VLA TECHNICAL REPORT #23

MODULE L3

L.O. TRANSMITTER

Harry Beazell March 1976

## TABLE OF CONTENTS

|     |                                                    | AGE |
|-----|----------------------------------------------------|-----|
| 1.0 | RELATED DOCUMENTS LIST1                            | -1  |
|     | 1.0.1 NRAO Drawing List1                           | -1  |
|     | 1.0.2 NRAO Specifications - Al3210N11              | -2  |
| 2.0 | FUNCTIONAL DESCRIPTION                             | -1  |
| 3.0 | DETAILED CIRCUIT DESCRIPTION                       | -1  |
|     | 3.0.1 X <sub>2</sub> /X <sub>3</sub> Multiplier    | -1  |
|     | 3.0.2 1200 MHz & 1800 MHz Modulators 3             | -1  |
|     | 3.0.3 2400 MHz Output                              | -1  |
|     | 3.0.4 3000 MHz Output                              | -2  |
|     | 3.0.5 5 MHz Modulator Driver3                      | -2  |
|     | 3.0.6 Data Modulator Driver                        | -2  |
| 4.0 | ADJUSTMENTS                                        | -1  |
|     | 4.0.1 1200 MHz Modulator 4                         | -1  |
|     | 4.0.2 1800 MHz Modulator 4                         | -1  |
|     | 4.0.3 System Level Adjustments 4                   | -1  |
| 5.0 | SCHEMATIC AND BLOCK DIAGRAMS INCLUDED              | -1  |
|     | 5.0.1 L3 LO Transmitter Block Diagram - D13230B3 5 | -2  |
|     | 5.0.2 5 MHz Modulator Driver - D13230S9            |     |
|     | 5.0.3 Data Modulator Driver - C13230S75            |     |
| 6.0 | BILLS OF MATERIALS INCLUDED                        | -1  |
| 7.0 | MANUFACTURERS DATA SHEETS                          | -1  |

## LIST OF FIGURES

| Figure l | L3 Front View                       |
|----------|-------------------------------------|
| Figure 2 | L3 Right Side View                  |
| Figure 3 | Left Side View                      |
| Figure 4 | Module Rear Conn. & Pin Assignments |

PAGE

1.0.1 NRAO DRAWING LIST

# BILL\_CE\_MAIERIALS

| LC TRANSMITTER<br>Data mccllator | A13230Z03<br>A13230Z22 | -06275<br>B25975 | - |
|----------------------------------|------------------------|------------------|---|
| MCC EGARC                        | A13230223              | A 24675          | 4 |
| 5 MHZ MCC CRIVER                 | A13230Z26              | A 25975          | 3 |
| 5 MHZ MCC CRIVER                 | A13230Z27              | A25975           | 3 |

## ASSEMBLY\_CRAWINGS

| 5 MHZ MCCULATCR | DRIVER | 813230P25 | B27475 | 1 |
|-----------------|--------|-----------|--------|---|
| DATA MCC CRIVER | ENCL   | B13230P33 | B26775 | 1 |
| DATA MCC CRIVER | BCARE  | B13230P34 | A24675 | 1 |
| 5 MHZ MCCULATCR | DRVR   | B13230P36 | -28374 | 1 |

# SCHEMAIIC\_CIAGRAMS

| DATA MODULATOR DRIVER | C13230S07 | -16975 | 1 |
|-----------------------|-----------|--------|---|
| 5 MHZ MCC CRIVER ASSY | B13230S09 | -28774 | 1 |

## LCGIC\_DIAGRAMS

NCNE

# PC\_ECARC\_ABILCEK

| 5 MHZ MCCULATION FILTER | A13230AB07 | -25175 | 2 |
|-------------------------|------------|--------|---|
| DATA MODULATOR DRIVER   | B13230AB08 | -24775 | 2 |

## EC\_ECARC\_SILKSCREEN

NCNE

# PC\_PCABD\_MECHANICAL

| PARTITICN PLATE    |        | C13230M25 | D28275 | 1 |
|--------------------|--------|-----------|--------|---|
| 5 MHZ MCC FILTER D | R CIAG | B13230M59 | -13275 | 1 |

| BLCCK_DIAGRAMS     |           |        |
|--------------------|-----------|--------|
| BLCCK DIAGRAM      | C13230B03 | -13675 |
| RF INTCON BLK DIAG | D13230B15 | B34575 |

1 1

# WIBE\_LISTS

NCNE

# MECHANICAL\_DBAWINGS

| GUIDE                     | B13050M04-L3   | D8775   | 1 |
|---------------------------|----------------|---------|---|
| FIGHT & LEFT SIDE PLATES  | E13050M18-L3   | C 8775  | 1 |
| COVER, PEFFCRATED         | C13050M22-1-L3 | C5175   | 1 |
| BAR, SUP. TCP & BCTTOM    | E13050M23-L3   | C4375   | 1 |
| PNL,R.,42834 PN PWR CON   | 813050M32-L3   | B4375   | 1 |
| MIXER MOUNT               | A13050M33-L3   | C 5075  | 1 |
| FANEL, REAR               | C13210M04-L3   | D4275   | 1 |
| X2-X3 MULT CUTLINE DWG    | C13230M01      | -35375  | 1 |
| PANEL, FRONT              | E13230M32      | C 20075 | 1 |
| DATA FILTER END PANEL     | 813230M38-L3   | B4975   | 1 |
| 5MHZ MOD FILTER ENCLOSURE | B13230M41      | D26675  | 1 |
| DATA MGD DRVR END PANEL   | B13230M46-L3   | C18375  | 1 |
| CTA MOD CRVR SICE PANEL   | B13230M49-L3   | C 18375 | 1 |
| TERMINAL, TURRET MOD      | B1323CM98-L3   | -26275  | 1 |

1.0.2 NRAO SPECIFICATION

| SPECIFICATION NO: A13210N1 |                      |
|----------------------------|----------------------|
| NAME: Frequency Multiplier |                      |
| DATE: May 16, 1974         | 13 1 -               |
| PREPARED BY: AND / AD      | APPROVED BY: C.K. T. |

#### 1. GENERAL DESCRIPTION

A frequency multiplier unit is required which will accept a 600 MHz continuous-wave input and will provide separate outputs of 1200 MHz and 1800 MHz.

#### 2. ENVIRONMENTAL REQUIREMENTS

1. Temperature: Operation 20°C to 45°C Storage -25°C to 75°C Forced air cooling will be provided as shown in Drawing D13210M6. Module base-plate temperature will be stabilized within the above operating range to within +1°C rms or better.

2. Shock & Vibration:

- a. Unit must survive normal shock and vibration in handling and shipping.
- b. Unit will not be subject to operating shocks or vibrations greater than 1G at any frequency.

1-3

## 3. ELECTRICAL

See attached block diagram.

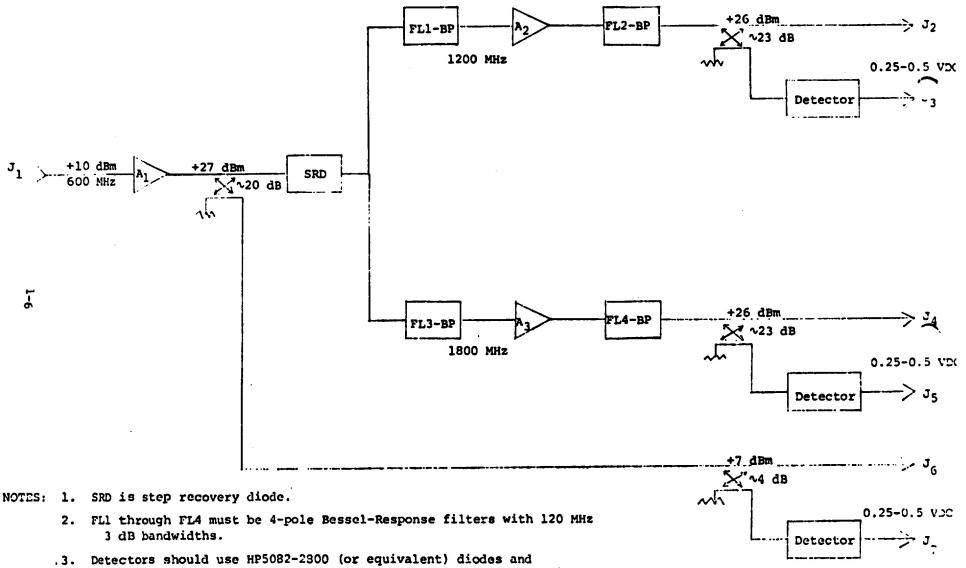
| 1.  | Input:   | Frequency    | 600  | MHZ                         |
|-----|----------|--------------|------|-----------------------------|
|     |          | Impedance    | 50.  | 0 ohas                      |
|     |          | Power        | +10  | dBm                         |
|     |          | VSWR         | 1.2  | :1                          |
| 2.  | Output:  | Frequency    | 1    | 1200 MHz (X2)               |
|     |          | Impedance    |      | 50.0 ohms                   |
|     |          | Power        |      | +26 dBm* minimum            |
|     |          | Load VSWR    |      | 1.5:1                       |
|     |          | Frequency    | 2    | 1800 MHz (X3)               |
|     |          | Impedance    |      | 50.0 ohns                   |
|     |          | Power        |      | +26 dBm* minimum            |
|     |          | Load VSWR    |      | 1.5:1                       |
| *9  | dB limit | ing should b | e pr | ovided such that:           |
|     | (a)      | 0 dBm input  | give | s +25 dBm (min) output, and |
|     | (b)      | +10 dBm inpu | t gi | ves +26 dBm (min) output.   |
| Oth | er outpu | ts as shown  | on b | lock diagram.               |

3. Power: Voltages available are 0.01% regulated and should preferably be +15 or +20 volts. If necessary, +28 and +24 volts are also available.

Design should minimize power consumption.

4. Phase Requirements: A major design objective is that the group delay for both the 1200 MHz and the 1800 MHz channels track together for temperature variations and hence that they be as nearly identical as possible. It is desired (continued)

1-4


#### 4. Phase Requirements: (cont.)

that the phase variation between the 600 MHz input and the difference between the 1200 MHz and 1800 MHz outputs be less than 0.2° rms per 1°C rms.

#### 4. MECHANICAL

- 1. Unit to be mounted by NRAO in an unshielded lUA module as detailed in attached Drawing D13210M6.
- Location of connectors should be as shown. Rf connectors should be OSM type 206-1 or equivalent. Monitor and power feed through capacitors should be Spectrum Control FB 3B102W or equivalent.
- 3. Unit should be completely RF shielded and may utilize the side plate (Drawing) as either the mounting surface or as one of the shielding covers.
- 4. Maximum height above side plate (Item 5) is 1 inch.

#### SUGGESTED BLOCK DIAGRAM



Spectrum Control FB3B)02W (or equivalent) feed-through capacitors.

#### 2.0 FUNCTIONAL DESCRIPTION

The L.O. Transmitter Module L3 is located in the vertex room B rack. It accepts the 600 MHz master signal from L2 and provides the 1200 MHz and 1800 MHz phase stable base band carriers for the data modulator and 5 MHz modulator. The combined base band pair is level set and provided to the modem. A reference output at 2400 MHz is provided for the modems. A summed output at 3000 MHz is provided for the front end rack.

#### 3.0 DETAILED CIRCUIT DESCRIPTION

Reference Block Diagram D13230B3

3.0.1 X<sub>2</sub>/X<sub>3</sub> Multiplier

Reference Specification Al3210N1

The  $X_2/X_3$  Multiplier (A<sub>2</sub>), provides outputs of 1200 MHz and 1800 MHz at a level of +25 dBm (316 mW) minimum. A 600 MHz +7 to + 10 dBm signal is provided as a sample of the internal 600 MHz power amplifier that drives the multiplier stages. Signal level monitors (0.45 VDC typically) of the three outputs are also provided. The input 600 MHz can be 0 to +10 dBm with a 1 dB change in the outputs. For specific values, data sheets for each unit are available in the module logs.

3.0.2 1200 MHz and 1800 MHz Modulators

The 1200 MHz signal from the  $X_2/X_3$  multiplier is coupled -10 dB through (DC3) to the L terminal of a double balanced modulator (Z1). The level (+15 dBm) is high and when the DC bias level at the I port is set to produce a loss of about -29 dB, the 5 MHz modulation sidebands are produced with good linearity. The <u>+5</u> MHz sideband level is -10 dBc (The second harmonic content of the 5 MHz signal must be -30 dB or less.) Amplifier (AR1) and attenuator (AT1) provide isolation and a good match to the filter (FL2).

The 1800 MHz signal is processed in an identical fashion thru (DC4), (Z2), (AR2), (AT2), and (FL3). The two signals are then summed by (DC6) and delivered to the output connector J8. Each carrier is set to -19 dBm with  $\pm$ 5 MHz sidebands -10 dB on the 1200 MHz and  $\pm$ 300 kHz data sidebands -15 dB down on the 1800 MHz. The filters (FL2) and (FL3) were required to eliminate crosstalk, (5 MHz sidebands on the 1800 MHz, data sidebands on 1200 MHz) and second harmonics (2400 MHz and 3600 MHz).

3.0.3 2400 MHz Output

The 1200 MHz signal is coupled -10 dB (DC2) to doubler (Z4). The input level is +13 dBm and the output, filtered by (FL1) is 0 dBm minimum at J14.

3-1

#### 3.0.4 3000 MHz Output

The 1200 MHz and 1800 MHz signals are -10 dB coupled via (DCl) and (DC5) to mixer Z3. The levels +13 dBm and +14 dBm provide an output filtered by (FL4) of -8 dBm minimum at J7.

#### 3.0.5 5 MHz Modulator Driver

Reference Schematic B13230S9

In this unit, R5 provides an adjustable DC bias current of  $\pm 0.6$  to  $\pm 20.0$  Mz through Rl and L<sub>1</sub> to the modulator (Z<sub>1</sub>). The 5 MHz signal, level of 0 to  $\pm 4$  dBm, is applied to the modulator through C<sub>2</sub>. R, R<sub>3</sub> and R<sub>4</sub> maintain a near 50 $\Omega$  input impedance to Jl, and R<sub>4</sub> provides adjustment of the 5 MHz. Carrier and sideband levels are set by observing the outputs at J<sub>8</sub>. Modulation 5 MHz can be monitored on a front BNC J<sub>3</sub>.

### 3.0.6 Data Modulator Driver

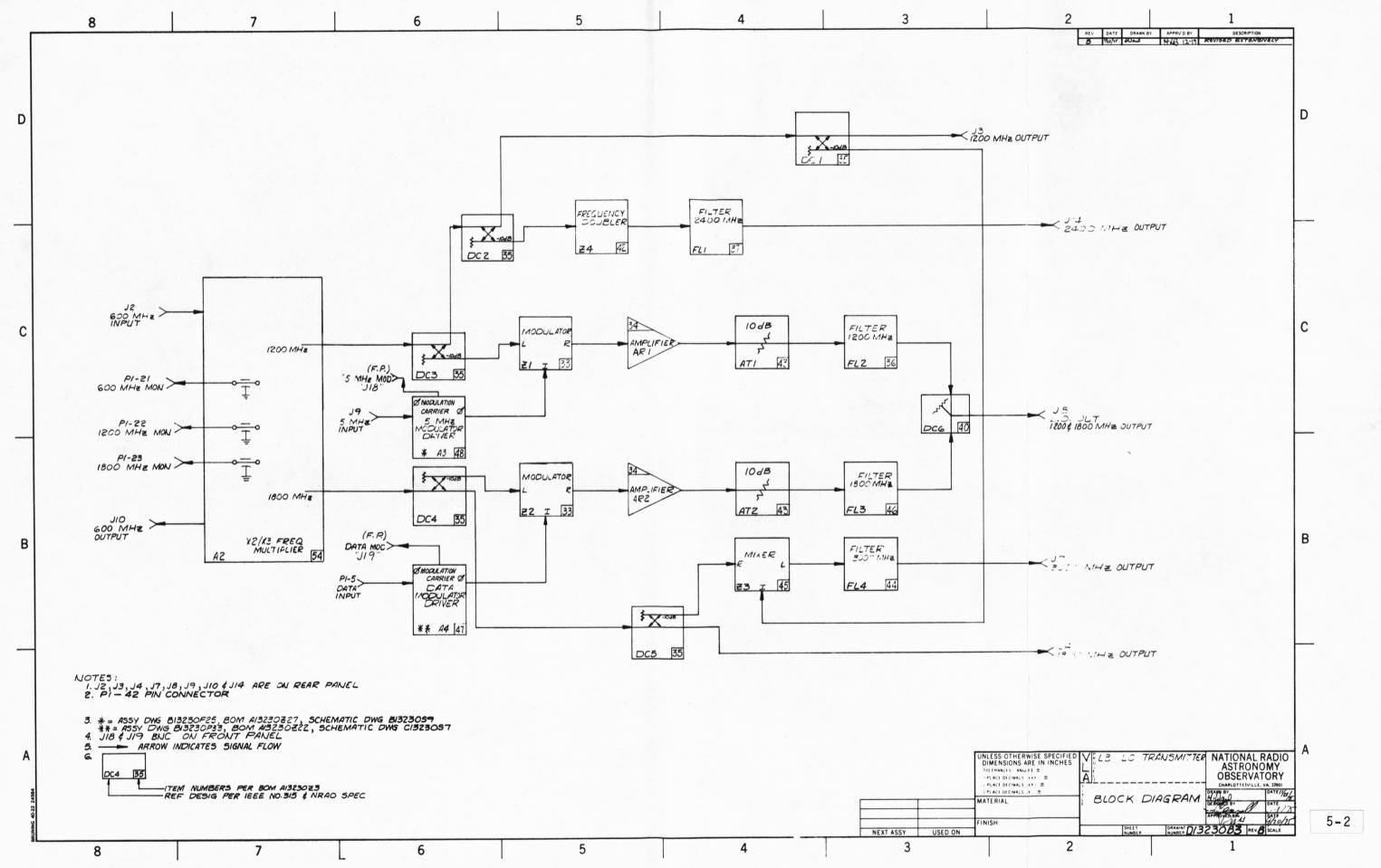
Reference Schematic Cl3230S7

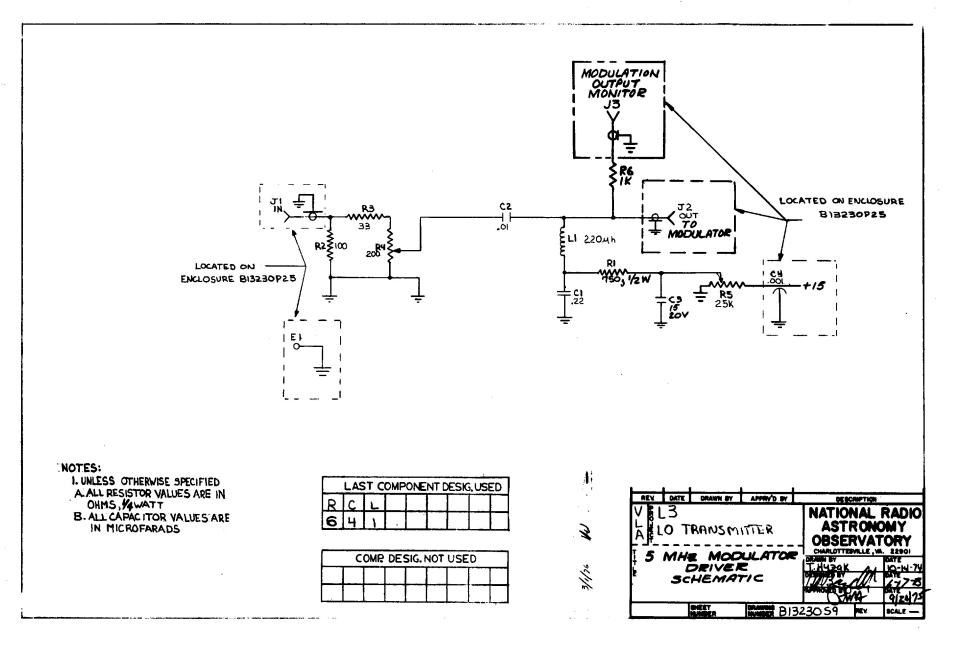
A TTL sink input at J<sub>1</sub> is coupled by Cl4 to a limiter circuit R<sub>3</sub>, CR<sub>1</sub> and CR<sub>2</sub>. The output is set by R<sub>4</sub> and applied to a non inverting gain of 3 amplifier U<sub>1</sub>. The output of U<sub>1</sub> is coupled via C6 and summed with adjustable bias from R<sub>7</sub> and R<sub>8</sub>. The sum is low pass filtered by C<sub>7</sub>, C<sub>8</sub>, C<sub>9</sub>, L<sub>1</sub> and L<sub>2</sub>. The filter source impedance is established by R<sub>9</sub> (240 $\Omega$ ) and the load by R<sub>10</sub> and R<sub>11</sub> (543 $\Omega$ ), and U<sub>2</sub>. The low pass cutoff (-3 dB) is at  $\simeq$ 3 MHz and C6 provides a high pass corner at 5 kHz. The filter drives a unity gain follower U<sub>2</sub> to provide a low impedance drive through R<sub>15</sub> and a  $\simeq$ 10 MHz low pass L<sub>3</sub> and C<sub>13</sub> to J<sub>3</sub> and the data modulator.

#### 4.0 ADJUSTMENTS

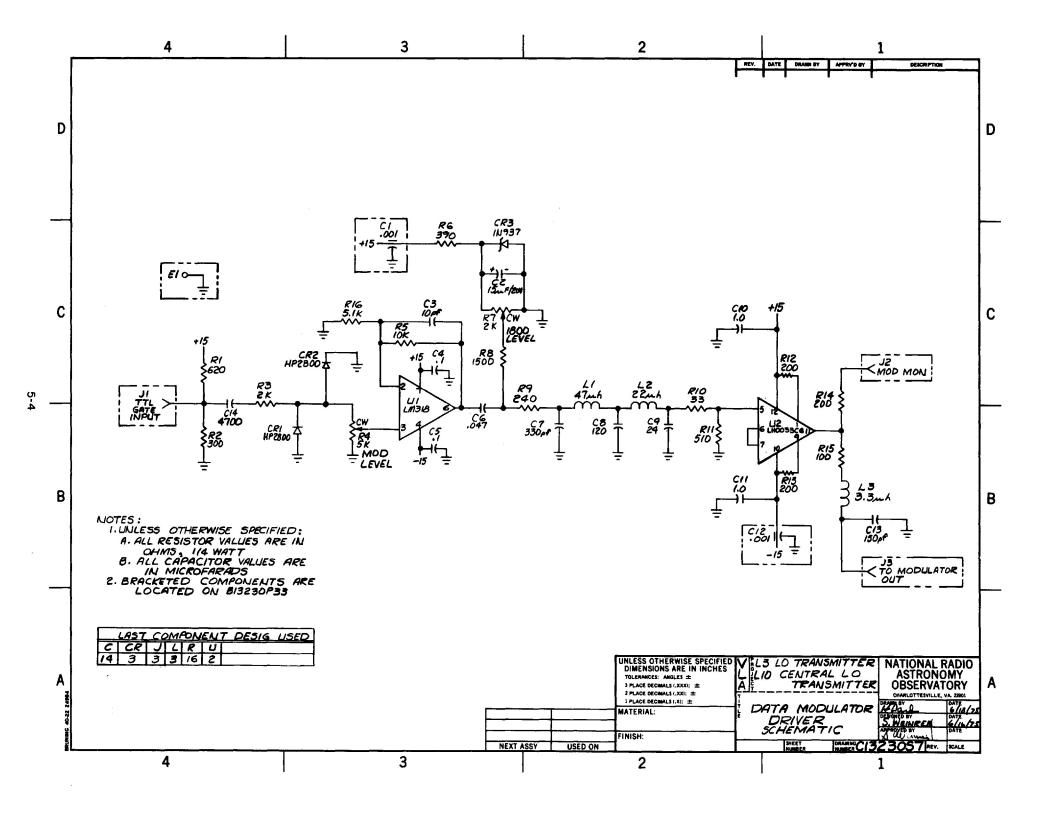
#### 4.0.1 1200 MHz Modulator

The 5 MHz modulator is set at the module test level to give a 1200 MHz output at J8 of -18.6 dBm carrier and 5 MHz sidebands of -10 dBc. Input 5 MHz levle is +10 dBm and other conditions are as recorded on the module test data sheet.


## 4.0.2 1800 MHz Modulator


The data 300 kHz modulator is set at the module test level to give an 1800 MHz output at J8 of -18.6 dBm with first data sidebands of -15 dBc. The input signal is 3.5V p-p at 300 kHz and other conditions are as recorded on the module test data sheet.

### 4.0.3 System Level Adjustments


Both of the above adjustments may be made at the system level to correct for minor level differences of the 1200 MHz and 1800 MHz. A departure of more than  $\pm 3$  dB carrier level from the specified value should not be made without careful checking of the modulator performance. Larger adjustments can be made by the value of AT<sub>1</sub> and AT<sub>2</sub>.

- 5.0 SCHEMATIC AND BLOCK DIAGRAMS INCLUDED
  - 5.0.1 L3 LO Transmitter Block Diagram D13230B3
  - 5.0.2 5 MHz Modulator Driver D13230S9
  - 5.0.3 Data Modulator Dirver C13230S7





5-3



# 6.0 BILLS OF MATERIALS INCLUDED

5 MHz Modulator Driver Board - Al3230Z26 Data Modulator Board - Al3230Z23 L.O. Transmitter - Al3230Z03 (pages 3 and 4)

NATIONAL RADIO ASTRONOMY OBSERVATORY

| X ELECTRICAL    | MECHANICAL          | BOM # A13230226 REV A    | DATE 10/15/75 PA        | GE <u>1</u> OF <u>2</u> |
|-----------------|---------------------|--------------------------|-------------------------|-------------------------|
| MODULE # 13     | NAME LO Transmitter | DWG # <u>D13230P3</u> St | B ASMB 5 MHz Mod DRIVER | DWG # <u>B13230P36</u>  |
| SCHEMATIC DWG # | B13230S9 LOCATION   | QUA/SYSTEM               | PREPARED BY Huber       | APPROVEDWH              |

| ITEM<br># | REF<br>DESIG | MANUFACTURER | MFG PART #        | DESCRIPTION                   | TOTAL<br>QUA |
|-----------|--------------|--------------|-------------------|-------------------------------|--------------|
| <b>1</b>  | ·            | NRAO         | A13230226         | Assembly (B13230 <b>P36</b> ) | -            |
| 2         |              | NRAO         | B13230M59         | Board                         | 1            |
| 3         |              | Keystone     | 1589-2            | Swage Type Threaded Standoff  | 2            |
| 4         | R3           |              | RCR07-330-55      | Resistor 1/4W 33 OHMS         | 1            |
| 5         | R4           | BOURNS       | 3339H-1-102       | POTENTIOMETER IK              | 1            |
| 6         | R5           | BOURNS       | 3339H-1-203       | POTENTIOMETER 20K             | 1            |
| 7         | C1,C3        | Erie Red Cap | 8131-050-651-224M | .22 MF 50 Volt Cap            | 2            |
| 8         | C2           | Érie Red Cap | 8121-050-651-103M | .01 MF 50 Volt Cap            | 1            |
| 9         | L1           |              |                   | 220 MICRO-HENRY CHOKE         | 1            |
| 10        | R1           |              | RCR20 751-5S      | Resistor 1/2 W 750 OHMS       | 1            |
| 11        | R2           |              | RCR07-101-55      | Resistor 1/4 W 100 OHMS       | 1            |
| 12        |              |              |                   |                               |              |
| 13        |              |              |                   |                               |              |
| 14        |              |              |                   |                               |              |
| 15        |              |              |                   |                               |              |

| NATIONAL RADIO A       | STRONOMY OBSERVAT | ORY           |      |    |   |
|------------------------|-------------------|---------------|------|----|---|
| BOM # <u>A13230226</u> | REV A             | DATE 10/15/75 | PAGE | OF | 2 |

MFG PART #

B13230AB7

B13230S9

| (Contemportune) |            |   |            |
|-----------------|------------|---|------------|
|                 | ELECTRICAL | X | MECHANICAL |

NRAO

NRAO

REF

DESIG

ITEM

#

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

σ . ω

MANUFACTURER

TOTAL

QUA

Ref

Ref

.

DESCRIPTION

Artwork Master

Schematic

| BILL | OF | MATERIAL |  |
|------|----|----------|--|
|      |    |          |  |

NATIONAL RADIO ASTRONOMY OBSERVATORY

| ELECTRICAL          | MECHANICAL             | BOM # <u>A132302</u> 23 REV | , <u>A</u> | DATE <u>3 SEPT 75</u> | PAGE <u>1</u> | of <u>3</u>      |
|---------------------|------------------------|-----------------------------|------------|-----------------------|---------------|------------------|
| MODULE # <u>LIO</u> | NAME CENTRAL LO TRANSI | MITTER DWG #                |            | DRIVER BOARD          |               | <u>BI3230P34</u> |
| SCHEMATIC DWG # (   | CI323057 LOCATION      | QUA/SYSTEM                  | PREP       | PARED BY Hawle has    | APPROVED      | 3W               |

| ITEM<br># | REF<br>DESIG | MANUFACTURER | MFG PART #   | DESCRIPTION TOTAL QUA                             |
|-----------|--------------|--------------|--------------|---------------------------------------------------|
| 1         |              | NRAO         | A132307 23   | DATA MODULATOR DRIVER<br>BUARD ASSY (BI3230P34) - |
| 2         |              | NRAO         | C13230M56    | CIRCUIT BOARD 1                                   |
| 3         | RI           |              | RCR07-621-55 | RESISTOR 1/4W GZO OHMS I                          |
| 4         | RZ           |              | RCR07-301-55 | RESISTOR 1/4W 300 OHMS 1                          |
| 5         | R3           |              | RCR07-202-55 | RESISTOR 1/4W ZK 1                                |
| 6         | R4           | BOURNS       | 3339P-1-502  | POTENTIOMETER 5K I                                |
| 7         | R5           |              | RCR07-103-55 | RESISTOR 1/4W IOK 1                               |
| 8         | R6           |              | RCR07-391-55 | RESISTOR 1/4W 390 OHMS 1                          |
| 9         | R7           | BOURNS       | 3339P-1-202  | POTENTIOMETER 2K I                                |
| 10        | R8           |              | RCR07-152-55 | RESISTOR 1/4W 1500 OHMS 1                         |
| 11        | R9           |              | RCR07-241-55 | 240 /                                             |
| 12        | RIO          |              | RCR07-330-55 | 33 1                                              |
| 13        | RII          |              | RCR07-511-55 | 510 1                                             |
| 14        | RIZ, 13      |              | RCR07-201-55 | 200 3                                             |
| 15        | R15          |              | RCR07-101-55 | RESISTOR 1/4W IDD OHMS 1                          |

### NATIONAL RADIO ASTRONOMY OBSERVATORY

ELECTRICAL

MECHANICAL

BON || <u>A13230223</u> REV <u>A</u> DATE <u>3 SEPT 75</u> PAGE <u>2</u> OF <u>3</u>

| ITEN | REF<br>DESIG | MANUFACTURER | MFG PART #            |       | DESCRIPTION          | TOTAL |
|------|--------------|--------------|-----------------------|-------|----------------------|-------|
| 16   | RIG          |              | RCR07-512-55          | RESI  | STOR 1/400 5100 OHMS | Ωυλ   |
| 17   | CZ           |              |                       |       | CITOR 204 15 uf      | 1     |
| 18   | C3           |              | CM04FD100J03          |       | 10pf 5% MICA         | 1     |
| 19   | C4,5         | ERIE         | 8121-050-651-104M     |       | 50V .Inf             | 2     |
| 20   | C6           | ERIE         | 8121-050-651-473M     |       | 504 .047.u.f         | 1     |
| 21   | C7           |              | CM04FD33IJ03          |       | 330pf 5% MICA        | 1     |
| 22   | <i>C8</i>    |              | CM04FD121J03          |       | 120pf 5% MICA        | 1     |
| 23   | C9           |              | CM04FD240 <b>J</b> 03 |       | 24pf 5% MICA         | 1     |
| 24   | CID, 11      | ERIE         | 8121-050-651-105M     |       | 50V 1.0mf            | 2     |
| 25   | C13          |              | CM04FD151J03          |       | 150pf 5% MICA        | 1     |
| 26   | C14          | ERIE         | 8121-050-651-472      | CAPAC | ITOR 50V 4700 pf     | 1     |
| 27   | L1           | MILLER       | 9230-60               | CHO   | KE 47mh              | 1     |
| 28   | LZ           | MILLER       | 9230-52               | CHO   | KE 22mh              | 1     |
| 29   | L3           | MILLER       | 9230-32               | CHO   | KE 3.3mh             | 1     |
| 30   | CRI, Z       | AERTECH      | A25800                | DIO   | DE                   | 2     |
| ~ /  | CR3          |              | IN 937B               | ZEN   | IER DIODE            | 1     |
| 32   | Ц1           | NATIONAL     | LMJI8H                | MICI  | ROCIRCUIT            | 1     |

NATIONAL RADIO ASTRONOMY OBSERVATORY

MFG PART

LHOO33CG

DP-5178

MP-12100

B13230AB8

C1323057

| L |
|---|
|   |

ITEM

Ħ

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

REF

DESIG

U2

NATIONAL

NRAO

NRAO

MANUFACTURER

ROBINSON /NUGENT

ROBINSON/NLIGENT

MECHANICAL BOM 11 A 13230223 REV A DATE 3 SEA 75 PAGE 3 OF 3

DESCRIPTION

MICROCIRCUIT

ARTWORK

SCHEMATIC

IC SOCKET 8 PIN

IC SOCKET IZ PIN

TOTAL

Ωυλ

1

1

1

REF

REF

## NATIONAL RADIO ASTRONOMY OBSERVATORY

MFG PART #

X ELECTRICAL

item #

REF

DESIG

MECHANICAL

MANUFACTURER

BOM # <u>A13230Z3</u> REV <u>B</u>

DATE <u>3/3/75</u> PAGE <u>3</u>

DESCRIPTION

OF \_\_\_\_\_

TOTAL

QUA

| ٩ | σ |
|---|---|
|   | 8 |
| • | 1 |

|    |                              |                       |                     |                                                     | ~ |  |
|----|------------------------------|-----------------------|---------------------|-----------------------------------------------------|---|--|
| 33 | ZI,ZZ                        | Wakins Johnson        | WJ M1-J             | Mixer                                               | 2 |  |
| 34 | ARI, ARZ                     | Avantek               | UTA-8713            | Amplifier                                           | 2 |  |
| 35 | DC1-<br>DC5                  | Omni Spectra          | 20063-10            | Coaxial Directional Coupler                         | 5 |  |
| 36 | FL Z                         | K & L Microwave, Inc. | 4B120<br>1200/120-0 | Bandpass Filter (with mnt. clips)                   | 1 |  |
| 37 | FL1                          | K & L Microwave, Inc. | 4B120<br>2400/200-0 | Bandpass Filter (with mounting clips)               | 1 |  |
| 38 | PI                           | АМР                   | 204186-5            | Bin/Module Power Connector                          | 1 |  |
| 39 | P                            | лмр                   | 202394-2            | Power Connector Metal Guard                         | 1 |  |
| 40 | DCG                          | Omni Spectra          | 20493               | Caoxial Power Divider                               | 1 |  |
| 41 | J2, 3, 4, 7,<br>8, 9, 10, 14 | OMNI Spectra          | OMQ 3043-75         | Jack-Semi rigid cable                               | 8 |  |
| 42 | <i>Z</i> 4                   | Anzac                 | D-6-4               | D <b>oub</b> ler                                    | 1 |  |
| 43 | ATI, ATZ                     | Narda (OR EQUIV)      | 4772-10             | ATTENUATOR                                          | 2 |  |
| 44 | FL4                          | K & L Microwave, Inc. | 4B120-3000/300-0    | Bandpass Filter (with mounting clips)               | 1 |  |
| 45 | 23                           | Wakins Johnson        | WJ MIH              | Mixer                                               | 1 |  |
| 46 | FL3                          | K & L Microwave, Inc. | 4B120-1800/120-0    | Bandpass filter (with mounting clips)               | 1 |  |
| 47 | A2                           | NRAO                  | A13230Z22           | DATA MODULATOR DRIVER<br>ENCLOSURE ASSY (B13230P33) | 1 |  |
| 48 | A3                           | NRAO                  | A13230Z27           | 5 MHZ MODULATOR DRIVER<br>ASSEMBLY (BI3230P25)      | 1 |  |
| 49 | P                            | Omni-Spectra          | OSM 531-3           | Right Angle Plug/Flex Cable                         | 3 |  |

## NATIONAL RADIO ASTRONOMY OBSERVATORY

| X | ELECTRICAL |
|---|------------|
|---|------------|

MECHANICAL

BOM # A13230Z3 REV B DATE 3/3/75 PAGE 4 OF 4

| ITEM<br># | REF<br>DESIG | MANUFACTURER  | MFG PART #  | DESCRIPTION                    | TOTAL<br>QUA |
|-----------|--------------|---------------|-------------|--------------------------------|--------------|
| 50        | ρ            | Omni-Spectra  | OSM 201-1A  | Plug/.141 in. Semi-Rigid Cable | 29           |
| 51        | ρ            | Omni-Spectra  | OSM 201-1   | Plug/.141 in. Semi-Rigid Cable | 19           |
| 52        | W            | Uniform Tubes | UT-141      | Semi-Rigid Cable .141 dia.     | 16ft.        |
| 53        | ω            |               | RG-188 A/LI | Flex Cable                     | 2ft.         |
| 54        | AI           |               | A13210NI    | X2/X3 FREQUENCY MULTIPLIER     | 1            |
| 55        | ρ            | AMP           | 201143-5    | Coax Pin                       | 1            |
| 56        | P            | лмр           | 204188-1    | Crimp Pin                      | 6            |
| 57        | ρ            | лмр           | 203964-6    | Socket, Guide                  | 2            |
| 58        | ρ            | AMP           | 200833-4    | Pin, Guide                     | 1            |
| 59        | P            | AMP           | 202514-1    | Pin, Guide                     | 1            |
| 60        | JI8,J19      | KING3         | KC-19-153   | BNC                            | 2            |
| 61        |              |               |             | Stranded Wire                  |              |
| 62        | DSH          | NRAO          | D13230B3    | BLOCK DIAGRAM                  | REF          |
| 63        |              |               |             |                                |              |
| 64        |              |               |             |                                |              |
| 65        |              |               |             |                                |              |
| 66        |              |               |             |                                |              |

7.0 MANUFACTURERS' DATA SHEETS

7.0.1 Anza Doubler - D6-4

7.0.2 W-J Mixer - Ml-H

MODELS D-5-4 D-6-4

# UHF BROADBAND FREQUENCY DOUBLERS

100 MHz-2.6 GHz OUTPUT (D-6-4) 60 MHz-4.2 GHz OUTPUT (D-5-4)

#### FEATURES

- Conversion Loss 13 db Max.
- 🛃 Untuned
- Meets MIL Environments
- Low Spurious Noise
- Standard Connectors: BNC, TNC or SMA

| anzac a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2012 D-5-4 OUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| ATTEN AND BOOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Land and the second sec |  |

#### **GUARANTEED SPECIFICATIONS**

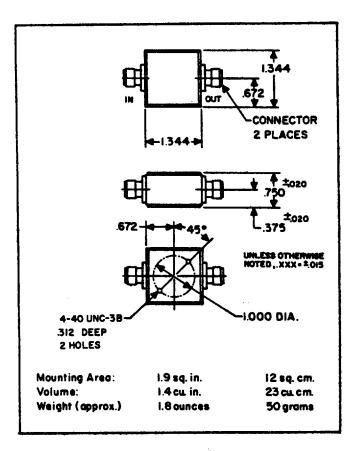
|                                                | D-6-4                       |        | D-5-4                  |           |
|------------------------------------------------|-----------------------------|--------|------------------------|-----------|
| Input Frequency Range:                         | 50 MHz - 1.3 GHz            |        | 30 MHz - 2.1 GHz       |           |
| Output Frequency Range:                        | 100 MHz - 2.6 GHz           |        | 60 MHz - 4.2 GHz       |           |
| Conversion Loss:                               | 13 db Max. @<br>20 mw input |        | 13 db Max<br>30 mw ing |           |
| Spurious (referred to Output F <sub>2</sub> ): | OUTPUT FREQUENCY (MHz)      |        |                        | Hz)       |
| · · · · · •                                    | 100-1000 100                | 0-2600 | 60-1000                | 1000-4200 |
| F1                                             | -25 db -15 (                | db     | -25 db                 | -15 db    |
| F <sub>3</sub>                                 | -30 db -20 (                | db     | -30 db                 | -20 db    |
| F4                                             | -12 db -12 d                | db     | -12 db                 | -20 db    |

#### TYPICAL PERFORMANCE

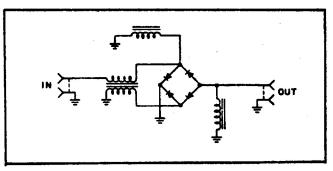
#### D-5-4 D-6-4 1.5 : 1 (30 MHz - 1 GHz) Input VSWR: 1.8:1 1.8 : 1 (1-2.1 GHz) 50 ohms Input/Output Impedance: 50 ohms 20 mw Nom. 30 mw Nom. Input Power (Loss increased 2 db @ mw and 100 ms): 1 Watt 1 Watt Input Power: **Operating Temperature Range (0.5 db Max.** -55°C to +85°C (Both models) Loss Variation):



### DESCRIPTION


#### MECHANICAL DATA

These doublers are small, low noise, untuned devices used to double any frequency in the 30-2100 MHz frequency range with minimum spurious generation.


#### ENVIRONMENTAL

These Devices Have Been Designed to Meet the Following Environmental and Physical Conditions of MIL-STD-202.

| Thermal Shock:       | Method 107, Test Condition A<br>-55°C to +85°C, 30 minutes at<br>temperature extremes, 5 cycles |  |  |
|----------------------|-------------------------------------------------------------------------------------------------|--|--|
| Humidity:            | Method 103, Test Condition B<br>(96 hours)                                                      |  |  |
| Barometric Pressure: | Method 105, Test Condition D<br>100,000 feet                                                    |  |  |
| Moisture Resistance: | Method 106                                                                                      |  |  |
| Life Test:           | Method 108, Test Condition B (250 hours)                                                        |  |  |
| Vibration:           | Method 204, Test Condition B<br>10-2,000 Hz, 15 G peak                                          |  |  |
| High Impact Shock:   | Method 207                                                                                      |  |  |



SCHEMATIC



#### **OPDERING INFORMATION**

Please specify Model No. and Connector Type when ordering.

| Model  | Price (1-5 Qty.) | <b>Connector Types</b> | Availability |
|--------|------------------|------------------------|--------------|
| D-6-4  | \$ 75.00         | BNC, TNC, SMA          | Stock        |
| D-5-4  | \$150.00         | BNC, TNC, SMA          | Stock        |
| Terms: | Net 30, 1        |                        |              |

Printed in U.S.A.



39 Green Street, Waltham, Massachusetts 02154 • (617) 899-1900 • TWX 710-324-6484

|                          |                              |                                       |                                  | $\Psi$                                            |
|--------------------------|------------------------------|---------------------------------------|----------------------------------|---------------------------------------------------|
| MGT                      | MGK*/MGKC*/(MGN)*            |                                       | •.                               |                                                   |
|                          |                              | M1A/(M1A-11)/[M3A]                    | M16/(M1F)                        | M1H/M5H/M11H                                      |
| 10 to 500 MHz            | 5 to 400 MHz                 | 3 to 1000 (1200) MHz                  | _1 (1.8) to 4.2 GHz              | 1.8 to 6.2 GHz                                    |
| DC to 500 MHz            | DC to 400 MHz                | DC to 1000 (1200) MHz                 | DC to 1 (2) GHz                  | DC to 2 GHz                                       |
| 7.0 dB<br>10 to 200 MHz  | 7.5 dB<br>5 (10) to 200 MHz  | 7.5 dB<br>10 to 100 MHz               | 8.5 dB<br>1 to 1.5 GHz           | 7.0 dB<br>1.8 to 4.2 GHz/fr DC to 2 GHz<br>8.0 dB |
| 8.0 dB<br>200 to 350 MHz | 9.0 dB<br>200 (5) to 400 MHz | 10.0 dB<br>3 to 1000 (1200) MHz       | 7.5 dB<br>1.5 (1.8) to 4.2 GHz   | 4.2 to 6.2 GHz/fr DC to 500 MHz<br>9.0 dB         |
| 9.0 dB<br>350 to 500 MHz |                              |                                       |                                  | 4.2 to 6.2 GHz<br>f1 500 MHz to 2 GHz             |
| 7.0 dB<br>10 to 200 MHz  |                              | 7.5 dB<br>10 to 100 MHz               | 8.5 dB<br>1 to 1.5 GHz           | 7.0 dB<br>1.8 to 4.2 GHz/fz 30 to 2 GHz           |
| 8.0 dB                   | not specified                | 10.0 dB                               | 7.5 dB                           | 8.0 dB<br>4.2 to 6.2 GHz/f; 30 to 500 MHz         |
| 200 to 350 MHz           |                              | 3 to 1000 (1200) MHz                  | 1.5 (1.8) to 4.2 GHz             | 9.0 dB<br>4.2 to 6.2 GHz                          |
| 9.0 dB<br>350 to 500 MHz |                              |                                       |                                  | f <sub>1</sub> 500 MHz to 2 GHz                   |
| 40 dB<br>10 to 50 MHz    | 35 dB<br>5 to 100 MHz        | 40 dB<br>3 to 100 MHz                 | 25 dB<br>1 (1.8) to 4.2 GHz      | 25 dB<br>1.8 to 4.2 GHz                           |
| 35 dB<br>50 to 100 MHz   | 25 dB<br>100 (5) to 400 MHz  | [35 dB]<br>100 to 200 MHz             |                                  | 20 dB<br>4.2 to 6.2 GHz                           |
| 30 dB<br>100 to 200 MHz  |                              | 30 dB<br>100 [200] to 1000 (1200) MHz |                                  |                                                   |
| 25 dB<br>200 to 500 MHz  |                              |                                       |                                  |                                                   |
| 35 dB<br>10 to 50 MHz    | 30 dB<br>5 to 100 MHz        | 40 dB<br>3 to 100 MHz                 | 20 (15) dB<br>1 (1.8) to 4.2 GHz | 20 dB<br>1.8 to 6.2 GHz                           |
| 30 dB<br>50 to 100 MHz   | 20 dB<br>100 (5) to 400 MHz  | [30 dB]<br>100 to 200 MHz             |                                  |                                                   |
| 25 dB<br>100 to 200 MHz  |                              | 20 dB<br>100 [200] to 1000 (1200) MHz |                                  |                                                   |
| 15 dB<br>200 to 500 MHz  |                              |                                       |                                  |                                                   |
| H                        | M6K G<br>M6KC I<br>M6N G     | M1A A<br>M1A-11 A<br>M3A E            | A                                | M1H A<br>M11H D<br>M5H J                          |
| 1                        | 4                            | 1                                     | 1                                | 1                                                 |

No

M1A/M1A-11 BNC M3A UG-1464/U

MIA 1.6 oz/M1A-11 1.6 oz M3A 0.6 oz

M1A \$70/M1A-11 \$90 M3A \$160

| MGE 3<br>MGF 4             | 1          | 4                                       |
|----------------------------|------------|-----------------------------------------|
| MGE Yes<br>MGF No          | Yes        | MGK No<br>MGKC Yes<br>MGN No            |
| pc mounted                 | pc mounted | pc mounted                              |
| M6E 5.0 gms<br>M6F 2.6 gms | 1.4 gms    | M6K 3.3 gms/M6KC 6.5 gms<br>M6N 2.6 gms |
| M6E \$37<br>M6F \$37       | \$50       | MGK \$25/M6KC \$30<br>M6N \$30          |

M6E/(MGF)

5 (2) to 500 MHz DC to 500 MHz 7.0 dB

10 (5) to 100 MHz

8.0 dB 100 to 200 MHz 9.0 dB 5 (2) to 500 MHz 7.0 dB 10 (5) to 100 MHz

8.0 dB 100 to 200 MHz 9.0 dB 5 (2) to 500 MHz 45 (40) dB 5 to 50 (2 to 150) MHz 30 (35) dB 50 (150) to 500 MHz

40 (35) dB 5 to 50 (2 to 150) MHz 25 dB 50 (150) to 500 MHz

> M6E M6F

\* The noise figure is not significantly worse than the specified conversion loss. \*\* Other connectors can be supplied upon request.

level of +10 dBm. The desensitization level is normally 3 dB below the conversion compression level.

Harmonic Intermodulation Distortion results from the mixing of mixer-generated harmonics of the input signals. Mathematically, it is expressed as  $mf_L \pm nf_R$  where m and n represent the harmonic numbers of the input signals. Typical performance is shown on page 9 of the catalog. It is not normally specified since the relative level depends on input frequencies, input levels, terminating impedances, and unit to unit variance.

MIG Yes MIF No

M1G M1F

M1G M1F SMA

BNC

1.1 oz 1.6 oz

\$199

M1H

M5H

MIH

M5H

M1H7M5H Yes M11H No

\$199

pc mounted

SMA/M11H UG-1619/U

1.10 oz/M11H 0.37 oz 0.24 oz

**Cross Modulation Distortion** is the amount of modulation transferred from a modulated carrier to an unmodulated carrier when both signals are applied to the R-port of the mixer. The higher the conversion compression or intercept point of a mixer, the greater the attenuation of the cross modulation.

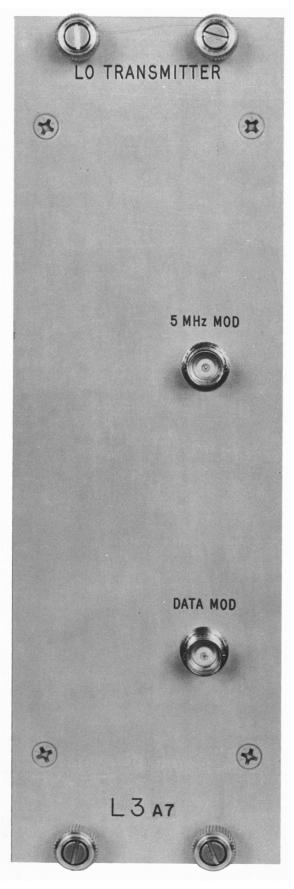



FIGURE 1 FRONT VIEW

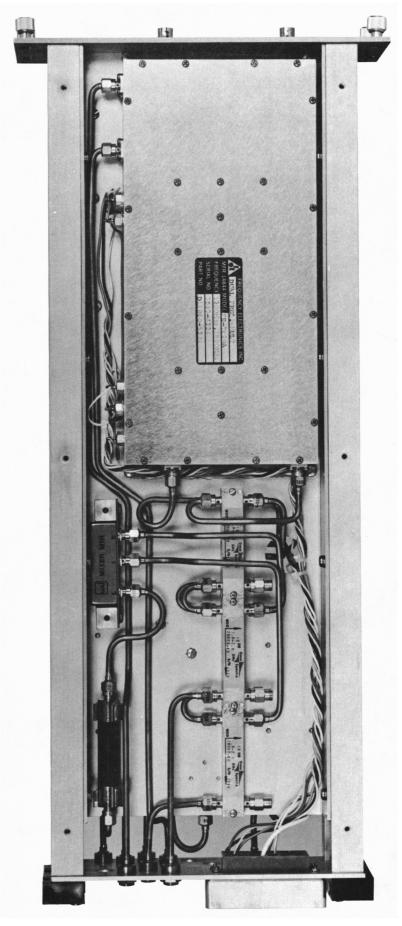
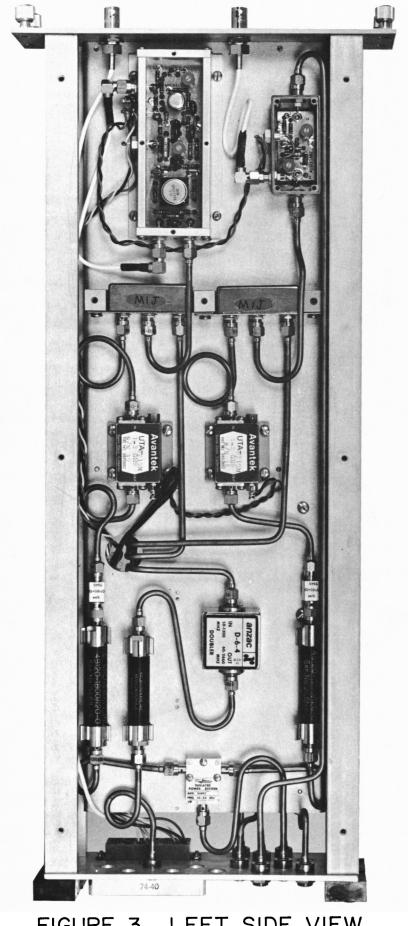
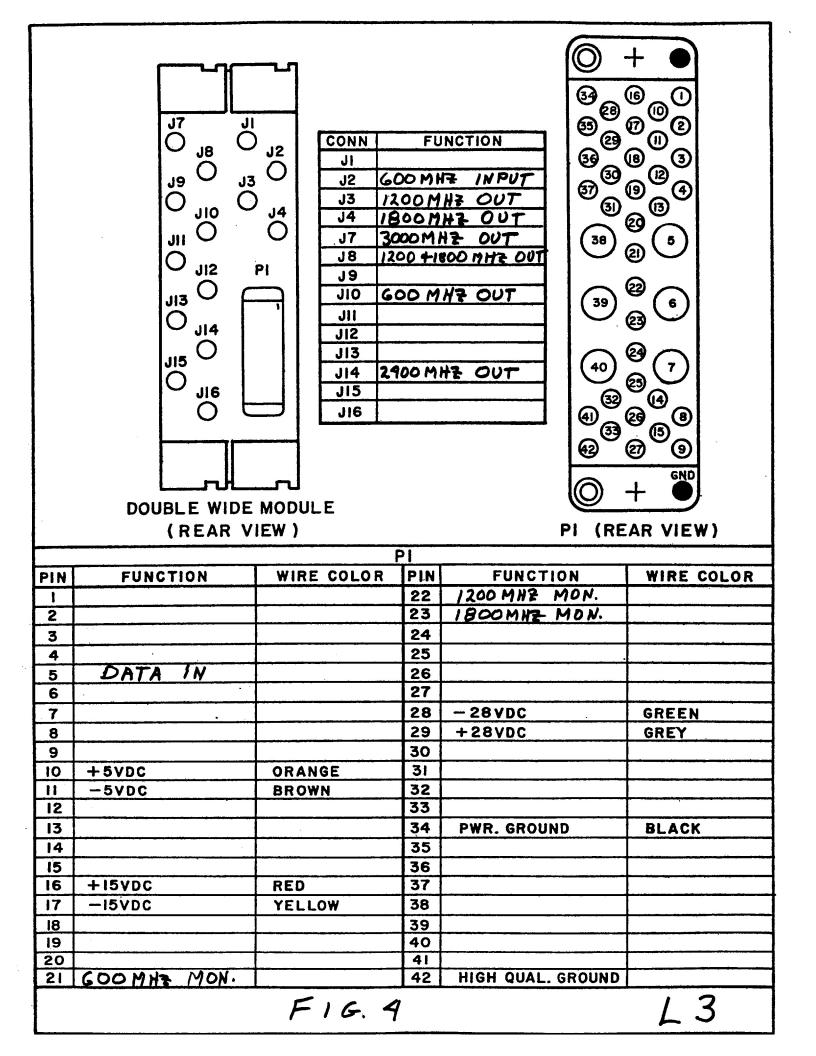





FIGURE 2 RIGHT SIDE VIEW



## FIGURE 3 LEFT SIDE VIEW

