subtracted from a signal proportional to the \log of V_{y}. The resulting expression is operated on by the antilog circuit, yielding an output of

$$
e_{0}=\frac{10}{9} V_{y}\left(\frac{V_{z}}{V_{x}}\right)^{m}
$$

The voltage reference circuit is a high stability ($0.005 \% /{ }^{\circ} \mathrm{C}$) voltage source which is generated internally. It is provided as an output terminal for user convenience, and may be used as a constant at any of the input terminals.

ONE-QUADRANT DIVIDER

When connected as a divider, the model 433B has less than $1 / 4 \%$ output error over an input signal range of $100: 1$. This performance is obtained with no external trims, and is nearly twenty times better than that attainable with a 0.1% multiplier/divider connected in a feedback loop.

Figure 2. Comparison of Divider Error vs. Denominator Level for Model 433J and a Conventional Mult./Div.

Figure 3. 433 Small Signal Bandwidth 1/s. Input Voltage

Figure 4. Varying the 1 xponent, m

Figure 6. Model 433 No se vs. Denominator for Various Exponents, m

MODEL +33 B - 0.25% DIVIDER, WIDE DYNAMIIC RANGE Probably the most impressive performance improvement owing to model 433 's log/antilog circuit approach, is its ability to hold high divider accuracies over a wide 100:1 input signal range.
When using a conventional multiplier/divider as a divider, accuracy, offset drift, and noise performance are all degraded as the denominator is decreased.

For model 433, accuracy, offset drift, and noise performance are all virtually independent of denominator level as illustrated in Figure 2 and this performance is obtained with no external trims.

FREQUENCY RESPONSE

A curve of amplitude vs. bandwidth for model 433 is shown in Figure 3. For all input terminals, the small signal frequency response (-3 dB point) is signal level dependent, decreasing from 100 kHz for a 10 V input to 400 Hz for a 10 mV input. These small signal measurements are made by superimposing a 10% small signal amplitude on the DC level being characterized.
Full output for a ± 5 volt signal superimposed on a 5 VDC level is 50 kHz for the multiplier, and $\mathrm{V}_{\mathrm{x}} \times 5 \mathrm{kHz}$ for the divider.

VARYING THE EXPONENT, m
Presented in Figure 4 is a family of curves which illustrates the effect of varying the exponent, m. All curves have been scaled for the full scale output of 10 V by reducing the 433 's transfer equation to $e_{0}=10\left(V_{z} / V_{X}\right)^{m}$. For applications where a continuous variation in m is desired, connections should be made as shown in Figure 5C. Model 433 features very small accuracy changes ($\approx 0.1 \%$) as m is adjusted over the entire range from 0.2 to 5 .

Figure 5. Resistor Programming for the Exponent, m.
Various values of m are programmed by two external resistors, R_{1} and R_{2}. For values of $m<1$ resistor connections are made to terminals, $1,7,8$ as shown in Figure 5A. For values of m >1, see Figure 5 B. For $m=1$, connect terminals 1,7 and 8 together.

NOISE PERFORMANCE

The curves shown in Figure 6 are for outpur noise vs. signal level in a 1 kHz BW for worst case conditions. These conditions exist when V_{X} is equal to V_{Z} and is varied over the specified range. It should be noted that for 0.1 V inputs the effective gain is 100 . To retain the full performance capability of model 433, all external noise sources should be isolated from the input terminals.
An exceptional advantage of the +33 over other means of dividing is revealed by these curves. That feature being that noise is tirtually independent of signal level. For a $100: 1$ signal level change of the denominator, the outpur noise is changed only 3:1. Division by using a multiplier in the feedback loop exhibits a 100:1 increase in output noise for a denominator signal level change of 100.1 .

Figure 7. Divider
When connected as a divider as shown above, the 433 has less than $1 / 2 \%$ error (50 mV) for input signals from 100 mV to 10 V . Output noise, offset drift and accuracy are all virtually independent of signal level and no trims are required.

Figure 8 . Transducer Linearization
A transducer's output may be linearized by utilizing the 433 as an exponentiator. In the example above, a transducer is used te convert a force, F, to a voltage, V. The desired relationship being V directly proportional to F; i.e., $V=C F$ where C is constant.
The actual output for this example is proportional to F, but is a nonlinear relation which can be approximated by CF ${ }^{1 / 2.2}$. Connecting the 433 as shown with $m=2.2$ provides the desired relation of $e_{0}=C F$.

Figure 9. Square Root
The square root of a single variable may be obtained with no external components when connected as shown above. Noise performance is even better than that for the multiply or divide mode.

Figure 10. True RMS
By combining the 433 with a simple filter, using an external op amp as shown above, the true RMS value of a one quadrant input signal may be computed. Accuracy is not degraded by crest factor, provided the maximum input is 10 V or less.
The 433 output is applied to an integrator to average the signal and is then fed back to the X input to obtain the square root of the mean square of the input.
Accuracy of $5 \mathrm{mV}+0.1 \%$ of reading may be achieved over an input range of $500: 1$.

Figure 11. Vector Computation $V_{C}=\sqrt{V_{A}^{2}+V_{B}^{2}}$
The vector computation circuit shown in Figure 11 illustrates the extreme versatility of model 433. Used with two inexpensive op amps the +33 is used as a basic building block, which in this case, provides the square root of the sum of the squares.
This application is based on the identity for the difference of squares. The derivation is shown by the equations above and the final equation for V_{c} is implemented.
Due to the excellent inherent accuracy of the above circuit (error $=0.1 \%$ of reading), matched resistors with a low T.C. should be used. Errors of only 0.1% of the theoretical output may be achieved over signal levels of +100 mV to +10 V .

The usefulness of model 433 extends beyond the illustrative examples shown above. Model 433 may also be used to generate basic trigonometric functions (sine, cosine, arctangent). Further detailed applications information on model 433 is provided in the Nonlinear Circuits Handbook, published by Analog Devices.

8 and 4 Channel Analog Multiplexers

GENERAL DESCRIPTION

The AD7501 is an 8 channel analog multiplexer which switches one output to one of 8 inputs depending on the state of 3 binary inputs. An "enable" control allows for disconnecting the output regardless of the digital input states. The AD7502 is identical to the AD7501 except it has 2 outputs switched to two of 8 inputs depending on 2 binary inputs.

ORDERING INFORMATION

AD7501J:	$0-+75^{\circ} \mathrm{C}$	AD 7502 J	$0-+75^{\circ} \mathrm{C}$
$\mathrm{AD} 7501 \mathrm{~K}:$	$0-+75^{\circ} \mathrm{C}$	AD7502K	$0-+75^{\circ} \mathrm{C}$
AD7501S:	$-55^{\circ} \mathrm{C}-+125^{\circ} \mathrm{C}$	$\mathrm{AD} 7502 \mathrm{~S}:$	$-55^{\circ} \mathrm{C}-+125^{\circ} \mathrm{C}$

PACKAGE VERSIONS

Suffix "D": Ceramic Dip
Suffix "N": Plastic Dip

ABSOLUTE MAXIMUM RATINGS

VDD (to Gnd)	+17 V
V $_{\text {SS }}-$ (to Gnd)	-17 V
Switch Voltage (to VSS)	+27 V
Switch Current	10 mA
Digital Input Voltage Range	$V_{\text {DD }}$ to GND
Power Dissipation (package)	450 mW
up to $+75^{\circ} \mathrm{C}$	$6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
derates above $+75^{\circ} \mathrm{C}$ at	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

CAUTION:

1. Do not apply voltages higher than $V_{D D}$ and $V_{S S}$ on any other terminal, especially when $V_{S S}=V_{D D}=O V$ all other pins should be at 0 V .
2. The digital control inputs are zener protected. However, permanent damage can occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.

BONDING DIAGRAM

FUNCTIONAL DIAGRAMS

AD7501

AD7502

TRUTH TABLES

AD7501				
A_{2}	A_{1}	A_{0}	E_{N}	ON
L	L	L	H	1
L	L	H	H	2
L	H	L	H	3
L.	H	H	H	4
H	L	L	H	5
H	L	H	H	6
H	H.	L	H	7
H	H	H	H	8
X	\mathbf{x}	X	L	NONE

AD7502			
A_{1}	A_{0}	$\mathrm{E}_{\mathbf{N}}$	ON
L	L	H	$1 \& 5$
L	H	H	$2 \& 6$
H	L	H	3\&7
H	H	H	$4 \& 8$
X	\mathbf{X}	1	NONE

PIN CONFIGURATION (TOP VIEW)

AD7502

Route 1 Industrial Park; P.O. Box 280; Norwood, Mass. 02062
Tel: 617/329-4700
TWX: 710/394-6577
West Coast
Tel: 213/595-1783
Mid-West
Tel: 312/297-8710

PARAMETER		SWITCH	$\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$	MIN	TYP	MAX	UNIT	TEST CONDITIONS
ANALOG SWITCH								
Ron		ON	+25		170	300	Ω	$\begin{aligned} & -10 \mathrm{~V} \leqslant \mathrm{v}_{\mathrm{S}} \leqslant+10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \end{aligned}$
Ron vs. V_{S}		ON	+25		20		\%	$\begin{aligned} & V_{S}=-10 \mathrm{~V} 0+10 \mathrm{~V} \\ & \mathbf{I}_{\mathbf{S}}=1 \mathrm{~mA} \end{aligned}$
$\mathrm{R}_{\text {ON }}$ vs. Temperature		ON			0.5		$\% 1^{\circ} \mathrm{C}$	
Ron between Switches		ON	+25		4		\%	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$
Ron vs. Temperature between Switches$\mathbf{I}_{\mathbf{S}}$		ON			± 0.01		\% $1^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathbf{S}}=1 \mathrm{~mA}$
	Commercial	OFF OFF	$\begin{aligned} & +25 \\ & 0 \text { to }+75 \end{aligned}$		0.2	$\begin{aligned} & 2 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	$V_{S}=-10 \mathrm{~V}, V_{\text {OUT }}=+10 \mathrm{~V}$
	Military .	OFF OFF	$\begin{aligned} & +25 \\ & -55 \text { to }+125 \end{aligned}$			$\begin{aligned} & 0.5 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=-10 \mathrm{~V}$
Iout	Commercial	$\begin{aligned} & \mathrm{OFF} \\ & \mathrm{OFF} \end{aligned}$	$\begin{aligned} & +25 \\ & 0 \text { to }+75 \end{aligned}$		1.0	$\begin{aligned} & 10 \\ & 250 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	
	Military	OFF OFF	$\begin{aligned} & +25 \\ & -55 \text { to }+125 \end{aligned}$				nA	$\mathrm{V}_{\text {S }}=-10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=+10 \mathrm{~V}$
IOUT \quad AD7502	Commercial	OFF OFF	$\begin{aligned} & +25 \\ & 0 \text { to }+75 \end{aligned}$		0.6	$\begin{aligned} & 5 \\ & 125 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	$V_{S}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=-10 \mathrm{~V}$ "enable" low
	Military	OFF OFF	$\begin{aligned} & +25 \\ & -55 \text { to }+125 \end{aligned}$			$\begin{aligned} & 3 \\ & 125 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	
$\|\mathrm{lout}-\mathrm{IS}\|$		ON	+25			5	nA	$\mathbf{V}_{\mathbf{S}}=\mathbf{0}$
DIGITAL CONTROL								
$\mathrm{V}_{\text {INL }}$			+25			0.8	V	
$\begin{aligned} & A D 7501 \mathrm{~J} \\ & \mathrm{AD} 7502 \mathrm{~J} \end{aligned}$			+25	4			V	SEE NOTE
VINHAD7501K AD7501S AD7502K$\therefore \quad$ AD7502S			+25	2.4			V	
$\underset{\text { or }}{\mathbf{I}_{\mathbf{N L L}}}$	Commercial		+25 0 to +75		10 100		nA nA	
$\mathrm{I}_{\text {INH }}$	Military		-55 to +125		1		$\mu \mathrm{A}$	
$\mathrm{C}_{\text {IN }}$			+25		3		pF	

DYNAMIC
CHARACTERISTICS

PRICE (1-49)
AD7501JD/AD7502JD

28.00	$\$$
18.00	$\$$
30.00	$\$$
20.00	\therefore
44.00	$\$$

NOTE: A pull-up resistor, typically $1-2 k \Omega$, is required to make the AD7501J and AD7502J compatible with TTL/DTL levels. The maximum value is determined by the output leakage current of the driver gate when in the high state.

Specifications subject to change without notice.

ANALOG DEVICES

8 and 16 Channel Analog Multiplexers

PRELIMINARY DATA SHEET

FEATURES

$R_{\text {ON }}$
 Power Dissipation
 TTL/DTL/CMOS Compatible
 Break Before Make Switching
 Silicon Nitride Passivation
 Replaces DG506/DG507

GENERAL DESCRIPTION

The AD7506 is a monolithic CMOS 16 -channel analog multiplexer packaged in a 28 -pin DIP. It switches a common output to one of 16 inputs, depending on the state of four address lines and an "enable". The AD7507 is identical to the AD7506 except it has two outputs switched to two of 16 inputs depending on three binary address states and an "enable".

The AD7506 and AD7507 are excellent examples of a high breakdown CMOS process combined with a double layer interconnect for high density. Both units are silicon/nitride passivated featuring increased stability and reliability.

ORDERING INFORMATION

AD7506J	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
AD7506K	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
AD7506S	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
AD7506T	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
AD7507J	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
AD7507K	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
AD7507S	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
AD7507T	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

PACKAGE VERSIONS
Suffix "D":
28-pin Ceramic DIP

PIN CONFIGURATION (TOP VIEW)

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL DIAGRAMS

TRUTHTABLE

AD7506

AD7507

ABSOLUTE MAXIMUM RATINGS
$V_{\text {DD }}$ (to GND)
VSS (to GND) 17 V
Switch Voltage (to VSS) +27 V
Digital Input Voltage Range...$V_{\text {DD }}$ to GND
Switch Current 10 mA
Power Dissipation (Package)
$\mathrm{To}+70^{\circ} \mathrm{C}$
1200 mW
Derate Above $+70^{\circ} \mathrm{C}$ by $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature..$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

SPSPIPBATIDNS $v_{D D}=+15 v, v_{S S}=-15 v$ unless otherwise noted)

Notes

1. Specifications subject to thange without notice.
2. Apull-up resistor, typically $1-2 \mathrm{k} \Omega$ is required to make the J and S versions compatible with TLLDTL. The maximum value is determined by the output leakage curreat of the driver gate when in the high state.
