VLA Technical Report No. 38

MODULE TYPE M2 DATA TAP MANUAL
D. Weber and P. Harden

April 1978

TABLE OF CONTENTS

1.0 INTRODUCTION AND BRIEF FUNCTIONAL DESCRIPTION 1-1
2.0 FRONT PANEL CONTROLS AND DISPLAYS 2-1
3.0 LOGIC CIRCUITRY DESCRIPTION 3-1
3.1 Message Loading Logic and Data Rates 3-1
3.2 Storage Decision Logic 3-2
3.3 Data Selection Logic 3-3
3.4 Analog Data Multiplication/Conversion Logic 3-3
3.5 Display Logic 3-4
3.6 D/A Conversion Logic 3-5
3.7 DAC and Binary to BCD Converter Alignment and Test. 3-7
3.8 I/O Connector Pin Assignments 3-14
3.9 Test Point Connector Pin Assignments 3-15
4.0 DOCUMENTATION TREE 4-1
5.0 SPECIAL COMPONENT DATA SHEETS 5-1

LIST OF ILLUSTRATIONS

```
Figure 1 - Command and Monitor Data Message Formats
Figure 2 - Data Tap Control/Display Panel
Figure 3 - Message Storage Logic
Figure 4 - Data Tap Block Diagram
Figure 5 - Message Load Timing Diagram
Figure 6 - DAC Alignment Schematic
Figure 7 - Table 1, Model C Data Tap (7520) DAC Alignment Procedure
Figure 8 - Model B and Model C Data Tap Top Assembly Drawing (2 sheets)
    (see Section 4.0)
Data Tap Model B and C Logic Diagrams (see Section 4.0)
```


1.0 INTRODUCTION AND FUNCTIONAL DESCRIPTION

This manual describes the Data Tap (M2) Monitor and Control System module and is intended to serve as the principle repair and maintenance guide for this unit. It may also be useful for those who are interested in the Data Tap Message storage logic.

The Data Tap provides the facility to conveniently detect, store and display Command and Monitor Data messages without the participation of the control computers. The Data Tap may also be used for analog recording as it has two D/A converters which convert Analog Monitor Data messages back to two analog voltages which may be patched to analog recorders. The reader is referred to the Data Set Manual for details on the conversion and packing of two analog voltages into one Analog Monitor Data message.

Figure 1 depicts the Command and Monitor Data message format.
The Data Tap is not a serial element in the distribution of Command and Monitor Data messages but is "Tapped" onto the message flow as they are distributed through the system.

The operator may cause message trapping to be conditional on the occurrence of messages which match the front panel address switch settings or the occurrence of messages which have been tainted by errors. Message trapping on the basis of message information content is not normally possible with the present design but has been done on an improvised basis. The Data Tap may be connected to any Data Set in the system, to the Central Buffer or to the Serial Line Controller. When connected to a Data Set the Data Tap detects and displays messages which have a $10 \mu \mathrm{sec} / \mathrm{bit}$ rate and when connected to either the Central Buffer or SLC the Tap detects and displays messages which have a 1 usec/bit rate. The Central Buffer/SLC connection provides access to all Command and Monitor Data messages which are circulated around the Electronics/Control Room environment. When the Data Tap is connected to a Data Set in the antenna it is able to trap and display all messages locally available in the

FIGURE 1: COMMAND AND MONITOR DATA MESSAGE FORMATS
antenna which consist of commands addressed to the antenna and data from the antenna Data Sets. A connection to the Central Data Set is a trivial connection as it is exposed to only the Command Messages directed to the Data Set and no other messages.

The reader is referred to the Monitor and Control System manual for a description of the system usage of the Data Tap.

2.0 FRONT PANEL CONTROLS AND DISPLAYS

Figure 2 shows the location and marking of the front panel controls and displays. Figure 3 depicts the message storage logic. The Parity/Address switch determines whether the tap stores parity error tainted messages or messages based upon the address content. In the parity position only parity tainted messages will be stored and the message address and information components displayed for interpretation of the malfunction. Since the address components of an error tainted message may be in error one should be cautious in the inferences drawn from this displayed information. The red parity error LED is illuminated for each occurrence of a parity error irrespective of the position of the Parity/Address or any other switch.

When the Parity/Address switch is in the address position the tap will store and display messages in accordance with the settings of the address thumbwheel and sel/any toggle switches. When the sel/any toggle switches are in the sel position the tap will store and display only messages having address components identical to those set on the address thumbwheel switches. In the any position the sel/any switches substitute a "Don't Care" condition for the associated thumbwheel address comparison in the message decode logic. This variable address decode selectivity can enable one to view a "flow" of messages for an overview of the composition of data associated with a message source or destination. For example, by setting an antenna Data Tap to DCS Addr $=00$, DS Addr $=2$, Max Addr to "Any" the whole flow of Monitor Data messages from Data Set \#2 may be observed on the display. Another interesting case is DCS Addr $=$ actual, DS Addr $=2$ and Max Addr $=$ any. This setting allows the periodic bursts of fringe rate and phase and Walsh function commands to be trapped and displayed.

Whenever the tap detects a match of address conditions with message conditions and stores the message, the green update LED is

FIGURE 2: DATA TAP CONTROL/DISPLAY PANEL

FIGURE 3: MESSAGE STORAGE LOGIC
briefly illuminated. The single/rep toggle switch controls the frequency of message updating. In the Rep (for repetitive) position the tap will update each time the message components match the switch settings. In the single position the tap will update once for each activation of the single activate push button switch. This mode is useful when the tapped message composition is highly variable and it is difficult to analyze a continuously changing display.

The numeric LED display can be used to display the trapped message in several formats. When the display control switch is in the octal position, the 24 information bits of the message are displayed in eight digit octal format. When the switch is in the address position, the message address components are displayed in six digit octal format. In the Mux and Mux +1 position, the upper or lower half of the 24 bit message is selected, multiplied by five and converted to $B C D$ so that the data is displayed in decimal bipolar format (i.e., + or -) volts with a decimal point. This operation rescales the digital data to the equivalent analog voltage. The resolution of this display is 5 milli-volts which is the Data Set A/D resolution. Of course, this display is only meaningful when the data is associated with an analog data message. Older data tap models (A and B) use the labels "Right" and "Left" to designate the Mux and Mux +1 analog data components respectively.

An array of 24 LED's displays the 24 message bits and is convenient for interpretation of Binary Monitor Data messages.

The Q and S LED's indicate the detection of these message components.

3.0 LOGIC CIRCUITRY DESCRIPTION

Figure 8 is the Data Tap Top Assembly Drawing. Figure 4 depicts the Data Tap Logic Block Diagram.

3.1 Message Loading Logic and Data Rates

The message loading logic is found on Sheet 1 of the logic diagrams.

Central Buffer and Serial Line Controller messages are input via the optical isolator A26. Data Set messages are input to the exclusive or gate A3003. When the Central Buffer/SLC input is used, pin J4-26 should be grounded.

Edge detector A3013 phase adjusts counter A24 and A22 which generates clocks to sample the input message which is shifted into shift register Al4. The message preamble, the "S" character is detected by gate Al5l0 which resets flip flop B0805. This flip flop is clocked by the 10 MHz clock and is reset during the time that the "S" detector gate is true. B0805 turns on the format counter Al3 and Al2 by causing control flip flop Al811 to lift the counter's preset enable. Counter term Al3-14 is used as a shift clock to serially load the incoming message into the Message Input Register. When the counter reaches a state of 99 the message is completely loaded in the register so the counter is turned off by gate B0910 which resets control flip flop Al811. The output of gate $B 0910$ is also used as a strobe in the message parity and storage decision logic on Sheet 3.

Counter A24 and A25 operate with two radices: $\div 5$ and $\div 50$ which are selected by the Hi/Lo jumper wire on pin J4-01 on the rear I/O connector pin. When J4-01 is jumpered to J4-02 (grounding pin 3 on nor gate A22) the counter radix is 50 which produces a 200 kHz shift clock at A2211. This rate is used in the antenna when the Data Tap is connected to an antenna Data Set. If pin J4-01 is not jumpered to ground, counter A22 radix is $\div 5$ and produces a 2 MHz shift clock at A2211. The key to the radix control lies in gate Bl704 which

FIGURE 4: DATA TAP BLOCK DIAGRAM
passes the $T C$ carries from A2415 through to A2207 in the $\div 50$ mode and permits A22 to count each 10 MHz clock in the $\div 5$ mode. The $\div 5$ mode is used in loading SLC/Central Buffer messages. When pin $\mathrm{J} 4-01$ is floating, A22 sequences through the states 5, $6,7,8,9,5,6$, etc., and when J4-01 is grounded A24 and A22 sequence through the states 41 to 90.

The " S " character and the " Q " character LEDs are illuminated to indicate the detection of command/monitor and data request messages respectively. Figure 5 depicts the message load timing.

3.2 Storage Decision Logic

The message storage logic depicted in Figure 3 is found on sheet 3 of the logic diagrams.

Flip flop Allo6 is the parity analysis flip flop and is toggled whenever a message bit is a "l." At the completion of the load sequence the full count term from Al7l0 tests the state of All06 and sets flip flop B081l if the message was tainted by a parity error.

If the Parity/Address switch is in the Parity position, gate A0903 causes the error tainted message to be parallel transferred from the Message Input Register Bll, B12, B13, B20 on sheet 2 and A1 and A6 on sheet 3 to the Message and Address Storage Register's E1, E2, E6, E7, Ell, El2 on sheet 2 and Cl, C2, C6 and C11 on sheets 8 and 6. The Parity LED is illuminated whenever an error is detected.

When the Parity/Address switch is in the Address position the comparators A2, A4, A5 and B5 compare the address components set on the DCS, DS and MUX address thumbwheels with the message address components standing in registers A6 and Al. Nor gates Bl406, B1410 and B1413 provide the "Don't Care" conditions for the DCS, DS and MUX Sel/Any switches respectively. Gate A0806 senses the equals (or associated "Don't Cares") condition of these

AI7-10, FULL COUNT + , LOAD STROBE

FIGURE 5: MESSAGE LOAD TIMING DIAGRAM
comparators and causes contents of the Message Input Register to be loaded into the Message and Address Storage Registers. The message update LED is illuminated by the pulse stretching one-shot E2507.

3.3 Data Selection Logic

With the message address and information bits safely tucked away in the Message and Address Storage Registers (El, E2, E6, E7, Ell, El2 on sheet 2 and C1, C2, C6 and Cll on sheets 8 and 6) the data selection logic selects the data for display on the numeric display. The display selector switch controls two and three channel multiplexers on sheets $4,6,7$ and 8 to select for display either the 24 data bits or the address components. The selector switch also conditions the display logic to display the negative sign, decimal point, suppresses leading zeros in the analog display and blanks unused digits in the address display. In the octal address and data positions the address and information components are displayed in octal format.

In the octal data or address position either the 24 message information bits or 16 address bits are selected for display in octal format on the eight digit numeric display. Two digits are blanked in the address display to improve readability.
See Figure 2 for an example of a typical address display.
In the analog position either the upper or lower (Mux/Right or Mux $+1 /$ Left) 12 bits stored in the Message Storage Register are selected, multiplied by 5 and converted to $B C D$ as described in section 3.4 of this manual.

3.4 Analog Data Multiplication/Conversion Logic

In the analog positions of the selector switch, either the 12 upper or lower bits of the 24 information bits stored in the Message Storage Register are selected, multiplied by 5 and converted to BCD for display. Two channelmultiplexers B7, B18
and Bl9 on sheet 4 perform this upper/lower 12 bit selection. The output of these multiplexers drive the full adders B21, B26, B23, B27, B29, B24 and B25. These adders implement the multiply by 5 operation by a right shift 2 bits (multiply by 4) which is added to unshifted data. The adder outputs are thus scaled five times higher so that the data LSB now is weighted at 1 millivolt which is one-fifth of the weight of the Data Set A / D converter LSB (five millivolts). The MSB causes negative values to be complemented via exclusive or gates B6, B15 and B22. The adder output is routed to the binary to $B C D$ conversion logic on sheet 5 .

The 12 bit binary to $B C D$ converter transforms the multiplied 16 bit binary value to a 5 digit $B C D$ format for presentation to the data selection and display logic described in section 3.3 and 3.5. The converter operates as a parallel converter using 74185 binary to BCD converters in locations C 7 through C 29.

3.5 Display Logic

The logic and front panel display circuitry are depicted on sheet 3 .

The data selected for display by the logic described in sections 3.3 and 3.4 is routed to an 8 channel, four bit multiplexer which sequentially scans the data on a digit by digit basis and converts the four $B C D$ (or octal) data bits to a seven segment numeric LED drive format. The multiplexer consists of 9312 chips in locations D22, D23, D18 and D13 whose outputs are the 1, 2, 4 and 8 BCD bits respectively, which drive a 7447 BCD to seven segment decoder/driver on the display assembly pc board. The multiplexer 3 bit select lines are driven by counter D 8 which is incremented by a 5 kHz (nominal frequency) oscillator D9. The 7 segment drive lines from the decoder are bussed to the segments of all eight LEDs. The LEDs are illuminated by switching transistors which sequentially switch on the LED anode voltage.

These transistors are driven by a 9301 l of 10 decoder in El8 which is also driven by the 74161 sequencing counter D8. The synchronous decode/drive and anode enable of these two sets of circuits sequentially illuminate the eight digit display. The decimal point of digit 5 is illuminated by El5 (A DTL 944 open collector power nand) when the display is used for analog data. The two leading (DSI and DS2) and last (DS7) digits of the display are also blanked in the analog display mode. In the address mode digits 3 and 5 (DS3 and DS5) are blanked.

The numeric display LED segments have a rather heavy pulse current (limited by 39Ω, and the LED, 7447 and transistor drops) which can perturb the L.O. system through high frequency harmonics of the digit scanning clock. The display power is filtered to subdue these harmonics by an LC "pi" filter mounted in the front portion of the data tap.

The 24 bit LED display (bits 23 through 0) displays the 24 bits stored in the Message Storage Register. Bits 23 and 0 are the MSB and LSB of the information bits respectively. This display is most convenient for display of binary or discrete states.

3.6 D/A Conversion Logic

When the Data Tap updates by trapping a new message in the process described above, the 24 bit message storage register (El, E2, E6, E7, Ell and El2) is parallel-loaded with the 24 bits of message information. Two digital-to-analog converters (on sheet 2) then convert the upper and lower halves of the stored data into equivalent analog voltages which are available at front panel BNC connectors and are also wired to the rear panel $1 / 0$ connector.

The digital data stored in the Message Storage Register is 12 bits 2 's complement format and is converted to offset binary by inversion of the MSB of each 12 bit byte.

Model A and B versions of the Data Tap use 12 bit D / A converters packaged on a detachable auxiliary chassis fastened to the module rails. The resolution of the DAC analog outputs is 5 millivolts/bit-identical to the Data Set, so that the range of the analog outputs is +10.235 to -10.240 volts corresponding to $\left(2^{11}-1\right) \times 5 \mathrm{mv}$ and $2^{11} \times 5 \mathrm{mv}$ respectively (in $2^{\prime} \mathrm{s}$ complement coding). The output impedance of these converters is 0.1Ω, and they are capable of sourcing/sinking 5 MA. There are no provisions for changing the scaling of the DAC outputs; if scaling is required, it must be done in the recorder or meter circuitry and must be consistent with the DAC source impedance and current drive capabilities cited above. Data Taps serial numbers Al through B24 use this DAC configuration.

The other (Model C) DAC configuration uses 10 bit multiplying DACs which are packaged in 16 pin dip's. These DAC's, associated operational amplifiers and a DAC reference supply are mounted on the logic connector board along with the Data Tap logic circuitry. This DAC configuration was chosen as it uses less expensive DACs, eliminates a clumsy DAC packaging physique which makes maintenance access difficult and reduces Data Tap fabrication and assembly costs.

This DAC configuration has a resolution of 20 mV per bit which is adequate for the average strip chart recorder application. If higher resolution is required the older models may be used. The upper 10 data bits of the Message Storage Register are input to the DACs. The DACs are current devices and use external operational amplifiers to provide a voltage output. The DACs require an external reference voltage supply of -10 volts which is provided by the LM299H precision reference in D27 and AD741KN operational amplifier in E29. The DAC is configured for bi-polar (4 quadrant) operation, see the AD7520 Data Sheet in the back of this manual for details on the usage of this device. The source impedance and current capability of this DAC configuration are . 15Ω and 4.5 ma respectively.

3.7 DAC and Binary-to-BCD Converter Alignment and Test

This section is based on Model C Data Taps, though Model A and B units may be aligned in a similar manner; however, all test points, voltage measurements and adjustments apply to Model C versions only.

The DAC and binary-to-BCD converter sections are aligned in a three step process - (a) alignment of the Reference Voltage Power Supply (RVPS) to establish a precision - 10 V DAC reference voltage, (b) alignment of the associated operational amplifier circuits to compensate for offsets and establish full-scale gains, and (c) exercising the binary-to-BCD convertex to determine proper operation. Refer to Figure 6 for test point and adjustment locations.

3.7.1 Reference Voltage Power Supply Alignment (Rev C Only)

 The RVPS consists of an LM299H, a monolithic precision zener diode reference and an $A D 741 \mathrm{KN}$ OP AMP. The output of the LM299H at D27 is $+6.95 \mathrm{~V} \pm 2 \%$ and exhibits a long term stability of 20 parts per million/year insuring a stable precision reference. This +6.95 V is applied to the inverting input AD741KN at E29 and amplified to -10.000 V $\pm 10 \mathrm{mV}$. The gain is about 1.43 and fine adjusted by resistor E30-4, 5, 12.Alignment of the RVPS is simply as follows:
Step 1 - Measure $+6.95 \mathrm{~V} \pm 2 \%$ at LM299 output at $D-27-2$ Al Figure 6.
Step 2 - Measure voltage at 741 output at E29-14 using a DVM with 1 mV accuracy and resolution. A2) Figure 6

Setp 3 - Adjust trim-pot at E30-4,5,12 for $-10.000 \mathrm{~V} \pm 1 \mathrm{mV}$ reading on DVM. A3.

If $-10.000 \pm 10 \mathrm{mV}$ cannot be obtained and Step 1 voltage is normal, fine trimming of the coarse gain resistor may be required as follows:

FIGURE 6: DAC ALIGNMENT SCHEMATIC

```
Step 2 - Voltage > -10.000 V (i.e., -9.8) INCREASE
    value of resistor at E E30-6, 11.
Step 2 - Voltage < -10.000 V (i.e., -10.2) DECREASE
    value of resistor at E30-6, 11.
```

Resistor E30-6, 11 should be trimmed in increments of 500 ohms so that the range of the gain trim-pot E30-4,5, 12 is not exceeded.
3.7.2 DAC and OP AMP Alignment

A message source (typically the Monitor and Control System Test Bench) is applied to either the Data Tap messege input or internally to the DAC digital inputs to produce a series of bit patterns corresponding to plus full-scale (+FS), minus full-scale (-FS) and center-scale (CS). These three conditions are essential to properly adjust the full scale gains and to compensate for offsets in the output amplifiers.

As discussed in paragraph 3.6, the input binary bit pattern is converted to offset binary by inversion of the MSB of each 12 bit byte by the Data Tap logic. Hence, the bit patterns used for this alignment differs depending upon where this digital data is introduced to the logic. Table 1 shows the bit patterns and the relationship to the analog output.

Table 1 is the complete alignment procedure for the Model C DAC circuitry and basically consists of the following steps:

1) Insuring $\pm 15 \mathrm{~V}$ input is acceptable
2) Selecting FS and coarse set GAIN ADJ for about +10.3 V and then zeroing offset error in the I OUT 2 amplifier
3) Selecting CS and zeroing offset error in I OUT 1 amplifier

Table 1 - Model C Data Tap (AD7520) DAC Alignment Procedure

Cautions:

1. Do not remove or install the AD7520 DAC devices with power applied. The AD7520's are CMOS devices and should be handled accordingly.
2. Do not use "live" antenna data for alignment bit-pattern standard; i.e., comparing Analog Display voltages to DVM reading on front panel BNC output jacks.
3. Do not perform this alignment prior to alignment of Ref. Voltage Power Supply.

Step	Test Function	Correct Reading	Input	Test Point		Adjustment		Figure Ref.
			Data	MUX	MUX +1	MUX	MUX +1	
1.	Test +15 V input	$+15.000 \pm 50 \mathrm{mV}$	-	E26-15	E27-15			
	Test -15 V input	$-15.000 \pm 50 \mathrm{mV}$	-	E26-4	E27-4			
2.	Adjust GAIN	$+10.3 \mathrm{~V} \pm 0.1 \mathrm{~V}$	+FS	E26-14	E27-14	E21-9,10	E22-9,10	(3-1) ADJ
	Adjust OFFSET -2	$0.000 \mathrm{~V} \pm 5 \mathrm{mV}$	+FS	E26-10	E27-10	E21-1,3	E22-1,3	$\begin{aligned} & 8-2) \\ & \mathrm{BDJ} \\ & \mathrm{BEST} \end{aligned}$
3.	Adjust OFFSET -1	$0.000 \mathrm{~V} \pm 1 \mathrm{mV}$	CS	E26-14	E27-14	E21-4, 6	E.22-4,6	(8-3 ADJ
				or	or			(3-5) TEST
4.	Adjust GAIN	$-10.240 \mathrm{~V} \pm 10 \mathrm{mV}$	-FS	MUX OUT BNC	MUX +1 OUT BNC	E21-9,10	E22-9,10	$\left(\begin{array}{c} (8-1) \\ (8-5) \\ \text { TEST } \end{array}\right.$
5.	Adjust GAIN	$+10.220 \mathrm{~V} \pm$	+FS			E21-9,10	E22-9,10	
6.	Adjust OFFSET -1	$0.000 \mathrm{~V} \pm 1 \mathrm{mV}$	CS			E21-4,6	E22-4,6	
7.	Insure... + FS $=$	$+10.220 \mathrm{~V} \pm 10 \mathrm{mv}$	+FS					
	+CS $=$	$0.000 \mathrm{~V} \pm 1 \mathrm{mV}$	CS					
	-FS $=$	$-10.240 \mathrm{~V} \pm 10 \mathrm{mV}$	-FS					

Table 1 (Cont'd)
Input Data Code States
(12 Bit Byte Patterns)

	+FS	CS	-FS
DATA TAP INPUT	011111111111	000000000000	100000000000
DAC DIGITAL INPUT (Offget Binary Code)	$111 \text { 111 111 1xX }$ MSB	$\begin{aligned} & 100000000 \text { 0xx } \\ & \text { MSB } \end{aligned}$	$\begin{array}{ll} 000 & 000000 \\ \mathrm{MSB} \end{array}$
ANALOG OUTPUT	$\begin{aligned} & +10.220 \mathrm{~V} \\ & \pm 10 \mathrm{mV} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.000 \mathrm{~V} \\ & \pm 1 \mathrm{mV} \\ & \hline \end{aligned}$	$\begin{aligned} & -10.240 \mathrm{~V} \\ & \pm 10 \mathrm{mV} \\ & \hline \end{aligned}$

4) Selecting -FS and fine set GAIN ADJ for - 10.240 V $\pm 10 \mathrm{mV}$
5) Selecting $+F S$ and insuring output is + 10.220 V $\pm 10 \mathrm{mV}$ and correct if necessary
6) Selecting CS and insuring output has remained zeroed $(0.000 \mathrm{~V} \pm 1 \mathrm{mV})$ and correct if necessary

Models A and B applicability: This alignment procedure may be utilized on A and B which use the CY2235 DAC. Use front-panel BNC analog output jacks for voltage monitoring. Adjustments for OFFSET and GAIN are marked on the CY2235 DAC assembly.

3.7.2 Binary to BCD Converter Tests (Applies to all models)

The binary to BCD Converter section is tested in a manner similar to the DAC alignment by introducing established bit patterns in the Message Storage Register (El, E2, E6 for MUX data and E7, Ell and El2 for MUX +1 data) to exercise the converter and check for proper operation.

As described in section 3.4, the Display Selector switch is placed in either the MUX or MUX +1 position to enable the converter, select the proper byte of the input message bits, and route the results in formatted form to the decimal LED display. The converter operation is tested by exercising the bits, one-by-one, to verify that the multiply by 5 and the array of 74185 binary-to-BCD converter devices are functioning.

A brief test is as follows:

Message Bit Pattern	Display
(MUX or MUX +1 Position)	
000000000000	+0.000
000000000001	+0.005
000000000010	+0.010
000000000100	+0.020
000000001000	+0.040
000000010000	+0.080
000000100000	+0.160
000001000000	+0.320
000010000000	+1.280
000100000000	+2.560
001000000000	+5.120
010000000000	-10.240
100000000000	

This simplistic test will provide a confidence test of the logic: failure will require that the logic be tested in more detail to detect stuck bits. The multiply by 5 logic is tested first by setting in a single bit message in ascending order from a message state of 000000000 000. Each multiplication may be easily tested by examining the associated adder outputs.

When the multiplication logic operation has been verified the binary to BCD logic may be tested by repeating the ascending order single bit messages used above and examing the propagation of the converted code through the conversion tree. The 74185 chip algorithm is: a) examine the 3 most significant bits; if the sum is greater than 4 , add 3 and
shift left l bit, b) otherwise, pass the data through unaltered. The reader is referred to logic data books for a more extensive discussion. The ascending order single bit messages will generally enable the stuck bit(s) to be isolated to a few chips. By examining the chip inputs and outputs the faulty chips may be identified by non-conformance to the above algorithm.

3.8 I/O Connector Pin Assignment

```
J4-10 +5 Logic Power
J4-34 Logic Common
J4-16 +15 Volts
J4-17 -15 Volts
J4-42 Hi-Q ground
J4-14 Central Buffer/SLC Data Input-Hi
J4-15 Central Buffer/SLC Data Input-Return
J4-26 Data Set Data Input (ground for use with LB/SLC)
J4-38 Mux Analog Output
J4-5 Mux +1 Analog Output
J4-1 Hi/Lo Select, (ground for use with Data Set)
```

$\underline{~} 2$ Pin	Logic Tie	Function					
1	D5-13	Message S	Storage R	Register	Bit	23.	(MSB)
2	D5-10	"	"	"	"	22.	"
3	D5-6	"	"	"	"	21,	"
4	D5-3	"	"	"	"	20,	\cdots
5	D10-13	"	"	"	"	19,	"
6	D10-10	"	"	"	"	18,	"
7	D10-6	"	"	"	"	17.	\cdots
8	D10-3	"	"	"	"	16,	\cdots
9	D15-13	"	"	"	"	15,	"
10	D15-10	"	"	"	"	14,	"
11	D15-6	"	"	"	"	13,	"
12	D15-3	"	"	"	"	12,	"
13	D20-13	"	"	"	"	11.	"
14	D20-10	"	"	"	"	10,	"
15	D20-6	"	"	"	"	9,	"
16	D20-3	"	\cdots	"	"	8,	"
17	D25-13	"	"	"	"	7.	"
18	D25-10	"	"	"	"	6,	"
19	D25-6	"	"	"	"	5.	"
20	D25-3	"	"	"	"	4.	"
21	D30-13	"	"	"	"	3.	"
22	D30-10	"	"	"	"	2,	"
23	D30-6	"	"	"	"	1.	"
24	D30-3	"	"	"	"	0 ,	(LSB)
25	N / U						
26	D29-3	Parity Error Detect					
27	E25-9	Q Character Detect					
28	E5-3	S Character Detect					

J2 Pin	Logic Tie	Function
29	A26-2	LB/SLC Input
30	A30-3	Data Set Data, lo-true
31	E5-6	Input Shift Clock
32	N/U	
33	N/U	
34	N / U	
35	N/U	
36	N / U	
37	N / U	

4.0 DOCUMENTATION TREE

DATA TAP MODEL B
DOCUMENTATION TREE

DATA TAP DOCUMENTATION TREE MODEL C

\qquad

$$
\text { (14) } 7 \text { (11) }
$$

(30)(uer)

5.0 SPECIAL COMPONENT DATA SHEETS

FEATURES

AD7520:
AD7521:
Linearity:
Nonlinearity Tempco:
Low Power Dissipation:
Current Settling Time:
Feedthrough Error:
TTL/DTL/CMOS Compatible

10 Bit Resolution
12 Bit Resolution
8, 9 and 10 Bit 2 ppM of FSR $/^{\circ} \mathrm{C}$ 20 mW
500 ns
1/2 L.SB @ 100 kHz

The A1)7520 (AD7521) is a low cost, monolithic 10 -bit (12-bit) multiplying digital-to-analog converter packaged in a 16 -pin (18 -pin) DIP. The devices use advanced CMOS and thin film technologies providing up to 10 -bir accuracy with TTL/DTL/CMOS compatibility.
The AD7520 (AD7521) operates from +5 V to +15 V supply and dissipates only 20 mW , including the ladder network.
Typical AD7520 (AD7521) applications include: digital/ analog multiplication, CR'T character generation, programmable power supplies, digitally controlled gain circuits, etc.

ORDFRING INFORAIATION

Nonlinearity	Temperature Range		
	0 cta +70 c	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ 10 $+125^{\circ} \mathrm{C}$
0.2\% (8-8it)	$\begin{aligned} & \text { AD7520JN } \\ & \text { AD7521JN } \end{aligned}$	$\begin{aligned} & \text { AD7520JD } \\ & \text { AD7521JD } \end{aligned}$	$\begin{aligned} & \text { AD7520SD } \\ & \text { AD7521SD } \end{aligned}$
0.1\% (9-Rit)	$\begin{aligned} & \text { AD7520kN } \\ & \text { AD7521KN } \end{aligned}$	$\begin{aligned} & \text { AD7520KD } \\ & \text { AD7521KD } \end{aligned}$	AD7520TD AD7521TD
0.05\% (10.Bit)	AD75201.N AD7521LN	$\begin{aligned} & \text { AD7520LD } \\ & \text { AD7521LD } \end{aligned}$	$\begin{aligned} & \text { AD7520UD } \\ & \text { AD7521UD } \end{aligned}$

PACKAGE IDENTIFICATION

Suffix D: Ceramic DIP package
Suffix N: Plastic DIP package
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices

FUNCTION:II. DI.IGR.U.II

PIN GONFIGURATION
TOP VIEW

Route 1 Industrial Park; P.O.Box 280; Norwood,Mass. 02062 Tel: 617/329.4700

TWX: 710/394-6577

West Coast
213/595-1783

Mid-West
312/894-3300

Texas
214/231.5004

NOTES:

1. Full scale range (FSR) is 10 V for unipolar mode and $\pm 10 \mathrm{~V}$ for bipolar mode.
2. Using the internal R FEEDBACK
3. Digital input levels should not go below ground or exceed the positive supply voltage, otherwise damage may occur.
4. Ladder and feedback resistor tempco is approximately $-150 \mathrm{pp} \mathrm{I}_{1}{ }^{\circ} \mathrm{C}$.

($\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ unless otherwise nuted)
$V_{D D}$ (to Gnd)

$$
\begin{aligned}
& +17 \mathrm{~V} \\
& \pm 25 V \\
& \text { (in) }{ }^{10} \text { (ind } \\
& \text { - loumir to V'DD } \\
& +50 \mathrm{mll}^{\prime} \\
& 6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

VREF (to Gnd)
Digital Input Voltage Range
Output Voltage ($\operatorname{Pin} 1, \operatorname{Pin} 2$)
Power Dissipation (package)
up to $+75^{\circ} \mathrm{C}$
derates above $+75^{\circ} \mathrm{C}$ by

Operating Tomperature
JN. KN: I.N V'crsions
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
JD. KD, I.DVersions $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{d}$
SD, ID, UD Versions $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperacure
$-65^{\circ} \mathrm{C}$ 10 $+150^{\circ} \mathrm{C}$
(16110)

FIG. 1. SUPPLY CURRENT VS. SUPPLY VOLTAGE

FIG. 3. OUTPUT CURRENT BANDWIDTH

FIG. 2. SUPPLY CURRENT VS. TEMPERATURE

FIG. 4. OUTPUT CURRENT SETTLING TIME VS DIGITAL INPUT VOLTAGE

IESFCHICUIE:

Vote: The following test circuits apply for the AD7520. Similar circuls can be used for the AD7521.

DC: P.\R.\METI:RS

FIG. 5. NONLINEARITY

FIG. 6. POWER SUPPLY REJECTION

ACPARAMFTERS

FIG. 7. NOISE

FIG. 9. FEEDTHROUGH ERROR

FIG. 8. OUTPUT CAPACITANCE

FIG. 10. OUTPUT CURRENT SETTLING TIME

NONLINEARITY: Error contributed by deviation of the DAC transfer function from a best straight line function. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire $\mathrm{V}_{\text {REF }}$ range.
RESOLUTION: Value of the LSB. For example, a unipolar converter with n bits has a resolution of $\left(2^{-n}\right)\left(V_{R E F}\right)$. A bipolar converter of n bits has a resolution of $[2 \cdots(n \cdots 1)]$ [$\mathbf{V R E F}_{\text {I }}$]. Resolution in no way implies linearity.

SETTIING TIME: Time required for the output function of the DAC to settle to within $1 / 2$ LSB for a given digital input stimulus, i.e., 0 to Full Scale.

GAIN: Ratio of the DAC's operational amplifier output voltage to the input voltage

FEEDTIIROUGH FRROR: Error caused by capacitive coupling from $V_{\text {REF }}$ to output with all switches OFF.

OUTPUT CAPBCIIANC: Capacity from IOUT 1 and IOUT 2 terminals to ground.

OUTPUT LFAKAGiF: CUKRFNT: Current which appears on IOUT1 terminal with all digital inputs LOW or on ${ }^{1}$ OUT2 terminal when all inpurs are HIGH.

The AD7520 (AD7521), a 10-bit (12-bit) multiply ing 1)/ 1 converter, consists of a highly stable thin film $R-2 R$ ladder and ten (twelve) CMOS current switches on a numolithic chip. Most applications require the addition of only an output operational amplifier and a voltage or current reterence.

The simplified D/A circuit is shown in figure 11. An inverted R-2R ladder structure is used - that is, the binarily weighted currenes are switched between the loUl 1 and love 2 lus lines, thus maintaining a constant current in each ladier leg independent of the switch state.

(Switches shown for Inputs "Hligh")
FIG. 11. AD7520 (AD7521) FUNCTIONAL DIAGRAM

One of the CAIOS current switches is shown in figure 12. The geometries of devices 1,2 and 3 are optimized to make the digital control inputs DTL/TTL/CMOS compatible over the full military temperature range. The input stage drives two inverters (devices 4, 5, 6 and 7) which in turn drive the two output N -channels. The "ON" resistances of the first six switches are binarily scaled so the voltage drop across each switch is the same. For example, switch-1 of figure 12 was designed for an "ON" resistance of 20 ohms, switch- 2 of 40 ohms and so on. For a 10 V reference input, the current through switch 1 is 0.5 mA , the current through switch 2 is 0.25 mA , and so on, thus maintaining a constant 10 mV drop across each switch. It is essential that each stwitch voltage drop be equal if the binarily weighted current division property of the ladder is to be maintained.

FIG. 12. CMOS SWITCH

FIG. 13. AD7520 (AD7521) EQUIVALENT CIRCUITALL DIGITAL INPUTS LOW

RQUIVALENT CIRCUIV ANALYSIS

The equivalent circuits for all digital inputs high and all digital inputs low are shown in figures 13 and 14 . In figure 13 with all digital inputs low, the reference current is switched to IOUT 2 . The current source ${ }^{\text {I }}$ LEAKAGE is composed of surface and. junction leakages to the substrate while the $\frac{1}{1024}\left(\frac{1}{4096}\right)$ current source represents a constant 1 -bit curtent drain through the termination resistor on the R-2R ladder. The " ON " capacitance of the output N channel switch is 120 p F . as shown on the lOUT 2 terminal. The "OFF" switch capacitance is 37 pF , as shown on the I OUT 1 terminal. Analysis of the circuit for all digital inputs high, as shown in figure 14, is similar to figure 13; however, the "ON" switches are now on terminal IOUT 1 , hence the $\mathbf{1 2 0} \mathbf{~ p F}$ at that terminal.

FIG. 14. AD7520 (AD7521) EQUIVALENT CIRCUITALL DIGITAL INPUTS HIGH

WNIPOLAR BINARY OPERATION
jgure 15 shows the circuit connections required for uniblar operation using the AD7520. Since VREF can assume either positive or negative values, the circuit is also pable of 2 -quadrant multiplication. The input code/outIt range table for unipolar binary operation is shown in Table 1.

FIG. 15. UNIPOLAR BINARY OPERATION (2-QUADRANT MULTIPLICATION)

cro Offset Adjustment

1. Tie all digital inputs to the AD7520 (AD7521) to GND potential.
2. Adjust the offset trimpot on the output operational amplifier for $0 \mathrm{~V} \pm 1 \mathrm{mV}$ at $\mathrm{V}_{\text {OUT }}$.

Gain Adjustment

1. Tie all digital inputs to the AD7520 (AD7521) to the +15 V supply.
2. To increase VOUT, place a resistor R in series with the amplifier output terminal and RFEEDBACK of the AD7520 (AD7521). ($\mathrm{R}=0$ to 500Ω)
3. To decrease VOUT, place a resistor R in series with $V_{\text {REF }}$. ($\mathrm{R}=0$ to 500Ω)

TABLE 1
CODE TABLE - UNIPOLAR BINARY OPERATION

DIGITALINPUT	ANALOG OUTPUT
1111111111	$-V_{\text {REF }}\left(1-2^{-10}\right)$
1000000001	$-V_{\text {REE }}\left(1 / 2+2^{-10}\right)$
1000000000	$\frac{-V_{\text {REF }}}{2}$
0111111111	$-V_{\text {REF }}\left(1 / 2-2^{-10}\right)$
0000000001	$-V_{\text {REF }}\left(2^{-10}\right)$
0000000000	0

NOTE: 1 LSB $=2^{-1 \cdot}$ VREF

IPOLAR (OFFSET BINARY) OPERATION

Figure 16 illustrates the AD7520 connected for bipolar operation. Since the digital input can accept bipolar numbers nd $V_{\text {REF }}$ can accept a bipolar analog input, the circuit can lerform a 4 -quadrant multiplying function. Input coding is offset binary (modified 2's complement) as shown in Table 2.

TABLE 2
COIf: TABLE - BIPOLAR (OFFSET BINART) OPERATION

DIGITALINPUT	ANALOCOUTPUT
1111111111	VREF (1 2-9)
1000000001	- VREF $^{\left(2^{-9}\right)}$
1000000000	0
0111111111	$V_{\text {REF }}\left(2^{-9}\right)$
0000000001	$V_{\text {REF }}\left(1-2^{-9}\right)$
0000000000	$V_{\text {REF }}$

When a switch's control input is a logical " 1 ", that switch's current is steered to IOUT 1 , forcing the output of amplifier $=1$ to

$$
\mathbf{v}_{\text {OUT }}=-\left(\text { IOUT }^{\text {OU }}\right)(10 k)
$$

where 10 k is the value of the feedback resistor.
A logical " 0 " on the control input steers the switch's current to lout 2, which is terminated into the summing junction of amplifier $\# 2$. Resistors R1 and R2 need not track the internal R-2R circuitry; however, they should closely match each other to insure that the voltage at amplifer $=2$'s output will force a current into $\mathbf{R 2}$ which is equal in magnitude but opposite in polarity to the current at IOUT 2. This creates a push-pull effect which halves the resolution but doubles the output rarge for changes in the digital input.
With the MSB a logic " 1 " and all other bits a logic " 0 ", a $1 / 2$ LSB difference current exists between I OUT 1 and $I_{\text {OUT 2 }}$, creating an offset of $1 / 2$ LSB. To shift the transfer curve to zero, resistor R-9 is used to sum 1/2 LSB of current into the IOUT 2 terminal.

Offset Adjustment

1. Make $\mathrm{V}_{\mathrm{REF}}$ approximately +10 V .
2. Tie all digital inputs to +15 V (logic " 1 ").
3. Adjust amplifier $\# 2$ offset trimpot for $0 \mathrm{~V} \pm 1 \mathrm{mV}$ at amplifier \#2 output.
4. Tie MSB (Bit-1) to +15 V , all other bits to ground
5. Adjust amplifier \#1 offset trimpot for $0 V \pm 1 \mathrm{mV}$ at VOUT.

Gain Adjustment

Gain adjustment is the same as for unipolar operation.

FIG. 16. BIPOLAR OPERATION (4-QUADRANT MULTIPLICATION)

The following circuits and associated wateforms illustrate the dynamic performance which can be expected using some

FIG. 17. DAC CIRCUIT USING AD741J

FIG. 19. DAC CIRCUIT USING AD518K

FIG. 21. DAC CIRCUIT USING AD505J 0.05% of 10 V .

FIG. 23. DAC CIRCUIT USING AD509K
commonly available IC amplifiers. All settling times are to

FIG. 18. OUTPUT WAVEFORAI

FIG. 20. OUTPUT WAVEFORM

FIG. 22. OUTPUT WAVEFORM
$1 \mu \mathrm{~s} / \mathrm{DIV}$

FIG. 24. OUTPUT WAVEFORM

Nith the AD7520 connected in its normal multiplying configuration as shown in figure 15 , the transfer function is

$$
V_{0}=-V_{I N}\left(\frac{A_{1}}{2^{1}}+\frac{A_{2}}{2^{2}}+\frac{A_{3}}{2^{3}}+\cdots \cdot \frac{A_{n}}{2^{n}}\right)
$$

where the coefficients A_{x} assume ${ }^{\text {a }}$ value of 1 for an ON bit Ind 0 for an OFF bit.

By connecting the DAC in the feedback of an operational amplifier, as shown in figure $\mathbf{2 5}$, the transfer function becomes

$$
v_{0}=\left(\frac{-v_{1 N}}{\frac{A_{1}}{2^{1}}+\frac{A_{2}}{2^{2}}+\frac{A_{3}}{2^{3}}+\cdots \frac{A_{n}}{2^{n}}}\right)
$$

This is division of an analog variable (V_{IN}) by a digital word. With all bits off, the amplifier saturates to its bound, since division by zero isn't defined. With the LSB (Bit-10) ON, the gain is 1024 . With all bits ON, the gain is 1 (± 1 LSB).

FIG. 25. ANALOG/DIGITAL DIVIDER

OUTL.'،UEDIMF NSIONS

AD7520
16 PIN PLASTIC DIP

1. Lead no. 1 identified by dot or notch.
2. Dimensions in millimeters (inches).

AD7521
18 PIN PLASTIC DIP

1. Lead no. 1 identified by dot or notch.
2. Dimensions in millimeters (inches).

BONDING DIAGRAM

BONDING DIAGRAM

1. Lead no. 1 identified by dot or notch.
2. Dimensions in millimeters (inches).
3. Lead no. 1 identified by dot or notch. 2. Dimensions in millimeters (inches).

18 PIN CERAMIC DIP

BINARY DIGITAL TO ANALOG CONVERTER MODELS CY2035, CY2135, CY2235

TECHNICAL DATA - JANUARY, 1972

DESCRIPTION

The CY2035 (8 Bit), CY2135 (10 Bit), and CY2235 (12 Bit), Digital to analog Converter Series features a combination of linearity, temperature stability, and settling time compatible with moderate environment operational requirements, of the LOWEST POSSIBLE COST.

Use of stable thin film resistor networks, high quality reference devices and low drift operational amplifiers in CYCON proprietary circuitry offers the user the most economical solution where reliability and long term stability are important requirements.

This economical series of D/A converters is exceptionally suited for high quantity DAC applications. Typical examples include: precise generation of non-linear functions, digitally programmed power supplies, and replacing analog sample/hold circuits in multiple channel closed loop process control systems.

The Series is size and pin compatible with the CYCON CY2X36 and CY2X37 Series of DAC's, and features the some high quality modular construction techniques.

FEATURES

- INEXPENSIVE - o significont breakthrough in price/performance ratio.
- LOW LINEARITY DRIFT - 0.0005% per ${ }^{\circ} \mathrm{C}$ over full operational temperature range.
- LOW ZERO OFFSET DRIFT - improved design provides greatly reduced offset drift over full operational temperature range.
- INTERNAL/EXTERNAL REFERENCE - User selectable by jumper wire. Intemal reference available for extemal use.
- 3 OUTPUT RANGES - $\pm 10 \mathrm{~V}, 0-10 \mathrm{~V}$, or $\pm 5 \mathrm{~V}$ are stondard options by simply jumpering pins.
- FULL SCALE AND ZERO OFFSET ADJUSTABLE extemally fine trimable for improved accuracy.
- PARALLEL INPUT - DTL/TTL compatible, one line per bit, one TTL load per line. Straight binary or offset binary options.
- RUGGED CONSTRUCTION - Encopsulated module designed for DIP IC compatibility. High quality brass, gold plated pins on . 1^{11} centers.

BOTTOM VIEW
ALL DIMENSIONS IN INCHES

OPERATIONAL CHARACTERISTICS

FULL SCALE OUTPUT VOLTAGE RANGES (user selectable by jumper)

OUTPUT LOAD, rated specifications (short Circuit proof)
OUTPUT IMPEDANCE (DC)
REFERENCE OUTPUT
input logic levels

DATA LOADING
TEMPERATURE RANGE
Rated Specifications
Operational
Storage
POWER REQUIREMENTS

> OV to +10V, Stroight Binary Code -5 V to +5 V , Offset Binary Code -10 V to +10 V , Offset Binory Code
> $R_{L} \geqslant 2 \mathrm{Kn}_{\mathrm{n}}, \mathrm{C}_{\mathrm{L}} \leqslant 1000 \mathrm{p} \mathrm{f}$
> $\leqslant 0.1$ ohm
> +10.08 V nominal at 5 mA
> ITL/DTL compatible, 8, 10 or 12 parallel birs
> $\mathrm{V}_{\mathrm{H}}=$ Logical "1", +2.1V to +5.5 V
> $V_{L}=$ Logical " 0 ", OV to +0.7 N
> 1 TTL Load/Line
> $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
> $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
> $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
> $+15 \mathrm{~V} \pm 5 \%$ at 30 mA
> $-15 \mathrm{~V} \pm 5 \%$ at 20 mA
> $+5 \mathrm{~V} \pm 5 \%$ at 80 mA
 High Accuracy IC Op Amps

FEATURES

Precision Input Characteristics
Low $V_{\text {os }}$: $0.5 \mathrm{mV} \max (\mathrm{L})$
Low $V_{\text {os }}$ Drift: $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max (L)
Low $\mathrm{I}_{\mathrm{b}}: 50 \mathrm{nA} \max (\mathrm{L})$
Low Ios: 5 nA max (L)
High CMRR: 90dB min (K, L)
High Output Capability
$A_{\text {ol }}=25,000 \mathrm{~min}, 1 \mathrm{k} \Omega$ load (J, S)
$T_{\text {min }}$ to $T_{\text {max }}$
$V_{0}= \pm 10 \mathrm{Vmin}, 1 \mathrm{k} \Omega$ load (J, S)
Low Cost (100 pieces)
AD741J \$1.25
AD741K $\$ 2.25$
AD741L $\$ 6.00$
AD741S $\$ 3.30$

GENERAL DESCRIPTION

The Analog Devices AD741J, AD741K, AD741L and AD741S are specially tested and selected versions of the popular AD741 operational amplifier. Improved processing and additional electrical testing guarantee the user precision performance at a very low cost. The AD741J, K and L substantially increase overall accuracy over the standard AD741C by providing maximum limits on offset voltage drift, and significantly reducing the errors due to offset voltage, bias current, offset current, voltage gain, power supply rejection, and common mode rejection (see Error Analysis). For example, the AD741L features maximum offset voltage drift of $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, offset voltage of 0.5 mV max, offset current of 5 nA max, bias current of $50 \mathrm{nA} \max$, and a CMRR of 90 dB min . The AD741S offers guaranteed performance over the extended temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, with max offset voltage drift of $15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, max offset voltage of 4 mV , \max offset current of 25 nA , and a minimum CMRR of 80 dB .

HiGH OUTPUT CAPABILITY

Both the AD741J and AD741S offer the user the additional advantages of high guaranteed output current and gain at low values of load impedance. The AD741J guarantees a minimum gain of 25,000 , swinging $\pm 10 \mathrm{~V}$ into a $1 \mathrm{k} \Omega$ load from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The AD741S guarantees a minimum gain of 25,000 , swinging $\pm 10 \mathrm{~V}$ into a $1 \mathrm{k} \Omega$ load from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
All devices feature full short circuit protection, high gain, high common mode range, and internal compensation. The AD741J, K and L are specified for operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, and are available in both the TO-99 and mini-DIP packages. The AD741S is specified for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, and is available in the TO-99 package.

[^0]

GUARANTEED ACCURACY

The vastly improved performance of the AD741J, AD741K, AD741L and AD741S provides the user with an ideal choice when precision is needed and economy is a necessity. An error budget is calculated for all versions of the AD741 (see page 3); it is obvious that these selected versions offer substantial improvements over the industry-standard AD741C and AD741. A typical circuit configuration (see Figure 1) is assumed, and the various errors are computed using maximum values over the full operating temperature range of the devices. The results indicate a factor of 8 improvement in accuracy of the AD741L over the AD741C, a factor of 5 improvement using the AD741K, and a factor of 2.5 improvement using the AD741J. The AD741S, similarly, achieves a factor of 3.5 improvement over the standard AD741. Note that the total error has been determined as a sum of component errors, while in actuality, the total error will be much less. Also, while the circuit used for the error analysis is only one of a multitude of possible applications, it effectively demonstrates the great improvement in overall 741 accuracy achievable at relatively low cost with the AD741J, K, L or S.

Figure 1. Error Budget Analysis Circuit

SPECIFICATIONS

(typical @ $+25^{\circ} \mathrm{C}$ and $\pm 15 \mathrm{VDC}$, unless otherwise specifiad)

MODEL	AD741J	AD741K	AD741L	AD741S
OPEN LOOP GAIN				
$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{V}_{0}= \pm 10 \mathrm{~V}$	50,000 min (200,000 typ)			*
$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{0}= \pm 10 \mathrm{~V}$		$50,000 \mathrm{~min}(200,000$ typ $)$	50,000 min (200,000 typ)	
Over Temp Range, $T_{\text {min }}$ to $\mathrm{T}_{\text {max }}$, same loads as above	25,000 min	*	*	*
OUTPUT CHARACTERISTICS				
Voltage © $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{T}_{\min }$ to $\mathrm{T}_{\max }$	$\pm 10 \mathrm{~V}$ min ($\pm 13 \mathrm{~V}$ typ)			-
Voltage © $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{min}}$ to $\mathrm{T}_{\max }$		$\pm 10 \mathrm{~V} \min (\pm 13 \mathrm{~V}$ typ)	$\pm 10 \mathrm{~V} \min (\pm 13 \mathrm{~V}$ ryp)	
Short Circuit Current	25 mA	+ min (土)	(1)	*
FREQUENCY RESPONSE				
Unity Gain, Small Signal	1 MHz	*	-	*
Full Power Response	10 kHz	*	*	*
Slew Rate, Unity Gain	0.5V/ $\mu \mathrm{sec}$	*	*	*
INPUT OFFSET VOLTAGE				
Initial, $\mathrm{R}_{\mathbf{S}} \leqslant 10 \mathrm{k} \Omega$ (adjustable to zero)	3 mV max (1mV typ)	2 mV max (0.5 mV typ)	$0.5 \mathrm{mV} \max (0.2 \mathrm{mV}$ typ)	2 mV max (1mV ryp)
$\mathrm{T}_{\min }$ to $\mathrm{T}_{\max }$	4 mV max	3 mV max	1 mV max	
Avg vs Temperature (untrimmed)	$20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \max$	$15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \max \left(6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right.$ ryp)	$5 \mu \mathrm{~V} /^{\circ} \mathrm{C} \max \left(2 \mu \mathrm{~V} /^{\circ} \mathrm{C} \text { typ }\right)$	$15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \max \left(6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right.$ typ)
vs Supply, $T_{\min }$ to $T_{\text {max }}$	$100 \mu \mathrm{~V} / \mathrm{V} \max (30 \mu \mathrm{~V} / \mathrm{V}$ typ $)$	$15 \mu \mathrm{~V} / \mathrm{V} \max (5 \mu \mathrm{~V} / \mathrm{V} \text { typ) }$	$15 \mu \mathrm{~V} / \mathrm{V} \max (5 \mu \mathrm{~V} / \mathrm{V} t y p)$	
INPUT OFFSET CURRENT				
Initial	50nA max (5nA typ)	$10 n A \max (2 n A t y p)$	$5 n A \max (2 n A t y p)$	$10 n A \max (2 n A t y p)$
$\mathrm{T}_{\min }$ to $\mathrm{T}_{\max }$	$100 n A \max$	$15 n A \max$	$10 n A \max$	$25 n A \max$
Avg vs Temperature	$0.1 \mathrm{nA} /{ }^{\circ} \mathrm{C}$	$0.2 \mathrm{nA} /{ }^{\circ} \mathrm{C} \max \left(0.02 \mathrm{nA} /{ }^{\circ} \mathrm{C}\right.$ typ)	$0.1 n \mathrm{~A} /{ }^{\circ} \mathrm{C} \max \left(0.02 \mathrm{nA} /{ }^{\circ} \mathrm{C}\right.$ typ)	$0.25 \mathrm{nA} /{ }^{\circ} \mathrm{C} \max \left(0.1 \mathrm{nA} /{ }^{\circ} \mathrm{C}\right.$ typ)
INPUT BIAS CURRENT				
Initial	200nA max (40nA typ)	$75 n A \max$ (30nA typ)	S0nA max (30nA typ)	75nA max (30nA typ)
$\mathrm{T}_{\min }$ to $\mathrm{T}_{\max }$	400nA max	120 nA max	100nA max	250 nA max
Avg us Temperature	$0.6 \mathrm{nA} /^{\circ} \mathrm{C}$	$1.5 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ max ($0.6 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ typ)	$\ln A /{ }^{\circ} \mathrm{C} \max \left(0.6 \mathrm{nA} /^{\circ} \mathrm{C}\right.$ typ)	$2 \mathrm{nA} /{ }^{\circ} \mathrm{C} \max \left(0.6 \mathrm{nA} /{ }^{\circ} \mathrm{C}\right.$ typ)
INPUT IMPEDANCE				
Differential	$1 \mathrm{M} \Omega$	$2 \mathrm{M} \Omega$	2M Ω	$2 \mathrm{M} \Omega$
INPUT VOLTAGE RANGE (Note 1)				
Differential, max safe	$\pm 30 \mathrm{~V}$	*	*	*
Common Mode, max safe	$\pm 15 \mathrm{~V}$	*	-	-
Common Mode Rejection,				
POWER SUPPLY				
Rated Performance	$\pm 15 \mathrm{~V}$	*	*	*
Operating	\pm (5 to 18) V	$\pm(5$ to 22)V	$\pm(5$ to 22)V	$\pm(5$ to 22)V
Current, Quiescent	3.3 mA max (2.0 mA typ)	$2.8 \mathrm{~mA} \mathrm{max}(1.7 \mathrm{~mA}$ typ)	2.8 mA max (1.7 mA typ)	$2.8 \mathrm{~mA} \mathrm{max}(2.0 \mathrm{~mA}$ typ)
Operating, Rated Performance	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	*	*	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	*	-	

Note 1: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
*Specifications same as AD741J.
Specifications subject to change without notice.

FRROR BLIDCFT ANALYSIS

	AD741C		AD741J		AD741K		AD741L		AD741		AD7415	
PARAMETER	$\begin{aligned} & \text { SPEC } \\ & 0^{\circ} \mathrm{C} \text { to } \end{aligned}$	$\begin{aligned} & \text { ERROR } \\ & 70^{\circ} \mathrm{C} \text {) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SPEC } \\ & 10^{\circ} \mathrm{C} \text { to } \end{aligned}$	$\begin{aligned} & \text { ERROR } \\ & 70^{\circ} \mathrm{C} \text {) } \end{aligned}$	SPEC $10^{\circ} \mathrm{C} 10$	$\begin{aligned} & \text { ERROR } \\ & 70^{\circ} \mathrm{C} \text {) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SPEC } \\ & 10^{\circ} \mathrm{C} \text { to } \end{aligned}$	$\begin{aligned} & \text { ERROR } \\ & \left.70^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SPEC } \\ & 1-55^{\circ} \mathrm{C} \text { to } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ERROR } \\ & \left.+125^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SPEC } \\ & \left(-55^{\circ} \mathrm{C}+0\right. \end{aligned}$	$\begin{array}{r} \text { ERROR } \\ \left.+125^{\circ} \mathrm{C}\right) \\ \hline \end{array}$
Gxin (tirror $\left.=10 V_{i n} / G\right)$	15,000	$660 \mu \mathrm{~V}$	25.000^{1}	$400 \mu \mathrm{~V}$	25.000°	400ヶV	25,000	$400 \mu \mathrm{~V}$	25.000	$400 \mu \mathrm{~V}$	25.000 ${ }^{1}$	$400 \mu \mathrm{~V}$
I_{b} (Errot $=I_{b} \times$ resistor mismatcb)	800nA	$160 \mu \mathrm{~V}$	400n. ${ }^{\text {a }}$	$80 \mu \mathrm{~V}$	120nA	244V	100 nA	20MV	1500 nA	$300 \mu \mathrm{~V}$	250nA	SOAV
$\operatorname{tas}($ Error - $\operatorname{los} \times 10 k \Omega)$	300nA	$3000 \mu \mathrm{~V}$	100nA	1000رV	$15 n A$	$150 \mu \mathrm{~V}$	10nA	$100 \mu \mathrm{~V}$	500nA	5000yV	25nA	$250 \mu \mathrm{~V}$
$\Delta V_{\text {os }} / \Delta T\left(E m o r=\Delta V_{o s} / \Delta T \times \Delta T\right)$	$25 \mu V 1^{\circ} C^{2}$	$1125 \mu \mathrm{~V}$	$20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$900 \mu \mathrm{~V}$	$15 \mu \mathrm{~V} 7^{\circ} \mathrm{C}$	$675 \mu \mathrm{~V}$	$5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$225 \mu \mathrm{~V}$	$25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}^{1}$	2500uV	$15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$1500 \mu \mathrm{~V}$
CMRR (EtTor = 10V/CAIRR)	70d8	$3300 \mu \mathrm{~V}$	80dB	$1000 \mu \mathrm{~V}$	90 dB	$330 \mu \mathrm{~V}$	90dB	$330 \mu \mathrm{~V}$	$70 d 8$	$3 \mathbf{3 0 0 \mu V}$	80dB	$1000 \mu \mathrm{~V}$
PSRR (assume a $\pm 5 \%$ power sepply variation)	ISOMVN	$450 \mu \mathrm{~V}$	$100 \mu \mathrm{~V} N$	$300 \mu \mathrm{~V}$	$15 \mu \mathrm{VN}$	$45 \mu \mathrm{~V}$	$15 \mu \vee N$	$45 \mu \mathrm{~V}$	$150 \mu \mathrm{~V} / \mathrm{V}$	$450 \mu \mathrm{~V}$	$100 \mu \mathrm{~V} / \mathrm{N}$	300aV
TOTAL		8.7 mV		3.7 mV		1.6 mV		1.1 mv		12.0 mV		3.5 mV
PRICE (100 pieces)	\$1.00		\$1.25		\$2,25		$\mathbf{\$ 6 . 0 0}$		\$2.00		\$3.30	

1 AD741] and AD741S...Open Loop Gain is guaranteed with a $1 \mathrm{k} \Omega$ load.
2 AD74 IC and AD741.. $\Delta \mathrm{V}_{\mathrm{OS}} / \Delta_{\mathrm{T}}$ is not guaranteed (for complete specifications, contact the factory for data sheet).

INPUT CHARACTERISTICS

Figure 2. Max Equivalent Input Offset Drift vs. Source Resistance

Figure 3. Input Bias Current vs. Temperature

Figure 4. Common Mode Rejection vs. Frequency

Figure 5. Input Noise Voltage vs. Frequency

Figure 6. Input Noise Current vs. Frequency

Figure 7. Broadband Noise vs. Source Resistance

OUTPUT CHARACTERISTICS

The AD741J and AD741S are specially selected for high output current capability. High efficiency output transistors, thermally balanced chip design and precise short circuit current control insure against gain degradation at high current levels and temperature extremes. The AD741J guarantees a minimum gain of 25,000 , swinging $\pm 10 \mathrm{~V}$ into a $1 \mathrm{k} \Omega$ load from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The AD741S guarantees minimum gain of 25,000 , swinging $\pm 10 \mathrm{~V}$ into $21 \mathrm{k} \Omega$ load from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The AD741K and AD741L are guaranteed with the standard $2 \mathrm{k} \Omega$ load.

Figure 8. Output Voltage Swing vs. Frequency

Figure 9. Output Voltage Swing vs. Load Resistance

Figure 10. Open Loop Gain vs. Frequency

BONDING DIAGRAM
All versions of the AD741 are available in chip or wafer form, fully tested at $+25^{\circ} \mathrm{C}$. Because of the critical nature of using unpackaged devices, it is suggested that the factory be contacted for specific information regarding price, delivery and testing.

CONNECTION DIAGRAMS

(H package)
(N package)

PHYSICAL DIMENSIONS

(In Inches)

MIL-STANDARD-883
The AD741S is available with 100% screening to MIL-STD-883, Method 5004, Class A, B, or C. Consult the factory for pricing and delivery.

ORDERING GUIDE

		ORDER	PRICE	PRICE	PRICE
MODEL	TEMP. RANGE	NUMBER	$(1-24)$	$(25-99)$	$(100-999)$
AD741J	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AD741J*	$\$ 1.85$	$\$ 1.50$	$\$ 1.25$
AD741K	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AD741K*	$\$ 3.40$	$\$ 2.70$	$\$ 2.25$
AD741L	$0^{\circ} \mathrm{C} t 0+70^{\circ} \mathrm{C}$	AD741L*	$\$ 9.00$	$\$ 7.20$	$\$ 6.00$
AD741S	$-55^{\circ} \mathrm{C}+0+125^{\circ} \mathrm{C}$	AD741SH	$\$ 4.95$	$\$ 4.00$	$\$ 3.30$

*Add Package Type Letter; $\mathrm{H}=\mathrm{TO}-99, \mathrm{~N}=$ Mini-DIP.

Motorola K7100A Crystal Clock Orcillators

30 mHz 250 kHz to 20 mHz
815" x $.515^{\prime \prime}$ AREA
200" SEATED HEIGHT
DUAL IN-LINE SPACING
WIDE FREQUENCY RANGE
+5 V dc INPUT
TTL COMPATIBLE OUTPUT $\pm .01 \%$ STABILITY

features

- HIGH DENSITY PACKAGING takes up only $.815^{\prime \prime} \times .515^{\prime \prime}$ on a circuit board, and its seated height of .200" lets you use standard logic boards with no loss of spacing. Can be soldered directly to the PCB or mounted in a DIP socket, according to your production needs.
- TTL COMPATIBLE-uses standard $\div 5 \mathrm{~V}$ dc input, drives standard TTL logic, fan out of 10.
$\pm \mathbf{0 . 0 1 \%}$ FREQUENCY STABILITY —over the range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, suitable for most applications in data communication logic timing. This specification is inctusive of calibration tolerance, stability vs. input voltage change, stability vs. load change, aging, and stability vs. shock and vibration.
- RUGGED, RELIABLE - maximum reliability at minimum cost is the result of combining two of Motorola's fields of experience: quartz crystal technology and thick film hybrid integrated circuit processing. Mass automated production techniques assure volume production. Gold plating of all crystals and Class 100 clean room processing testify that no short cuts are taken that might diminish retiability. Environmental testing proves the effectiveness of the rugged design for those applications in which shock and vibration are common hazards.
- YOUR TIMING NEEDS IN ON PACKAGE - The K1100A oscillator uses essentially the same components to generate any discrete fr quency from 250 kHz to 20 MHz ; on the frequency-determining elements and laser-trim settings change. The manufacturing savings inherent this design are passed on to you, sin plifying your make vs buy decision. You can divert engineering manhours from oscillator design to equi ment or system design, saving chr nological time as well. And with a packaged oscillator, you eliminate source-hunting and source-qualifyi for its components, cut down on rect labor for parts insertion, eli down on overhead costs for Receiv ing, Incoming Inspection, Purchasir and Accounts Payable.
- COMPLETE PROCESS CONTROL -Motorola is the only totally in grated manufacturer of quartz f quency control devices. Full contro. of all the processes from growing. sawing, lapping, and finishing qua to combining it with other com nents into an electronic productCRYSTAL CLOCK OSCILLATORS.

VOLUME PRODUCTION-prodtion facilities oriented to mass autmated production techniques. And. if required, capital for expansion available to meet even greater quirements.

KIOOR CRYSTAL COOK OSCQATOR UAVE HHPP

ropcifications

E FREQUENCY STABILITY: $\pm .01 \%$
(Inclusive of calibration tolerance at $25^{\circ} \mathrm{C}$. pperating temperature range, input voltage change, load change, aging, shock, and vibration).

- TEMPERATURE RANGE:

OPERATING:
STORAGE:
(INPUT VOLTAGE:

$$
\begin{aligned}
& 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& +5 \mathrm{~V} \text { dc } \pm 0.5 \mathrm{~V}
\end{aligned}
$$

-NPUT CURRENT:

TIL OUTPUT ($0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$):
SYMMETRY:
60/40\% @ 1.4V dc level
RISE AND FALL TIMES:
15 ns max.
($10 \% / 90 \%$ p-p output
voltage)
"0" LEVEL:
"1" LEVEL:
"O" SINK CURRENT:
"1" SOURCE CURRENT:
OUTPUT LOAD:
ENVIRONMENTAL:
TEMPERATURE CYCLE:

SHOCK:

VIBRATION:

HUMIDITY:

MECHANICAL:
GROSS LEAK TEST:

HERMETICALLY
SEALED PACKAGE:

SEAL STRENGTH:

PIN MATERIAL:

BEND TEST:

MARKING INK:
SOLVENT RESISTANCE:
$\pm 5 \mathrm{ppm}$ max. 0 to $120^{\circ} \mathrm{C}, 3$ cycles, 2 hrs. max. each, $25 \pm 2^{\circ} \mathrm{C}$ ref.
1000G's 0.35 millisec, $1 / 2$ sine wave 3 shocks each plane
$10-55 \mathrm{~Hz}, .060^{\prime \prime}$ D.A., $55 \mathrm{~Hz}-2000 \mathrm{~Hz} 35$ G's. Duration time- 12 hours
85\% Relative humidity, @ $+85^{\circ} \mathrm{C}, 250$ hours
$250.0 \mathrm{kHz}-8.999 \mathrm{MHz}$
10 ns max.
9.0 MHz-20.0 MHz
+0.4 V max.
+2.4 V min.
16 mA min.
(1.6 mA/gate)

- 400 uA min.

1 to 10 TTL gates

All
All units 100% leak tested in de-ionized $\mathrm{H}_{2} \mathrm{O}$.

Mass spectrometer leak rate less than 2×10^{-8} atmos. cc/sec. of helium
20 lbs. max. force perpendicular to top and bottom
Phosphor bronze, $1 / 4$ hard, Grade A.00003" thick gold flash finish
Will withstand maximum bend of 90° reference to base for 1 bend
Epoxy, heat cured
isopropyl alcohol Tricholoroethane Freon TMC

No marking or seal destruction
Dipped 1 minute @ $+25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ in solvent
Note: (1) Unit can be cleaned by only one type solvent listed.

Note: (2) Ultrasonic degreaser not to be used unless frequency and vibration of cleaner specified.

K1100A Clock Oscillator Test Circuit
NOTE:
Oscilloscope Test Probe Capacitance must be 2 pf. Max.

solderability specifications

MATERIALS:
1.1 SOLDER: maintained at $232 \pm 6^{\circ} \mathrm{C}$.
Dip the terminals into the flux to the depth that is to be soldered or to a maximum depth of $.025^{\prime \prime}$ from the body of the oscillator. Keep them in the flux for at least 5 seconds. Withdraw them from the flux. Dip them immediately into the molten solder to the same depth. Keep them in the molten solder for 2 to 5 seconds. Withdraw them and allow the solder to cool in air.

The terminals are considered solderable and acceptable for electrical connection purposes if 90 percent of the cold solder surface is uniform and free from breaks and pinholes. The other 10 percent of the cooled solder surface may show only pinholes voids, or rough spots that are nd concentrated in one area.
60\% tin and 40% lead The flux shall be 25 percent by weight of Grade WW rosin and 75 percent by weight of 99 percent isopropyl alcohol.

The solder bath shall be
75 -

1.2 FLUX:

PROCEDURE:
2.1 SOLDER BATH:
2.2. SOLDERABILITY:

MOTOROLA INO.

COMPONENT PRODUCTS DEPT.

2553 N. Edgington
Franklin Park, III. 60131 312/451-1000

- 1974 by Motorola, Inc.,
(3) and MOTOROLA are trademarks of Motorola. Inc.
- REQUIREMENTS: 3.1

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third *parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

