VLA TECHNICAL REPORT #22

MODULE L2

50/600 MHZ MULTIPLIER Harry Beazell MARCH 1976

TABLE OF CONTENTS

			PAGE
1.0	Relate	d Documents List	1-0
	1.0.1	NRAO Drawing List	1-1
	1.0.2	NRAO Specifications	1-3
	1.0.3	Books, etc	1-0
2.0	Functi	onal Description	2-1
3.0	Detail	ed Circuit Description	3-1
	3.0.1	Module Assembly	3-1
	3.0.2	50 MHz VCXO	3-1
	3.0.3	50 MHx Phase Lock Board	3-1
	3.0.4	Loop Characteristics	3-2
	3.0.5	50/600 MHz Multiplier	3-5
4.0	Adjust	ments and Alignment	4-1
	4.0.1	Initial Alignment of Multiplier Chain	4-1
	4.0.2	Phase Lock Set-up Procedure on Bench	4-2
	4.0.3	Phase Lock Set-up Procedure in Bin	4-3
5.0	Schema	tic and Block Diagrams (included)	5-1
	5.0.1	Component Block Diagram	5-2
	5.0.2	X12 Multiplier Board	5-3
	5.0.3	50 MHz Phase Lock Board	5-4
6.0	Bills	of Materials (included)	6-1
7.0	Manufa	cturers' Data Sheets	7-1

LIST OF FIGURES

Figure 1.	Front View
Figure 2.	Side View
Figure 3.	Close-up Xl2 Multiplier Assembly
Figure 4.	Module Rear Connections and Pin Assignments

- 1.0 RELATED DOCUMENTS LIST
 - 1.0.1 NRAO Drawing List
 - 1.0.2 NRAO Specifications
 - 1.0.3 Books:

F. M. Gardner, Phaselock Techniques (John Wiley & Sons, 1966)

50/600 MHz MULTIPLIER MODULE (L2), PROJECT NO. 13230

Bill of Materials

Mult. Divider

.

50 MHz Phase Lock Board X12 Multiplier Board Assem	bly		A13430Z30 A13230Z35
Multiplier Enclosure			A13230Z11
50/600 MHz Multiplier			A13230Z2
X12 Multiplier Assembly			A13230Z34
Assembly Drawings			
50 MHz Phase Lock Board			C13230P40
X12 Multiplier Board Assem	bly		D13230P44
Multiplier Enclosure		٢	C13230P21
50/600 MHz Multiplier			Not Drawn
X12 Multiplier Assembly			D13230P45
Schematic Diagrams			
50 MHz Phase Lock Board			C13230511
50/600 MHz Multiplier			D13230S16
Logic Diagrams			
None			
Printed Circuit Board			
	Artwork	Silkscreen	Mechanical
50 MHz Phase Lock Board	B13230AB1	None	C13230M67
50/600 MHz Multiplier	D13230AB3	None	D13230M87
Block Diagrams			
Block Diagrams			C13230B2
Wire Lists			
None			
Mechanical Drawings			
Sub-Dividers			B13230M13
Sub-Divider			B13230M14
Divider			B13230M15
Divider			B13230M16
Rails			B13230M17-1
Ralls			BI3230M1/-2
End Cap			BI3230M10
End Cap Banal Front			B13230M20
Bar Support Top Right			B13230M23
Side Cap			C13230M6-1
Side Cap			C13230M6-2
Top Cover and Bottom Plate	e ·		C13230M7-1
Top Cover and Bottom Plate	e		C13230M7-2
Left Side Plate			C13230M8

1-1

A13230M9

Mechanical Drawings (cont.)
Mult. Divider
Filter Hold Down Clamp
Power Divider Mtg. Bracket
Guide
Right and Left Side Plates
Top and Bottom Bar, Support
Cover. Perforated
Coil and Transformer Data
Danal Poar
rallet, keat
muning Coil
Tuning Coll
Tuning Coil

Tuning Coil

A13230M10

A13230M12 A13230M21

B13050M4 B13050M18 B13050M23 C13050M22-1

C13210M2-10

C13210M4

B13230M70

B13230M71

B13230M72 B13230M73 B13230M74 B13230M75 B13230M76 B13230M77 B13230M78 B13230M79

B13230M80

NATIONAL RADIO ASTRONOMY OBSERVATORY CHARLOTTESVILLE, VIRGINIA VERY LARGE ARRAY PROJECT

SPECIFICATION NO .: 13220N1

NAME: Voltage Controlled XTAL Oscillator

DATE: February 13, 1974 APPROVED BY: PREPARED BY:

1. TYPE: Overtone resonator, fundamental oscillator and buffer amplifier output = 50 MHzOUTPUT FREQUENCY: 2. = 10.0 mW min. 3. OUTPUT POWER: = 50 Ω OUTPUT IMPEDANCE: 4. 5. = 1×10^{-7} = 5 Hz over temp. range in 9.a a. Setability = a combination of mech. trim for 5 years b. Setability Range aging and electrical trim for 30 day aging. . 6. = + .5 kHz, + 10 V 3 point average a. Voltage/Freq. Control = .9 to 1.1 b. Linearity $\Delta f / \Delta V$ = 0 to 10 kHz full deviation c. Tuning Rate = 2000 Ω or greater DC to 10 kHz d. Input Impedance = 1×10^{-8} in .01 seconds 7. FREQUENCY STABILITY $\Delta f/f_o$ 1×10^{-8} in .1 seconds 1×10^{-8} in 1.0 seconds 2×10^{-8} in 10 seconds 1×10^{-7} in 8 hours

8. OUTPUT CNR

= 100 dB in 1 MHz BW

30 day drift must not limit 6 (a) (b)

9. ENVIRONMENTAL

- a. Design to operate at a stable ambient or mounted on a controlled heat sink of 0.1° rms in the range of 20° to 55°C.
- b. Warm up 30 min. to 1×10^{-7} of last setting.
- c. Maintain $\Delta f/f = 1 \times 10^{-7}$ for any position (static lg any direction)

10. POWER SOURCE

Supplies Available = $\pm 15V$, ($\pm 15V$ reg. .01%)

- 11. DESIGN (WITH OVEN IF NECESSARY): Smallest possible size and power consumption. Height not over 1.0".
- 12. INPUT POWER LEADS: Solder connections feed-thru filter A-B type SF or equivalent. No leads on top or bottom.
- 13. INPUT MODULATION: Solder F. T. internal RF decoupling of 100 dB or greater.

14. OUTPUT: Solder F. T.

2.0 FUNCTIONAL DESCRIPTION

The L2 module continues the basic frequency multiplication to provide the ultimate 600 MHz system phase standard. A phase lock filter at 50 MHz provides spectral limiting and subsequent multipliers provide system outputs at 50 MHz, 100 MHz, 200 MHz, and 600 MHz. A front panel indication of loop unlock is provided, and can be exercised by the L5 module. Data set monitoring of output signal levels and lock loop condition is provided.

3.0.1 The Module Assembly (Ref. Block Diagram C13230B2)

The +20 dbm RF outputs of the 50/600 multiplier sub-assembly are connected to tubular bandpass filters to provide further rejection of harmonic and subharmonic signals. The 50 MHz, 100 MHz and 200 MHz filters are 8% bandwidth 4-pole units and the outputs are +19 dbm to +20 dbm. The undesired harmonics and subharmonics are greater than -70 dbc. The 600 MHz signal is filtered by a 50 MHz BW 4-pole filter and then provides two outputs, via a power divider and 10 db pad, of +16 dbm to +17 dbm and +6 dbm to +7 dbm. The undesired signals at \pm 50 MHz are greater than -55 dbc and at \pm 5 MHz are greater than -70 dbc.

3.0.2 50 MHz VCXO (Ref. Specification 13220N1)

The 50 MHz +10 dbm VCXO provides the +10 dbm drive signal to the 50/600 MHz multiplier. The control gain and zero frequency can be set by screwdriver adjustment. Nominal values are 50 MHz \pm 50 Hz at center zero V.D.C. and \pm 500 \pm 50 Hz for \pm 10.0 V.D.C.

3.0.3 50 MHz Phase Lock Board (Ref. Schematic C13230S11)

The 50 MHz, +10 dbm VCXO signal is phase compared in the 50/600 multiplier with the 50 MHz, 0 dbm reference signal from L_1 . The phase error output at J_1 is terminated at E_7 and E_9 by R_{29} and C_7 . This provides 51Ω for the sum terms (100 MHz) and 50 MHz and a high impedance at the DC Ø difference for maximum sensitivity. U_1 provides variable gain and R_{12} provides offset adjustment. An error viewing output is provided through R_{18} , R_{19} and C_4 to

 E_6 and P_{1-22} . A loop control switch, U_2 , is used to provide remote loop open/close control. Application of a +TTL "1" to P_{1-21} and E_4 opens the loop switch. A manual switch S_1 provides on-board O/C and remote positions for testing. The switch output is connected to the loop integrator U_3 through R_{24} . R_{23} provides a bias return for U_3 when the switch, U_2 , is open. Offset trim for U_3 is provided by R_7 . R_{24} , C, and R_1 determine the loop radian natural frequency, ωn and damping, ζ . The output of U_3 is applied to the VCXO through an isolating resistor R_2 . Monitoring of this voltage is provided through an isolation resistor R_3 and E_3 to P_1 -23. A front panel indicator LED is connected anode to E_{11} and cathode to E_{12} . When the voltage U_3 has value of about +2.5 volts, Q_1 will begin to conduct and current will flow through Q_1 emitter R_{31} , the L.E.D., and CR_1 to ground. At 5 volts and up, Q_1 is saturated and the L.E.D., R_{31} , and CR_2 .

3.0.4 Loop Characteristics

The basic purpose of the VCXO is to provide filtering to eliminate harmonics of 5 MHz and to restrict the AM and FM noise sidebands prior to further multiplication. Using the terminology of Gardner¹, the loop characteristics are derived. The detector gain K_D is determined by the output of the phase detector and the gain setting of U_1 . The procedure is to set R_{21} to produce a level of ±10Vpp at the R_{28} or ±5Vpp at E_6 when the VCXO phase goes through 360° . If the error voltage vs phase is a sinusoid, then K_D is $\simeq 10 \, \text{Sin } 1^\circ$ $V/1^\circ$ at zero error. This value is: $K_D = 0.175 \, V/1^\circ$. The oscillator control sens. is 50 Hz/volt. Therefore Ko = 50 x 360 = 18000 °/V. The combined gain $K_v = K_0 \, K_D = 3150$. Assuming a loop bandwidth that provides pull in and lock with a maximum open loop error of ±650 Hz (this is equal to the integrator U_3 output on the stop and the 50 Ez/V gain of the VCXD). The values for R_{24} , C_1 and R_1 provide the following:

$$T_{1} = R_{24} C_{1} = .001S \qquad t_{2} = .001$$
$$W_{n} = \left(\frac{Kv}{t_{1}}\right)^{l_{2}} = 1775 \text{ r/s} = 282 \text{ Hz}$$
$$\zeta = \frac{T_{2}}{2} (Wn) = \cdot^{001}/2 .1775 = .89$$
$$DW_{n} = 2\sqrt{\zeta WnKv} = 709 \text{ Hz}$$

The loop tracks dynamically with an error of -40 db/decade below the loop corner frequency. This would give an error of -80 db at 2.82 Hz which provides excellent tracking of the 5 MHz (X10) oscillator signal. Outside the loop Wn the frequency response falls off 20 db per decade and the signal spectrum rapidly becomes that of the 50 MHz VCXO. Spectrum analyzer dynamicrange limits the ability to observe the spectrum at 5 and 50 MHz. The expected signal to FM noise can be calculated using the following method:

- Assume: 50 MHz VCXO power = 0 dbm, 1st Amp in VCXO noise figure
 = 10 db. Amplifier output Bw = 5 MHz.
- 2. P_N fm single sideband = -177 dbm/Hz. P_N @ 600 MHz in a 300 K Hz BW = -177 dbm + Nf = 10 db + 10 log 300 KHz + 20 log $\frac{600}{50}$ = -90.4 dbm/300 KHz Fs/Pn = 90.4 db

Measured with a Tektronix 7L13, set to -30 dBm reference and 300 kHz resolution, the P_S/P_N 2 MHz on either side of the carrier is about 88 dBc, which is in good agreement with the calculated value. Measurements closer to the carrier are not possible due to the limits of the spectrum analyzer. With multiplication to 24 GHz the P_S/P_N would calculate to be 90.4 - 20 $\log \frac{24 \text{ GHz}}{600 \text{ MHz}} = 90.4 - 32 = 58.4 \text{ in 300 kHz out to the <math>\pm 2.5 \text{ MHz}$ points. Beyond $\pm 25 \text{ MHz}$ as determined by the 600 MHz output bandpass filter, the level would be: (assuming a 20 dB nf and $\pm 10 \text{ dBm}$ signal @ 600 MHz)

 $P_{g}/P_{N} = 177 - 20 - 58.4 - 32 + 10 = 76.6 \text{ dB}$

With the 50 MHz VCXO locked to the 5 MHz x 10 reference, the spectrum within

the bandwidth of the loop, ± 282 Hz, is that of the 5 MHz VCXO multiplied to 24 GHz. The spec value for the 10544A at 100 Hz offset is S/N = 120 dB. The value at 24 GHz would be 120 dB/Hz - 20 log $\frac{24 \text{ GHz}}{5 \text{ MHz}}$ = 120 - 73.6 = 46.4 dB/Hz measured in a 30 Hz BW the value is P_S/P_N 30 Hz = 31.6 dB.

1 - REF 1.0.3.1

3.0.5 50/600 MHz Multiplier (Ref. Schematic D13230S16)

The 50/600 MHz unit accepts a +10 dbm 50 MHz signal from the VCXO and provides outputs of +20 dbm at 50 MHz, 100 MHz, 200 MHz, and 600 MHz. The DC phase error signal for the 50 MHz VCXO lock amplifier is provided by an internal phase comparator. All RF outputs are padded with a minimum 3 db pad and can be operated open or shorted without failure.

3.0.5.1 Input Power Divider

The +10 dbm 50 MHz VCXO signal from J_2 drives a power divider U_2 . The +7 dbm signals drive a doubler stage Q_2 and a power amp stage Q_1 .

3.0.5.2 50 MHz Power Amplifier

 Q_1 is biased class B and provides an output power of +25 dbm (316 MW) to the input of the 50 Ω output pad R₄, R₅, R₇, and R₆. L₁ reflects a collector load of about 260 ohms to Q_1 and has a loaded tank Q_L of about 7. An output signal from R₄-R₅ provides a +7 dbm signal to the 50 MHz phase detector U₄, the main output is delivered to P₁₃ and is set by the pad values to +20 dbm. A single diode CR₆ rectifies the output at L₁ and provides an isolated level output through a series 47K resistor R₈ and .001µf feed through C₅₈.

3.0.5.3 100 MHz Doubler

 Q_2 is biased class B and operates similarly to Q_1 . The circuit L_2 and C5 are broadly resonant ($Q^{\simeq}3.5$) at 50 MHz and provide a low impedance at 100 MHz for the AC base current. The output circuit C_8 , L_3 , L_{10} , L_{11} , and L_4 is a 2-pole 10% bandwidth flat phase filter designed to give a load of about 250 ohms to Q_2 . A level of 200 MW (+23 dbm)

is available at the 4 db pad input. Divider U_2 provides 40 MW (+16 dbm) drive to both Q_3 and Q_4 . The doubler level is monitored identically to the 50 MHz PA (CR₁, etc.).

3.0.5.4 100 MHz Power Amp

 Q_3 is biased Class B, L_5 and C_{54} provide an input match between the 50 Ω power divider U_2 and the ~25 Ω lower input resistance of Q_3 . L_6 and C_{22} provide a tank with a Q_L of about 4 and an Rp of about 250 Ω . An output power of +25 dbm is available and is tailored to +20 dbm by the 5 db pad R_{19} , R_{20} and R_{21} . A 100 MHz level monitor is provided (CR₂, etc.).

3.0.5.5 200 MHz Doubler

 Q_4 is biased Class C and the output load is a 2-pole filter consisting of L7, C46, C45, and L8. L7 resonates the collector C of Q_4 . The filter provides a collector load of about 200 ohms and has a 10% bandwidth. Q_5 provides a buffered and further filtered output of about 80 MW to power divider U3. The doubler is level monitored by CR5, etc.

3.0.5.6 200 MHz Power Amp

 Q_6 is driven from U_3 through a 2 db pad. Bias approaches Class A operation. The collector is matched to 50Ω by a T network consisting of L_{10} , L_{11} and C_{36} . Output Q is low (about 3) and a level of +23 dbm is available to the output 3 db pad R_{37} , R_{38} and R_{36} . Output level is monitored by CR_4 , etc.

3.0.5.7 600 MHz Tripler and Power Amplifier

 Q_7 is operated as a grounded base Class C tripler driven directly by the second U₃ output. Protection and P.S. decoupling is provided by R₃₄ and C₃₂. The output is tuned by C₃₃ and L₁₂ and matched to the base of buffer amp Q₈. C₃₀ tunes the base and stray inductance of Q₈. The output tank L₁₃ and C₂₇ provide a low Q_L to Q₈. Decoupling and protection are provided by R₃₁ and C₂₆. The input of Q₉ is tuned by L₁₄ and C₂₄. Q₉ is protected by a large emitter resistor R₂₇ and is biased Class A by R₂₉ and R₂₂. The output stray C and L₁₅ are broadly resonant and an output of +23 dbm is available to a 50 Ω load. A 3 db pad, R₂₆, R₂₅ and R₂₄, provides a +20 dbm output. Level monitoring is provided by CR₃, etc.

4.0.1 Initial Alignment of Multiplier Chain

The various tuning adjustments are set to approximately mid-range values. By following the sequence of the circuit description 3.0.5 tuning can be readily accomplished by viewing individual outputs with a spectrum analyzer connected at the filter inputs. The tuning is the best compromise of maximum signal and minimum harmonics. Final adjustments are made by power meter on the filter outputs. In some cases, adjustment of bias resistors and output pads will be required. These values are indicated on the schematic as tailor points and the values shown are nominals. 4.0.2 Phase Lock Set Up Procedure on Bench

- 1. Apply 50 MHz signal from (L1,P1) to (L2,P10).
- 2. Apply 10 MHz from (L1,P2) to external oscillator input of HP5326B.
- 3. Set HP5326B to Freq. A, 1s.
- Disconnect <u>Ein</u> cable from 50 MHz VCXO; connect precision +10V from HP6115A power supply to <u>Ein</u>.
- 5. Set switch on phase lock board to "open". Put scope on (P1-22).
- With HP6115A voltage set to 0.00, adjust VCXO "Freq" pot to read 50,000,000 +50 Hz on HP5326B.
- 7. With HP6115A at +10.00V set VCXO gain to give 50,000,500 <u>+</u>50 Hz and with -10.00V read 49,999,500 +50 Hz.
- 8. Replace RF cable. Set HP6115 at +1.00V (F $\sim 5,000,050$ Hz). Set phase lock gain to give 10V p-p at (P1-22) of ~ 50 Hz phase error. Set offset to balance about zero.
- Replace <u>Ein</u> cable and with switch still open set integrator offset to give VCXO frequency at 4,999,500 Hz (or less). This is about -12V on <u>Ein</u>.
- 10. Set switch to "C". Loop should lock to Freq = 50,000,000 Hz on counter.
- Check (P1-22) phase error, voltage should be -100 to 200 mV when lock is locked.
- 12. Set switch to "R". Apply +5V to (P1-21). Loop should unlock.

4.0.3 Phase Lock Set Up Procedure in Bin

- 1. Place module on extender unit.
- 2. Remove right hand side cover.
- 3. Remove Ein and RFout cables from Isotemp VCXO-10 MHz osc.
- 4. Connect <u>RFout</u> to input of HP5326B and set 5326B to Frequency A, 1 sec. Connect system 10 MHz (L1, P2) 0 dBm to <u>external osc</u>. input and set switch to "ext" on rear of counter.
- 5. Connect Ein to a precision +10V DC power supply such as HP6115A.
- 6. With <u>Ein</u> at .000V adjust "Freq" pot on VCXO to obtain 50,000,000 <u>+</u>50 Hz on HP5326B.

- 7. With <u>Ein</u> at +10V adjust "Mod Sens" to obtain 50,000,500 <u>+</u>10 Hz with -10V read 49,999,500 +50 Hz.
- 8. Replace <u>RFout</u> cable. Set HP6115 at 1.00V F <u>vcxo</u> <u>5,000,050 Hz</u>. Connect scope (TEK 475 or 5103N to "V" (P1-22)). Set Ø "AG" to give 10V p-p of <u>50 Hz</u> phase error. Set "AO" to balance error about zero.
- Replace <u>Ein</u> cable and with switch still open, set "IO" to give beat frequency of about 500 Hz with voltmeter. <u>Ein</u> should be <u>∿</u>12V. If at +12V adjust offset to run to -12V.
- 10. Switch to closed loop. Loop error on scope will read -10 to -20 mV DC.
- 11. Check (P1-22) \emptyset error voltage with the loop locked should be -10 to -20 mV DC. AC component should be 10 mV p-p or less and mostly 60 Hz related.
- 12. Set switch to "R". Apply TTL level 1 to (P1-21). Loop should open. Observe front panel light when loop is locked. (Light on indicates loop is unlocked.)

5.0 SCHEMATIC DIAGRAMS

- 5.0.1 Component Block Diagram (Cl3230B2)
- 5.0.2 X12 Multiplier Board Schematic (D13230S16)
- 5.0.3 50 MHz Phase Lock Board Schematic (C13230S11)

6.0 BILLS OF MATERIALS

Bills of Materials are included for the following sub-assemblies of Module L2:

A13230Z30	50 MHz Phase Lock Board
A13230Z35	X12 Multiplier Board
A13230Z11	X12 Multiplier Enclosure
A13230Z2	50/600 MHz Multiplier
A13230Z34	X12 Multiplier Assembly

BILL OF MATERIAL

NATIONAL RADIO ASTRONOMY OBSERVATORY

X ELECTRICAL	MECHANICAL	BOM # A13	230Z30 REV		DATE 3/3	3/75	PAGE	OF
MODULE # L2	NAME 50/600 MHz Multipl	ier DWG	#	SUB ASMB	50 Milz	Phase Lock	Board DWG	# C13230P40
SCHEMATIC DWG #	C13230S11 LOCATION		QUA/SYSTEM	PREP	ARED BY	Hand	APPROVED	MA3_

ITEM #	REF DESIG	MANUFACTURER	MFG PART #	DESCRIPTION	total Qua	
1		NRAO	A13230Z30	Assembly	-	
2		NRAO	C13230M67	Board Detail	1	
3	R1,R3,R4 R23,R24	•	RCR07 103-5S	Resistor	5	
4	R2,R5 R8		RCR07 471-55	Resistor	3	
5	R6,R9		RCR07 682-55	Resistor	2	
6	R7,R12	Bourns	3339H-1-102	1 K ohm potentiometer	2	
7	R10,R13		RCR07 101-5S	Resistor	2	
8	R15,R11		RCR07-303-55	Resistor	2	
9	R14,R16 R17		RCR07 102-55	Resistor	3	
10	R25, R30 R18, R19		RCR07 333-55	Resistor	4	
11	R20		RCR07 392-55 .	Resistor	1	
12	R26,R27		RCR07 201-55	Resistor	2	
13	R28		RCR07 470-55	Resistor	1	
14	R29		RCR07 510-55	Resistor	1	
15	R22		RCR07 222-5S	Resistor	1	

BILL OF MATERIAL

NATIONAL RADIO ASTRONOMY OBSERVATORY

X	ELECTRICAL	
---	------------	--

MECHANICAL

BOM # <u>A13230230</u> REV _____ DATE <u>3/3/75</u> PAGE <u>2</u> OF <u>3</u>

item #	REF DESIG	MANUFACTURER	MFG PART #	DESCRIPTION	TOTAL QUA	
16	R21	Bourns	3339н-1-104	100 K ohm Potentiometer	1	
17	C2,3,5, 6	Erie	8131-050-651-105M	1 MF Capacitor	4	
18	C4	Brie	8121-050-651-472M	.0047 MF Cap	1	
19	C1	Sprague	192P1049R8	0.1 Mylar Cap. <u>+</u> 10% 80 V.D.C.	1	
20	E1-E12	Keystone	1587-1	Turret Terminal	12	
21	U1,U3	National Circuits	LM-118	1.C.	2	
22		Robinson-Nugent	DP 5178	1.C. Socket 8 Pin	2	
23	U2	ANALOG-DEVICES	AD7513KH	1.C.	1	
24		Robinson-Nugent	DP 51710-23	1.C. Socket 10 Pin	1	
25		Keystone	1596-2	Standoffs	4	
26	C7	Erie	8101-050-651-102M	.001 MF Capacitor	1	
27	S1	J.B.T.	JMT-121	5 AMP, 125 Volt switch	1	
28		NRAO	C13230S11	Schematic	Ref	
29		NRAO	B13230AB1	Artwork Master	Ref	
30	Q1		2N3904	TRANSISTOR	1	
31	CR1, CR2		1N914	DIODE	2	
32	R31		RCR07 751-5S	RESISTOR	1	
NATIONAL RADIO ASTRONOMY OBSERVATORY

X ELECTRICAL

-

MECHANICAL

BOM # A132307.30 REV _____ DATE 3/3/75 PAGE _____ OF ____

	item #	REF DESIG	MANUFACTURER	MFG PART #	DESCRIPTION	total Qua	
	33	Q2		2N3906	TPANSISTOP	1	
	34		CINCH	3-LPS-В	TPANSISTOR SOCKET	2	
-							
.							
-							
-							
-							
61			·				
ھ۔ -ا							
-							
-							
_							
-							
_							
_							
_							

NATIONAL RADIO ASTRONOMY OBSERVATORY

ELECTRICAL	MECHANICAL	BOM # A/3	3230235REV	<u>A</u> r	DATE 2 MAY 75	PAGE	of <u>4</u>
MODULE # 12	NAME 50/600 MHZ MU	LT DWG	# <u>A13230ZZ</u>	SUB ASMB	PC BOARD	ASSY. DWG #	DI3230P44
SCHEMATIC DWG #	DI32305/6 LOCATION		QUA/SYSTEM	PREPA	RED BY T. HYZA	K APPROVED	H105

ITEM #	REF DESIG	MANUFACTURER	MFG PART #	DESCRIPTION	totai Qua	
1		NRAO	A13230235	PC BOARD ASSEMB	LY	
2		NRAO	DI3230M87	PC BOARD		
3	R1,9,17 41,48		RCR07 102-55	RESISTOR 1/4W 1	<u>K 5</u>	
4	R2,11,18 39,47		RCR07 487-55	RESISTOR 4.7	ohms 5	
5	R3, 10 16		RCR07 103-55	RESISTOR 10	к з	
6	R4,7 20		RCR07 300-55	RESISTOR 30	OHMS 3	
7	R5,33 34		RCR07 151-55	RESISTOR 150	OHMS 3	
8	R6,19 21		RCR07 181-55	RESISTOR 180	ohms 3	
9	R8,14,22 23,35,45		RCR07 473-55	RESISTOR 47	K 6	
10	R12,15 28		RCR07 221-55	RESISTOR 220	ohms 3	
	R13		RCR07 240-55	RESISTOR 1/4W 24	OHMS	
_12	R24,26		RCR05 301-55	RESISTOR YOW 300	OHMS 2	
13	R25		RCR05 160-55	RESISTOR 1/8W 16	OHMS	
14	R27		RCR07 470-55	RESISTOR YAW 47	OHMS	
15	R29		RCR07 391-55	RESISTOR 1/4W 390	OHMS	

•

.

NATIONAL RADIO ASTRONOMY OBSERVATORY DATE 2 MAY 75 PAGE 2 OF 4

ELECTRICAL

MECHANICAL

BOM # <u>A13230235 REV</u> <u>A</u>

ITEM #	REF DESIG	MANUFACTURER	MFG PART #	DESCRIPTIC	'n	total Qua	
16	R30		RCR07 510-55	RESISTOR 1/41	1 51 OHMS		
17	R3I		RCR07 331-55	RESISTOR	330 OHMS	1	İ
18	R32		RCR07 182-55	RESISTOR	1.8K		
19	R36, 37		RCR07 301-55	RESISTOR	300 OHMS	2	
20	R3B		RCR07 180-55	RESISTOR	18 OHMS	1	
21	R40		RCR07 101-55	RESISTOR	100 OHMS	1	
22	R42,44		RCR07 431-55	RESISTOR	430 OHMS	2	
, 23	R43		RCR07 110-55	RESISTOR	II OHMS	1	
24	R46	2	RCR07 200-55	RESISTOR 1/4	W 20 OHMS		
25	CRI-6		IN914	DIODE		6	
26	*	ERIE	8101-050-651-102M	CAPACITOR C	OLUE	21	
27	C2	ELMENCO	CM04ED910J03	CAPACITOR 91	PF.	1	
28.	CH,13 HO 55	KEMET	CSI3BF685K	CAPACITOR 6.	BUF	4	
29	C5	ELMENCO	CMO4ED22IJ03	CAPACITOR 2	ZOPF.		
30	CG,14,77, 39,42,48.	35, 52 ERIE	8121-050-651-104M	CAPACITOR O.	IUF	8	
31	C8,11	ELMENCO	CM04ED240J03	CAPACITOR 2	1 PF	2	
32	C10,46	ELMENCO	CM04ED030J03	CAPACITOR	3.0 PF	2	

* C1,3,7,9,12,15,17,18,21,25,29,31,34, 37,41,44,47,44,51,38,53

NATIONAL RADIO ASTRONOMY OBSERVATORY

ELECTRICAL

MECHANICAL

BOM # \$ 13230235 REV A DATE 2 MAY 75 PAGE 3 OF 4

MFG PART # TOTAL DESCRIPTION ITEM REF MANUFACTURER DESIG QUA # C16 ELMENCO CMO4ED220J03 CAPACITOR 33 SS PF C19,20 100BIOZCM100 AMER. TECH. CERAMICS 2 CAPACITOR 1000PF CHIP 34 C23 KEMET C5/3BF476K 35 CAPACITOR 474 NRAO D13230516 SCHEMATIC REF 36 C26,32 50 SPECT. CONTROL FA5C-102W CAP(FEED THRU-SOLDER).0014F З 37 C24,27, 30,33,36 E.F. JOHNSON 5 187-0109-005 38 VARIABLE CAP 1.0-15 PF C.43 CM04ED100J03 ELMENCO 39 CAPACITOR 10 PF C45 ELMENCO CM04ED080J3 40 CAPACITOR 8.0 PF 01-4 5 41 2N3866 TRANSISTOR 96 **Q5** 42 MP5918 TRANSISTOR Q7-8 2 HEWLETT-PACKARD TRANSISTOR 43 H-P 35824 99 CTC 44 EIE TRANSISTOR **U1-3** 3 POWER SPLITTER PSC 2:1 45 MINI CIRCUITS LABS. 04 46 MINI CIRCUITS LABS. SRA DOUBLE BALANCED MIXER L21 MILLER 9230-20 47 CHOKE luh C28 ERIE 8121-050-651-103M CAPAC ITOR 48 OLUF ELMENCO CM04ED180J03 49 C54 CAPACITOR 8 00

NATIONAL RADIO ASTRONOMY OBSERVATORY

MECHANICAL

BOM # <u>A13230235REV</u> <u>A</u> DATE <u>2 MAY 75</u> PAGE <u>4</u> OF <u>4</u>

ITEM #	REF DESIG	MANUFACTURER	MFG PART #	DESCRIPTION	TOTAL QUA
50	LI	NRAO	B13230M70	INDUCTOR 534-3624-07	1
51	L2	NRAO	B13230M71		
52	LB	NRAO	B13230M72		
53	14	NRAO	BI3230M73		<u> </u>
54	15	NRAO	B13230M74		
55	16	NRAO	BI3230M75)
56	L7	NRAO	B13230M76		
57	L8	NRAÖ	B/3230M77		<u> </u>
<u>58</u>	19	NRAO	BI3230M78		. 1
54	LIO	NRAO	B13230M79		,]
60		NRAO	BI3230M80	INDUCTOR (534-3624-07	21
61	LIZ	BELDEN	8019	INDUCTOR (WIRE)	1"LG.
62	LIB			INDUCTOR (WIRE)	1"LG.
3	L14		1	INDUCTOR (WIRE)	1"CG.
64	L15	BELDEN	8019	INDUCTOR (WIRE)	1 1/4"LG
65	L16,17 18,19,20	NRAO	C13210M2-10	INDUCTOR	5
66		NRAO	D13230AB3	ART WORK MASTER	REF

ELECTRICAL	X MECHANICAL	BOM # A13	230 Z11 REV	/ <u>A</u>	DATE	12/4/74 P	AGE	OF
MODULE + L2	NAME 50/600 MHz. Mult.	DWG	# D13230 P	2 SUB ASI	MB Multip	lier Enclos	ure DWG	<u>C13230 P21</u>
SCHEMATIC DWG #	LOCATION		QUA/SYSTEM	PRI	EPARED BY	T. Hyzak	APPROVED	XAS

ITEM #	ref Desig	MANUFACTURER	MFG PART #	DESCRIPTION	TOTAL QUA	
1		N.R.A.O.	C13230 P21	Multiplier Enclosure		
2		N.R.A.O.	C13230 м6-1	Side Cap	1	
3		17 11	ן_ 7M 13230	Top Cover	1	
4		18 19	B13230 M19	End Cap	1	
5		tt ti	B13230 M18	End Cap	1	
6		11 13	C13230 M6 -2	Side Cap.	1	
7		11 11	B13230 M 17_1	End Rail	2	
8		. u u	B13230 M17-2	Side Rail	2	
9		11 11	B13230 ¥13	Sub-Divider	3	
10		H 11	B13230 M14	Sub-Divider	2	
11		FF 19	B13230 M16	Sub-Divider	1	
12		17 19	B13230 M15	Sub-Divider	1	
13		17 11	A13230 M10	Multi-Divider	1	
14						
15		11 11	A13230 M9	Multi-Divider	5	

DATE 4/3/25 UY 96 REV. LTR A L.O. File Copy 7/28/75

ELECTRICAL	X MECHANICAL	BOM #	A13230 Z11	REV	A	DATE 12/4/74	PAGE	2	0f	
------------	--------------	-------	------------	-----	---	--------------	------	---	----	--

ITEM #	REF DESIG	MANUFACTURER	MFG PART #	DESCRIPTION	total Qua	
16		N.R.A.O.	B13230 M7-2	Base Plate	1	
17		17 11	4-40*.500	Screws,S.S.,Flat Head	-18	
18		11 11	4-40*,375	" " Round Head	14	
19		11 17	4-40*.375	"" " Flat Head	10	
20		11 11	4-40*.500	" " Round Head	8	
21		11 11	&-40 *. 375	" " Round Head	7	
22		11 11	4-40*.250	" " " Round Head	3	
			}			

MICROFILMED DATE Alst Sor HE REV. LTR A L.O. File Copy 7/28/75

6-10

NATIONAL RADIO AS	ronomy observatory
-------------------	--------------------

ELECTRICAL	MECHANICAL	BOM # <u>A132302</u> 2 REV	DATE	PAGE <u>1</u> OF <u>3</u>
MODULE # 12	NAME 50/600 MHz MUL	TIPIER DWG # <u>D13230P2</u> su	в аямв	DWG #
SCHEMATIC DWG #	LOCATION	QUA/SYSTEM	PREPARED BY	APPROVED

ITEM #	REF DESIG	MANUFACTURER	MFG PART #	DESCRIPTION	TOTAL QUA	
		NRAO	A13230ZZ	50/600 MHZ MULT. ASSY		
2		NRAO	A13230234	XIZMULTIPLIER ASSY		
3		NRAO	A13230230	50MILY PHASE LOCK BRD. ASSY	-	
_4		TSOTEMP	VCXO-10	50 MHz 05C		
5		MERIMAC	PDM-20-500	POWER DIVIDER	1	
6		K+L MICROWAVE	4B120-600150	BANDPASSFILTER	1	
17		K+L MICROWAVE	4B120-200/16	BANDPASS FILTER	1	
8		K+L MICROWAVE	4B120-100/8	BANDPASS FILTER	1	
9		K+L MICROWAVE	4B120-50/4	BANDPASS FILTER		
10		MONSANTO	MV 5025	LIGHT EMITTING DIODE (RED)		
11		UNIFORM-TUBES	UT-141A	SEMI-RIGID CABLE .141 DIA	IFT.	
12		OMNI-SPECTRA	OSM 201-1A	PLUG /. 141 SEMI RIGID CABLE	9	
13		NARDA	4772.10	10 DB ATTEN (MICRO PAD)		
14		AMP	204186-5	BIN/MODULE POWER CONN.	1	
15		AMP	202394-2	POWER CONNECTOR GUARD		

NATIONAL RADIO ASTRONOMY OBSERVATORY

ELECTRICAL	MECHANICAL	BOM # <u>A1323022</u> REV	DATE	PAGE 2	OF
------------	------------	---------------------------	------	--------	----

ITEM #	REF Desig	MANUFACTURER	MFG PART #	DESCRIPTION	total Qua	
16		OMNI-SPECTRA	OMQ-3043-75	JACK / SEMI-RIGID CABLE	6	
17		OMNI SPECTRA	OSM 511-3	PLUG/CABLE CONNECTOR	2	
18	2	OMNI SPECTRA	05M202-1A	JACK 1.141 SEMI RIGIDCABLE		
19		OMNI SPECTRA	05M 531-1	RIGHT ANGLE PLUG/CABLE	5	
20						
21						
22						
23						
24					_	
25						
26						
27						
28						
29						
30						
31						
32						

NATIONAL RADIO ASTRONOMY OBSERVATORY

ELECTRICAL

 $\boxed{ MECHANICAL } BOM \# \underline{A1323022} REV _ DATE _ PAGE \underline{3} OF \underline{3}$

ITEM	REF DESIG	MANUFACTURER	MFG PART 👙	Description	total Qua	
33		NRAO	B13230M20	FRONT PANEL		
34		NRAO	C13210M4	REAR PANEL		
35		NRAO	B13050M4	GUIDES	4	
36		NRAO	B13050M23	BAR SUPPORT	S	
37		NRAO	B13230M23	RIGHT TOP. BAR SUPPORT		
_38		NRAO	C13050M22-1	PERFORATED COVER	S	
39		NRAO	B13050M18	SIDE PLATE RIGHT	١	
<u>" 40</u>		NRAO	C13230MB	SIDE PLATE LEFT		
۳ <u>-</u>		SOUTHCO	47-11-204-10	CAPTIVE SCREW	4	
42		NRAO	AI3230MI2	FILTER HOLD DOWN CLAMP	1	
43		NRAO	·	POWER DIVIDED MOUNT	(
44		•	4-40×.375LG	FLAT HEAD S.S. SCREW	12	
45			2-56× .375LG	FLAT HEAD S.S. SCREW	Ч	
46			6-32×1.25LG	FLAT HEAD S.S. SCREW		
47			6-32×.250	FLAT HEAD S.S. SCREW	18	
48			4-40 × .750	FLAT HEAD S.S. SCREW		
49			4-401,500	PAN HEAD S.S. SCREW	2	_

NATIONAL	RADIO	ASTRONOMY	OBSERVATORY
----------	-------	-----------	-------------

ELECTRICAL	MECHANICAL	BOM # <u>A13230234</u> REV	DATE	PAGE 1	OF
MODULE # 12	NAME 50/600MHZ MULT	FIPLIER DWG #	SUB ASMB X12 MULTI	PLIER ASSY DWG # 2	<u>013230P45</u>
SCHEMATIC DWG #	LOCATION	QUA/SYSTEM	PREPARED BY	APPROVED	

ITEM #	REF DESIG	MANUFACTURER	MFG PART #	DESCRIPTION	total Qua	
		NRAO	A13230234	X 12 MULTIPLIER ASSY		
2		NRAO	A13230235	X12 MULT. PC BOARD ASSY	1	
_3		NRAO	C13230P21	X12 MULT ENCLOSURE ASSY		
4		OMNI-SPECTRA	OSM 211	SMA CONNECTOR	2	
_5	C56- C62	SPECTRUM-CONTROL	FA-5C	OOI UF FEED THRU CAP	7	~
6	122 - 128	FERROXCUBE	56-590-65/38	FERRITE BEAD	6	
7		BELDEN	8021	WIRE #22AWG	81	
8						

7.0 MANUFACTURERS' DATA SHEETS

This section contains data sheets on the following:

- 1. HP35824 Transistor
- 2. CTC EIE Transistor
- 3. Mini Circuits Labs PSC2.1 Power Divider

SRA-1 Balanced Mixer

- 4. Merimac PDM-20-500 Power Divider
- 5. Ferroxcube 56-590-65/3B Ferrite Bead

HIGH FREQUENCY TRANSISTOR

MODEL 35824A

Outline Drawing Tabulations

Description

The 35824A, small signal silicon NPN transistor, expands the package flexibility of the HP 21 series transistor. The combination of this high performance but low cost chip in the inexpensive TO-72 Package offers an excellent device in the 100 to 2000 MHz band. It can provide 100 mW linear power out with 12 dB gain at 1 GHz; saturated power out equals 250 mW. The 35824A is an inexpensive and versatile transistor for use in both oscillator or amplifier circuits.

Figure 1. Outline Drawing.

Absolute Maximum Ratings (case temperature = 25°C)

Symbols	Parameters	Limits	Inches	Milli- meters	Inches	Milli- meters
V _{CBO}	Collector to Base Voltage	25 V	0.016	0.41	0.100	2.54
V _{CE0}	Collector to Emitter Voltage	20 V	0.021	0.53	0.170	4.32
VEBO	Emitter to Base Voltage	3.0 V	0.028	0.71	0.178	4.52
Ie	Collector Current	35 mA	0.030	0.78	0.195	4.95
Tj	Operating Junction Temperature	175°C	0.036	0.91	0.209	5.31
Tstg	Storage Temperature	-65°C to +200°C	0.046	1.17	0.210	5.33
Pt	Total DC Device Dissipation	400 mW	0.048	1.22	0.230	5.84
θ,	Thermal Resistance (Junction to Ambient)	375°C/W	0.050	1.27	0.500	12.70

Electrical (case temperature = 25°C)

Symbols	Parameter and Test Conditions	Units	Min	Тур	Max
BV _{CBO}	Collector-Base breakdown voltage at $I_c = 0.1 \text{ mA}, I_B = 0$	v	25		
I _{EBO}	Emitter Cutoff current at $V_{EB} = 2.0 \text{ V}$, $I_C = 0$	μA			10
BV _{CEO}	Collector-Emitter breakdown voltage at $I_C = 0.5 \text{ mA}$, $I_B = 0$	v	20	25	
I _{cbo}	Collector Cutoff current at $V_{CB} = 10 \text{ V}, I_E = 0$	μA			20
h _{fe}	Forward Current transfer ratio at $V_{CE} = 15 V$, $I_B = 0.15 mA$		15	25	125
f _{max}	Frequency at which G_a (max) = 0 dB, V _{CB} = 15 V, I _C = 15 mA	GHz		4	
f,	Frequency at which $ S_{21} ^2 = 0 \text{ dBm}$ at $V_{CB} = 15 \text{ V}$, $I_C = 15 \text{ mA}$	GHz		3	
NF1 NF2	Noise Figure (common emitter) at $V_{CB} = 10$ V, $I_C = 5$ mA, $f_1 = 0.5$ GHz, $f_2 = 1$ GHz	dB dB		2.8 3.0	

NOTE: All DC tests performed per MIL-STD-750

Figure 2. DC Power vs. Temperature Derating Curve.

Figure 3. Noise Figure (and Gain) vs. Frequency at Optimum Bias.

Figure 4. Common Emitter Input and Output Reflection Coefficients.

MICROWAVE CLASS A LINEAR RF POWER TRANSISTORS

GENERAL DESCRIPTION - The EIE & FIE are specifically designed for operation in Class A broadband or narrow-band applications covering the frequency range of 200-3000 MHz.

FEATURES

- SUPERIOR LINEARITY DUE TO HIGHER f .
- MAXIMUM RELIABILITY DUE TO SINGLE CHIP CONSTRUCTION.
- GREATER HIGH FREQUENCY PERFORMANCE IN LOW INDUC-TANCE CERAMIC STRIPLINE PACKAGES.
- IDEAL FOR USE IN LINEAR APPLICATIONS REQUIRING OPERA-TION IN CLASS A DUE TO IMPROVED FORWARD BIASED SAFE AREA.

Note: Studiess package also available

COMMUNICATIONS TRANSISTOR CORPORATION 301 Industrial Way, San Cortos, California, 34070 An Affiliate of Elmac Marin. (415) 591-8921 TWX 910-376-4893

7 - 4

COMMUNICATIONS TRANSISTOR EIE • FIE

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

MAXIMUM	TEMPERATURES	E1E	F1E
Storage T	emperatures	-65° C to + 200° C	-65° C to + 200° C
Operating	g Junction Temperatures	200° C	200° C
Lead Terr	perature (Soldering 8 seconds time limit)		
<u>≤</u> 1/32''	from Ceramic	260° C	260° C
MAXIMUM	POWER DISSIPATION (Note 2)		
Total Pov	ver Dissipation at 25° C Case Temperature	5.3 W	5.3 W
MAXIMUM			
SV _{CBO}	Collector to Base Voltage	50 V	50 V
BVEBO	Emitter to Base Voltage	4 V	4 V
LVCEO	Collector to Emitter Voltage	20 V	20 V
IC I	Collector Current	.25 A	.25 A

ELECTRICAL CHARACTERISTICS (25° C unless otherwise specified)

	SYMBOL CHARACTERISTIC	E1E	F1E	UNIT	LIMIT	TEST CONDITIONS	
100% TESTED AND GUARANTEED							
Pg	Power Gain (Note 3)	9.0	7.0	dB dB	MIN. MIN.	f = 1 GHz f = 2 GHz	
LVCEO	Collector to Emitter Voltage	20	20	VOLTS	MIN.	lc = 10 mA	
BVEBO	Emitter to Base Voltage	4.0	4.0	VOLTS	MIN.	lc = 5 mA	
BVCBO	Collector to Base Breakdown Voltage	50	50	VOLTS	MIN.	Ic = 10 mA	
H _{fe}	Current Gain	20	20		MIN.	VCE = 5V, Ic = 50 mA	

NOTES:

1. At 1 dB compression point.

2. These ratings give a maximum junction temperature of 200° C with junction to case thermal resistance of 33° C/watt.

3. Values measured at bias point: V_{CE} = 15 Volts, Ic = 120 mA.

COMMUNICATIONS TRANSISTOR EIE • FIE

POWER OUTPUT VERSUS FREQUENCY

f-FREQUENCY-MHz

f-FREQUENCY-MHz

POWER GAIN VERSUS FREQUENCY

f-FREQUENCY-MHz

1-FREQUENCY-MHz

Sever-Lysuend SeverDC SAFE OPERATING AREA

VCE - COLLECTOR TO EMITTER VOLTAGE-VOLTS

COMMUNICATIONS TRANSISTOR E1E • F1E

COMMUNICATIONS TRANSISTOR E1E • F1E

F1E S11, S22

COMMUNICATIONS TRANSISTOR EIE • FIE

E1E S11, S22

POWER SPLITTER-COMBINER

TWO WAY IN PHASE O"

PSC-2 SERIES

MODEL PSC-2-1 MODEL PSC-2-2 100 KHz-400 MHz 2 KHz- 60 MHz

FOR CONNECTOR VERSION SEE ZSC-2 SERIES

FEATURES

MINIATURE SIZE, .128 CU. INCHES

EXTRA WIDE BAND, 2KHz · 400MHz

EXCEPTIONALLY GOOD BALANCE

LOW INSERTION LOSS

HIGH ISOLATION

RFI SHIELDED

HERMETICALLY SEALED METAL CASE

LOW COST FROM \$9.95 IN SMALL QUANTITIES

APPLICATIONS

ADD OR SUBTRACT SIGNALS VECTORIALLY

OBTAIN MULTI IN-PHASE OUTPUT SIGNALS PROPORTIONAL TO THE LEVEL OF A COMMON INPUT SIGNAL

SPLIT AN INPUT SIGNAL INTO MULTI-OUTPUTS

COMBINE SIGNALS FROM DIFFERENT SOURCES TO OBTAIN A SINGLE PORT OUTPUT

PROVIDE CAPABILITY TO OBTAIN RF LOGIC ARRANGEMENTS

DESCRIPTION

The model PSC-2 2-way power splitter/ combiner is a high performance broad band hybrid junction. Internally, terminations and transformers are provided to ensure a well matched 50 ohm impedance at all ports. Signals fed into the input S port are equally divided, in phase, to the two output (1 and 2) ports. Similarly, signals fed into ports 1 and 2 are vectorially summed at the output S port.

The PSC-2 features exceptionally good amplitude and phase balance between the signals at the 2 output ports. Typically, over most of the frequency range, the phase balance is within 1 degree and the amplitude balance is within .05 dB.

The PSC-2 is ruggedly constructed to provide reliable service under severe environmental conditions. Internally, every component is bonded to the header for added strength to protect against shock and vibration. This hermetically sealed unit performs well under high relative humidity conditions and over temperature extremes from -55°C to +100°C.

Every unit is 100% tested and inspected under strict MCL quality control standards to ensure superior electrical performance and reliability. The exceptionally low cost of the PSC-2 is attributable to the breakthrough in production techniques achieved by MCL during the manufacture of its high performance low price double balanced mixers. Utilizing this technology, the high performance PSC-2 is olfered at a remarkable price of ½ to ½ of competitive units.

PIN CONNECTIONS	PSC-2-2
SUM PORT	1
OUTPUT 1	5
OUTPUT 2	6
GROUND	2,3,4,7,8

SUM PORT C

OUTPUT 1

ABSOLUTE MAXIMUM RATINGS

Operating and Storage Temperature Pin Temperature (10 seconds)

-55° C to +100° C 510° F

SPECIFICATIONS	MODEL PSC-2-1
Frequency Range (MHz)	.1-400MHz
Nominal Phase Difference Between Output Ports	0*
Impedance, All Ports	50 ohms
Isolation Between . Output 1 and 2, dB ` 2-40MHz .4-400MHz .14MHz	Typical Minimum 40 30 25 20 20 15
Insertion Loss, dB (above 3dB split) .1-100MHz 100-200MHz 200-400MHz	Typical Maximum .2 .5 .4 .75 .6 1.0
Phase Unbalance, degrees 0.1-100MHz 100-200MHz 200-400MHz	Typical Maximum .5 2 1 3 2 4
Amplitude Unbalance, dB .1-100MHz 100-200MHz 200-400MHz	Typical Maximum .05 .15 .05 .2 .1 .3
VSWR	1.2 typical
Matched Power Rating	1 watt maximum
Internal Load Dissipation	1/s watt
Price	\$9.95 (6-49)

- Delivery From Stock, One week maximum

SPECIFICATIONS	MODEL	PSC-2-2
Frequency Range (MHz)	2KHz-	SOMHZ
Nominal Phase Difference Between Output Ports	0*	
Impedance, All Ports	50 ohms	5
Isolation Between Output 1 & 2, dB 15KHz-6MHz 2KHz-60MHz	Typical 40 27	Minimum 30 20
Insertion Loss, dB (above 3dB aplit) 10KHz-3MHz 2KHz-20MHz 20MHz-60MHz	Typical .2 .3 .6	Maximum .4 .6 1.0
Phase Unbalance, degrees 10KHz-3MHz 2KHz-20MHz 20MHz-60MHz	Typical .5 1 2	Maximum 2 3 4
Amplitude Unbalance, dB 2KHz-20MHz 20MHz-60MHz	Typical .05 .1	Maximum .15 .3
VSWR	1.2 typic	al
Matched Power Rating	1 watt m	aximum
Internal Load Dissipation	% watt	
Price	\$19.	95 (6-49)
Delivery From Stock, One week	maximu	m

POWER **SPLITTER-**COMBINER

TWO-WAY IN PHASE O"

MODEL PSC-2-1 MODEL PSC-2-2 100KHz-400MHz 2KHz-60MHz

FOR CONNECTOR VERSION SEE ZSC-2 SERIES

DOUBLE BALANCED MIXERS

STANDARD LEVEL (+7dBm LO)

SRA SERIES

MODEL MODEL MODEL MODEL MODEL	SRA-1 SRA-1-1 SRA-1W SRA-2 SRA-2 SRA-4 SRA-3
MODEL	SRA-3 SRA-6

.5- 500 MHz ◀ .1- 500 MHz 1- 750 MHz 1-1000 MHz 5-1250 MHz .025- 200 MHz .003- 100 MHz

FOR CONNECTOR VERSION SEE ZAD SERIES

FEATURES

MINIATURE SIZE, .128 CU. INCHES

BROAD FREQUENCY RANGE 3KHz - 1250MHz

HIGH ISOLATION 40 dB

LOW CONVERSION LOSS 6dB

HERMETICALLY SEALED METAL CASE

PC BOARD MOUNTING

LOW COST FROM \$9.95 IN SMALL QUANTITIES

APPLICATIONS

FREQUENCY MIXING

PULSE AND AMPLITUDE MODULATION

PHASE DETECTION

CURRENT CONTROLLED ATTENUATION

FAST SWITCHING

6/73

BI-PHASE MODULATION

DESCRIPTION

Having a volume of only .128 cu. inches, the SRA series covers a very broad frequency range from 3KHz to 1250MHz. Offered at the lowest prices available in the industry, these rugged units provide low conversion loss, 6 dB, high isolation 40 dB, and exceptional unit to unit matched performance.

Packaged within an RFI shielded metal enclosure and hermetically sealed header, these high performance units have their pins oriented on a 0.2 inch grid.

Ruggedness and durability are built into the SRA series. Only well matched hot-carrier diodes and ruggedly constructed transmission line transformers are used. Internally every component is bonded to the header and case with silicone rubber to provide super reliable protection against shock, vibration, and acceleration.

The model SRA-1 has become an industry standard throughout the world and is believed to be the number one volume leader. Used by all branches of the Department of Defense, NASA, FAA, and every major communications company, the SRA-1 has proven to be an industry work horse. Used in over 250 different military contracts, and over a period of years, enable sufficient history to establish the SRA-1 as one of the most reliable mixers obtainable, even when considering high priced models.

High reliability is associated with every SRA series mixer. Every production run is 100% tested and every unit must pass our rigid inspection and high quality standards. Naturally, our 1 year guarantee applies to these units.

ABSOLUTE MAXIMUM RATINGS Total Input Power 50mW Total Input, Current Peak 40mA

Current Peak	40mA
Operating & Storage	
Temperature	-55° C 10 + 100° C
Pin Temperature (10 se	conds) 510° F

MINI-CIRCUITS LABORATORY 2913 Quentin Rd., Brooklyn, N.Y. 11229 (212) 252-5252

	MODEL SRA-1					
Frequency Range, MHz	LO	.5-500				
	RF	.5-500				
	IF	DC-500				
Conversion Loss, dB		Typical	Maximum			
Band Edge		5.5	7.5			
Total Range		6.5	8.5			
Signal, 1dB						
Compression Level	+1dBn	1				
Isolation, dB		Typical	Minimum			
Lower Band Edge to	LO-RF	50	35			
One Decade Higher	LO-IF	45	30			
Mid Range	LO-RF	45	30			
	LO-IF	40	25			
Upper Band Edge to	LO-RF	35	25			
One Octave Lower	LO-IF	30	20			
Impedance, All Ports		50 ohms				
Phase Detection						
DC Offset		1mV typica	d i			
DC Polarity		Negative				
Electronic Attenuation						
Minimum Attenuation (20n	nA)	3d B				
Price		\$9.95 (6-4	9)			

SPECIFICATIONS

DOUBLE BALANCED MIXERS

STANDARD LEVEL (+7dBmLO) MODEL SRA-1 .5-500MHz

FOR CONNECTOR VERSION SEE ZAD SERIES

6/73

MINI-CIRCUITS LABORATORY 2913 Quentin Rd., Brooklyn, N.Y. 11229 (212) 252-5252

ULTRA-WIDEBAND POWER DIVIDER MINIATURE TWO-WAY

Merrimac's new miniature ultra-broadband power divider is extremely versatile for the following applications:

- HF/VHF/UHF avionics
- LO power division
- VOR/glide slope systems
- Instrument landing systems
- Image reject mixers
- Antenna couplers

TYPICAL CHARACTERISTICS MODEL PDM-20-500

IN DB	40		Τ	Т	Π	Π	Π	Т	Π		Г	Т	Г	Π	Π	I	Π	T	Π		<u> </u>	Г	Г	Π	Т	Π	Т	Π	Π	Г	1
UION	30	Η		┽	╢	Η	Н	+	┥	_	-	╞	F	P	H	ł	F	1	Ħ	-	-	┝	┝	H	ŧ		Þ	Η	┩	-	ł
SoL	20				Ш				Ц			1					Ц			L.,										1_	J

OUTLINE OF PDM-20-500

For latest outline details, be sure to contact Merrimac.

MINIMUM PERFORMANCE SPECIFICATIONS

MODEL:	PDM-20-500
Frequency Range:	5-1000 MHz
Coupling:	—3 db
Isolation:	25 db
Amplitude Balance:	0.2 db
Phase Balance:	2.0°
Insertion Loss:	0.7 db
Impedance:	50 ohms
VSWR:	1.3:1
Power (matched loads):	1 watt
Connectors (3):	SMA Female
Weight:	1 oz. (28 grams)
PRICE:	\$70.00

Also available in other configurations, impedances, and with other connectors.

Prices and specifications subject to change without notice.

SHIELDING BEADS AND CHOKES

FERROXCUBE Ferrite Shielding Beads and Chokes offer a convenient, simple, and inexpensive means for obtaining effective RF decoupling, shielding, and parasitic suppression, without an attendant secrifice in DC or low-frequency power.

Supply leads and circuit conductors adjacent to a chassis or to other conductors, in radio, TV, and other electronic equipment, frequently offer convenient paths for the transfer of unwanted RF energy from one circuit to another; their distributed capacitance and inductance

can also cause generation of spurious oscillations within the circuitry, perticularly at the higher frequencies. The use of capacitive decoupling, and/or series inductance to minimize these phenomena is seldom completely successful, and may actually contribute to the problem in some cases. Ferrite beads and chokes avoid the weaknesses inherent in the technique, and contribute advantageous properties of their own, without introducing mechanical or electrical complexities into the system.

ELECTRICAL AND MAGNET	IC PROPERTIES OF FERROXCUE	E FERRITE MATERIAL	FOR BEADS AND CHOKES	
(Measurements Performed on St	Landard Pressed Toroids)			

Matorials	38	4A	48	
Initial Permeability μ_0 at 20°C.	900 ±20%	600 ±20%	250 ±20%	
Flux density in gauss, ballistically measured at a field intensity (in cersteds) of: at 20°C approx. at 100°C approx. Saturation value (at H = 2000 Oe and T = 20°C):	10 3400 2300 4500	10 2900 1800 3600	20 3300 2700 4200	
Temperature Factor $\Delta \mu / \mu^2 \Delta T$ (between 20 and 50°C)	3 x 10-6	6 x 10-6	8 x 10 ⁻⁶	
Curie point (°C) min.	150	125	250	
Minimum specific DC resistance at 20° C (ohm CM)	20	105	105	
Lineer expension coefficient	Approximately 10 ⁻⁵ / ⁰ C.			
Specific weight (g/cm ³)	4.7-4.9	4.6-5.0	4.4-4.8	

Ferroxcube Shielding Beads are made of medium-permeability ferrite, in a veriety of material grades and sizes. By simply stringing these beeds on power supply leads or circuit conductors, excellent high-frequency isolation between stages is readily obtained (see graph in Figure 1 below), and a continuous string of the beeds constitutes a highly effective magnetic shield for the section of conductor that they cover, as well, the ferrite material acting as a lossy medium for high frequency fields existing in the circuitry of the conductor. One or more beeds strung on a grid (or base) input lead presents an appreciable series impedance, and increases the loading and absorption loss, to the higher frequencies, effectively reducing the open loop gain and suppressing the tendency to perasitic oscillation in this region, without increasing the circuit impedance to DC and low frequencies.

of 55 500 65/30 a d 56 580 8 material is small ceramic capacitors in "demping" circuits to provide additional rejection at the self-resonant frequency of the capacitor. (See Figure 2 below.)

$$20 \log_{10} \frac{V_1}{V_2} = 20 \log_{10} \omega C Z_\omega$$

where $Z_\omega \gg \frac{1}{\omega C}$ and $R_L \gg \frac{1}{\omega C}$

Note that where twin leads are accessible, double-bore beads may be utilized, to take advantage of mutual inductance, for additional isolation and suppression, without detriment of the DC and low-frequency circuit performance.

curves for three 56 500 65/38 i sepecitor. Figure 2. Typical de

FIGURE 8. DOUBLE

SHIELDING BEAD DIMENSIONS

	FERROXCUBE PART NUMBER*					
		DI	D2	L	FIG.	
,	► 56 590 65/38	.047 + .008	.138 ± .008	.118 + .008	•	-
	56 590 85/4A	.047 • .008	.130 ± .000	.118 • .008	•	
	56 580 85/48	.047 + .008	.138 ± .008	.118 + .008	•	
1	K5 001 00/38	.059008	.138 ± .008	.118 • .008	•	
	56 390 31/48**	.060 ± .006	.220 ± .012	.472 ± .016	8	

in the part number: i.e., for 56 590 65/38, the * Han 2 Hole

LIST OF FIGURES

- 1. Front View 50/600 MHz Multiplier
- 2. Side View 50/600 MHz Multiplier
- 3. Closeup View X12 Multiplier Assembly
- 4. Rear Panel Connections

FIGURE 1 FRONT VIEW - 50/600 MHz MULTIPLIER

FIGURE 3 CLOSE-UP VIEW - X12 MULTIPLIER ASSY.

	JI JI JI JI JI JI JI JI JI JI JI JI JI J	J2 J2 J4 J4 J3 J4 J7 J8 J9 J9 J10 J10 J11 J12 J13 J14 J15 J16 MODULE IEW)	FL 20 10 5 1760(5(UNCTION O MHZ OUT O MHZ OUT O MHZ OUT O MHZ OUT O MHZ OUT O MHZ OUT O MHZ IN 39 40 40 40 40 40 40 40 40 40 40	+ (6) (7) (9
PIN	FUNCTION	WIRE COLOR	PIN	FUNCTION	WIRE COLOR
1			22	¢ERROR IND	
3			24	600 MHz MON.	
4			25	200 MHz MON.	
5			26	100 MHz MON.	
6			27	50 MHZ MUN.	0.00551
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	20	+28VDC	GREY
9	· · · · · · · · · · · · · · · · · · ·		30		
10	+5VDC	ORANGE	31		
	-5VDC	BROWN	32		
			33		PI ACK
		· · · · · · · · · · · · · · · · · · ·	35	FWR. URUUND	DLAUN
15		· · · · · ·	36	······································	
16	+15VDC	RED	37	·	
17	-I5VDC	YELLOW	38		
18			39		
Lia	IUU MHZ MUN.	ļ	40	· · · · · · · · · · · · · · · · · · ·	
120	200 MHZ MON.		1		-
20 21	OPEN/CLOSE		42	HIGH QUAL. GROUND	