VLA Technical Report No. 37 SYSTEM PERFORMANCE
IN DECEMBER 1977
D. S. Bagri

March 1978

Success of this work largely depends on many helpful discussions with Larry R. D'Addario during modifications and testing of the L.O. System and cooperation of Larry R. D'Addario and Peter J. Napier during system testing. Help of Bob Cohee, Jim Oty and Fred Dunn during assembly and testing of the L.O. System was essential for completing the work. Wonderful job of typing has been done by Doris R. Gill and Kathy McConnell and drafting by Robert S. Runyon and Thomas Cote. Finally I would like to thank Dr. A. R. Thompson for his continuous guidance during the entire work.

TABLE OF CONTENTS

1.0 INTRODUCTION 1-1
2.0 SYSTEM CONFIGURATION 2-1
3.0 SPECTRA AND OSCILLOGRAMS 3-1
4.0 DISCUSSION OF SPECTRA AND OSCILLOGRAMS 4-1
4.1 Remarks on Spectra 4-1
4.2 Spurious Signals and Noise 4-2
4.3 Intermodulation Products 4-4
4.4 Effect Due to Data Modulation 4-5
4.5 IF Passband Ripple 4-5
5.0 PHASE STABILITY MEASUREMENTS 5-1
5.1 Introduction 5-1
5.2 Variations of 600 MHz Round-Trip and Antenna 5 MHz Phases 5-2
5.3 Fringe Visibility on Calibration Sources 5-3
6.0 MISCELLANEOUS 6-1
6.1 L-Band Birdies 6-1
6.2 Waveguide Passband Ripple. 6-2
6.3 Oscillator Noise and 600 MHz Loop Bandwidth at VR. 6-2
6.4 Short Term Phase Stability 6-3

TABLE 2.1 L.O./IF SIGNAL LEVELS IN VERTEX ROOM
TABLE 2.2 L.O. AND IF SIGNAL LEVELS CENTRAL ELECTRONICS ROOM - RACK D
TABLE 2.3 PROCEDURE TO ADJUST SIGNAL LEVELS IN SYSTEM
TABLE 2.4 RACK D MODULE COMPLEMENT (RACK D2)
TABLE 2.5 RACK M MODULE COMPLEMENT (MASTER L.O.)
TABLE 2.6 ANTENNA 3 VERTEX ROOM ELECTRONICS

LIST OF FIGURES

Figure 2.1 Block Diagram Showing Connections of Master L.O. and One Complete Antenna Electronics

Figure 2.2 Block Diagram - Antenna Electronics at Vertex Room
Figure 2.3 Block Diagram - Rack D Electronics at CR
Figure 2.4 Block Diagram - Master L.O. Electronics
Figure 2.5 Block Diagram - System Signal Levels
Figure 5.la \& b
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7a \& b
Figure 5.8a \& b

1.0 INTRODUCTION

This report describes status of modified electronics for antennas 3 and 5 as in December, 1977. Optimum signal levels for system as well as individual modules are given. Results of measurements on the L.O., IF and waveguide communication channel for electronics of antenna 3 are described. Interferometer consisting of antennas 3 and 5 was used to measure phase stability of fringe-visibility on calibration radio sources. A summary of results of various tests is given below:

1) Optimum power levels within the system have been determined. The signal levels are given on the block diagrams describing the electronics. Power levels with tolerances of the inputs and outputs of L.O. and IF modules are given in TABLES 2.1 and 2.2.
2) A set of photographs of spectra and waveforms showing performance of the system was taken and are reproduced here.
3) Considerably large passband ripples, of the order of 5 to 6 dB , have been observed in the IF passband of 50 MHz at the base band frequency.
4) Coefficients of 600 MHz round-trip phase $\left(\phi_{600 \mathrm{RT}}\right)$ and 5 MHz phase at antenna ($\phi_{5 A N T}$) with the vertex room temperature (T_{VR}) have been determined. $\Delta \phi_{600 \mathrm{RT}} / \Delta \mathrm{T}_{\mathrm{VR}}=$ $0.5 /{ }^{\circ} \mathrm{C}$ and $\Delta \phi_{5 A N T} / \Delta T_{V R} \leq 0.1 /{ }^{\circ} \mathrm{C}$.
5) L.O. phase jumps due to slipping of 600 MHz cycle are caused by 5 MHz phase jumps. Fine scale ripple with about 5 to 10 MHz ripple period in the waveguide transfer function appear to be source of the 5 MHz phase jumps.
6) For observations of calibration radio sources at C-Band (4900 MHz) the phase stability of the fringe visibility is about 15° peak-to-peak for a 30 hour continuous observing time. This appears to be marginally acceptable. However
a similar phase stability is observed at L-Band and is clearly not acceptable.
7) Coefficient of the fringe visibility phase with the vertex room temperature is about $2.8 /{ }^{\circ} \mathrm{C}$ at both C -Band and L -Band. At C-Band it is acceptable but clearly not at L-Band.

2.0 SYSTEM CONFIGURATION

Block diagram in Figure 2.1 shows electronics of Master Local Oscillator system located at Central Electronics Room (CR), and electronics for one antenna located at both CR and antenna Vertex Room (VR) and connected by waveguide communication channel. Block diagrams with signal levels are shown in Figures 2.2 through 2.4 for the Master Local Oscillator System, $C R$ electronics for each antenna, Rack D, and VR electronics consisting of front-end and antenna L.O. Racks A and B respectively. Optimum signal levels and their tolerances have been determined. Nominal signal levels are indicated on the block diagrams. Input and output signal levels for L.O. and IF modules at antenna and VR are shown in TABLES 2.1 and 2.2 respectively. The system signal levels are shown in Figure 2.5. For all tests system signal levels are adjusted to within 0.5 dB using controls provided. A procedure to adjust the signal levels is given in TABLE 2.3. The module serial numbers installed as of December 25, 1977 are given in TABLES 2.4 to 2.6.

FIGURE 2.5 - SYSTEM SIGNAL LEVELS. All power levels in dBm and apply to carrier if no parenthesis, total L.O. carriers if in parenthesis, and total L.O. and IF in in brackets. All levels when the signal is ON, they are not average levels. Levels underlined are adjusted, other levels are nominal see TABLE 1 and Block diagrams for tolerances.

TABLE 2.1: L.O./IF SIGNAL LEVELS IN VERTEX ROOM
All power levels in $d B m$ and when $O N$. No parenthesis - L.O. power each carrier, parenthesis - total L.O. power, bracket - total L.O. and IF power.

	LI: $5-50 \mathrm{MHz}$ vCXO	L2: 50 MHz Har. Gen.	L3: L.O. Transmitter	L4: L.O. Receiver	L6: $2-4 \mathrm{GHz}$ Synth. A/C	L7: Fringe Gen. A/C	F2: Upconv. Pump	$\begin{aligned} \text { F3: } & 17-20 \mathrm{GHz} \\ & \text { L.O. } \end{aligned}$	$\begin{gathered} \text { F4: Freq. Conv. } \\ A / B / C / D \end{gathered}$	
31	$\begin{aligned} & +10 \pm 1 @ 50 \mathrm{MHz} \\ & \text { to L2J10 } \end{aligned}$		$\begin{aligned} & -1.5 \pm 1 \cdot 5 @ 1 \cdot 8 \\ & 6 \mathrm{H}^{*} \text { from } 22 \mathrm{~J} 9 \end{aligned}$	```1.2& 1.8 GHz (total = -4) from T2JB```		$+10 \pm 1$ 10.1 MHz to L6J15	-35 ± 3 @ 3 GHz from J6N (Rack A)	$+8 \cdot 5 \pm 2$ @ 600 MHz from 37N (Rack A)	-22 © IF to 4-way Adder $\&$ JIN (Rack A)	J1
32	$+17 \pm 1-10 \mathrm{MHz}$ to 4-way Div. (PDI)	$\begin{aligned} & +15 \cdot 5 \pm 1 \cdot 5 \text { @ } \\ & 200 \mathrm{MHz} \text { to } \mathrm{J} 7 \mathrm{~N} \\ & \text { (fack B) } \end{aligned}$	$\begin{aligned} & -1 \cdot 5 \pm 1 \cdot 5 \text { @ } 1.2 \\ & \text { GHz from L2J8 } \end{aligned}$			$\begin{aligned} & +7 \pm 3 \text { @ } 50 \mathrm{MHz} \\ & \text { from L2J4, } 2 \\ & \text { Div. } 6 \mathrm{~dB} \end{aligned}$	Adjustable 3•2 GHz to Upconv. AB	```+12\pm2 @ 200 MHz from J9N (Rack A) & Div.```	$\begin{aligned} & 4 \cdot 5 \text { to } 5 \mathrm{GEz} \\ & -56 \mathrm{~dB} / 50 \mathrm{MHz} \\ & \text { from F6J6/4/ } \\ & 3 / 5 \end{aligned}$	J2
J3	$\begin{aligned} & +10 \pm 1 \& 5 \mathrm{MHz} \\ & \text { to } 13 J 9 \end{aligned}$	$\begin{aligned} & +15 \cdot 5 \pm 1 \cdot 5 @ \\ & 100 \mathrm{mHz} \text { to } \mathrm{J} 8 \mathrm{~N} \\ & \text { (Rack B) } \end{aligned}$				$\begin{aligned} & -10 \pm 1 \text { @ } 10 \mathrm{MHz} \\ & \text { from LIJ2, } 4 \\ & \text { Div. \& } 20 \mathrm{~dB} \end{aligned}$	Adjustable 3-2 GHz to Upconv. CD	$+15 \cdot 5 \pm 1 \cdot 5$ e 100 MHz from J8N (Rack A)	$\begin{aligned} & +16 \cdot 5 \pm 1 \cdot 5 \\ & \text { fL6 from L6: } \\ & \text { J } 2 \mathrm{~N}(\mathrm{AB}) \text { Rack of } \\ & \text { J } 4 \mathrm{~N}(\mathrm{CD}) \text { Rack } \end{aligned}$	$J 3$
54	$+10 \pm 1$ @ 5 MHz to 2-way Div. (PD2)	$+17 \pm 2$ e 50 MHz to 2-way Div. (PD3)	0.5 MHz Data (TIT) from M4 Pl-3				```+12\pm2 200 MHz from J9N (Rack A) & 2 Div.```		Alternate Input	J4
J5									-35 dFin/50 MHz If to 50 mHz Ch. IF BPF	$J 5$
J6									$\begin{aligned} & -36 \mathrm{dBm} / 50 \mathrm{MHz} \\ & \text { from } \mathrm{CH} \text {. IF BPI } \end{aligned}$	J6
J7			$-4 \pm 2 \mathrm{e} 3 \mathrm{GHz}$ to $10 \mathrm{~dB} D C$ (DC-1)		$-15 \pm 2 e 2400$ MH2 from L3J14, $3 \mathrm{~dB}, 4$ Div. and 10 dB					J7
58	+10 © 20 MHz teminated	$\begin{aligned} & -1 \cdot 5 \pm 1 \cdot 5 @ 1 \cdot 2 \\ & G H z \text { to } \mathrm{L} 3 \mathrm{~J} 2 \end{aligned}$	$\begin{aligned} & 1 \cdot 2 \& 1 \cdot 8 \mathrm{GHz} \\ & -28 \cdot 5(-25 \cdot 5) \\ & \text { to T2J11 } \end{aligned}$		50 MHz Comb -33 $\pm 5 / 1$ ine from L2J12, 2 Div. \& 20 dB					J8
J9		$-1 \cdot 5 \pm 1 \cdot 5 @ 1.8$ GHz* to L3Jl	$\begin{aligned} & +10 \pm 1 \text { @ } 5 \mathrm{MHz} \\ & \text { from LlJ3 } \end{aligned}$		$\begin{aligned} & -15 \pm 3 \text { @ } 3 \mathrm{GHz} \\ & \text { frcm L3J7, } \mathrm{DC}-1 \\ & 2 \text { Div. \& } 6 \mathrm{~dB} \end{aligned}$					J9

TABLE 2.1: L.O./IF SIGNAL LEVELS IN VERTEX ROOM (CONT.)

	Ll: $5-50 \mathrm{MHz}$	L2: 50 MHz Har. Gen.	L3: L.O. Transmitter	L4: L.O. Receiver	L5: $2-4 \mathrm{GHz}$ Synth. A/C	L7: Fringe Gen. A/C	F2: Upconv. Pump	$\text { F3: } \begin{aligned} & 17-20 \mathrm{GHz} \\ & \mathrm{~L} .0 . \end{aligned}$	F4: Freq. Conv. $A / B / C / D$	
310		$+10 \pm 1$ e 50 MHz from Lljl	$+9 \pm 2$ © 600 MHz to 14 Jll	$+7 \pm 15 \mathrm{MHz}$ from LlJ4 \& 2 Div.						J10
J13			$+9 \pm 2 @ 600 \mathrm{MHz}$ to J6N (Rack B)	$+9 \pm 2600 \mathrm{MHz}$ from L3J10						311
31.		50 MHz Comb. $-10 \pm 5 / 1$ ine to 2-way Div. (PD4)			$\begin{aligned} & +16.5 \pm 1 \cdot 5 \text { e } \\ & 3.49 \text { to } 3.99 \\ & \text { to } J 4 N(A) / \\ & J 3 N(C)-(\text { Rack B) } \end{aligned}$					$J 12$
513		50 MHz Comb. $-10 \pm 5 / 1$ ine to JION (Rack B)			First IF Out					J13
514			$+5 \pm 2$ © 2400 MHz to 3 dB \& 4 Div. (PD6)							514
315					$+10 \pm 1 \bigcirc 10 \cdot 1$ MHz from L7J1					315
316										316
AMP	$\begin{aligned} & \text { PIN } \\ & \text { Pl-38 VCXO- } \\ & \hline \text { Control } \\ & \text { Voltage from } \\ & \text { L5P1-5 } \end{aligned}$			Pl-5: Data Out to M4-P1-38 Pl-6: 600 \| Det. Out to L5P1~6 P1-7: ϕ Det. Out to L5P1-7 p1-38: Sync Out		Pl-1: Walsh Switching from L8-P2A P1-5: 100 kHz from L3-P1-4/P1-36		$+12(+5,-0)$ dBm e 17-20 GHz , Waveguide out	Pl-H 9.6 GHz Switching Waveform	

TABLE 2.2: L.O. AND IF SIGNAL LEVELS CENTRAL ELECTRONICS ROOM - RACK D All power levels in dBm and when $O N$. No parenthesis - each L. O. carrier, parenthesis - total L. 0 . power, bracket total L.O. and IF power.

	L9: Central L.O. Receiver	$\left\lvert\, \begin{aligned} \text { Ll0: } & \text { Central } \\ & \text { L.O. } \\ & \text { Transmitter } \end{aligned}\right.$	$\begin{aligned} \text { Ll4: } & \text { Central } \\ & \text { L.O. Filter } \end{aligned}$	T4A: L. 0. Offset	$\begin{aligned} \text { T4B: } & \text { L. } O . \\ & \text { Offset } \end{aligned}$	T5: IF Receiver $A / B / C / D$	
J1	$\begin{aligned} & 1 \cdot 2 \& 1 \cdot 8 \mathrm{GHz} \\ & -13(-10)[-4] \\ & \text { from T2J8 } \end{aligned}$		$+10 \pm 2 @ 1200 \mathrm{MHz}$ to T4AJI	$\begin{aligned} & +10 \pm 2 @ 1200 \mathrm{MHz} \\ & \text { from Ll } 4 \mathrm{Jl} \end{aligned}$	$+10 \pm 2 \text { @ } 1800 \mathrm{MHz}$ $\text { from Ll4Jl } 5$	+16.5 dBm @ Base Band to J14/12/ 11/10 N (Rack D)	J1
J2			$\begin{aligned} & 0 \pm 0 \cdot 5 \text { @ } 1800 \mathrm{MHz} \\ & \text { from L9J14 } \end{aligned}$	$-7 \pm 3 @ 100 \pm 25$ from Master Jl6N	-7 ± 3 @ 250 ∓ 25 from Master 315 N		J2
J3			$0 \pm 0.5 @ 1800 \mathrm{MHz}$ from L9J13	$+8 \pm 4 @ 1300 \pm 25$ to T5AJ3	$+8 \pm 4 @ 1550 \pm 25$ to T5CJ3	$\begin{aligned} & \text { from T4AJ3/--/ } \\ & \text { T4BJ3/-- } \end{aligned}$	J3
J4				$-7 \pm 3 @ 200 \pm 25$ from Master J8N	$-7 \pm 3 @ 150^{-}+25$ from Master J7N	-13 to -20 in 50 MHz passband from T2J9, 4 Div., ch BPF	J4
J5				$+8 \pm 4 @ 1400 \pm 25$ to T 5 BJ 3	$+8 \pm 4 @ 1650 \pm 25$ to T5DJ3		J5
J6							J6
J7			$\begin{aligned} & +8 \cdot 5 \pm 1 \cdot 5 @ 600+ \\ & f_{s}^{*} \text { from Master } \\ & J 5 \mathrm{~N} \end{aligned}$				J7
J8		$+7 \pm 1$ @ 5 MHz from Master J6N and 2 Div.					J8
J9	$\begin{aligned} & +8 \cdot 5 \pm 1 \cdot 5 @ 5 \\ & \text { MHz }+\mathrm{f}_{\mathrm{S}}^{*} \text { from } \\ & \text { Master JlN** } \end{aligned}$						J9
510							J10
J11							J11

TABLE 2.2: L.O. AND IF SIGNAL LEVELS CENTRAL ELECTRONICS RODM - RACK D (CONT.) All power levels in dBm and when ON . No parenthesis - each L. O. carrier, parenthesis - total L. O. power, bracket total L.O. and IF power.

	L9: Central L.O. Receiver	$\begin{aligned} \text { Llo: } & \text { Central } \\ & \text { L. } 0 . \\ & \text { Transmitter } \end{aligned}$		T4A: L.O. Offset	T4B: L. 0 . offset	$\left\lvert\, \begin{gathered} T 5: \text { IF Receiver } \\ A / B / C / D \end{gathered}\right.$	
J12							$J 12$
J13	$\begin{aligned} & 0 \pm 0 \cdot 5 @ 1200 \\ & \mathrm{MHz} \text { to Ll4J3 } \end{aligned}$	$1 \cdot 2 \& 1 \cdot 8 \mathrm{GHz}$ $-6(-3) \pm 1 \cdot 5$ from Master Jl3N					J13
J14	$\begin{aligned} & 0 \pm 0 \cdot 5 @ 1800 \\ & \mathrm{MHz} \text { to } \mathrm{L} 14 \mathrm{~J} 2 \end{aligned}$						J14
J15		$\begin{aligned} & 1 \cdot 2 \& 1 \cdot 8 \mathrm{GHz} \\ & -28 \cdot 5(-25 \cdot 5) \pm \\ & 1 \cdot 5 \text { to } \mathrm{T} 2 \mathrm{Jll} \end{aligned}$	$\begin{aligned} & +10 \pm 2 @ 1800 \\ & \mathrm{MHz} \text { to T4BJl } \end{aligned}$				$J 15$
J16							J16
	P1-5: Data Out (TTL) to M3-P2-39 P1-7: $5 \mathrm{MHz} \phi-$ Err. to L11-P1-7 $*_{S}=19.2 \mathrm{~Hz}$		```Pl-5: Control T/H in from Jl8H (Rack D) P1-6: Control T/H out to Ill-Pl- 40 Pl-7: 600 MHz \phi-Err. to Lll-Pl-39 *f```				

**Not connected at present

NOTE: In actual system the input power at $600 \mathrm{MHz}+\mathrm{f}_{\mathrm{s}}$ to Ll4J77
is only $-2 \pm 1 \mathrm{dBm}$ instead of $+8 \cdot 5 \pm 1 \cdot 5 \mathrm{dBm}$.

FUNCTION

1. 1200 CR XMIT Level
2. 5 MHz Sidebands on 1200
3. 1800 CR XMIT Level
4. Data Sidebands on 1800
5. VR RCV Level
6. 1200 Level in L4
7. 1800 Level in L4
8. 1200 VR XMIT Level
9. 5 MHz Sidebands on 1200
10. 1800 VR XMIT Level
11. Data Sidebands on 1800
12. CR RCV Level
13. 1200 Level in L9
14. 1800 Level in $L 9$

ADJUSTMENT

R4 in 5 MHz Mod. Driver, Ll0	CR T2 XMIT IF FP Mon.*	-39 dBm @ 1200
R8 in 5 MHz Mod. Driver, LlO	CR T2 XMIT IF FP Mon.*	-49 dBm @ 1195 and 1205
R7 in Data Mod. Driver, Llo	CR T2 XMIT IF FP Mon.*	-39 dBm @ 1800
R4 in Data Mod. Driver, L10	CR T2 XMIT IF FP Mon.*	-54 dBm @ 1799.5 and 1800.5
RCV Gain on VR T2 FP	VR T2 RCV IF FP Mon. \#	-14 dBm with power meter
1200 FP Gain Pot with Switch on 1200 Side	L4 FP Meter Reading Zero for Switch on 1200 Side \#	Internally adjusted
1800 FP Gain Pot with Switch on 1800 Side	L4 FP Meter Reading Zero for Switch on 1800 Side \#	Internally adjusted
R5 in 5 MHz Mod. Driver, L3	VR T2 XMIT IF FP Mon.	-39 dBm @ 1200
R4 in $5 \mathrm{MHz} \mathrm{Mod}. \mathrm{Driver}, \mathrm{L3}$	VR T2 XMIT IF FP Mon.	-49 dBm @ 1195 and 1205
R7 in Data Mod. Driver, L3	VR T2 XMIT IF FP Mon.	-39 dBm @ 1800
R4 in Data Mod. Driver, L3	VR T2 XMIT IF FP Mon.	-54 dBm @ $1799 \cdot 5$ and $1800 \cdot 5$
RCV Gain on CR T2 FP	CR T2 RCV IF FP Mon.	-10 dBm using Power Meter when IF signals are not present
1200 FP Gain Pot with Switch on 1200 Side	L9 FP Meter Reading Zero for Switch on 1200 Side	Internally adjusted
1800 FP Gain Pot with Switch on 1800 Side	L9 FP Meter Reading Zero for Switch on 1800 Side	Internally adjusted

CORRECT LEVEL

-39 dBm @ 1200

-39 dBm @ 1800
$-54 \mathrm{dBm} @ 1799 \cdot 5$ and $1800 \cdot 5$
-14 dBm with power meter

Internally adjusted
$-39 \mathrm{dBm} @ 1200$
-49 dBm @ 1195 and 1205
-39 dBm @ 1800
-lo dBm using Power Meter when IF signals are not present

49 FP Meter Reading Zero Internally adjusted L9 FP Meter Reading Zero

MONITOR

Internally adjusted
4 FP Meter Reading Zero for Switch on 1800 Side

* CR Tl in full XMIT.
\# CR Tl in full XMIT., VR Tl in full RCV.

TABLE 2.4: RACK D MODULE COMPLEMENT (RACK D2)

Module	Serial No.	Name - Remarks
M3	Cl2	Local Buffer
M1	D51	Data Set
T4A	A2	L.O. Offset
T4B	A2	L.O. Offset
T5	A23	IF Receiver, Ch. A: IF $=1325 \mathrm{MHz}$
T5	A24	IF Receiver, Ch. C: $\mathrm{IF}=1575 \mathrm{MHz}$
T6	A2	IF Control
L11	Cl3	Central L.O. Control
L9	Cl3	Central L.O. Receiver
L14	C8	Central L.O. Filter
L10	Cll	Central L.O. Transmitter
T2	C4	IF Combiner
T1	D22	Modem - Channel 4, Modem Offset $=30 \mathrm{kHz}$
P4	A1	+5V @ $12 \mathrm{~A},-28 \mathrm{~V}$ @ 0.2 A
P5	A2	+15 V @ $3.5 \mathrm{~A},-15 \mathrm{~V}$ @ 1 A and +28 V @ 0.8 A

TABLE 2.5: RACK M MODULE COMPLEMENT (MASTER L.O.)

Module	Serial No.	Name - Remarks
Ll	A3	5 to 50 MHz VCXO
L2	A3	50 to 600 MHz Multiplier
L13	A3	600 to 1800 MHz Multiplier
L8	Al	Timing Generator
Ll2	Al	Master L.O. Offset
Ll	A6	5 to 50 MHz VCXO \quad for $600 \mathrm{MHz}+\mathrm{f}_{\mathrm{S}}$,
L2	A8	50 to 600 MHz Multiplier $\mathrm{f}_{\mathrm{s}}=19 \cdot 2 \mathrm{~Hz}$. Offset
L17	C4	Synthesizer Phase-lock
L18	A1	Variable Frequency Driver
L17	B3	Synthesizer Phase-lock
L21	Al	Synthesizer Phase-lock Emergency Power
L19	Al	Master L.O. Driver
P4	A3	+5V@ 1 A, -28 V @ 1.7 A
P5	A4	+15V@ $3 \mathrm{~A},-15 \mathrm{~V}$ @ 1 A and +28 V @ 1.2 A

TABLE 2.6: ANTENNA 3 VERTEX ROOM ELECTRONICS

Module/ Rack	Serial No.	Name - Remarks
Rack A	A3	Front-end Rack
F3	Cl0/Cl 7	$17-20 \mathrm{GHz} \mathrm{L.O.}. \mathrm{f}_{\mathrm{L} . \mathrm{O}}=17.6 \mathrm{GHz}$
F4	A5	Frequency Converter, Ch. A: $\mathrm{IF}=1325 \mathrm{MHz}$
F6	A6	RF Splitter
F4	A6	Frequency Converter, Ch. C: $\quad \mathrm{IF}=1575 \mathrm{MHz}$
F5	B4	Front-end Control Module
M1	D23	Data Set
Fl	A5	Front-end Bias Module, Ch. AB
Fl	A2	Front-end Bias Module, Ch. $C D$
F2	B7/Cl3	Upconverter Pump
Rack B	B3	Vertex Room L.O. Rack - Modified
Pl	A9	+5V@ 17A, $-5 \cdot 2 \mathrm{~V}$ @ $\mathrm{C}^{\text {A }}$
P2	A6	+15V@4A, -15V@0.9 A
L6	B14	2-4 GHz Synthesizer Ch. C, $\mathrm{f}_{0}=3310 \mathrm{MHz}$
L7	B14	Fringe Generator $\mathrm{Ch} . \mathrm{C}$
L6	B18	$\text { 2-4 GHz Synthesizer Ch. A, } f_{o}=3560 \mathrm{MHz}$
1.7	B5	Fringe Generator Ch. A
Ll	Bl0	5 to 50 MHz VCXO
L2	Cl 6	50 MHz Harmonic Generator
L3	Cl7	L.O. Transmitter
L4	C4	L.O. Receiver
L5	B*	L.O. Control
L8	Al2	Timing Generator
P3	A7	+28 V @ 1.4 A, -28V@0.3 A
T2	B19	IF Combiner
T1	A2	Modem; Channel 4. Modem Oscillator frq $=33 \cdot 59 \mathrm{GHz}$
M4	C9	Antenna Buffer
M2	-	Data Tap
M1	D62	Data Set

[^0]3.0 SPECTRA AND OSCILLOGRAMS

SP. 3-200@ Rack B J7N, Modems Normal

600 MHz	$10 \mathrm{~dB} / \mathrm{cm} \mathrm{VER}$
300 kHz BW $\quad 300 \mathrm{~Hz} \mathrm{VF}$	$20 \mathrm{MHz} / \mathrm{cm} \mathrm{HOR}$

SP. 9-600@ Rack B J6N, Modems Normal

 Normal

SP. 13-2400 @ Normally Terminated Output 4 Div., Rack B

SP. 14-2400 @ Normally Terminated Output 4 Div.. Rack B

$10 \cdot 1 \mathrm{MHz} \quad 10 \mathrm{~dB} / \mathrm{cm} \mathrm{VER}$ $3 \mathrm{kHz} \mathrm{BW} \quad 10 \mathrm{~Hz}$ VF $\quad 50 \mathrm{kHz} / \mathrm{cm} \mathrm{HOR}$ SP. 27 - L6C IF Monitor FP, Manual Tuning

$10 \cdot 1 \mathrm{MHz}$
$10 \mathrm{~dB} / \mathrm{cm}$ VER
3 kHz BW
10 Hz VF
$50 \mathrm{kHz} / \mathrm{cm}$ HOR
SP. 29 - L6A IF Monitor FP Computer Mode, System Normal, Tuning No. 3578

$3 \mathrm{kHz} \mathrm{BW} \quad 10 \mathrm{~Hz}$ VF $\quad 50 \mathrm{kHz} / \mathrm{cm} \mathrm{HOR}$
SP. 26 - L7A Monitor FP, No Computer Commands

$10.1 \mathrm{MHz} \quad 10 \mathrm{~dB} / \mathrm{cm}$ VER
3 kHz BW $\quad 10 \mathrm{~Hz} \mathrm{VF} \quad 50 \mathrm{kHz} / \mathrm{Cm}$ HOR
SP. 28 - L7C Monitor FP, No Computer Commands

$10 \cdot 1 \mathrm{MHz}$
$10 \mathrm{~dB} / \mathrm{cm}$ VER
$3 \mathrm{kHz} \mathrm{BW} \quad 10 \mathrm{~Hz} \mathrm{VF}$
$50 \mathrm{kHz} / \mathrm{cm}$ HOR SP. 30 - L7A Monitor FP, System Normal

SP. 31 - L6C IF Monitor FP, Computer Mode, System Normal, Tuning No. 3328

SP. 33 - F2 Front Panel IF Monitor (F2C13)

10.1 MHz
$10 \mathrm{~dB} / \mathrm{cm}$ VER
$3 \mathrm{kHz} \mathrm{BW} \quad 10 \mathrm{~Hz} \mathrm{VF}$
$50 \mathrm{kHz} / \mathrm{cm}$ HOR
SP. 32 - L7C Monitor FP, System Normal

$-40 \mathrm{dBm}$

1200 MHz
$10 \mathrm{~dB} / \mathrm{cm}$ VER
3 kHz BW $\quad 10 \mathrm{~Hz} \mathrm{VF}$
$50 \mathrm{kHz} / \mathrm{cm}$ HOR
SP. $49-1200$ @ VR T2 XMIT. IF FP MON., VR Full XMIT.

1200 MHz
$10 \mathrm{~dB} / \mathrm{cm}$ VER
3 kHz BW
300 Hz VF
$50 \mathrm{kHz} / \mathrm{cm}$ HOR
SP. 51-1200 @ CR T2 RCV. IF FP MON. System Normal

1200 MHz
$10 \mathrm{~dB} / \mathrm{cm}$ VER
300 Hz BW
10 Hz VF
$5 \mathrm{kHz} / \mathrm{cm}$ HOR
SP. 53-1200@ CR T2 RCV. IF FP MON., System Normal

1200 MHz
$10 \mathrm{~dB} / \mathrm{cm}$ VER
300 kHz BW $300 \mathrm{~Hz} \mathrm{VF} \quad 5 \mathrm{MHz} / \mathrm{cm}$ HOR
SP. 50-1200@ CR T2 RCV. IF FP MON., System Normal

3 kHz BK
MHz
$10 \mathrm{~dB} / \mathrm{cm}$ VER

SP. 52-1200@ CR T2 RCV. IF FP MON. System Normal

10 MHz
$10 \mathrm{~dB} / \mathrm{cm}$ VER
$3 \mathrm{kHz} \mathrm{BW} \quad 10 \mathrm{~Hz} \mathrm{VF} \quad 50 \mathrm{kHz} / \mathrm{cm} \mathrm{HOR}$
 (Modem Offset $=30 \mathrm{kHz}$)

10 MHz
$10 \mathrm{~dB} / \mathrm{cm}$ VER
$3 \mathrm{kHz} \mathrm{BW} \quad 300 \mathrm{~Hz}$ VF $\quad 50 \mathrm{kHz} / \mathrm{cm}$ HOR
SP. 81-10@VR Tl IF FP MON., System Normal

1200 MHz
$10 \mathrm{~dB} / \mathrm{cm}$ VER
$200 \mathrm{kHz} / \mathrm{cm}$ HOR
SP. 83-1200 @ T4A Input

10 @ VR Tl IF FP MON., System Normal

$0.5 \mathrm{~ms} / \mathrm{cm}$
Trigger on Lll control T/H
Oscillogram 1 - CR XMIT. Level @ T2 FP

$0.2 \mathrm{~ms} / \mathrm{cm}$
Trigger on Carrier ON L8 FP
Dscillogram 3 - VR XMIT. Level @ T2 FP

Trigger on Carrier ON L8 FP Oscillogram 2 - VR RCV. Level @ T2 FP

Trigger
ontrol T/H
Oscillogram 4 - CR RCV. Level @ T2 FP

$0.2 \mathrm{~ms} / \mathrm{cm}$
Trigger on Carrier ON L8 FP Oscillogram 5 - VR L8 T/R FP

Trigger on Carrier ON L8 FP Oscillogram 7 - 5ϕ @ L4 FP MON.

Trigger on Carrier ON L8 FP Oscillogram 6 - Data @ L4 FP MON.

Trigger on Carrier ON L8 FP Oscillogram 8 - 600ф @ L4 FP MON.

$0.2 \mathrm{~ms} / \mathrm{cm}$
Trigger on Carrier ON L8 FP Oscillogram 9 - RCV. Data @ L4 FP MON.

$0.2 \mathrm{~ms} / \mathrm{cm}$
Trigger on Carrier ON L8 FP Oscillogram 11 - L8 SYNC @ FP

$0.2 \mathrm{~ms} / \mathrm{cm}$
Trigger on Carrier ON L8 FP
Oscillogram 10 - 600ф @ L5 Monitor PT. 3

Trigger on VR SYNC.
Oscillogram 12 - SYNC. RCV. @ L4 FP MON.

$5 \mathrm{~ms} / \mathrm{cm}$
Trigger on Lll Control T/H Oscillogram 13 - Data @ L9 FP MON.

Trigger on Lll Control T/H
Oscillogram 15 - $1200 \mathrm{MHz} \phi$-Error Ll4 @ Lll MON. 1

Triger on Lil control T / H
rigger on Lll Control T/H Oscillogram 14-5 MHz@ L9 FP MON.

Trigger on Lll Control T/H
Oscillogram 16-1200 MHz VCO Control Ll4 @ Lll MON. 2

Trigger on Lll Control T / H
Oscillogram 17 - $1800 \mathrm{MHz} \phi$-Error Ll4 a Lll MON. 3

Trigger on Lll Control T / H
Oscillogram 18 - 1800 MHz VCO Control Ll4 @ Lll MON. 4

4.0 DISCUSSION OF SPECTRA AND OSCILLOGRAMS

4.1 Remarks on Spectra

Serial Sp. Description Remarks

No. No.
11100 MHz @ Rack
23200 MHz @ Rack
5600 MHz @ Rack B
6600 MHz @ Rack B
$10,1150 \mathrm{MHz}$ Comb @ Rack B
$6 \quad 14 \quad 2400 \mathrm{MHz}$
$7 \quad 15 \quad 3000 \mathrm{MHz}$

8

9
10

11

46,47 VR RCVD. 1200 @ T2 FP

49 VR XMIT. 1200 @ T2 FP

Comb line @ $750 \mathrm{MHz}-4 \mathrm{~dB}$ from allowed tolerance
$-54 \mathrm{dBc} @+50 \mathrm{MHz},-60 \mathrm{dBc} @-50 \mathrm{MHz}$
-58 dBc @ -50 MHz
$-64 \mathrm{dBC} @+5 \mathrm{MHz},-68 \mathrm{dBC} @-15 \mathrm{MHz}$
-66 dBc @ - -18 MHz ?
-54 dBC @ $\pm 50 \mathrm{kHz},-64 \mathrm{dBC}$ @ $\pm 100 \mathrm{kHz}$
Most of the spurious lines due to spectrum analyzer
$-58 \mathrm{dBc} @-100 \mathrm{MHz},-65 \mathrm{dBc} @+50 \mathrm{MHz}$
$<-54 \mathrm{dBc} @ \pm 50 \mathrm{kHz},-65 \mathrm{dBc} @ \pm 100 \mathrm{kHz}$
-50 dBC @ $\pm 100 \mathrm{kHz}$ and $\sim-150 \mathrm{kHz}$;
-54 dBC @ $\pm 50 \mathrm{kHz}$
<-52 dBc @ harmonics of $\pm 50 \mathrm{kHz}$

Most of the spurious lines due to spectrum analyzer
$-54 \mathrm{dBc} @ \pm 100 \mathrm{kHz},-58 \mathrm{dBc}$ @ $\pm 50 \mathrm{kHz}$, etc.

Noise modulation
$-52 \mathrm{dBc} @ \pm 100 \mathrm{kHz},-62 \mathrm{dBc} @ \pm 50 \mathrm{kHz}$
-55 dBc @ $\pm 100 \mathrm{kHz}$
<-54 dBc @ harmonics of $\pm 50 \mathrm{kHz}$, $\leq-66 \mathrm{dBC} @ \pm 60,120 \mathrm{kHz}$

Due to computer command problems?
Spurious responses at 1120,1385
and 1980 all -30 dBc or below each L.O. Carrier; spectrum analyzer
$-30 \mathrm{dBc} @ \pm 50 \mathrm{kHz},-42 \mathrm{dBC}$ @ $\pm 100 \mathrm{kHz}$; $\leqslant-42 \mathrm{dBC}$ FM due to $\sim 7 \mathrm{kHz}$
$-62 \mathrm{dBC} @ \pm 50 \mathrm{kHz},-72 \mathrm{dBc} @+150 \mathrm{kHz}$

21	$\begin{gathered} 51,52 \\ 53 \end{gathered}$	$\begin{aligned} & \mathrm{CR} \text { RCVD. } 1200 @ \mathrm{~T} 2 \\ & \mathrm{FP} \end{aligned}$	-30 dBC @ $\pm 50 \mathrm{kHz},-42 \mathrm{dBc}$ @ $\pm 100 \mathrm{kHz}$ and $\leq-42 \mathrm{dBc}$ due to FM $\sim 7 \mathrm{kHz}$
22	58	$\begin{aligned} & \text { VR RCVD. } 1800 @ \mathrm{~T} 2 \\ & \text { FP } \end{aligned}$	$-38 \mathrm{dBc} @ \pm 5 \mathrm{MHz}$
23	$\begin{gathered} 59,60 \\ 61 \end{gathered}$	VR RCVD. 1800 @ T2	```-30 dBc @ \pm50 kHz, -42 dBc @ \pml00 kHz; s-42 dBC due to FM ~ 7 kHz```
24	66.	CR RCVD. 1800 @ T2	```-30 dBc @ \pm50 kHz, -42 dBc @ \pm100 kHz; s-42 dBc due to FM ~ 7 kHz```
25	72	600 MHz @ L4 FP	$-54 \mathrm{dBc} @-30 \mathrm{kHz},-58 \mathrm{dBc}$ @ $-60 \mathrm{kHz},-65 \mathrm{dBc} @+30 \mathrm{kHz}$
26	76	600 MHz @ Ll4 FP	$-52 \mathrm{dBc} @ \pm 30 \mathrm{kHz},-54 \mathrm{dBc} @$ $\pm 60 \mathrm{kHz},<-56 \mathrm{dBc}$ @ $\pm 100 \mathrm{kHz}$
27	79	CR Modem IF @ FP	-48 to $-52 \mathrm{dBc} @ \sim \pm 30 \mathrm{kHz}$ and $\sim \pm 150 \mathrm{kHz}$
28	$\begin{aligned} & 80 \\ & 81 \end{aligned}$	VR Modem IF @ FP	-40 to $-48 \mathrm{dBc} @ \pm 50, \pm 100 \mathrm{kHz}$; -58 dBc @ $\pm 500 \mathrm{kHz}$
29	82	1200 @ T4A Input	-58 dBc @ $\pm 5 \mathrm{MHz}$
30	83	1200 @ T4A Input	-52 dBc @ $\pm 500 \mathrm{kHz}$
31	84	1200 @ T4A Input	See remarks for spectra 51, 52, 53
32	85	1800 @ T4B Input	-50 dBc @ $\pm 500 \mathrm{kHz}$
33	86,87	1800 @ T4B Input	$-30 \mathrm{dBc} @ \pm 50 \mathrm{kHz},-42 \mathrm{dBc}$ @ $\pm 100 \mathrm{kHz}, \leq-42 \mathrm{dBc}$ due to FM by $\sim 7 \mathrm{kHz}$
34	93	T5 L.O. @ 1300	See remarks for spectra 51, 52, 53
35	94	T5 L.O. @ 1400	See remarks for spectra 51, 52, 53
36	95	T5 L.O. @ 1550	See remarks for spectra 51, 52, 53
37	$\begin{aligned} & 105, \\ & 107 \end{aligned}$	Ch. C IF @ Baseband T5 FP MOn.	Large passband ripple ~ 5 to $6 d B$ p-p roughly 2 cycles of ripple in 50 MHz .

4.2 Spurious Signals and Noise

Phase stability of the local oscillator signals depend on the reference 600 MHz generated by combining the received 1800
and 1200 MHz in L4 at VR and in Ll4 at CR. Any spurious signals at these frequencies will effect the phase stability of the 600 MHz . Undesired signals near these frequencies may also effect the 600 MHz depending upon their frequencies and phases. It is important to remember that the phase-lock loop at antenna, though has roughly one Hz bandwidth, is sampled at 19.2 Hz and therefore spurious signals outside this bandwidth may also be aliased into the loop bandwidth by the sampling. Further at CR the 1800 and 1200 MHz are also used to translate the IF signals from the channel frequencies to baseband (from 0 to 50 MHz) .

Undesired signals and noise introduced in the modems are mostly due to frequency modulation of the modem Gunn oscillators by noise and spurious signals on the reference signals to the modems or power supply lines within the modem phase-lock loop bandwidth. However these spurious signals should not effect the phase stability of the system because they influence the 1800, 1200 and IF signals equally at any time. Therefore the recovered 600 MHz as well as the IF signals at baseband should be uneffected. Here a word of caution - the loop bandwidths of the 1800 and 1200 MHz phase-lock loops have to be limited because of the data modulation on 1800 MHz carrier and other practical considerations. Any modulation outside the loop bandwidth may effect the IF signals.

From the spectra of the received 1800 and 1200 MHz at both VR and CR (spectra 46, 47; 52, 53; 60, 61; and 66, 67) one can see that large sidebands at $\pm 50 \mathrm{kHz}, \pm 100 \mathrm{kHz}$ as well as frequency modulation due to a signal at about 7 kHz are present. Though in each case undesired signals are -30 dB of the desired signal and therefore the system phase performance should not degrade significantly any increase in their strength may not be acceptable. The $\pm 50 \mathrm{kHz}$ and $\pm 100 \mathrm{kHz}$ sidebands appear due
to L 7 and L 8 modules pumping these signals on Rack B . The signal around 7 kHz appears from DCS system.

4.3 Intermodulation Products

It was recognized that intermodulation of $1 \cdot 8$ and $1 \cdot 2 \mathrm{GHz}$ signals cause undesired signals generated by $\mathrm{mf}_{1} \pm \mathrm{nf}_{2}$. The effect of these undesired signals could be kept small if the IF reference for the two modems at $V R$ and $C R$ are offset slightly. However for reciprocity of the waveguide path to be nearly true the offset has to be small compared to possible fine scale structure in the waveguide transmission. Therefore the undersized signals due to the intermodulation components should be kept minimum. Also these undesired intermodulation components, depending upon where they are generated, may influence only 1800 and 1200 MHz but not the IF signals. This will effect the IF signals at basebands. Therefore it was decided to modify signal levels at various stages in the system to keep the intermodulation products low. To keep the effect on the phase due to undesired signal to less than 0.1 , the undesired signal should be -54 dBc of the desired signal if the two were at the same frequency. If the undesired signal is offset in frequency from the desired signal the ratio could be smaller. It has been decided that we will have a small offset between IF reference signals to the two modems.

The offset between the two modems was 30 kHz . CR modem reference was 10.03 MHz from a Fluke Synthesizer and VR modem reference was 10.00 MHz from the Ll module. The intermodulation components are produced at $\pm 30, \pm 60 \mathrm{kHz}$ on the recovered 600 MHz at both VR and CR. Spectra 72 and 76 show the effect of the intermodulation components. The intermodulation products are more than 50 dB below the desired signal in both cases.

4.4 Effect Due to Data Modulation

There has been some concern about phase stability of the 600 MHz due to presence of data modulation on 1800 MHz . Oscillogram-10 shows the 600 MHz phase error as measured at L5 monitor point 3 with system normal. The phase error during the 1 ms period due to presence of data appears to be <0.1 (not measurable; $<20 \mathrm{mV}$ in $10 \mathrm{~V} / \mathrm{rad}$ scale). However in some cases the phase error, as much as 1°, due to data modulation has been observed. Cause for this problem is not understood.

4.5 IF Passband Ripple

IF passband ripple to channel C IF at baseband is very large, $5 \cdot 5 \mathrm{~dB}$ peak-to-peak (see spectrum 107). From a comparison of spectra 103 and 107 it is clear that the passband ripple over the 50 MHz passband up to T 2 output is less than 2 dB peak-to-peak and most of the ripple is introduced in the IF Receiver T5. This could be due to a defective T5 module and need be checked.

5.0 PHASE STABILITY MEASUREMENTS

5.1 Introduction

Phase stability of the IF signals from an antenna depends on the stability of local oscillator signals provided at the antenna. L.O. signals at any antenna are derived from the 600 MHz reference generated by combining 1800 and 1200 MHz received from CR. Further at $C R$ the received $I F$ signals are translated to baseband by using 1800 or 1200 MHz received from VR. Therefore phase of the measured visibility is effected by variations in phase of the 600 MHz reference delivered at an antenna and path length changes in the returned IF signals from the antenna. Variations of the returned 600 MHz phase (600 MHz generated at CR by combining 1800 and 1200 MHz received from VR) is used to determine the waveguide length changes by assuming the waveguide path is reciprocal and non-dispersive over the modem channel passband and variations of electronics effect equally both forward and return paths. This information is used to correct the phase of the visibility to account for variations of the 600 MHz reference phase and wayeguide length changes.

Electronics in the forward and the return 600 MHz path is not identical due to other design considerations. Therefore stability of the returned 600 MHz phase ($\phi_{600 \mathrm{RT}}$) with VR temperature variation is important. Also phase of 5 MHz at antenna ($\phi_{5 A N T}$, phase between two 5 MHz signals - one from antenna LI and second from demodulating 1.2 GHz received from CR) is important. For if it exceeds ± 1.5 limit, the loop will push or retard the 600 MHz generated at antenna by 1 cycle to bring this phase error to within the ± 1.5 limit. We have measured variations of $\phi_{600 R T}$ and $\phi_{5 A N T}$ with time over several days and also with VR temperature variation. Also calibration radio sources have been observed at both C -Band and L -Band to determine fringe phase stability.

5.2 Variations of 600 MHz Round-Trip and Antenna 5 MHz Phases

 5.2.1 The 5 MHz phase at antenna, $\phi_{5 A N T}$ appears to exceed $\pm 1^{\circ} .5$ limit in several cases. For example see Figure 5.1 a and b. This phase variation forces the 600 MHz at the antenna to slip by a cycle to reduce the $\phi_{5 A N T}$ to within ± 1.5. It appears to be caused by ripple in the waveguide transmission characteristic with a spacing of about 5 to 10 MHz and of the order of a 0.3 to .5 dB peak-to-peak. The cause for the ripple is not fully understood and is under investigation.5.2.2 The 600 MHz round-trip phase, $\phi_{600 \mathrm{RT}}$ varies by about 20° over a day. This variation is diurnal and most of it appears due to 20 mm waveguide length changes because of outside temperature variations (see Figure 5.2).
5.2.3 Temperature coefficient for $\phi_{600 R T}$ and $\phi_{5 A N T}$ with VR temperature (T_{VR}) have been measured. During observations of calibration radio sources, antenna 5 VR temperature was varied by about $\pm 5^{\circ} \mathrm{C}$ around its normal value of about $22^{\circ} \mathrm{C}$ ($72^{\circ} \mathrm{F}$). Figure 5.3 shows temperature variation monitored by two sensors, one mounted in rack B at $L 2$ and other mounted on F4 IF channel filters in rack A. Corresponding variations of $\phi_{600 R T}$ and $\phi_{5 A N T}$ are shown in Figures 5.4 and 5.5 respectively. The $\phi_{600 \mathrm{RT}}$ had some instability when VR temperature was high and could be due to a bad connector or maladjustment of one of the 1200 or 1800 MHz phase-lock loops in L3.

Also for stationary antenna 3 VR temperature was varied by $\pm 5^{\circ} \mathrm{C}$ to measure the phase variations of $\phi_{600 \mathrm{RT}}$ and $\phi_{5 A N T^{\prime}}$. The results in both cases are similar and are as follows:

Monitor Foint Value

Monitor Point Value

Monitor Point Uelue

momrs4[11,1], Rdd: 5, 5,220, UALUE monrE4[11.1] \& Add! 3. 5, 220, VALUE
. Yr:
-0. 1. 6 " $8 \mathrm{BE}+07$
.Yrz

- 0. 1. GTCEWOT

Monitor Point Value
figure 5.3: temperature variation of electronics in vertex room

Monitor Point Ualue

Monitor Point Value

$$
\begin{aligned}
& \Delta \phi_{600 \mathrm{RT}} / \Delta \mathrm{T}_{\mathrm{VR}}-0.5^{\circ} /{ }^{\circ} \mathrm{C} \\
& \Delta \phi_{5 \mathrm{ANT}} / \Delta \mathrm{T}_{\mathrm{VR}}-0.1^{\circ} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Effect on visibility phase due to variation of $\phi_{600 \mathrm{RT}}$ with temperature should largely get corrected when the 600 MHz round-trip phase correction is applied to the observed visibility. Considerable care has been given during design that part of $\phi_{600 R T}$ variation due to unsymmetry in electronics of forward and return path is much smaller than the total variation due to VR changes. Therefore effect due to variations of $\phi_{600 R T}$ with VR temperature should be much smaller than the requirement of $\pm 1^{\circ} / \mathrm{GHz}$ of observing frequency.

Variation of $\phi_{\text {SANT }}$ with VR temperature should be acceptable for $\pm 1^{\circ} \mathrm{C}$ of VR temperature variation as this is more than an order of magnitude smaller than overall $\pm 1{ }^{\circ} 5$ limit which may cause 600 MHz to slip a cycle. Further if this variation is mostly due to VR temperature changes, it could effect phase of 10 MHz used for Fringe Generators. For L-Band observations this could be appreciable, specially if the temperature changes at $\mathrm{L} l$ module are larger than VR free air.

5.3 Fringe Visibility on Calibration Sources

Four radio sources 3 C84, 4C39•25, 3C345 and 3C454-3 which are more or less equally spaced in right ascension have been observed for testing phase stability of the system. Each source is observed for about six hours around meridian so that the antenna elevation is always more than 30°. Also for these tests a small baseline ($\sim 48 \mathrm{~m}$) is used so that the two antennas are essentially looking through same atmosphere.

These sources have been observed on several occasions at both C -Band (4900 MHz) and L-Band (1480 MHz) to determine phase stability of the fringes formed by the interferometer consisting of antennas 3 and 5. For each average of 5 minutes the phase stability of visibility shows about 15° peak-to-peak variation for more than one day (actually about 30 hours) of observing at both C-Band and L-Band. For example see Figure 5.6 This is before removing phase jump due to 600 MHz cycle slip when $\phi_{\text {5ANT }}$ exceeds ± 1.5 limit.

Visibility phases were also recorded when antenna 5 VR temperature was varied during the observations of the calibration radio sources. The fringe visibility phases for (a) Ch. A IF, (b) Ch. C IF for observations at (i) C-Band and (ii) L-Band are shown in Figures $5.7 a$ and $5.7 b$ and $5.8 a$ and $5.8 b$ respectively. Antenna 5 Vertex Room temperature variation, by $\pm 5^{\circ} \mathrm{C}$ around $22^{\circ} \mathrm{C}$ during the observations, shows a coefficient of $2.8 /{ }^{\circ} \mathrm{C}$ for measured visibility at both C-Band and L-Band and also for both IF channels A and C. VR temperature variation is expected to be $\leq 1^{\circ} C$. Therefore at C-Band a $2.8 /{ }^{\circ} \mathrm{C}$ variation should be acceptable as this will contribute less than $1^{\circ} / \mathrm{GHz}$ requirement on the system phase stability. However at L-Band neither the 15° peak-to-peak variation over a day nor a temperature coefficient of $2.8 /{ }^{\circ} \mathrm{C}$ is acceptable. Causes for these large variations at L-Band are under investigation.

Run 54, Sean Avaruges, RT phasa appl100 Amplitude (gmin)
:9•s มxinoia
FRINGE VISIBILITY PHASE FOR bOTH CHANNEL A
AND C IF SIGNALS FOR OBSERVATIONS AT C-BAND

Time (IAT day number within 1977)

U1554a[14.24] All Sources 0 vis54a[14.24] 911 Eources 0

Fhi $3-5$ AA All Bands E:3 G:A Phi 3-5CC All bands EiJ GiA

Amplitude (gain)

Phase

$$
23^{\circ} / 8.2 c=2
$$

$\begin{array}{ll}\text { FIGURE 5.7b: } & \text { FRINGE VISIBILITY PHASE VARIATION WITH } \\ & \text { VR TEMPERATURE FOR CHANNEL } C \text { IF AND } \\ & \text { OBSERVATIONS AT C-BAND }\end{array}$

Time (IAT, day mumber within 197?)

6.0 MISCELLANEOUS
6.1 L-Band Birdies

At VR large levels of harmonics of 50 MHz are generated in 50 MHz Harmonic Generator. Also large power levels of 1200 , 1800 and 2400 MHz are produced elsewhere in the system. It has been observed that these signals are radiated from the L.O. and Modem modules and are picked up by L-Band feed and the waveguide feeding to the front-ends. This causes spurious signals to appear at harmonics of 50 MHz while observing at L-Band. RFI shielding of L2 and L3 modules has reduced the interference signals considerably at most of the frequencies in the range of L-Band due to 50 MHz harmonics. At most frequencies the interference is in the noise limit for 1 hour of observing in 1.5 MHz bandwidth at North pole ($\simeq 10 \mathrm{mJy}$) for antennas 3 and 5. However large interference signals of about 40 Jy and 1 Jy are observed corresponding to 1400 and 1600 MHz respectively. These could be due to the following reasons.

1. Harmonics of 200 MHz which could be leaking to upconverters along its pump or bias lines.
2. Harmonics of beat, between 3200 MHz upconverter pump and 3000 MHz reference used for generating the pump, generated in the upconverters.
3. Either 2400 MHz or its second harmonic is picked up by front-end electronics and the interference appears at 4800 MHz . This is also seen while observing at c-Band. When antenna modem reference is changed from 2400 MHz from the system to an external oscillator, this interference signal as observed at baseband in $C R$ is reduced considerably. During L-Band observations this interference signal will look as if a 1600 MHz interference was present.
4. Second harmonic of pump beating with 1800 MHz will
give rise to 4600 MHz (i.e. $3200 \times 2-1800=4600 \mathrm{MHz}$) which will appear as 1400 MHz interference while observing at L-Band.

All of these mechanisms appear to be contributing to the observed interference and need further investigation to solve the problem. Also during observation of North pole large signal of about 1 Jy strength at 1550 MHz in 1.5 MHz bandwidth has been observed. Corresponding to 1550 MHz we do not see any noticeable interference to a limit of about 20 mJy on the spectrum analyzer (looking at IF at baseband in $C R$). Thus it appears that there is some other spur or external interference around this frequency which is causing this problem.

6. 2 Waveguide Passband Ripple

As much as 0.5 dB peak-to-peak ripple in the transmission characteristic of the waveguide system have been observed. These ripples have a periodicity of about 5 to 10 MHz . With outside temperature variation the 20 mm waveguide length changes causing the ripple to move and thus effecting phase of the received 5 MHz at VR. This could also effect phase of 600 MHz and IF signals when converted to baseband. A O.l dB peak ripple could cause a phase change of about $0^{\circ} 8$. Therefore for the desired phase stability of the system, specially at L-Band, and also for $\phi_{5 A N T}$ to be within ± 1.5 limit the ripple has to be much less than 0.5 dB .

6.3 Oscillator Noise and 600 MHz Loop Bandwidth at VR

Loop noise bandwidth for the 600 MHz phase-lock loop at VR is $<1 \mathrm{~Hz}$ and therefore any noise outside this bandwidth will be due to 5 MHz VCXO at VR. From the manufacturers specification for the 5 MHz VCXO used in Ll modules the signal-to-single sideband phase noise in 1 Hz bandwidth at 1 Hz offset and
beyond can be approximated by following expression:

$$
\begin{aligned}
\text { signal/phase noise per } H z & =10^{-8 \cdot 3} f_{\text {offset }}^{-3 \cdot 7} \text { for } l \leq f \text { offset } \leq l 0 \mathrm{~Hz} \\
& =10^{-12}\left(\frac{f}{10}\right)^{-2} \text { for } 10 \leq f \text { offset } \leq 100 \mathrm{~Hz} \\
& =-145 \mathrm{~dB} \text { at } \mathrm{f}_{\text {offset }}=1000 \mathrm{~Hz}
\end{aligned}
$$

where $f_{\text {offset }}=$ offset from 5 MHz .

Thus in a 300 Hz bandwidth (beyond which noise should be due to 50 MHz VCXO of L 2) signal-to-single sideband noise due to the VCXO at 5 MHz is about 83 dB . When this signal is multiplied to 18 GHz the ratio reduces to about 12 dB and is not adequate. However if the loop noise bandwidth is increased to at least 5 Hz this ratio will be about 30 dB . A 30 dB signal-to-phase noise ratio may be marginally acceptable.

6.4 Short Term Phase Stability

During observations of calibration radio sources phase of the observed visibility for 10 second averages varied by more than 20° peak-to-peak from one average to another. part of this variation was traced by L.R. D'Addario to a marginal speed IC in Fringe Generators. This was fixed by changing the IC to a higher speed IC. However still about 12 to $13^{\circ} \mathrm{p}-\mathrm{p}$ phase variations remain (see Figure 6.1). Most of it could be explained by finite delay resolution and sampler phase accuracy.

$$
\phi_{A A}-\phi_{C L}
$$

Kun 54, Scan Averages, RT phase oppllad Amplitude (gain)

[^0]: *Not assigned

