VLA TECHNICAL REPORT NO. 40
R.F. TO I.F. CONVERSION SUBSYSTEM:
Modules F4 (Frequency Converter),
F7 (Front End I.F. Filters) and
F8 (I.F. Offset)
L. R. D'Addario
October 1979

Blue Binder - Yellow, Silver, Gray Tape

Printing History:

Revision 0:

Issued October 1, 1979
Modules covered are designed F4-C, F7-A, F8-A

FOREWORD

The original VLA Front End included a single frequency conversion from R.F. to I.F. for each channel. This was accomplished in the Frequency Converter module (F4), series A, designed by S. Weinreb and described in VLA Technical Report No. 7, July 1975. However, it was recognized that this arrangement had a possible spurious response (see Section 3 of the above referenced report, and Section 3.2.1 of the present report), and that the selectivity might not be sufficient to reject strong interfering signals near the observing frequency. Furthermore, the response could not be restricted to the protected radio astronomy bands except by filters far downstream at the Control Building.

It was thus decided, in 1976, to implement the present scheme, starting from a preliminary design study by A. R. Thompson (VLA Electronics Memorandum No. 137, April 1976). Spurious responses were greatly reduced, and additional selectivity with user-selectable bandwidths was added. In the process, other advantages were gained: only two $2-4 \mathrm{GHz}$ synthesized L.O. signals are needed for the four channels; the selective filters were specified to be particularly phase stable; and the use of a common first I.F. for the four channels enabled the ALC attenuator to introduce less phase variation.

The detailed design effort was not undertaken until early 1978, when D. S. Bagri and J. Campbell constructed prototype F7 and F8 modules. I took over the project in late 1978, eventually evolving a design which meets the specifications of Section 2.

Thus, the efforts of S. Weinreb, A. R. Thompson, D. S. Bagri, and J. Campbell are gratefully acknowledged. Much of S. Weinreb's design of the F4 module has been carried over to .the present version.

This design effort also uncovered the need to tighten the gain specifications for the Front End subsystem. Discussions with P. Napier and P. Lilie have been helpful in this regard.

Finally, I want to acknowledge the administrative, budgetary and moral support given by P. Napier throughout this project; it would have been less successful without this.

TABLE OF CONTENTS

FOREWORD 3

1. FUNCTIONAL DESCRIPTION 7
2. SPECIFICATIONS 10
3. THEORY OF OPERATION 11
3.1 SIGNAL LEVELS AND REQUIRED GAINS 11
3.2 FREQUENCY CONVERTER MODULE, F4 15

- 3.2.1 R.F. Components 15
3.2.2 Gated ALC Loop 19
3.2.3 Fast Limiter and Peak Detector 21
3.2.4 Synchronous Detector 23
3.3 FRONT END I.F. FILTERS MODULE, F7 24
3.3.1 Choice of Filter Parameters 24
3.3.2 Switch Drivers 25
3.3.3 Auxiliary Filter Selection 27
3.4 I.F. OFFSET MODULE, F8 28
3.4.1 Amplifier-Mixer Assembly 28
3.4.2 L.O. Demultiplexing 30
3.4.3 Other R.F. Components 33
3.5 TEMPERATURE STABILITY CONSIDERATIONS 34
3.6 IMPEDANCE MATCHING CONSIDERATIONS 37
3.6.1 Ripple Due to Reflections 38
3.6.2 Behavior of Filters with Mismatched Source or Load 39

4. TEST, ADJUSTMENT AND MAINTENANCE PROCEDURES 43
4.1 FREQUENCY CONVERTER, F4 43
4.1.1 R.F. Gain Check and Adjustment 43
4.1.2 Detector and ALC Alignment 45
4.1.3 Synchronous Detector Alignment 47
4.1.4 Data Sheet 48
4.2 FRONT END I.F. FILTERS, F7 48
4.3 I.F. OFFSET, F8 50
APPENDIX A: MONITOR AND CONTROL DATA 52
A. 1 COMMANDS 52
A. 2 MONITOR DATA 53
APPENDIX B: DRAWING LISTS 54
APPENDIX C: BILLS OF MATERIALS 55
APPENDIX D: NRAO SPECIFICATIONS 56
APPENDIX E: MANUFACTURERS' DATA 57
APPENDIX F: REAR-PANEL CONNECTORS 58

TABLES
TABLE 1: SUBSYSTEM SPECIFICATIONS 10
TABLE II: EXPECTED SYSTEM TEMPERATURES 13
TABLE III: F8 MIXER SPURIOUS OUTPUT REQUIREMENTS 31
TABLE IV: COMBINED d $\phi / d T$ FOR BPF'S 36TABLE V: SUBSYSTEM TEST RESULTS; $d \phi / d T$,EARLY PROTOTYPES37

FIGURES

Figure 1.1 Subsystem Block Diagram

Figure 3.1 Simplified block diagram of Rack A, with gains and signal levels.

Figure 3.2 Range of attenuation as a function of $T_{\mathbf{s}}$ '. 13
Figure 3.3 Performance of 2 and 1.3 cm mixers. 14
Figure 3.4 Lines of $n f_{r}+m f_{L}=1025 \mathrm{MHz}$, for various ${ }^{r}(n, m)$. $\quad 16$

Figure 3.5 Schematic diagram of F4 ALC and synchronous detector circuitry.18

Figure 3.6 Schematic diagram of the F7 module. 26
Figure 3.7 Undesired L.O. responses of 58 mixers. 29

Figure 3.8 Typical second L.O. (50 MHz comb) spectrum at F8-J7.

Figure 3.9 Gain variation across 50 MHz due to two equal reflections separated by a line of length ℓ.39

Figure 3.10 Input impedance of a Chebyshev filter with
matrhed termination. 40

Figure 3.11 Calculated peak-to-peak ripple in lossless Chebyshev filters with matched load but mismatched source, for design (matched) ripples of .18 and .01 dB .41
Figure 4.1 Equipment setup for F4 gain measurement. 43
Figure 4.2 Equipment setup for F4 detector and ALC alignment. 45

Figure 4.3 F4 printed circuit board, showing
locations of adjustments. 46
Figure 4.4 Sample F4 Data Sheet, filled in. 49

1. FUNCTIONAL DESCRIPTION

Refer to the subsystem block diagram, Figure 1.1.
The R.F. to I.F. conversion subsystem accepts broadband noise signals in the 4.5 to 5.0 GHz (R.F.) band from the receivers and delivers a composite I.F. signal, containing four frequency-multiplexed channels in the 1.3 to 1.7 GHz band, to the waveguide communication channel for transmission to the Control Building. There are four input signals, two from the $A B$ receiver and two from the CD receiver, delivered by the R.F. Splitter module (F6). From each of these 500 MHz bandwidth signals, a band of width 55,25 or 12 MHz is selected and converted to one of the output channel frequencies.

The subsystem is implemented in 9 modules, with one Frequency Converter module (F4) and one I.F. Filter module (F7) for each I.F. channel, and a single I.F. Offset module (F8) containing circuitry for all channels. Figure 1.1 shows the complete block diagram only for channel A, since all channels are similar. The modules are mounted in Bin G (F4's) and Bin F (F7's and F8) of Rack A, which also contains the cooled front ends.

Double conversion is used to suppress a possible spurious response (see Section 3.2.1). The first I.F. is centered at 1025 MHz for all channels, and is obtained by mixing the input with a 3490 to 3990 MHz L.O. from the $2-4 \mathrm{GHz}$ Synthesizer module (L6) in Rack B. The latter L.O. is tunable in steps of 20 and 30 MHz , and this sets the channel frequency within the R.F. band. The channel bandwidth is determined by a filter at the first I.F.; three bandwidths are selectable via computer-generated commands (transmitted through the Data Set, M1, and Control Interface, F5). Normally, the widest bandwidth (55 MHz to -3 dB) should be used for best flatness and phase stability, but the narrower bandwidths may be useful for rejecting interference close to the observing frequency.

A second mixer upconverts the 1025 MHz first I.F. to one of the four I.F. channels, centered at $1325,1425,1575$, and 1675 MHz , re-

spectively. This mixer uses fixed-frequency L.O. signals derived from a comb spectrum supplied by the 50 MHz Harmonic Generator module (L2) in Rack B. Finally, the four channels are summed in a power combiner and the composite signal is delivered to the I.F. Combiner module (T2) in Rack B.

Before combining the I.F. signals, a portion of each is delivered to a square-law detector, whose output is used for several purposes. First, it closes an ALC loop by adjusting the gain at the first l.F. This loop is gated in synchronism with the switching of a noise source at the receiver input, so the loop does not respond to this deliberately-imposed level change. Second, the portion of the detector output due to the noise source switching is synchronously detected, providing a measure of the gain and noise temperature to this point in the signal processing. Third, a threshold limiter rapidly reduces the gain if the signal gets about 3 dB above its normal level; this is intended to gate out strong interference which has a short duty cycle.

2. SPECIFICATIONS

The subsystem is designed to meet the specifications of Table 1. The most difficult of these have been the phase variation with temperature (maximum $0.3^{\circ} / \mathrm{C}$; see also Section 3.5) and the gain variation with frequency (maximum 0.5 dB peak-to-peak; see also Section 3.6).

The input power spectral density range is that for which all specifications are expected to be met. Lower levels will result in wide-open ALC loop operation and hence low output power. Higher levels can be accommodated by the ALC loop, but the phase variation with input power will be larger (due to the ALC attenuator); also, at about $-32 \mathrm{dBm} / 50 \mathrm{MHz}(-22 \mathrm{dBm} / 500 \mathrm{MHz})$ significant gain compression can occur in the first amplifier of $F 4$. The specified range should be sufficient to accommodate the present four-band VLA front ends, with reasonable gain tolerances and with system temperatures up to twice nominal.

The input noise figure specification ensures that the subsystem adds less than 1% to the system temperature at 6 cm . About 10 dB better than this is typically being achieved.

The L.O. input levels and tolerances are based on measurements of levels actually produced at antennas 1 through 17. All L2 and L6 modules must now meet these requirements; however, the tolerances are wide enough so that this should cause no difficulty.

TABLE I: SUBSYSTEM SPECIFICATIONS

Input power spectral density (4.5-5:0 GHz)
Input noise figure; noise temperature Output power, each I.F. channel (at F8-J8)
Phase variation with temperature at 55 MHz bandwidth Phase variation with input power Gain variation with frequency, each channel First L.O. ($3.5-4.0 \mathrm{GHz}$) input Second L.O. (50 MHz comb) input
-58 to $-48 \mathrm{dBm} / 50 \mathrm{MHz}$
$<21.4 \mathrm{~dB} ;<4 \times 10^{4} \mathrm{~K}$
$-33.5 \pm 1 \mathrm{dBm}$
$<0.3^{\circ} / \mathrm{C}$
$<1^{\circ} / \mathrm{dB}$
$<0.5 \mathrm{~dB}$ peak-to-peak
$+11 \pm 3 \mathrm{dBm}$
$-6 \pm 2 \mathrm{dBm}$
-9 ± 2
-9 ± 2
-12 ± 2
-58 to $-48 \mathrm{dBm} / 50 \mathrm{MHz}$
$<21.4 \mathrm{~dB}$; $<4 \times 10^{4} \mathrm{~K}$
$-33.5 \pm 1 \mathrm{dBm}$
$<0.3^{\circ} / \mathrm{C}$
$<1^{\circ} / \mathrm{dB}$
$<0.5 \mathrm{~dB}$ peak-to-peak
$+11 \pm 3 \mathrm{dBm}$
$-6 \pm 2 \mathrm{dBm}$
-9 ± 2
$\begin{array}{lr}550 & -9 \pm 2 \\ 650 & -12 \pm 2\end{array}$

3. THEORY OF OPERATION

3.1 SIGNAL LEVELS AND REQUIRED GAINS

Figure 3.1 is a block diagram of the major R.F. components in Rack A, showing the gain of each and the signal levels at certain points. Only one of the two front end subsystems, and one of the four R.F.-to-I.F. conversion channels, is shown. When operating on the $6-\mathrm{cm}$ band, the system temperature referred to the $6-\mathrm{cm}$ input is expected to be near 50 K . This corresponds to a power spectral density of $-104.2 \mathrm{dBm} / 55 \mathrm{MHz}$. Since we must supply -34.0 dBm per channel to module $T 2$, a net gain of 70.2 dB is required. However, the signal processing involves the losses of two frequency conversions, power dividing and combining, level-setting and ALC attenuators, and filtering; it is thus necessary to provide about 145 dB of amplification.

Determining the gain requirements of the subsystem is complicated by the need to operate on four bands and over a range of system temperatures, and by the nonzero tolerances on the component gains. At 2 cm and 1.3 cm , the conversion losses of the mixers are not accurately known because they are tuned for minimum receiver temperature without regard to conversion loss, and the diodes show considerable variation in the conversion loss at which this occurs.

We can discuss the gain requirements in terms of the attenuation needed in the variable attenuator in F4, which is controlled by the ALC loop. Using the gains and tolerances of Figure 3.1, one can calculate the necessary range of attenuation as a function of $T_{s}{ }^{\prime}$, the system temperature referred to the band switch input; this is plotted in Figure 3:2.

At $6 \mathrm{~cm}, \mathrm{~T}_{\mathbf{s}}{ }^{\prime}$ is essentially the input system temperature, $\mathrm{T}_{\mathbf{s}}$. At the other bands, T_{s} ' is higher than T_{s} by the upconverter's or downconverter's gain and its intrinsic noise. The range of T_{s} 'indicated in Figure 3.1 for each band is based on the results in Table 11. In the table, the maximum usable receiver temperatures T_{R} are some-

Figure 3.1: Simplified block diagram of Rack A, with gains and signal levels. Numbers in parentheses are power spectral densities in $d B m / 55 \mathrm{MHz}$ at 6 cm band with system temperature of 50 K .

Figure 3.2: Range of attenuation as a function of $T_{s}{ }^{\prime}$.

TABLE II: EXPECTED SYSTEM TEMPERATURES

Band	$\frac{T_{R} \text { (normal) }}{[1]}$	$\mathrm{T}_{\mathrm{R}} \text { (max.usable) }$	$\frac{T_{A} \text { (zenith) }}{[1]}$	$\frac{\mathrm{T}_{\mathrm{A}}(\mathrm{el}=1}{[2]}$	T_{s}	$\mathrm{T}_{\mathbf{s}}{ }^{\prime}$	$\frac{\Delta T_{s} / s}{[1]}$
$78=21 \mathrm{~cm}$	${ }^{18} 8^{7} \mathrm{~K}$	40 K	$30^{*} \mathrm{~K}$	$44^{*} \mathrm{~K}$	48-94 $=\mathrm{K}$	-74 $=170 \mathrm{~K}$	$709 \mathrm{~K} / \mathrm{Jy}$
6	25	60	24	38	49-98	49-98	. 12
2	200	350	40	59	240-410	75-210	. 09
1.3	240	350	50	120	290-470	75-240	. 08

Refs: [1] Weinreb, S. et al., IEEE Trans, on Microwave Thy. \& Tech., MTT-25, 243 (1977). [2] Based on measurements by Vandenberg, N., VLA Test Memorandum No. 122 (1977).
what arbitrary estimates of the highest values that will be tolerated before an antenna is taken down for maintenance. The antenna temperatures T_{A} should be fairly reliable, and are based on having only weak sources in the field. Combining T_{R} and T_{A} gives the indicated range of T_{s}; for bands other than 6 cm , this has been converted to T_{s} : by assuming a gain of 2 to 3 dB for the upconverter, and -3 to -5 dB for each mixer, and a 25 K second-stage contribution. Figure 3.3 shows the relationship of T_{s} and T_{s} ' with

and T_{M} is the mixer temperature, referred to input;
G_{M} is the conversion gain of the mixer;
T_{A} is the antenna temperature at the mixer input (here 40 K); and T_{2} is the second stage noise temperature (here 23 K).

Figure 3.3: Performance of 2 and 1.3 cm mixers.
parameters appropriate to the 2- and $1.3-\mathrm{cm}$ bands.
From Figure 3.2, then, we see that the range required in the variable attenuator is about 3.5 to 22 dB , although most of the time we expect to operate with $T_{s}{ }^{\prime}<100 \mathrm{~K}$ on all bands, in which case the range is 3.5 to 18 dB . This does not take into account the possibility of a very strong source in the beam; one can do so using the data in the last column of Table 11 . Figure 3.2 also shows a typical curve of phase shift vs attenuation for the variable attenuator used (Vectronics model DA0125-40, purchased to Specification A13180N3).

3.2 FREQUENCY CONVERTER MODULE, F4

3.2.1 R.F. Components

Refer again to the subsystem block diagram, figure 1.1. The 500 MHz bandwidth R.F. input is passed through a band-pass filter, which is designed to isolate the 3.5 to 4.0 GHz L.O. from the input (otherwise, it could be coupled to the adjacent channel's input through the finite isolation of the R.F. Splitter module). This is followed by an isolator to improve the match into the double-balanced mixer. The L.O. input is also passed through a band-pass filter in order to prevent possible crosstalk between channels A and C or B and D (which have common L.O. signals), and hence possible crosspolarization, by way of the finite $R-$ to- L and $L-t o-R$ isolations of the mixers and the finite isolation of the L.O. power dividers outside the modules. The R.F. and L.O. band-pass filters are chosen to have the same fractional bandwidth, number of poles and type of construction and so their temperature coefficients of phase should be nearly the same. They are mounted close to each other so that phase variations with temperature should cancel.

The double-balanced mixer responds to signals such that

$$
n f_{R}+m f_{L}=f_{1}
$$

where f_{R}, f_{L} and f_{1} are the $R-, L$ - and 1 -port frequencies, respectively; and n, m are any (small) integers. The desired response is
$(n, m)=(1,-1)$. Higher-order responses are weaker, with even harmonics better rejected by the mixer balance than odd harmonics. The strongest undesired response is $(-1,2) ; f_{1}$ has been chosen as 1000 to 1050 MHz in order that this response have f_{R} well outside the 4.5 to 5.0 GHz band for all values of f_{L} being used. The lowestorder response falling in the band is then $(-2,3)$, although $(2,-2)$ approaches the lower band edge; this is illustrated in Figure 3.4.

The mixer is followed by an amplifier with 26 dB gain. This amplifier has a nominal frequency range of 1000 to 2000 MHz , but its 3 dB bandwidth is actually about 700 to 2500 MHz . It was chosen because a large number was available from earlier designs. At most L.O. settings, this amplifier responds to the entire R.F. band, and will be the first component to saturate if the input level is increased excessively (next would be the GaAs FET amplifier, followed by the paramp; see Figure 3.1). The saturation point of this amplifier might

Figure 3.4: Lines of $n f_{R}+m f_{L}=1025 \mathrm{MHz}$, for various (n, m).
have been raised to a much higher input power level by placing it after the band-pass filter (in F7); but that filter is required to have a rather high insertion loss of up to 10 dB , and this would have made it difficult to meet the subsystem noise figure specification.

The 26 dB amplifier is followed by a selected pad, used to establish the overall gain of the F 4 module at 66.0 dB , compensating for variations in other components. This location was chosen for the gain-setting pad because it also helps to improve the match seen by the following component, the band-pass filter in F7. The amplifier output has a VSWR of nearly 2.0, which can cause excessive ripple in the filter response. (Further discussion is given in Section 3.6.)

The signal is next passed through the bandwidth-determining filter in F7, and then returned to the F4 module for further amplification. A current-controlled attenuator closes the ALC loop at this point. The attenuator is an absorbtive design using 90° hybrids to maintain a good match. It is specified to have low phase shift with attenuation over the normally-used portion of its range (specification A13180N3, see Appendix D). This is made feasible by the fact that the signal occupies at most a 5% bandwidth at this point, with the same zentei fiequenty for all channels.

The attenuator is followed by a high-gain (52 dB) amplifier, bringing the final output of the module to about -8.5 dBm .

The 1000 to 1050 MHz output of F 4 is passed to F 8 , where it is upconverted to one of the four I.F. channels and combined with the other three channels. A portion of the upconverted signals is returned to F4 to close the ALC loop. The returned signal, at -22.5 dBm , feeds a balanced detector consisting of a 90° hybrid and two tunnel diode detectors. To the extent that the detectors have-equal reflection coefficients, reflected power appears at the terminated port of the hybrid, and the input is well matched. Tests using all pairs from six randomly-selected detectors gave better than 20 dB return loss at the input for all frequencies of interest.

3.2.2 Gated ALC Loop

Refer to the schematic diagram, Figure 3.5.
Signals from the two detectors are each terminated in a 100Ω resistor and added in an operational amplifier, A3. This terminating impedance should provide good square-law accuracy to at least -20 dBm per detector (see Appendix D); with the ALC loop closed, the level will be held to -25 dBm per detector.

An AD741LH is chosen for the detector amplifier because of its low input offset drift ($<5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$). Since each detector will provide about 1 mV across 100Ω at $-25 \mathrm{dBm}, 1 \%$ error occurs for an offset of about $20 \mu \mathrm{~V}$. If this circuitry is used to derive gain corrections for the astronomical data, then $\ll 1 \%$ error is desired. In that case, it may be desirable to substitute an even more stable amplifier, especially if we consider that the offset compensation adjustment must be made in the laboratory where the temperature may be up to $10^{\circ} \mathrm{C}$ different from that at the antenna.

The output of A3 will be held at 3.0 V by the ALC loop; thus, a voltage gain of about 1,500 is required. At this gain, the bandwidth is about 700 Hz , which is sufficient to avoid significant attenuation of a 9.6 Hz square-wave which modulates the R.F. input, as discussed below. The exact gain is set by $R 5$, which compensates for deviations from nominal detector sensitivity. Input offset is nulled by R4 (which must be particularly stable and smoothly settable), R3, and R 2 , which give a $\pm 1.8 \mathrm{mV}$ adjustment range.

The output of $A 3$ is connected through FET switch A9B to the ALC integrator, A1. The switch provides gating of the loop in synchronism with the switching of a noise source connected at the receiver input. This noise source is turned on and off at a 9.6 Hz rate by the Control Interface module (F5), which also provides the switching signal to F 4 as TTL logic at rear panel connector P1, pin H. When the noise source is on, broadband noise power equal to 10% of the nominal system noise for the band being used is added to the receiver input. The FET switch connects the detector amplifier to the integrator when the noise source is off ($\mathrm{P} 1-\mathrm{H}$ is HIGH), and shorts the integrator input when the noise source is on; thus the
loop responds only to the "off" signal level, and the gain is held constant during the "on" time.

The integrator input is offset by 3.0 V , derived from a sharpknee, low drift voltage reference, D2, and 1% voltage divider R24R25.

The integrator has a time constant of $\tau=0.5 \mathrm{sec}$, selected to be long enough that drift during the "on" time will be negligible. It drives the current-controlled attenuator through gain-setting resistors R58 and R29, and FET switch A10. R58 is adjusted to give a 2 V change in the output of $A 1$ over the specified input level range of 10 dB (cf. Table 1). We can assume that the gain varies approximately exponentially with attenuator current over this range, so that the power into the detector is

$$
P_{d}=G_{o} P_{i} e^{-k V_{I}}
$$

where G_{0} is a constant gain, P_{i} is the input power, k is a constant depending on the attenuator characteristics and $R 58+R 29$, and V_{1} is the integrator output voltage. Since V_{i} changes by $2 V$ when P_{i} changes by 10 dB , with P_{d} held constant, it is easy to show that $k=-(\log 0.1) / 2 \mathrm{~V}$. The open loop gain from integrator output to integrator input, when the latter is in the vicinity of 3 V , is $-(3 \mathrm{~V})$ $\times k=3 / 2 \log 0.1=-3.45$. The total open loop gain, including the integrator, is

$$
H_{o \ell}(s)=-\frac{3 / 2 \log 0.1}{\tau s}=+\frac{6.90 \mathrm{sec}^{-1}}{s}
$$

from which one can calculate the close-loop transfer function:

$$
H_{c \ell}(s)=-\frac{H_{o \ell}(s)}{1-H_{o \ell}(s)}=\frac{1}{1-\tau^{\prime} s}
$$

where $\tau^{\prime}=\left(6.90 \mathrm{sec}^{-1}\right)^{-1}=0.14 \mathrm{sec}$ is the closed-loop time constant. It should be emphasized that this transfer function applies only to small disturbances of the loop; transients in which the integrator input departs greatly from 3 V , or during which the integrator output saturates, can have much different responses (usually slower). Also, note that since the loop is closed only half the time, the effective time constant is $2 \mathrm{~T}^{\prime}$.

The ALC loop may be disabled by applying a TTL low level to P1-R. This causes FET switch A10 to disconnect the integrator output from the attenuator and instead to apply a constant current of about 0.7 mA . This sets the attenuator near its nominal attenuation of about 12 dB .

Open circuits at P1-H and P1-R will cause the loop to be closed and enabled, respectively, by virtue of voltage dividers R51-R52 and R53-R54.

The integrator output voltage can be monitored at the front panel meter and BNC jack and at P1-J on the rear panel. The connections are via R56, R31 and R30; a high-impedance load ($\gtrsim_{\sim} 100 \mathrm{~K}$) is required. The monitor outputs can be offset by up to $\pm 2.4 \mathrm{~V}$ by adjusting R59; this allows their absolute calibration in terms of the module input power. R59 and R58 are normally adjusted to obtain +2.0 V at minimum specified input level (-58 dBm) and +4.0 V at 10 dB higher. In addition, the integrator output is connected, with no offset, to P1-L through a 1 K resistor, R64; this is intended for possible future use, in case it becomes desirable to close the loop through an external attenuator placed earlier in the signal path. Finally, the integrator output also connects through R28 to a front panel LED, whose polarity is such that it is on when the integrator output is negative; it thus indicates insufficient input power or gain and is labeled "low gain".

3.2.3 Fast Limiter and Peak Detector

There is some concern that the VLA may occasionally experience interference of large amplitude but short duty cycle, as in pulsed radar. It may be possible to operate in the presence of such inter-
ference if the receiver gain can be rapidly reduced when it is on (in order to prevent saturation of the waveguide channel), and rapidly returned to normal when it is off. The gated ALC loop does not accomplish this because, first, it is open half the time, and, second, its response is too slow to handle the $\sim 1 \mu \mathrm{sec}$ pulse widths expected. Therefore, a separate, ungated, high-speed limiter has been included.

A small portion of each of the detector output currents is fed to the summing junction of a high-slew-rate operational amplifier, A4, through R7 and R62. This amplifier has relatively poor offset drift ($25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$), but it has high input impedance and a large gain-bandwidth product (70 MHz). The gain is adjusted by R 8 for 0.1 V out when the gated ALC loop is holding the detector input at -22.5 dBm . This will normally require a voltage gain of 50 , giving a bandwidth of 1.4 MHz . The input offset is nulled by R12, R11 and R10 ($\pm 18 \mathrm{mV}$ range). Note that a portion of the offset of A4 can appear across A3's input through the voltage dividers R7, (R1 || detector) and R62, (R2 || detector); thus, the offset adjustments R4 and R12 interact slightly. This effect is minimized by making R7 and R62 large.

The output of A4 drives integrator A2, which has a time constant of $0.5 \mu \mathrm{sec}$ and whose input is offset by 0.2 V (D2, R21, R24). At normal input level, this produces a net offset of $0.1-0.2=$ -0.1 V , which would quickly drive A 2 to its negative rail if it were not for transistor Q 1 , which clamps it at -0.7 V . This clamping keeps A2 unsaturated, allowing it to respond quickly to a sudden change in input level. The output of A2 connects through R32, diode D3 and switch A10 to the current-controlled attenuator; any output current from A2 is thus added to that from the gated integrator, A1.

Normally D3 is reverse biased by 1.7 V (about 1 V appears across the attenuator, which looks like a forward-biased diode) so the fast limiter has no effect. But if the input power suddenly increases so that the output of A 4 exceeds $0.2 \mathrm{~V}, \mathrm{Q} 1$ will turn off and the output of $A 2$ will rapidly increase. When the latter exceeds about 1 V , D3 will conduct and additional current will be supplied to the attenuator, reducing the gain. The input level change at which this
occurs is set by R8; if set for 0.1 V normal output from A 4 , a 3 dB increase will activate the limiter. Slightly tighter limiting is possible, but a margin must be allowed for noise (in view of the short integrating time of A2) and for the offset drift of A4.

In order to provide a warning that pulse-type interference is being experienced, A4 also drives an ac-coupled peak detector, consisting of C13, R14, D1, R15, C14, R16, R17, and A7. The coupling $\mathrm{C} 13 \times$ R14 limits the detector's response to transients with rise times $\lesssim 10 \mu \mathrm{sec}$, while R15 \times C14 sets the minimum pulse width at $\sim 1 \mu \mathrm{sec}$, closely matching the response speed of $A 4$. The hold time is determined by $C 14 \times(R 16+R 17), \sim 0.5 \mathrm{sec}$. A7 provides a very high-input impedance, unity gain buffer. Outputs connect to the front panel meter and BNC jack, and to the rear panel at P1-P.

3.2.4 Synchronous Detector

The output of detector amplifier A3 contains a small, squarewave modulation due to the calibration noise source switching, as described in Section 3.2.2, above. Letting E_{1} be the mean outpuit voltage of $A 3$ when the noise source is off, and E_{2} the voltage when it is on, the synchronous detector is designed to allow accurate measurement of $E_{2}-E_{1}$.

The synchronous detection is accomplished by applying a 9.6 Hz TTL reference square-wave to FET SPDT switch A9A. The top switch contact is closed when calibration noise is off, so C3 charges toward E_{1}; the $R 34 \times C 3$ time constant is 0.5 seconds, so many cycles are required to reach E_{1}. During the alternate half-cycle, the top contact is open, C3 holds its previous value, the bottom contact is closed, and C4 charges toward E_{2}.

The voltages on C3 and C4 are buffered by A5 and A6 so that in the steady-state E_{1} and E_{2} are available at their outputs. E_{1} can be monitored by the front-panel switch (TOT PWR) and E_{2} is available only on internal test point, E31. A differential amplifier, A8, is used to provide an output of $15 \times\left(E_{2}-E_{1}\right)$. Adjustment R36 is used to balance this amplifier.

The synchronous detector output is available at the rear panel (P1-K) and at the front-panel monitor switch. Note that the meter is offset to read mid-scale for zero output but the BNC jack directly connects to the synchronous-detector output; i.e., the jack voltage is zero for $E_{2}=E_{1}$.

3.3 FRONT END I.F. FILTERS MODULE, F7

3.3.1 Choice of Filter Parameters

The first I.F. band of the subsystem was selected as 1000 to 1050 MHz for the reason given in Section 3.2.1. Filtering at the first 1.F. is required in order to reject the image of the second mixer (in F8), and also to reduce the power which the 52 dB amplifier (in F4) must handle. It was decided to put here the most selective filter of the antenna signal processing, for two reasons: to reject out-of-band interference as early as possible, and to allow the filters to be identical for all channels. The F7 filter determines the bandwidth which will be transmitted through the waveguide (since the filter in F8 is wider), but a narrower filter should always be selected at baseband (in the Control Building) so that the latter controls the system bandwidth.

Maximum rejection of out-of-band interference requires the sharpest possible cutoff and the narrowest possible bandwidth. However, improving these parameters necessarily increases the temperature coefficient of phase of a filter. By specifying especially stable, temperature-compensated filters (see Section 3.5), six-section filters can be used, giving a 60 dB bandwidth about 3 times the 3 dB bandwidth (Specification A13190N1-3; see Appendix D). In order to keep the ultimate stopband attenuation as large as possible, the filters are of Chebyshev rather than elliptic function design.

In each F7, three filters are available for selection using PIN diode switches, and a fourth set of switches is provided for a possible future filter. The switches and three filters are integrated into a single assembly, purchased from RLC Electronics under Specification Al3190N9.

The 25 MHz and 12 MHz bandwidths are available for use when smaller system bandwidths are selected at baseband and near-frequency interference is not adequately rejected by the 55 MHz bandwidth filter. These F7 bandwidths should be used only if needed for interference rejection, since they exact a phase-stability penalty (see Section 3.5).

The center frequency of the 12 MHz bandwidth filter is set at 1027 MHz in order to include the 1421 MHz line of atomic hydrogen within the band at an avalable setting of the $2-4 \mathrm{GHz}$ Synthesizer, L6. (With the latter at 3589.9 MHz , the $1027 / 12$ I.F. band translates to $1416.9 / 12$.)

The filters are specified to contain resistive padding so that the total output power remains nearly constant as the bandwidth is changed when the input is white noise. Although not specified directly, each filter-switch assembly contains a tubular low-pass structure with a cutoff around 2 GHz in the common path on one end; this attenuates high-frequency spurious responses, especially odd harmonics of the passband. Both the low-pass structure and the padding are on the end used for input, connected to $\mathrm{F} 7-\mathrm{J} 8$. The padding helps to improve the match seen by the filter, which is driven by the 26 dB amplifier in F4; the latter has a VSWR near 2.0.

3.3.2 Switch Drivers

Refer to the F7 module schematic, Figure 3.6.
Four TTL signals are supplied to the module from the Control Interface module (F5) via rear-panel connector P1; all are $\mathrm{HIGH}=$ TRUE. Three of these are a binary-coded filter select command, allowing for 8 different commands even though only 4 switch positions are available (the MSB, bit 2, is ignored). The fourth is TRUE if the F5 front panel is set to manual mode (or if the line is open-circuited, as in bench testing).

The filter select bits connect to one set of inputs of digital multiplexer U3 (74157). If MANUAL is FALSE, they are connected to the inputs of decoder $U 2$ (8250); if MANUAL is TRUE, the filter

select bits are not used and the decoder inputs are connected to the thumbwheel switch on the F7 front panel, which then controls the filter selection. The decoder has 8 output lines; line N is held low when the input code is N, and all others are held high.

The decoder outputs for codes 0 to 3 are connected through noninverting buffers in U1 (7407) to transistor switch drivers, Q1 through Q4. When the input to any switch driver is HIGH ($>4.3 \mathrm{~V}$), the transistor is cut off and the output line, connected to the collector, is at -15 V through 10 k ohms. The output line is connected to two control terminals of switch-filter assembly A13190N9, namely the input and output switch controls of one filter. A negative potential applied to any of these terminals opens the corresponding PIN diode switch; very little current is required since the diodes are reverse biased, and the 10 k resistor provides current limiting in case of a short or other failure. When code $0,1,2$, or 3 is selected, one switch driver input is held LOW, causing sufficient base current to flow to saturate the transistor. This applies about +4.7 V to the output line and turns on the corresponding pair of PIN diode switches. Also, the LOW input allows current to flow through an LED (CR1, 2, 3, or 4) and 130 ohm resistor, providing a front-panel monitor of the selected filter.

3.3.3 Auxiliary Filter Selection

Notice from Figure 3.6 that when the fourth switch position (code $=3$) is selected, the signal is connected straight through by way of a cable, with no filtering. This may sometimes be useful for testing. The cable can be replaced by another filter, mounted inside the module, if such a need should arise in the future. It should be noted that when one of the present three filters is selected, rejection at frequencies far from the passband may be limited by the isolation of the switches and transmission through the auxiliary cable. If this proves troublesome, the cable can be removed; but then J 3 and $\mathrm{J4}$ of the switch-filter assembly must be terminated to prevent RFI problems.

3.4 I.F. OFFSET MODULE, F8

3.4.1 Amplifier-Mixer Assembly

The F8 mixer is required to upconvert the $1000-1050 \mathrm{MHz}$ band to one of the four I.F. bands centered at 1325, 1425, 1575, and 1675 MHz . However, most commercially available mixers suitable for operation in this frequency range are intended for dewar-conversion, and their l-port frequency response does not extend much above 1000 MHz . Consequently, the mixer is configured with the L.O. (the lowest frequency in our case) connected to the 1-port and the output taken from the L-port.

Various mixers were evaluated for this application. Design requirements included good rejection of L.O. harmonics (hence only double-balanced mixers were considered); flat conversion loss across the 50 MHz channel; nearly equal conversion loss in the four channels, so that the subassemblies would be interchangeable; and low reflection at the R-port, since the input connection is through a relatively long cable. The mixers evaluated included the watkinsJohnson M2G and M2A; the Anzac MD152; and the Vari-L DBM-177. The M2A was chosen because tests showed it to have better odd harmonic of L.O. rejection than the others (although the M2G was better for even harmonics), had better flatness across the 50 MHz channel, and because it is supplied in a conveniently-sized package (TO-8).

The L.O. harmonics which can appear at the mixer output for each of the four channels are illustrated in Figure 3.7. A few frequencies are troublesome: 1200 MHz (which is 4 f . O. for the channel A mixer and $3 f_{L . O}$. for channel B), because it is one of the main L.O. reference frequencies to be transmitted to the Control Building along with the composite I.F. signal; 1300 MHz (2 f L. O. for D), because it is at the low end of channel $A ; 1600 \mathrm{MHz}$ ($4 \mathrm{f}_{\mathrm{L}}$.O. for B), at the high end of channel C; and 1650 MHz (3 f L.O. for C), low end of channel D. Each of these is subject to considerable attenuation in the 60 MHz band-pass filter which follows the mixer. We can estimate the acceptable levels and the required degree of filtering as follows.

Figure 3.7: Undesired L.O. responses of $\mathrm{F8}$ mixers.

For the 1200 MHz signal, it should be $<-60 \mathrm{~dB}$ with respect to the desired 1200 MHz L.O. reference carrier in order to cause a phase shift of $<.05^{\circ}$; the desired carrier would be -35 dBm referred to F8-J8, so the spur must be $<-95 \mathrm{dBm}$ there, or $<-82 \mathrm{dBm}$ plus the BPF rejection referred to the mixer output.

For signals appearing at the edges of the I.F. channels, we would like to make the spurs undetectable in 12 hours of integrating at any observing bandwidth. The worst case occurs with the narrowest bandwidths in spectrometer mode. Although spurs at the I.F. channel edges will never be in the analyzed band, they can enter by imaging or aliasing; we can count on a minimum of 30 dB rejection of such signals in the I.F.-to-baseband conversion subsystem. In addition, we can count on about 20 dB rejection due to the synchronous phase switching of the $2-4 \mathrm{GHz}$ L.O. and the correlator. The allowable level at the F8 output is then

$$
P_{\text {spur }} \lesssim P_{\text {noise }} \frac{W_{\text {final }}}{W_{\text {noise }}} \frac{1}{\sqrt{W_{\text {final }} T}} \quad(+20 \mathrm{~dB})(+30 \mathrm{~dB})
$$

where $P_{\text {noise }}=-33.5 \mathrm{dBm}, W_{\text {noise }}=55 \mathrm{MHz}, W_{\text {final }}=381 \mathrm{~Hz}$ (smallest spectrometer channel width), $T=12$ hours. Thus
$\mathrm{P}_{\text {spur }} \leq-71 \mathrm{dBm}$
which becomes -58 dBm plus the BPF rejection at the mixer output.
The results of the calculations are summarized in Table 111, which also shows the expected filter rejections. In order to keep the 4 f L. O. output close to the required level, it was necessary to reduce the L.O. drive below the recommended +7 dBm . At 0 dBm , the conversion loss increases by 1 to 1.5 dB , but the various L.O. harmonics are reduced to 7 to 10 dB . The R -port impedance also varies with L.O. power, but tests show little variation of this impedance or of the conversion loss for L.O. powers of -3 to +3 dBm .

The mixer assembly includes a 14.5 dB (typical) amplifier for the L.O. and an input matching network at the R-port. Tests of various M2A's showed very consistent reflection coefficients at 1025 MHz and 0 dBm L.O. for $\mathrm{f}_{\mathrm{L} . \mathrm{O}}=300$ to 650 MHz , namely a magnitude of -10 dB and phase of $+120 \pm 10^{\circ}$. A simple matching network (shunt-L and series-C) gave better than 20 dB return loss from 1000 to 1050 MHz and $P_{L}=-3$ to +3 dBm on each of three prototypes, without selecting or adjusting network values. A good match here is necessary in order to avoid significant standing waves along the cable connecting the F8 inputs to the F4's.

3.4.2 L.O. Demultiplexing

The required L.O. signals at $300,400,550$, and 650 MHz must be derived from the 50 MHz comb supplied to the module from the

TABLE III: F8 MIXER SPURIOUS OUTPUT REQUIREMENTS

Channel	Critical Requirement	$$	Max Allowable at Mixer Output	$\begin{aligned} & \text { Test Results } \\ & \quad[2] \\ & \hline \end{aligned}$
A	-82 dBm at 1200 ($4 \mathrm{f}_{\mathrm{L} .0}$.	$4 \quad-40 \mathrm{~dB}$	-42 dBm	-40 dBm
B	-82 at 1200 ($3 \mathrm{f}_{\mathrm{L} .0}$)	$4 \quad-58$	-24	-45
C	-58 at 1650 ($3 \mathrm{f}_{\mathrm{L.0}}$)	$6 \quad-44$	-14	-46
D	-58 at 1300 ($\mathrm{f}_{\text {L.O. }}$)	$4 \quad-70$	>0	-43

[1] Calculated conservatively, at the critical frequency.
[2] For one M2A with 0 dBm at $\mathrm{f}_{\mathrm{L} .0}$ into port I ; power measured at port L at the critical frequency.

50 MHz Harmonic Generator (L2) in Rack B. The comb is not perfectly flat, and the spectrum varies somewhat from unit to unit. A typical spectrum at the output of Rack B is shown in Figure 3.8. This is transmitted through 5.5 feet of .250 -inch spline-dielectric cable and 2.1 feet of . 141 -inch solid TFE dielectric cable, producing a loss of 0.25 to 0.4 dB . The arrangement of components shown in the block diagram is chosen to deliver $-14.5 \pm 2 \mathrm{dBm}$ to each of the four amplifier-mixers over the range of variations observed in L 2 modules so far built. This should result in $0 \pm 2.5 \mathrm{dBm}$ at the mixer's 1 -port.

The available L.O. power was another consideration in setting the mixer drive level at 0 dBm . Most of the required amplification must be placed after the filters in order to avoid using expensive, high-power amplifiers. The 6.5 dB amplifier operates at about +10 dBm output (including all 50 MHz harmonics to 1 GHz), which is

Figure 3.8: Typical second L.O. (50 MHz comb) spectrum at F8-J7.
about its 1 dB gain compression point for broadband signals (even though its CW compression point is specified as $\underset{\sim}{2}+20 \mathrm{dBm}$). This amplifier also buffers the long input cable from L2, so that it sees a reasonably good match; the return loss looking into the power divider is only about 4 dB at almost all frequencies.

For each channel, the required comb line is selected by a bandpass filter. These filters need sufficient selectivity to reject the adjacent comb lines by at least 30 dB , to keep spurious responses less than 0.1% for spectroscopy. (Since the channel bandwidth here can be slightly greater than 50 MHz , signals near one band edge can show up at the opposite band edge when converted by a comb line adjacent to the desired one.) But the filters must not be so selective that they have high temperature coefficients of phase. Three-section, 18 MHz bandwidth filters seemed the best compromise. To save space in the module, helical resonator filters were selected. The manufacturer of these filters ($K \& L$ Microwave) had considerable difficulty in meeting our temperature coefficient specification of <10 ppm/C; they had to employ chip capacitors with carefully chosen temperature coefficients to compensate the inductance variations. Without such special efforts, filters of this type seem to perform no better than tubular filters, i.e., with temperature coefficients ~-50 ppm/C.

The L.O. demultiplexing network in F8 could be made much more efficient and simpler if implemented with channel-dropping filters in a true demultiplexer, rather than wasting most of the power of the desired lines in a power divider. If directional filters were used, the unused comb lines could all be terminated in a matched load (see, e.g. G. L. Matthaei et al., Microwave Filters, Impedance Matching Networks, and Coupling Structures, McGraw-Hill 1964). The module design effort did not include enough time to pursue this approach, but it should be considered if any redesign is required later.

3.4.3 Other R.F. Components
 The mixer output is connected through an isolator to a bandpass filter covering the I.F. channel. The selectivity required in

this filter is determined mainly by the need to reject harmonics of the L.O., as discussed in Section 3.4.1. The isolator is needed to ensure a good match into the filter, since the mixer output is poorly matched and a mismatch here will cause the filter to produce large passband ripples (see Section 3.6.2). Isolators from several manufacturers were tested for phase/temperature coefficient before the present ones were selected; the latter gave $<.03 \mathrm{deg} /{ }^{\circ} \mathrm{C}$.

The 6 dB directional coupler ensures that the filter output is well matched; it sees mainly the low-VSWR balanced detector in F4. The coupler also keeps the four-way power combiner reasonably well matched, so that at the module output the return loss is at least 15 dB . Note that the power delivered to each F4 detector is controlled by the ALC loops, so the module output power is determined only by the coupling difference between the detector output and the composite I.F. output (J8) ports, namely 11 dB . Allowing 0.5 dB for cable losses, the subsystem delivers -34.0 dBm per channel to T 2 , or $\mathbf{- 2 8 . 0}$ dBm total.

3.5 TEMPERATURE STABILITY CONSIDERATIONS

As mentioned in Section 2, maintaining a low temperature coefficient of phase through the subsystem was a difficult design objective. The approach taken was simply to use broadband, nonresonant components wherever possible; to pay careful attention to component layout so that cable lengths would be short and the use of connectors would be minimized; and to specify carefully the band-pass filters which contain most of the selectivity. The specification of $<0.3^{\circ} / \mathrm{C}$ is based on an analysis of the phase error budget of the entire telescope $=$ with the objective of achieving $<1.4^{\circ}$ peak phase error at an observing frequency of 1.4 GHz ; of this, 1.1° is allocated to the L.O. and waveguide subsystems, and 0.1° to the front end, leaving 0.2° for our subsystem. We then assume that the peak temperature variation of the subsystem can be held to $<0.7 \mathrm{C}$ (1.4 C P-P), giving the specified temperature coefficient. Controlling the temperature to this precision is possible, but not easy (see, for example, VLA Elec-
tronics Memorandum No. 184); nevertheless, even tighter temperature control is highly desirable.

All signal-processing components of the subsystem have at least octave bandwidths except the band-pass filters and the isolators in F8; the latter had to be $15-20 \%$ bandwidth to fit in the available space, but were carefully tested for low $d \phi / d T$. For band-pass filters, the temperature coefficient of phase at the center of the passband is given fairly accurately by the formula

$$
\frac{\mathrm{d} \phi}{\mathrm{dT}}=\frac{\pi N f_{\mathrm{o}}}{2 \Delta \mathrm{f}} \mathrm{k}
$$

where N is the number of sections (upper-half-plane poles), f_{0} is the center frequency, Δf is the 3 dB bandwidth, and $k=f_{0}^{-1} d f_{0} / d T$ is the fractional temperature coefficient of center frequency. Normally, k is a constant for a particular type of filter construction; for a cavity filter constructed of a single material, $-k$ equals the expansion coefficient of the material used. For tubular filters, $k \approx-50 x$ $10^{-6} / \mathrm{C}$.

In F4, the R.F. and L.O. tubular filters have $N=4$ and are expected to have $d \phi / d T \approx-.11^{\circ} / \mathrm{C}$, but their effects should cancel in the first mixer and we neglect them here.

The first I.F. filter in F7, the second I.F. filter in F8 and the L.O. filter in F8 are of necessity arranged such that their phase shifts add at the output frequency. These are also the filters with the narrowest fractional bandwidths. Assuming that their k-values all have the same sign (usually negative), they must be held to unusually small values in order to achieve the required stability at the output. Table IV lists the maximum total temperature coefficient of phase of the three filters for each channel and bandwidth; it also gives the number of sections and specified maximum value of k for each filter. It is apparent that most of the allowed subsystem temperature coefficient is taken up in these filters, especially for channels C and D, and that the coefficient is expected to be much worse when the narrow bandwidths are selected.

TABLE IV: COMBINED $d \phi / d T$ FOR BPF'S

	Combined $\mathrm{d} \phi / \mathrm{dT}$, degrees/C					1st I.F. Filter		
	Band- vidth	Channel						
		A	B	C	D	$\mathrm{d} \phi / \mathrm{dT}$		$\|k\|_{\text {max }}$
	55	. 195	. 216	. 248	. 269	. 070	6	7
	25	. 280	. 301	. 333	. 354	. 155	6	7
	12.5	436	. 457	. 489	. 510	. 311	6	7
2nd I.F. Filter	$\mathrm{d} \phi / \mathrm{dT}$. 080	. 086	. 095	. 101	\% $/ \mathrm{C}$		ppm/C
	N	4	4	5	4			
	$\|\mathrm{k}\|_{\text {max }}$	10	10	8	10	ppm/		
L.0. Filter	$\mathrm{d} \phi / \mathrm{dT}$. 045	. 060	. 083	. 098	\%/C		
	N	3	3	3	3			
	$\|\mathrm{k}\|_{\max }$	10	10	10	10	ppm/		

Tests have been made of the temperature coefficient of the whole subsystem, using early prototype modules. These tests involved placing one each F4, F7 and F8 module in a temperature-controlled chamber with the modules properly interconnected (using short runs of semi-rigid coax) so as to make one channei operative. A similar set of modules was operated outside the chamber, at constant temperature; and the phase difference of the output signals from the two sets was monitored, using a network analyzer, while the chamber temperature was varied. Identical L.O. and R.F. signals were fed to the two module sets, with the cables into and out of the chamber kept as short as possible (a few inches). Similar tests were performed on portions of the subsystem. The results are summarized in Table V. Note that during these tests the L.O. filters in F8 were not the final ones, which are required to have $|k|<10 \mathrm{ppm} / \mathrm{C}$; the filters used

Table V: SUBSYSTEM TEST RESULTS; $d \phi / d T$, EARLY PROTOTYPES

Note: During these tests, the F8 L.O. filters had $k \approx-50 \mathrm{ppm}^{\circ} / \mathrm{C}$; spec requires $|k|<10$ in production units.

Subsystem	Run 1	Run 2	Run 3	Average	F8 L.O. Filter (calculated)
ALC off: Ch. B	$-0.18^{\circ} / \mathrm{C}$	-	-	-0.18	-0.30
Ch. D	-0.25	-0.35	-	-0.30	-0.49
ALC on: Ch. B	-0.19	-0.15	-	-0.17	-0.30
Ch. D	-	-0.40	-0.39	-0.40	-0.49
Input to F4-J6	+. 03	+. 03		+. 03	
$\begin{aligned} & \text { F4 alt. inp. to } \\ & \text { F4 out including F7 } \end{aligned}$	+. 058	+. 031		+. 045	
F8 only Ch. B	-0.21			-0.21	-0.30
(ALC off) Ch. D	-0.36			-0.36	-0.49

had $k \approx-50 \mathrm{ppm} / \mathrm{C}$. Correcting for this, the tests indicate acceptable performance. As of this writing, temperature coefficient tests of the final-design subsystem have not been completed.

3.6 IMPEDANCE MATCHING CONSIDERATIONS

Another difficult specification was the gain variation with frequency, which should be held to $<0.5 \mathrm{~dB} P \mathrm{P}$, across each 50 MHz channel. Because most of the components have bandwidths much greater than 50 MHz , their intrinsic gain variations across the channel are expected to be very small (however, the $W J-M 2 A$ mixer was selected for F8 partly because it offered better flatness than others). Departures from flatness across 50 MHz result mainly from reflections between mismatched components separated by a significant length of transmission line, and from the band-pass filters at the first and second I.F.'s, where bandwidths are near 50 MHz .

3.6.1 Ripple Due to Reflections

If a source with reflection coefficient Γ_{1} and a load with reflection coefficient Γ_{2} are separated by a lossless transmission line of length ℓ, then the transfer function is

$$
H(\omega)=\frac{V_{2}}{V_{1}}=1+\Gamma_{1} \Gamma_{2} e^{-j 2 \ell \omega / v}+\text { (higher order terms) },
$$

where $w=2 \pi f$ is the angular frequency and v is the phase velocity, assumed dispersionless. The maximum slope of $|H|^{2}$ is easily shown to be (neglecting higher order terms)

$$
\left.\frac{\mathrm{d}|\mathrm{H}|^{2}}{\mathrm{~d} \omega}\right|_{\max }=4 \Gamma_{1} \Gamma_{2} / v
$$

Over a small bandwidth $\Delta w=2 \pi \Delta f \ll v / 2 \ell$, we have

$$
\Delta|\mathrm{H}|^{2} \equiv \Delta \mathrm{P}=8 \pi \Gamma_{1} \Gamma_{2} \Delta \mathrm{f} / \mathrm{v}
$$

Taking $\Delta f=50 \mathrm{MHz}$ and $v=0.7 \mathrm{c}$, the above inequality is satisfied for most of the cables in our subsystem (the longest, connecting F 8 to F4, is about 0.4 m).

Figure 3.9 is a plot of ΔP vs ℓ and $\Gamma_{1}=\Gamma_{2}$ for our case. The results indicate that even fairly poor matches are tolerable for short line lengths, but that special care must be taken at the interfaces between modules where lines are long. It is for this reason that the balanced detector was required in F4, and the matching network was required at the mixer R-port in F8. Also, the internal layouts of F4 and F8 are designed to keep cable lengths short.

Figure 3.9: Gain variation across 50 MHz due to two equal reflections separated by a line of length ℓ.

3.6.2 Behavior of Filters with Mismatched Source or Load

The filter specifications (see Appendix D) allow a passband ripple of up to $0.5 \mathrm{~dB} P-P$, but they also require a passband VSWR of ≤ 1.5. For a lossless filter, the latter implies a passband ripple of $<0.18 \mathrm{~dB}$ when the filter is connected to exactly nominal (50 ohm) source and load impedances. (A slightly lossy filter, in practice, is a bit flatter.) However, we cannot guarantee that the source and load impedances will be 50 ohms, and this can have a large effect on the flatness of the filter's transfer function. To illustrate this effect, consider a lossless filter designed for input and output impedances of Z_{o} and terminated in a resistive load $R_{L}=Z_{o}$ but driven with resistive source impedance $R_{s} \neq Z_{o}$. If the filter is of Chebyshev (equal-ripple) design, its input impedance will vary across the
passband but will remain inside a circle centered on the real axis in the complex impedance plane, as shown in Figure 3.10. The circle's radius is related to $V_{\text {max' }}$ the maximum allowed VSWR in the passband. If R_{s} is outside the circle one can show that the ratio of the largest and smallest reflection coefficients is

$$
r=\frac{R_{s} V_{\max }+Z_{o}}{R_{s}+V_{\max } Z_{o}}
$$

and if R_{s} is inside the circle the ratio is

$$
r=\frac{1}{4 R_{s} V_{\max } Z_{0}} \max \left[\left(R_{s} V_{\max }+Z_{o}\right)^{2},\left(R_{s}+V_{\max } Z_{0}\right)^{2}\right]
$$

Figure 3.10: Input impedance of a Chebyshev filter with matched termination.

These formulas are plotted in Figure 3.11 for two values of $V_{\text {max }}$ ' corresponding to Chebyshev filters with design ripples of .18 dB and .01 dB . It is apparent that a filter's design ripple can be greatly exceeded when it is mismatched.

Because of this, care has been taken to ensure that the I.F. filters in F7 and F8 are well matched. In F8, an isolator was required at each filter's input because the mixer may have an output reflection coefficient as large as -6 dB . The filter's output sees mainly the balanced detector in F4. In F7, there can be a problem at the filter's input because the amplifier in F4 which drives it (an Avantek ASD8199M) has a reflection coefficient around -10 dB ; but this is improved through padding, with typically 3 dB in F 4 (but possibly 0 dB in low-gain modules) and 0 to 6 dB in F 7 , depending on the bandwidth selected. It may be necessary in the future to add

Figure 3.11: Calculated peak-to-peak ripple in lossless Chebyshev filters with matched load but mismatched source, for design (matched) ripples of .18 and .01 dB .
an isolator at this point if maximum flatness is required at the narrow bandwidths. At the output of $F 7$, the filter sees the variable attenuator in F4, whose reflection coefficient is $<-14 \mathrm{~dB}$ (typically <-20 dB).

4.1 FREQUENCY CONVERTER, F4

4.1.1 R.F. Gain Check and Adjustment

Set up the test equipment as shown in Figure 4.1. Slight variations in the equipment are permissible, but the following precautions should be observed in order to obtain accurate results:
a. Use no unncessary adapters. Cables should be fabricated with appropriate connectors.
b. Keep all cables as short as is practical. Use no unnecessary cables in the signal path.
c. The power meter must be capable of better than 5% accuracy at -20 dBm and 5 GHz . Normally, this will require that the most sensitive range be $\leq-30 \mathrm{dBm}$ full scale.

Figure 4.1: Equipment setup for F4 gain measurement.
d. The 40 dB attenuator must be well matched (VSWR <1.15 at 5 GHz) and its actual attenuation must be known to $\pm 0.2 \mathrm{~dB}$ at $4.51,4.76$ and 4.91 GHz .
e. The 1025 MHz BPF should have <2 dB insertion loss, and the insertion loss must be known to $\pm 0.2 \mathrm{~dB}$ at 1000,1020 and 1050 MHz .
f. A means must be provided for setting the frequencies of the signal sources to $\pm 2 \mathrm{MHz}$.
To measure the module gain, proceed as follows. Set the 3.5 to 4.0 GHz source to $\mathrm{f}_{\mathrm{L} . \mathrm{O}}=3.740 \pm .002 \mathrm{GHz}$ and adjust its power for $+10.0 \pm 0.5 \mathrm{dBm}$ at J 3 . Set the 4.5 to 5.0 GHz source to $\mathrm{f}_{\mathrm{R} . \mathrm{F} .}=4.760$ $\pm .002 \mathrm{GHz}$, the step attenuator to 10 dB , and adjust the power for an indication of -25.0 dBm exactly when the power meter is connected to the output of the 10 dB pad. Be sure to set the power meter efficiency control for 4.8 GHz . Now connect the 10 dB pad's output through the calibrated 40 dB pad to J 2 , and connect the power meter to J1. Reset the power meter efficiency for 1 GHz . The module gain is then given by

$$
G=P-(-25 d B m)+L_{P}+L_{F}
$$

where P is the power meter reading in $d B m, L_{P}$ is the calibrated pad loss in $d B$ at frequency f_{R}, and L_{F} is the calibrated filter loss in $d B$ at frequency $f_{\text {I. }} .=f_{R . F}-f_{L . O}$.

Now repeat the gain measurement at $f_{I . F}=1.000,1.020$ and 1.050 GHz for each of several values of $\mathrm{f}_{\text {R.F., }}$ namely $4.510,4.760$ and 4.910 GHz . If necessary, replace attenuator AT2 in the module with a value selected to produce $G=66 \pm 1 \mathrm{~dB}$ at all test frequencies. Selection in steps of 1 dB may be necessary. Typically, AT2 is expected to be 3 dB , but values of 0 to 7 dB are possible. If the gain specification cannot be met with an attenuator in this range, then some component is defective and must be repaired or replaced before proceeding.

At this point, it is useful to check the module's compression point and noise figure. Decrease the setting of the step attenuator until 1 dB of gain compression occurs, and note the power meter reading; it must be $\geq+3 \mathrm{dBm}$. Next, disconnect the R.F. input from J 2 and install a 50Ω termination; note that the output power is <-18 dBm . Then terminate $\mathrm{J5}$; note that the output power is $<-28 \mathrm{dBm}$.

4.1.2 Detector and ALC Alignment

Set up the test equipment as shown in Figure 4.2. Observe precautions a, b, c, and f of Section 4.1.1. Refer to Figure 4.3 for the locations of adjustments.

1. Set $\mathrm{f}_{\text {L. O }}$. to 3.740 GHz and adjust power for +10 dBm at J3.
2. Set $f_{R . F}$. to 4.760 GHz , set the step attenuators to 10 dB , and adjust power for -20.0 dBm at J 2 .

Figure 4.2: Equipment setup for F4 detector and ALC alignment.

Figure 4.3: F4 printed circuit board, showing locations of adjustments.
3. Set step attenuators to $47 \mathrm{~dB}(-57 \mathrm{dBm}$ to J 2$)$.
4. Temporarily remove signal from $J 7$ and connect a 50Ω termination. NOTE: All voltages are to be measured with respect to terminal E32 (ground) on F4 pc board.
5. Adjust R4 for $0.000 \pm .001$ volt at $E 8$, and adjust R12 for $0.000 \pm .005$ volt at E34. Repeat until both conditions are achieved, since these adjustments interact slightly.
6. Reconnect signal to J 7 .
7. Adjust $R 5$ for $-22.5 \pm 0.1 \mathrm{dBm}$ on power meter. Verify that the "LOW GAIN" LED on the front panel is not on. (If "LOW GAIN" stays on, try adjusting R58.)
8. Adjust R8 for $0.100 \pm .005$ volt at E34.
9. Repeat steps 4 through 8.
10. Before proceeding, verify proper operation of ALC loop as follows: slowly reduce R.F. input level in 1 dB steps until power meter reading drops by 1 dB . Verify that this occurs at -60 to -70 dBm (50 to 60 dB on step attenuator), and that the "LOW GAIN" LED comes on.
11. Reset the step attenuator to 48 dB (-58 dBm input) and adjust R59 for $+2.00 \pm .01$ volts at E14 (or P1-J). If 2.00 volts cannot be obtained, try adjusting R58.
12. Change the step attenuator to $38 \mathrm{~dB}(-48 \mathrm{dBm}$ input) and adjust R58 for $+4.00 \pm .01$ volts at E14 (or P1-J).
13. Repeat steps 11 and 12 until -58 dBm gives 2.00 volts and -48 dBm gives +4.00 volts at E14.

4.1.3 Synchronous Detector Alignment

This procedure does not require the setups of Sections 4.1.1 and 4.1.2, and may be performed independently. Refer to Figure 4.3 for the locations of adjustments.

1. Remove IC A3 (AD741LH, detector amplifier).
2. Apply $+15.0 \pm .1$ volts to $\mathrm{P} 1-\mathrm{B},-15.0 \pm 0.1 \mathrm{~V}$ to $\mathrm{P} 1-\mathrm{E}$, and a 9.6 Hz TTL square-wave to P1-H. NOTE: The squarewave must be symmetric to 1% or better.
3. Connect a clip lead from IC A9, pin 10, to E32 (ground).
4. Adjust R39 for . $0000 \pm .0001$ volt at E21, and adjust R35 for $.0000 \pm .0001$ volt at E31.
5. Adjust R55 for . $000 \pm .001$ volt at E22.
6. Remove clip lead from E32 (ground) and connect to junction of D2, R21, R23, R24 (+6.9 volts). Verify that $+6.9 \pm 0.1$ volts is found at E21 and E31, and that the two differ by less than . 001 volt. (If not, check A9, A5 and A6 for possible fault.)
7. Adjust R36 for . $000 \pm .001$ volt at E22.
8. Alternately connect clip lead to ground and +6.9 volts adjusting R55 and R36 respectively until . $000 \pm .001$ volt is obtained at E 22 for both connections. (Allow 30 sec settling time after each connection change.)
9. Reinstall IC A3.

4.1.4 Data Sheet

When an F4 is first constructed and when a major realignment is undertaken because of maintenance work, the measurements made during alignment should be recorded on a standard data sheet. A sample data sheet, properly filled out and showing normal performance, is given in Figure 4.4.

4.2 FRONT END I.F. FILTERS, F7

This module contains no adjustments.
The switch-filter assemblies should all have been tested prior to installation in the module. Thereafter, any failures will probably be detectable with a simple insertion loss test at 1027 MHz ; the loss should be $10 \pm 1 \mathrm{~dB}, 7 \pm 1 \mathrm{~dB}, 4 \pm 1 \mathrm{~dB}$, and $1.5 \pm 0.5 \mathrm{~dB}$ for bandwidth selection codes of $0,1,2$, and 3 respectively. If these losses are obtained both with the selection code applied through the front-panel switch and with it applied through the rear connector, and if the front-panel lights indicate properly, then both the R.F. and control circuitry can be assumed to be operating correctly.
1.0 RF Performance (setup: see manual, Fig. 4.1)
$1.3 P_{\text {out }}$ at 1.0 dB gain compression (+3 dBm min.)
$1.4 \mathrm{P}_{\text {out }}$ with J2 terminated (-18 dBm max.)
$p_{\text {out }}$ with $J 5$ terminated (-28 dBm max.)
1.1 Value of selected attenuator, AT2

1.2 Measured gain ($66 \pm 1 \mathrm{~dB}$)
gain= $P_{\text {out }}+25 \mathrm{dBm}+\mathrm{L}_{\mathrm{p}}+\mathrm{L}_{\mathrm{f}} \quad \mathbf{f}_{\mathrm{IF}}=1000$
$\begin{array}{ll}\text { where } t_{p} \text { is calibrated pad } & 1020 \\ L_{f} \text { is calibrated filter } & \end{array}$ ${ }_{L_{f}}^{\mathbf{P}}$ is calibrated filter 1050
$d B$

A more detailed test involves a swept-frequency measurement of the response for each selected bandwidth. Care should be taken that the source and load are well matched (<-20 dB reflection coefficient preferred). Performance should be compared with the filter specifications given in Appendix D.

If marginal operation of the PIN diode switches is suspected, their isolation should be checked. At the frequencies corresponding to the -60 dB points of each filter, at least 60 dB of attenuation should be obtained when that filter is selected. If the auxiliary filter jumper cable is removed and 50Ω terminations installed in its place, then $>60 \mathrm{~dB}$ of attenuation should be obtained for selection code 3 at 1025 MHz .

CAUTION: Do not exceed +10 dBm R.F. input during any of these tests; distortion caused by the PIN diodes may then lead to spurious results, and burnout of the diodes is possible.

4.3 I.F. OFFSET, F8

This module also contains no adjustments.
The basic performance test involves a CW measurement of conversion loss, which may be performed separately for each channel. The first I.F. input should be about -9 dBm at 1025 MHz . The L.O. signal applied to J8 should meet the specifications of Table 1; if a comb is unavailable, a CW signal with frequency and level appropriate to the channel being tested may be used. The conversion loss from the input ($\mathrm{J} 16, \mathrm{~J} 14, \mathrm{~J} 13$, or J 15) to the corresponding detector output ($\mathrm{J} 9, \mathrm{~J} 11, \mathrm{~J} 12$, or J 10 , respectively) should be $13.5 \pm 1.5 \mathrm{~dB}$, with J8 terminated. From the input to J8, with the detector output terminated, it should be $24.5 \pm 1.5 \mathrm{~dB}$. The difference between the two outputs should be $-11.0 \pm 0.3 \mathrm{~dB}$.

More detailed tests include the following. A swept-frequency measurement of conversion loss should show variation less than 0.3 dB over 1000 to 1050 MHz input for any channel at nominal L.O. level. The -1 dB compression point for CW signals should be ≥-2 dBm referred to the input (typically 0 dBm). The total current
drawn from the +15 V supply should be $202 \pm 10 \mathrm{~mA}$ (110 mA for the L.O. amplifier and 23 mA for each of the others).

APPENDIX A: MONITOR AND CONTROL DATA

All connections between this subsystem and the Monitor and Control subsystem (or DCS) are via the Control Interface module, F5. For reference, data on these connections are summarized here.

A. 1 COMMANDS

Command Name	DCS Address ${ }^{\mathbf{1}}{ }^{\text {chent Panel }} \begin{aligned} & \text { Of F5 }\end{aligned}$	Rear Connectors ${ }^{2}$
Chan. A Alternate Input	3228 , bit 8 ALT INP	F4(A)P1-F; F5P1-d
ALC Off	322 , bit $7 \quad$ ALC OFF	F4(A)P1-R; F5P1-e
Filter Select	322 ${ }^{\text {, b b }}$, 2, 3	F7(A)P1-19, 20,21; F5P1-t,u,v
Chan. B Alternate Input	$3^{322} 8$, bit 5 ALT INP	F4(B)P1-F; F5P1-f
ALC Off	322 , bit 4 ALC OFF	F4(B0P1-R; F5P1-h
Filter Select	322 ${ }_{8}$, b. 15, 16, 12	F7(B)P1-19,20,21; F5P1-w, x,y
Chan. C Alternate Input	3238_{8}, bit 8 ALT INP	F4(C)P1-F; F5P1-j
ALC Off	3238 , bit 7 ALC OFF	F4(C)P1-R; F5P1-k
Filter Select	3238 , b. 1, 2, 3	F7(C)P1-19, 20,21; F5P1-z, AA, BB
Chan. D Alternate Input	323_{8}, bit 5 ALT INP	F4(D)P1-F; F5P1-m
ALC Off	3238^{8}, bit 4 ALC OFF	F4(D)P1-R; F5P1-n
Filter Select	323_{8}, b. $14,15,12$	F7(C)P1-19,20,21; F5P1-CC,DD,EE
Manual Operation	none MANUAL	F7(al1)P1-22; F5P1-Z

[^0]
A. 2 MONITOR DATA

Signal	Name	DCS Addess	Rear C	Connectors ${ }^{2}$
Chan. A	A Sync. Detector	0	F4(A)	P1-K; F5P2-B
	Total Power	1 -	F4(A)	P1-M; F5P2-D
	Input Level	2	F4(A)	P1-J; F5P2-A
	Peak Detector	3	F4(A)	P1-P; F5P2-E
	Filter Select Readback	2228, b.9,10,11	(3)	
Chan. B	Sync. Detector	4	F4(B)	P1-K; F5P2-H
	Total Power	5	F4(B)	P1-M; F5P2-K
	Input Level	6	F4(B)	P1-J; F5P2-F
	Peak Detector	7	F4(B)	P1-P; F5P2-L
	Filter Select Readback	222 ${ }_{8}$, b. $22,24,20$	$\left({ }^{3}\right)$	
Chan. C	Sync. Detector	${ }^{20} 8$	F4 (C)	P1-K; F5P2-N
	Total Power	${ }^{21} 8$	F4(C)	P1-M; F5P2-R
	Input Level	${ }^{22} 8$	F4(C)	P1-J; F5P2-M
	Peak Detector	238	F4(D)	P1-P; F5P2-S
	Filter Select Readback	223 ${ }_{8}, \mathrm{~b}, 9,10,11$	$\left({ }^{3}\right)$	
Chan. D	Sync. Detector	2_{8}^{8}	F4(D)	P1-K; F5P2-V
	Total Power	2_{8}^{8}	F4(D)	P1-M; F5P2-W
	Input Level	2688_{8}	F4(D)	$\mathrm{P} 1-\mathrm{J} ; \mathrm{F5P2-T}$
	Peak Detector	2788_{8}	F4(D)	P1-P; F5P2-X
	Filter Select Readback	223 , b. $23,24,20$	${ }^{(3)}$	

APPENDIX B: DRAWING LISTS

On the following pages are reproduced the Configuration Control Lists for modules F4, F7 and F8 as of the date of publication of this report. These lists give the numbers and current revision levels of all drawings associated with the module. A complete set of drawings fully specifies the construction of the modules.
B. 1 F4: Configuration Control Drawing No. A13180C1E (2 pages).
B. 2 F7: Configuration Control Drawing No. A13190C28 (2 pages).
B. 3 F8: Configuration Control Drawing No. A13190C1 (2 pages).

NOTES:

APPENDIX C: BILLS OF MATERIALS

On the following pages are reproduced the Bills of Materials for modules F4, F7 and F8 as of the date of publication of this manual. C. 1 F4 BOM's.

A13180Z01F - F4 Top Assembly (5 pages).
A13180Z02F - ALC Loop and Synchronous Detector PC Board (5 pages).

A13180Z03 - Amplifier Assembly Per A13180N4 (1 page).
C. 2 F7 BOM's

A13190202A - F7 Top Assembly (3 pages).
A13190Z01A - Control Board (2 pages).
C. 3 F8 BOM's

A13190205A - F8 Top Assembly (6 pages).
A13190Z03A - Amplifier-Mixer Assembly (2 pages).
A13190204 - Amplifier, $10-1000 \mathrm{MHz}, 6 \mathrm{~dB}$ (1 page).
bill of material

NATIONAL RADIO ASTRONONY OBSERVATORY

RECHANICAL
BOM｜｜Al3180201 REV \qquad \longrightarrow DATE 7.90719 PNGE \qquad － or \qquad 5 MODULE ODUSE ： \qquad NANE FREQUENCY CONVERTER ASSEMbly name \qquad DHG \＃Dl3180PO1

PREPARED BY L．R．D＇Addario APPROVED \qquad

：－5： a	$\begin{aligned} & \text { RES } \\ & \text { DCSIG } \end{aligned}$	MANUFACTURER	MFG PART \＃	DESCRTPTION	TOTAL QUA	$\begin{aligned} & 1978 \\ & \text { COST } \\ & \text { EA. } \end{aligned}$
1		NRAO	D13180P01	F4 Top Assembly	0	－
2		NRAO	D13180B01	F4 Block Diagram	0	－
3		NRAO	Al3180wol	F4 Wire List．	0	－
4						
5	F1	K \＆L MICROWAVE	4B380－4750／795－0p	Filter，Tubular BP alternate $\mathrm{F} / \mathrm{N}: \quad 4 \mathrm{~B} 380-4750 / 795-0 / 0 \mathrm{P}$	1	120.00
6	M1	WATKINS－JOHNSON	M1H	Mixer，Dbl Bal，2－6 GHz	1	199.00
7	CIR1	WESTERN MICROWAVE	2JC－4080－5	Isolator	1	
8	F2	K \＆L MICROWAVE	48380－3750／630－0	Filter，Tubular BP	1	120.00
9	S2	RLC	S－2580	Switch，Coax， 15 V	1	155.00
10	A1	AVANTEK	ASD8199M	Amplifier， $1-2 \mathrm{GHz}, 26 \mathrm{~dB}$	1	260.00
11	AT1	VECTRONICS	DA01．25－40	Attenuator，Gurrent Controlled，Al3180N3	1	350.00
12	A2	NRAO	Al3180203	Amplifier Assy．per Al3180N4	1	308.00
13	HY1	MERRIMAC INDUSTRIES	QHM－2－1．5G	Hybrid， 90 Deg．，1－2 GHz	1	75.00
14	D1，D2	AERTECH	D 0102 B	Detector，1－2 GHz	2	113.00
－1		Qumensprama	$200300{ }^{1}$	Termination．SMA 50 Obm	1	16.32

Hen OFMmerthy

NATIONAL RADIO ASTRONOMY OBSERVATORY

BILL OF MATERIAL
NATIONAL RADIO ASTRONOMY OBSERVATORY

MECHANICAL \qquad DATE \qquad PAGE \qquad OF \qquad

$\begin{gathered} \text { ITEN } \\ \# \end{gathered}$	$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	MANUFACTURER	MFG PART \#	DESCRIPTION	TOTAL QUA	
33						
34						
35		NRAO	B13180M02	Panel, Front, F4	1	31.02
36		NRAO	B13180M08	Panel, Rear, F4	1	
37		NRAO	D13180M06-1	Bar, Support, Top	1	22.54
38		NRAO	D13180M06-2	Bar, Support, Bottom	1	22.54
39		NRAO	Cl3180M09	Plate, Support	1	15.35
40		NRAO	C13050M07	Perforated Cover Assembly.	1	12.42
41						
42		NRAO	Bl 3050M06	Side Plate	1	11.56
43		NRAO	B13050M04	Guide	2	. 20
44		SOUTHCO	47-10-204-10	Fastener, Captive	2	. 67
45		BAYTHEON	50-4-16	Knob	1	. 30
46	侕	NRAO	A13050M33	Mixer Mount	2	1.87
47						
48						
49						

ELECTRICAL		HANICAL	3180201 REV	DATE 790626 PAGE	OF	5	
ITEM	$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	MANUEACTURER	MEG PART \\|	DESCRIPTION	TOTAL QUA		
50		OMNI SPECTRA	OSM-201-1	SMA Plug, 141SR	16	1.02	
51		OMNI SPECTRA	OSM-202-1A	SMA Jack, 141SR	1	4.71	
52		OMNI SPECTRA	OSM-511-3	SMA Plug, RGl88	2	5.27	
53		UNIFORM TUBES	UT-141A	Cable, Coax Semirigid	4 ft .	. 45	
54		ALPHA	RG188A/U	Cable, Coax	2 ft .		
55				Wire, Stranded Hookup. 24.awc	$A B$		
56				Wire, Stranded Hookup. 18 AWG	$A R$		
57		$K \& L$ MICROWAVE	M38-A	Mounting Clip, Filter	1		
58							
59							
60			6-32 $\times 3 / 8$	Screw, Flat Head, Cross Recessed	2		
61			$6-32 \times 1 / 4$	Screw, Flat Head, Slotted	6		
62			$6-32 \times 3 / 8$	Screw, Hex, Socket Hd	2		
63			$6-32 \times 1 / 4$	Screw, Pan Hd, Slotted	4		
64			$6-32 \times 5 / 8$	Screw, Pan Hd, Slotted	2		
65			$6-32 \times 7 / 8$	Screw, Pan Hd, Slotted	2		
66							

\qquad DATE \qquad page \qquad - OF _ \qquad

$\underset{H}{\text { ITEM }}$	$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	MANUFACTURER	MPG PART \#	DESCRIPTION	total QUN	
67						
68			$2-56 \times 1 / 4$	Screw, Pan Hd, Slotted	12	
69			$2-56 \times 5 / 8$	Screw, Pan Hd, Slotted	2	
70						
71			$4-40 \times 5 / 8$	Screw, Pan Hd, Slotted	2	
72			$4-40 \times 1 / 4$	Screw, Pan Hd, Slotted	8	
73			$4-40 \times 3 / 8$	Screw, Pan Hd, Slotted	2	
74			$4-40 \times 3 / 4$	Screw, Pan Hd, Slotted	4	
75			No. 2	Washer, Split Lock	14	
76			No. 4	Washer, Split Lock	12	
77			No. 6	Washer, Split Lock	16	
78			No. 6	Washer, Ext Tooth	2	

bill of material

 NATIOMAL RADIO ASTRONOMY OBSERVATORY

ITE:	$\begin{gathered} \text { REE } \\ \text { DESIG } \end{gathered}$	MANUFACTURER	MFG PART \#	DESCRIPTION	total QUA	
1		NRAO	C13180P02	ALC Loop amp \& Suna. Det.	-	
2		NRAO	C 13180 S 2	ALC Loop amp \& Sync. Det. Schematic	Ref.	
3						
4						
5						
6						
7		NRAO	C 13180AB2	P.C. Card	1	
8						
9		Keystone	1562-2	Terminal	32	
10		Wakefield	213-CB	Heat sink	1	
11	84	Robinson_Nugent	MP 121005	12.Pin ${ }^{10}$-8_Socket	1	
12	x3, 88	Robinson Nugent	DP-5178-A	8 Pin TO-5 Socket	2	
13	x1, x^{2}	Robinson Nugent	$1 \mathrm{CN}-083-53$	8 Pin DIP Socket	2	
14	$\begin{aligned} & x 5, x 6 \\ & \times 7, \times 9, x 10 \\ & \hline \end{aligned}$	Robinson Nugent	1CN-143-S3	14 Pin DIP Socket	5	
15	x 10	Robinson Nugent	508173	3 Pin Transistor Socket	1	

NATIONAL RADIO ASTRONOMY OBSERVATORY

NATIONAL RADIO ASTRONOMY OBSERVATORY

ITEN \#	$\begin{gathered} \text { REE } \\ \text { DESIG } \end{gathered}$	MANJFAC:.URER	MPG PART \\|	DESCRIPTION	TOTAL QUA	
50	C5, C6	Erie	8121-050-651-104M	0.1 MF, 50V, Capacitor	2	
51	C7,8,13	Erie	8之31-050-651-105M	1.0 MF, 50V, Capacitor	3	
52						
53	$\mathrm{Cl}, \mathrm{C} 2$	Kemet	CSR13El56KL	$15 \mathrm{MF}, 20 \mathrm{~V}$, Capacitor	2	
54	C3, C4	Electrocube	650D1A505M	$5 \mathrm{MF}, 50 \mathrm{~V}$, Capacitor	2	
55						
56	Al, A2	Analog Devices	AD741KN	OP amp	2	
57	A3, A8	Analog Devices	AD741LH	OP amp	2	
58	A7, 5, 6	National	LH0022CD	OP amp	3	
59	A4	National	LH0032CG	OP amp	1	
60	A9, Al0	Analog Devices	AD7512KN	FET Switch	2	
61.						
62	D1, D3	H-P	5082-2800	Diode	2	
63	D2	National	LM 329B	Diode	1	
64						
65						
66	Q1		2N3904	Transistor	1	

MECHANICAL
BOM \# Al3180Z2
REV \qquad DATE 7.70328 $\xrightarrow{7.90328}$ PAGE 5 5 OF 5

ITEN	$\begin{gathered} R E F \\ D E S I G \end{gathered}$	MAIUEACTURER	MPG PART \#	DESCRIPTION	TOTAL QUA	
67	$\begin{aligned} & \text { R35, } 39, \\ & 55,58 \end{aligned}$	Bourns	3339P-1-103	10 k ohm, 4 turn, pot	4	
68	Rl2, 59	Bourns	3339P-1-203	20 k ohm, 4 turn, pot	2	
69	R5	Bourns	3339P-1-204	200 k ohm, 4 turn, pot	1	
70	R8	Bourns	3339P-1-105	1 M ohm, 4 turn, pot	1	
71						
72	R36	Beckman	63WRIK-Ml	1 k ohm, 22 turn, pot	1	
73	R4	Beckman	63WR20K-Ml	20 k ohm, 22 turn, pot	1	
74						
75						
76						
77						
78						
79						
80						
81						
82						
83						

BILL OF MATERIAL
NATIONAL RADIO ASTRONONY OBSERVATORY


```
YOOULE \# F7 NMNE FRC:VIEND IF FITTER MODULDWG \#DI3190POZ SUB ASHB
``` \(\qquad\)
``` DVG A
``` \(\qquad\)


\(\qquad\) PAGE 2 2 Or \(\qquad\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { ITIEM } \\
& \text { II }
\end{aligned}
\] & \[
\begin{gathered}
\text { REF } \\
\text { DESIG }
\end{gathered}
\] & manufacturer & mpg part \# & DESCRIPTION & tȯtne & \\
\hline 16 & & & & & & \\
\hline 18 & \(F(1)\) & RLC & M2272 & \begin{tabular}{l}
SWITCH FILTER ASSY \\
(N.R.A. O. SPEC. A13/9ONO9)
\end{tabular} & 1 & \\
\hline 19 & SI & DIGITRAN & 23011-1 & DIGISWITCH ASS'Y & 1 & \\
\hline 21 & 57.58 & OMNI-SPECTRA & OMQ 3043-75 & CONN, (BULKHEAD, OMO - .191 SR) & 2 & \\
\hline 22 & & OMNI-SPECTRA & OSM 201-1A & CONN. (PLUG, SMA - .1415R) & 4 & \\
\hline 24 & \(p /\) & AMP SPEC INDUST. & 204186.5 & CONN. BLDCK - 42 PIN & 1 & \\
\hline 25 & & 1 & 202394 & PIN HOOD & 1 & \\
\hline 26 & & & 200833-4 & GUIDE PIN & 1 & \\
\hline 27 & & & 202514-1 & GUIDE PIN (GND) & 1 & \\
\hline 28 & & & 203964-6 & GUIDE SOCKET & ご & \\
\hline 29 & & \(t\) & 201578-1 & PIN CRIMP (24-20AWG) & 5 & \\
\hline 30 & & AMP SPEC INDUST & 202725.1 & PIN CRIM P (2. 18 ANG) & 2 & \\
\hline 32 & & SOUTHCO & 47-10-204-10 & FASTNER, CAPTIVE & 4 & \\
\hline
\end{tabular}
\(\qquad\) PAGE \(\qquad\) or 3
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Item & \[
\begin{gathered}
\text { REF } \\
\text { DESIG }
\end{gathered}
\] & MANUFACTURER & mpg part \# & DESCRIPTION & TOTAL
Qun & \\
\hline 33 & & & \(6.32 \times 5 / 8 \mathrm{LG}\) & SCREW, SLOTTED BINDER HD. 5.5. & 4 & \\
\hline 34 & & & \(6 \cdot 32+3 / 416\) & SCREW,SCOTTED BINDER HD. S.S. & 4 & \\
\hline 35 & & & & & & \\
\hline 36 & & & \(6-32 \times 3 / 8<6\) & SCREW, SLOTTED FLAT HD S.S. & 14 & \\
\hline 37 & & & & & & \\
\hline 38 & & & \(2-56 \times 1 / 4 \angle 6\) & SCREW, CROSS RECESSED FLAT HD SS & 4 & \\
\hline 37 & & & \(6 \cdot 32 \times 3 / 816\) & SCREW, CROSS PECESSED FLAT HD S.S. & 4 & \\
\hline 40 & & & & & & \\
\hline 41 & & & \(6-32 \times 3 / 8<6\) & SCREW, SOCKET HD S.S. & 6 & \\
\hline 42 & & & & & & \\
\hline 93 & & & NO. 6 & WASHER, FLAT S.S. & 4 & 1 \\
\hline 44 & & & NO. 6 & WASHER. SPLIT LOCK S.S. & 4 & \\
\hline 45 & & & & & & \\
\hline 46 & & & 18 AWG (\(\left.\begin{array}{c}\text { ASSORTED } \\ \text { COLDRS }\end{array}\right)\) & HOOK-UP IVIRE TYPE MW PLASTIC & \(A / R\) & \\
\hline 47 & & & 24 AWG (\(\left.\begin{array}{c}\text { ASSORTED } \\ \text { COLORS }\end{array}\right)\) & HOOK-UP WIRE TYPE MW.PLASTIC & \(A / R\) & \\
\hline 48 & & & & & & \\
\hline 49 & & UNIFORM TUBES & (1T-141 & SEMI-RIGID COAX. CABLE & \(A / R\). & \\
\hline
\end{tabular}
:iDJUE: F7 NALE Front End I.F. Filters DWG \| \(\qquad\) SUB ASMB DHG H \(\qquad\)

SきHE:TIIJE Dlis \# \(\qquad\) IOCATION \(\qquad\) QUA/SYSTEM \(\qquad\) PREPARED BY L. D'Addario APPROVED \(\qquad\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \% & \[
\begin{gathered}
\text { KES } \\
\text { DCSIG }
\end{gathered}
\] & manuencturer & MFG Part \# & DESCRIPTION & TOTAL QUA & \\
\hline 1 & & NRAO & C13190P01 & F7 Module Control Board & - & \\
\hline 2 & & NRAO & B13190AB03 & Control Board P.C. Artwork & Ref & \\
\hline 3 & & NRAO & Cl3190S01 & Control Board Schematic & Ref & \\
\hline 4 & & & & & & \\
\hline 5 & & NRAO & C13190M03 & Control Board P.C. Card & 1 & \\
\hline 6 & \[
\begin{array}{cc}
\hline \mathrm{CR1}, & 2, \\
3, & 4
\end{array}
\] & Hewlett-Packard & 5082-4995 & LED, green & 4 & . 85 \\
\hline 7 & & & & & & \\
\hline 8 & U2 & Texas Instruments & 7407 & Integrated Circuit, Hex Buffer/Driver & 1 & . 75 \\
\hline 9 & U3 & Texas Instruments & 8250A & Integrated Circui.t, Decoder & 1 & \\
\hline 10 & 04 & Texas Instruments & 74157 & Integrated Circuit, Quad 2-in mux & 1 & . 49 \\
\hline 11 & \[
\begin{array}{rl}
191 & 2, \\
3, & 4
\end{array}
\] & Motorola & 2N3906 & Transistor, pnp & 4 & . 12 \\
\hline 12 & & & & & & \\
\hline 13 & & & & & & \\
\hline 14 & & & & & & \\
\hline 15 & \[
7,10
\] & & RCR07131-5S & Resistor, \% W, 130 Ohms & 4 & . 06 \\
\hline
\end{tabular}
\(\square\) mechanical BOM \# Al3190zol REV A DATE \(\quad 790508\) PAGE 2 or ـ
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\underset{\#}{\text { ITEM }}
\] & \[
\begin{gathered}
\text { REF } \\
\text { DESIG }
\end{gathered}
\] & manuFacturer & MPG PART \| & DESCRIPTION & TOTAL QUN & \\
\hline 16 & \[
\begin{array}{r}
\mathrm{R} 2,5, \\
8,11 \\
\hline
\end{array}
\] & & RCR07102-5S & Resistor, \(\frac{1}{4} \mathrm{~W}, \mathrm{l} \mathrm{l}\) k ohms & 4 & 06 \\
\hline 17 & \begin{tabular}{c}
R13, \\
15, 16 \\
\hline
\end{tabular} & & RCR07103-5S & Resistor, \(\frac{1}{4} \mathrm{~W}, 10 \mathrm{k}\). ohms & 4 & . 06 \\
\hline 18 & & & & & & \\
\hline 19 & & & & & & \\
\hline 20 & C1, c2 & Sprague & CS13BE156K & Capacitor, Tantalum, \(20 \mathrm{~V}, 15 \mu \mathrm{f}\) & 2 & . 24 \\
\hline 21 & & & & & & \\
\hline 22 & & Cinch & 3-LPS-B & Socket, Transistor & 4 & . 12 \\
\hline 23 & & Rob Nugent & ICN-143-S3 & Socket, 14 pin DIP & 2 & . 33 \\
\hline 24 & & Rob Nugent & ICN-163-S3 & Socket, 16 pin DIP & 1 & . 40 \\
\hline 25 & & & & & & \\
\hline 26 & & Keystone & 1562-2 & Terminal, Turret & 16 & . 02 \\
\hline 27 & & Amatom & 9508B-S8-0256 & Standoff, swage & 4 & . 50 \\
\hline 28 & & & & & & \\
\hline 29 & & & & & & \\
\hline 30 & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

BILL of MATERTAL
NATIONAL RADLO ASTRONOMY OBSERVATORY
- mecmaical \(\square\) mechanical
BON II A13109EA5 REV \(\qquad\) A DATE 9- 5-79 pnge 2 \(\qquad\) or 7
\(\qquad\) NAME \(\qquad\) DNG \# D13190POS SUB ASMB \(\qquad\) DIVG H \(\qquad\) CHOMDTIC DUG II \(\qquad\) LOCATION \(\qquad\) QUN/SYSTEM \(\qquad\) PREPARED BY \(\qquad\) APPROVED \(\qquad\)

bill of material
NATIONAL RADIO ASTRONOMY OBSERVATORY
\(\square\) MECHANICAL
BOM \# A13/90z as REV \(\qquad\) A ante 9-5-79 PAGE 3 of 7

bil.f. of material
hattonal radio astronony observatory
\(\cdots \cdots\) MECHICALICAL
BOM \# A13190705 REV \(\qquad\) A date \(\qquad\) \(9-5-79\)
page \(\qquad\) 4 OF \(\qquad\) 7

BILL OF MATERIAL
NATIONAL RADIO ASTRONOMY OBSERVATORY
METRICAL \(\square\) MECHANICAL
BOM \# Al 3190 Z 45 REV \(\qquad\) A date \(\qquad\) \(9-5-79\)

PAGE 5 OF \(\qquad\) 7

BILL OF MATERIAL
NATIONAL. RADIO ASTRONOMY OBSERVATORY
 date 9-5-79 PAGE
``` \(\qquad\)
``` or \(\quad 7\)
```



mechanicas iwoule a FQ NME I．F．OFF SET SCルジルニエス DHG — LOCATION $\qquad$ QUA／SYSTEM＇ $\qquad$ PREPARED $B Y$ $\qquad$ APPROVED $\qquad$

ITEN	$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	manuencturer	mfg part	description	total QUA	
1		NRAO	C13190PO3	AMIPLIFIER MIXER ASS＇Y		
2		，	C13190AFO5	AMPLIFIER MIXVK AE $E^{\prime} Y$ P．C． BOARD ARTWARK	REF	
3		$\checkmark$	B13190AB06	AMPLIFIER MIXER SILKSCREEN ARTHOH	REF	
$!$		NRAO	C13190 M12	P．C．$B O M R D$	1	
$\stackrel{3}{3}$						
1.7		AVANTEK	TC－4	CASE FOR MODLILAR AMPLIFIER	1	
$\because$		AVANTEK	UTO－1002	MODULAR AMPLIFIER， $5-1000 \mathrm{MHZ}, 14 \mathrm{~dB}$	1	
6						
i		WATKINS－JOHASON	$W J-M 2 A$	MIXFR，7O－S FNCKNGE	1	
，						
11		$\therefore$ MN1－SPECTRA	OSM－204	OSM JACK，FIMNGE	1	
$\therefore ?$						
$\therefore \because$	$i 1$	AIAFRICNH TECHISN．Crimmies	100E－3RO－B－P－X－500	CIIIP CHIPNCITOR， 3.0 pf	1	
$1 \%$	H！		RCRO－1G680 us	KTSISTOR， $6.8 \Omega, 1 / 4 \mathrm{~W}, 5 \%$	1	
！：	$!1$		$1 N 4001$	DIODE	1	

BILL OF MATERIAL
NATIONAL RADIO ASTRONOMY OBSERVATORY


$\stackrel{\text { Imm }}{ }$	Ref desig	manufncturer	mpg part \#	description	gotal Qua din	
16	$L$			WIRE, $22 A W G$ SOLID COPPER TINNED	$\perp$ INCH	
17						
18			$2-56 \times 1 / 4$	SCREW, PAN HD. SIS.	4	
14			2-56	LOCK WHSHER, SPLIT.	4	
20						

bill of material
NATIOMAL RADIO ASTPONOMY OBSERVATORY


## APPENDIX D: NRAO SPECIFICATIONS

All NRAO specifications relevant to this subsystem are reproduced on the following pages. Most are used for the procurement of critical components.

A13180N3	Current-Controlled Attenuator
A13180N4	$0.8-1.2 \mathrm{GHz}$ Amplifier
A13190N1C	
thru N7C	Band-Pass Filters
A13190N8A	SP4T Diode Switch
A13190N9A	Switch-Filter Assembly

# NATIONAL RADIO ASTRONOMY OBSERVATORY <br> SOCORRO, NEW MEXICO <br> VERY LARGE ARRAY PROGRAM 

SPECIFICATION: A13180N3 $3 \quad$ Date: March 27, 1978
TITLE: Current-Controlled Attenuator
PREPARED BY:

### 1.0 GENERAL DESCRIPTION

An absorptive current-controlled RF attenuator for use with noise signals in a 990 to 1060 MHz band is required. The device will be used as part of an ALC loop in a sensitive radiotelescope receiver. Specifications which are of particular interest include phase vs attenuation (item 7.0) and flatness across the above band (item 8.0).

### 2.0 FREQUENCY RANGE

All specifications shall be met at any frequency in a 990 to 1060 MHz band.
3.0 ATTENUATION VS CONTROL CURRENT

### 3.1 Attenuation shall increase with positive control current into the device, and shall be minimum at zero control current.

3.2 At zero control current: $\leq 1.5 \mathrm{~dB}$
3.3 At a control current $I_{1}$ specified by the manufacturer, but not exceeding +5 mA: $\quad 20 \pm 5 \mathrm{~dB}$
3.4 At a control current $I_{M A X}$ specified by the manufacturer, but not exceeding $+12 \mathrm{~mA}: \quad \geq 40 \mathrm{~dB}$
3.5 The control currents $I_{1}$ and $I_{\text {MAX }}$ shall be the same for all units.
3.6 It shall be possible to apply a control current of at least +20 mA or a (reverse) control voltage of $-15 \cdot \mathrm{~V}$ without damage to the unit.
4.0 RF POWER

In normal operation, input power will not exceed 0 dBm . It shall be possible to apply +10 dBm without damage.

### 5.0 SWITCHING SPEED

With a step change in control current, the 0 to $90 \%$ switching time shall be $\leq 200$ nsec.

### 6.0 VSWR

The design shall be absorptive, so that at any control current the VSWR at both input and output is $\leq 1.5$.

### 7.0 PHASE VS ATTENUATION

The slope of the phase vs attenuation curve shall not exceed
7.1 for attenuation settings of 0 to 30 dB :
$1.5^{\circ} / \mathrm{dB}$;
7.2 for attenuation settings of 10 to 20 dB :
$0.5^{\circ} / \mathrm{dB}$.

### 8.0 FLATNESS

At any control current, the attenuation shall be constant across the specified frequency range to within $\pm 0.2 \mathrm{~dB}$.

### 9.0 DISTORTION

The second-order harmonic intercept point and the third-order two-tone intercept point shall each be $\geq+20 \mathrm{dBm}$, referred to the input, at any control current. (Alternatively, with 0 dBm sinusoidal inputs, second-order products shall be $\leq-20 \mathrm{~dB}$ and third-order products shall be $\leq-40 \mathrm{~dB}$ from the desired signals.)

### 10.0 ENVIRONMENTAL

All specifications shall be met over an operating temperature range of 20 to 40 C . Phase shift and attenuation shall not be affected more than $1^{\circ}$ or .05 dB respectively by change of orientation with respect to gravity or by light tapping on the case. The device shall survive storage temperatures of -40 to +60 C and a drop test from a height of one foot onto a wooden surface without degradation in performance.

### 11.0 PACKAGING AND CONNECTORS

Outside dimensions, excluding connectors, shall be less than or equal to $3.00 \times 3.50 \times 0.60$ inches. Connectors shall not be mounted
on the largest surfaces, which shall include provisions for mounting the device to a flat surface. RF connectors shall be SMA female, and the control current connector may be SMA female or solder lugs.
12.0 QUALITY CONTROL

Construction techniques shall be in accord with best commercial practices.
13.0 TESTING AND DOCUMENTATION

The manufacturer shall test each unit to the extent required to ensure that all specifications are met. Copies of the results of all such tests shall be supplied with each unit.

# NATIONAL RADIO ASTRONOMY OBSERVATORY <br> SOCORRO, NEW MEXICO <br> VERY LARGE ARRAY PROGRAM 

```
SPECIFICATION: Al3180N4 DATE: August 18, 1978
TITLE: 0.8-1.2 GHz AMPLIFIER
PREPARED BY:
```

$\qquad$

``` APPROVED BY:
``` \(\qquad\)

\subsection*{1.0 GENERAL DESCRIPTION}

A solid state amplifier in an RF-tight package is required. All specifications shall be met at frequencies between 0.8 and 1.2 GHz , unless otherwise stated.

\subsection*{2.0 SMALL SIGNAL GAIN}

2.1 Minimum

48 dB
2.2 Maximum 56 dB
2.3.1 Variation with frequency, \(0.8-1.2 \mathrm{GHz} \quad \pm 1.0 \mathrm{~dB}\)
2.3.2 Variation with frequency, \(0.95-1.1 \mathrm{GHz} \pm 0.5 \mathrm{~dB}\)
2.4 Out-of-band gain (outside 0.8 - 1.2 GHz )
shall not exceed in-band gain by more than 3 dB .
3.0 VSWR, input and output ports, in 50 ohms
\(3.10 .8-1.2 \mathrm{GHz}\)
\(\leq 2.0\)
\(3.20 .95-1.1 \mathrm{GHz}\)
\(\leq 1.7\)
4.0 NOISE FIGURE \(\leq 5.0 \mathrm{~dB}\)
5.0 OUTPUT POWER AT 1.0 dB GAIN COMPRESSION \(\geq 0 \mathrm{dBm}\)
6.0 DISTORTION
6.1 Second harmonic intercept point \(\quad \geq+30 \mathrm{dBm}\)
6.2 Third order intercept point \(\quad 2+15 \mathrm{dBm}\)

\subsection*{7.0 POWER REQUIREMENTS}
\begin{tabular}{ll}
7.1 Supply voltage at which all specifications & \\
shall be met & \(+15 \pm 1 \mathrm{Vdc}\) \\
7.2 Supply current at +15.0 V & \(\leq 80 \mathrm{~mA}\)
\end{tabular}
8.0 CONNECTORS
\begin{tabular}{lll}
8.1 & \(R F\) & SMA female \\
8.2 & DC & solder terminals
\end{tabular}
9.0 CASE SIZE, excluding base plate and connectors, maximum
3.0×1.0×0.75 inches
10.0 ENVIRONMENTAL

All specifications shall be met at any case temperature between 0 and \(50^{\circ} \mathrm{C}\), and in any orientation with respect to gravity.

No degradation shall occur after operation at temperatures of -30 to \(+80^{\circ} \mathrm{C}\), or storage at -50 to \(+100^{\circ} \mathrm{C}\), or dropping from a height of one foot onto a wooden surface.

\subsection*{11.0 TESTING}

The manufacturer shall perform sufficient tests on each unit to ensure that all specifications are met, including measurements of at least the following: small signal gain, VSWR at each RF port, and power output at 1 dB compression. Each quantity shall be measured at \(0.8,0.9,1.0,1.1\) and 1.2 GHz . The results of all tests shall be supplied with the unit.

\title{
NATIONAL RADIO ASTRONOMY OBSERVATORY \\ SOCORRO, NEW MEXICO \\ VERY LARGE ARRAY PROGRAM
}

\section*{SPECIFICATION: AL3190N1C thru Al3190N7C DATE: November 16, 1978 TITLE: BAND-PASS FILTERS}

PREPARED BY: \(\qquad\) APPROVED BY:

\subsection*{1.0 GENERAL DESCRIPTION}

These specifications describe seven band-pass filters with different bandwidths and center frequencies in the l-2 GHz range. The filters will be used in a radio astronomy antenna array and have a phase stability requirement which results in a center frequency vs temperature-coefficient specification which cannot be met with ordinary designs utilizing dielectric materials. Proposers shall state how they intend to meet the center-frequency temperature-coefficient requirement. Center frequencies, bandwidths, maximum temperature-coefficients, and insertion losses are specified in Table I. All specifications must be met in the \(20^{\circ} \mathrm{C}\) to \(45^{\circ} \mathrm{C}\) range.

\subsection*{2.0 SPURIOUS RESPONSES}

Spurious responses shall be \(\geq 60 \mathrm{~dB}\) down between 100 MHz and 10 GHz .

\subsection*{3.0 CENTER FREQUENCY STABILITY \\ Center frequency is defined as the average of upper and lower 3 dB} frequencies. The temperature-coefficient of center frequency is the center frequency shift per \({ }^{\circ}{ }_{C}\) divided by the center frequency. For example, filter Al3l90Nl of Table I has a maximum temperature-coefficient of \(7 \times 10^{-6}\) which is \(7 \mathrm{kHz} /{ }^{\circ} \mathrm{C}\). The center frequency shall not vary by more than \(0.1 \%\) of the 1 dB bandwidth due to light tapping upon the filter or change of orientation with respect to gravity. The center frequency vs temperature curve shall not have sharp jumps \(\geq 0.1 \%\) of the 3 dB bandwidth as may be caused by "stick-slip" of materials with different temperature coefficients.
4.0 FREQUENCY RIPPLE
\(\leq 0.5 \mathrm{~dB}\) peak-to-peak.
5.0 VSWR
\(\leq 1.5\) within 0.8 of the 3 dB bandwidth.
6.0 INSERTION LOSS

Resistive padding shall be built into each filter to provide insertion losses of \(9 \pm 1,6 \pm 1\), and \(3 \pm 1 \mathrm{~dB}\) for the 55,25 , and 12.5 bandwidth units respectively. The other filters have only a maximum insertion loss specification.
7.0 MECHANICAL CONFIGURATION

Each filter must fit within a \(1.2^{\prime \prime} \times 3.0^{\prime \prime} \times 8.0^{\prime \prime}\) volume including connectors which are type SMA female.
8.0 TEST DATA

The following data must be supplied either graphically or in tabular form for each delivered unit:
a) Midband Insertion Loss
b) Maximum Return Loss (or VSWR) within \(0.8 \times 3 \mathrm{~dB}\) bandwidth
c) Upper and Lower 3 dB Frequencies
d) Upper and Lower 60 dB Frequencies for 1025 MHz filters; Upper and Lower 40 dB Frequencies for others.

TABLE I - FILTER SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Part \\
Number
\end{tabular} & \begin{tabular}{l}
Center \\
Frequency MHz
\end{tabular} & \[
\begin{gathered}
3 \mathrm{~dB} \\
\text { Bandwidth } \\
\mathrm{MHz}
\end{gathered}
\] & 60 dB
Bandwidth
MHz & Temperature Coefficient Specification \(10^{-6}{ }^{\circ} \mathrm{C}\) & Temperature Coefficient Design Goal \(10^{-6} /{ }^{\circ} \mathrm{C}\) & \[
\begin{gathered}
\text { Insertion } \\
\text { Loss } \\
d B
\end{gathered}
\] \\
\hline Al3190N1 & \(1025 \pm 2\) & \(55 \pm 2\) & \(\leq 165\) & \(\leq 7\) & \(\leq 6\) & \(9 \pm 1\) \\
\hline Al3190N 2 & \(1025 \pm 1.2\) & \(25 \pm 1\) & \(\leq 80\) & \(\leq 7\) & \(\leq 3\) & \(6 \pm 1\) \\
\hline Al3190N 3 & \(1027 \pm .6\) & \(12.5 \pm .6\) & \(\leq 40\) & \(\leq 7\) & \(\leq 3\) & \(3 \pm 1\) \\
\hline Al3190N4 & \(1325 \pm 3\) & \(60 \pm 3\) & \(\leq 250 *\) & \(\leq 10\) & \(\leq 5\) & \(\leq 2\) \\
\hline Al3190N5 & \(1425 \pm 3\) & \(60 \pm 3\) & \(\leq 250\) * & \(\leq 10\) & \(\leq 5\) & \(\leq 2\) \\
\hline Al3190N6 & \(1575 \pm 3\) & \(60 \pm 3\) & \(\leq 250\) * & \(\leq 10\) & \(\leq 5\) & \(\leq 2\) \\
\hline Al3190N7 & \(1675 \pm 3\) & \(60 \pm 3\) & s250* & \(\leq 10\) & \(\leq 5\) & \(\leq 2\) \\
\hline
\end{tabular}
*40 dB Bandwidth

\title{
NATIONAL RADIO ASTRONOMY OBSERVATORY \\ SOCORRO, NEW MEXICO \\ VERY LARGE ARRAY PROGRAM
}
```

SPECIFICATION: Al3190N8A DATE: JULY 27, 1978
TITLE: SP4T DIODE SWITCH
PREPARED BY:
APPROVED BY:
1.0 GENERAL
A single-pole four-position diode switch having the mechanical configuration shown on the attached sketch is desired. All specifications must be met in the $20^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ range and at power levels $\leq+10 \mathrm{dBm}$.

```

\subsection*{2.0 FREQUENCY RANGE}

975 to 1075 MHz
3.0 INSERTION LOSS

1 dB maximum
4.0 ISOLATION

30 dB minimum
5.0 VSWR
1.25 maximum
6.0 DRIVE REQUIREMENT

One arm of the switch shall be actuated when a voltage of \(+5 \pm 0.5\)
volts at \(\leq 30 \mathrm{~mA}\) is applied to one of four feedthru terminals and
-5 to -15 volts at \(\leq 30 \mathrm{~mA}\) is applied to the other three terminals.
7.0 SWITCHING TIME
\(\leq 100 \mu \mathrm{~s}\)
8.0 RFI SEALING

The switch shall be enclosed in an RFI-tight enclosure.
9.0 TEST DATA

Insertion loss and isolation for each port at a frequency of 1025 MHz.


\title{
NATIONAL RADIO ASTRONOMY OBSERVATORY \\ SOCORRO, NEW MEXICO \\ VERY LARGE ARRAY PROGRAM
}

SPECIFICATION: Al3190N9A
DATE: July 25, 1978
TITLE: SWITCH-FILTER ASSEMBLY
PREPARED BY: \(\qquad\) APPROVED BY: \(\qquad\)

\subsection*{1.0 GENERAL DESCRIPTION}

An assembly of two SP4T diode switches and three band-pass
filters connected as shown in the attached figure is desired. Except as noted below, the switches shall conform to Specification Al3190N8 and the filters shall conform to Specifications Al3190N1 through Al 3190N3.
2.0 VSWR

In \(50 \Omega\), at either port of the assembly, the VSWR shall be less than 1.6 over \(80 \%\) of the 3 dB bandwidth of the selected filter.

\subsection*{3.0 INSERTION LOSS}

The assembly shall include resistive padding to provide a total insertion loss of \(10 \pm 1,7 \pm 1\), and \(4 \pm 1 \mathrm{~dB}\) when the 55,25 , and 12.5 MHz bandwidth filters, respectively, are selected.

\section*{APPENDIX E: MANUFACTURERS' DATA}

On the following pages are reproduced selected manufacturers' data on components used in this subsystem. Not included are noncritical components and common items whose data are readily available in catalogs.

\section*{Watkins-Johnson}

M1H Mixer
M2A Mixer
A64 Amplifier

Avantek
ASD8199M Amplifier (typical test data)
UTO-1002 Amplifier
UTO-1004 Amplifier

Analog Devices
AD741 Series Operational Amplifiers

Aertech
AMF-6035,6,7,8 Isolators
D0102B Detector, Tunnel Diode
```

K \& L Microwave
3MC10 Series Filters

```

\section*{DOUBLE-BALANCED MIXER}
\(\left.\begin{array}{l}\left.\begin{array}{l}\text { LO } \\
\text { RF } \\
\text { IF }\end{array}\right\}\end{array}\right\}\)\begin{tabular}{l}
1.8 TO 6.2 GHz \\
DC TO 2 GHz
\end{tabular}
- HIGH ISOLATION: >35 dB (TYP.)
- LOW NOISE FIGURE: <6.0 dB (TYP.)
- LOW COST


\section*{Guaranteed Specifications*}
\begin{tabular}{|c|c|c|c|}
\hline Characteristics & Min. & Max. & Test Conditions \\
\hline Conversion Loss & & \[
\begin{aligned}
& 7.0 \mathrm{~dB} \\
& 8.0 \mathrm{~dB} \\
& 9.0 \mathrm{~dB}
\end{aligned}
\] & \begin{tabular}{l}
\(\mathrm{f}_{\mathrm{L}} \& \mathrm{I}_{\mathrm{B}} 1.8104 .2 \mathrm{GHz}\) \\
I, OC to 2 GHz \\
\(\mathrm{I}_{\mathrm{L}} \& \mathrm{I}_{\mathrm{R}} 4.2106 .2 \mathrm{GHz}\) \\
\(\mathrm{f}_{1}\) DC to 500 MHz \\
\(\mathrm{f}_{1} 500 \mathrm{MHz}\) to 2 GHz
\end{tabular} \\
\hline Noise Figure & & \[
\begin{aligned}
& 7.0 \mathrm{~dB} \\
& 8.0 \mathrm{~dB} \\
& 9.0 \mathrm{~dB}
\end{aligned}
\] & \begin{tabular}{l}
\(\mathrm{f}_{\mathrm{L}} \& \mathrm{f}_{\mathrm{R}} 1.8104 .2 \mathrm{GHz}\) \(\mathrm{f}_{1} 30 \mathrm{MHz}\) to 2 GHz \\
\(\mathrm{f}_{\mathrm{L}} \& \mathrm{f}_{\mathrm{R}} 4.2\) to 6.2 GHz \(\mathrm{f}_{1} 30 \mathrm{MHz}\) to 500 MHz \(\mathrm{I}, 500 \mathrm{MHz}\) to 2 GHz
\end{tabular} \\
\hline Isolation \(h_{L}\) at R \(L_{L}\) at I \(L_{L}\) at \(R\) IL at I & \[
\begin{aligned}
& 25 \mathrm{~dB} \\
& 15 \mathrm{~dB} \\
& 20 \mathrm{~dB} \\
& 15 \mathrm{~dB}
\end{aligned}
\] & & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{L}} 1.8 \text { to } 4.2 \mathrm{GHz} \\
& \mathrm{f}_{\mathrm{L}} 4.2 \text { to } 6.2 \mathrm{GHz}
\end{aligned}
\] \\
\hline Mixer Compression & & T. 0 dB & \[
\begin{aligned}
& f_{\mathrm{A}}=-2 \mathrm{dBm} \\
& f_{\mathrm{L}} \mathrm{dt}+13 \mathrm{dBm}
\end{aligned}
\] \\
\hline
\end{tabular}
*Measured in a \(50-0 \mathrm{nn}\) syste \(n\) with \(f_{L}\) at \(+7 \mathrm{~dB} n\) Downconventer application only unless other specified.

\section*{Weight 31 grams (1.1 oz.) maximum}

Connectors SMA Female
Price Each \(1-9\) \$199

Absolute Maximum Ratings
Storage
\(\quad\) Temperature \(\ldots \ldots .6^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\)
Operating
Temperature \(\ldots \ldots .54^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\)
Maximum RF Input
Power ............... 50 mW peak
Maximum Input Current
at \(25^{\circ} \mathrm{C} \ldots . . . . . . . .50 \mathrm{mADC}\)

\section*{Schematic Diagram}


\section*{Outline Drawing}


\section*{CERTIFICATE OF COMPLIANCE TEST DATA SHEET}

MODEL \(45 D-\bar{F}!99 \mathrm{~A}\)
FREQUENCY（MHz） \(1000-2000\)

PART NO
SERIAL NO． \(3.3 \%-345\)
PROJECT NO．2．4105

TESTED BY：

Q．A


DATE \(3-2\) ： \(19: 7\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline  &  &  &  &  &  &  & \(+15100\) & & \\
\hline 4.3 .1 & の日 & 274 & \(\leq 20\) & 42.0 & 4.1 & \(7+10\). & 72 ma & & \\
\hline & 5sioc & 27.5 & ！ & & 4.5 & 1 & & & \\
\hline & \(290 \%\) & 276 & I & & 96 & & & & \\
\hline \％； & 1900 & －7， & & & 4.1 & & 75 & & \\
\hline & 1500 & 87．7 & & & 1.5 & & & & \\
\hline & 2000 & 87.8 & & & 4.5 & 1 & & & \\
\hline 231 & パン & 87.3 & & & a．， & & 75 & & \\
\hline & 130 & 27.5 & & & 4.5 & & & & \\
\hline & ニッツ & \(37 \%\) & 1 & & 46 & & & & \\
\hline 312 & \％， & －7\％ & & & 左多 & & 75 & & \\
\hline & －\％ & 27， & & & \(4 \%\) & & & & \\
\hline & 920\％ & 27 \％ & & & 45 & & & & \\
\hline \(3 \ldots 3\) & 6\％ & \(x \rightarrow 2\) & & & 4 & & 75 & & \\
\hline & － & 277 & & & 44 & & & & \\
\hline & \(30: 10\) & 29.0 & ， & & 76 & & & & \\
\hline 3\％ & －Cry & 87.0 & & & \(4 \%\) & & 76 & & \\
\hline & 15\％ & 27.5 & & & 4.4 & & & & \\
\hline & Soリ\％ & \％： & I & & 16 & \(\checkmark\) & & & \\
\hline 30 & ノ\％ & 22 & & & －\％ & 9.0 & & & \\
\hline & 1\％， & 976 & & & 4 & Ote．c & 72 & & \\
\hline & 91\％ & \％ & V & \(\checkmark\) & 25 & \(7 \times 110\) & & & \\
\hline
\end{tabular}

\section*{Additional Notes：}

Cascadable Modular Amplifiers UTO Series, TO-8 Packaged
Guaranteed Specifications o to \(50^{\circ} \mathrm{C}\) (A), \(-54^{\circ}\) to \(+85^{\circ} \mathrm{C}\) (B)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Model} & \multirow[t]{2}{*}{Froq. Resp. (MHz) Min.} & \multicolumn{2}{|c|}{\begin{tabular}{l}
Gain \\
(dB) \\
Min.
\end{tabular}} & \multicolumn{2}{|c|}{Noise Figure (dB) Max.} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Power Outpul \\
- 1 dB Gain Comp. (dB)
\end{tabular}} & \multicolumn{2}{|r|}{Gain Flatnesa ( \(\pm \mathrm{dB}\) ) Max.} & \multirow[t]{2}{*}{Typical Intercepl Polnt for IM Prod. (dBm)} & \multicolumn{2}{|l|}{vSWR (50 ohms) Max.} & \multicolumn{2}{|l|}{Input Power ( \(\pm 1 \%\) Aeg.)} & \multicolumn{2}{|l|}{" \({ }^{8}\) " Series Burn-In Case} \\
\hline & & A & B & A & 8 & A & - & A & E & & In & Out & DC & mA Typ & & Drawing \\
\hline
\end{tabular}

2 to 500 MHz , High Power Versions (Listed In Order Of Increasing Power Output, Decreasing Gain)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline UTO. 516 & 5-500 & 14 & 13.5 & 5.5 & 5.5 & +10 & \(+9.5\) & \% 1.0 & \% 1.0 & +23 &  & 2.0 & 2t 15 & 2 & \$100 & T0-8U \\
\hline UTO-523 & 5-500 & 23 & 23 & 7.0 & 7.0 & \(+12\) & & \% 1.0 & & \(+251\) & & & - +15 & - 80 & & \\
\hline & & & & & & & & & & & & & & & & , \\
\hline UTO. 503 & 5-500 & 9 & 8.5 & 7.0 & 7.0 & +13 & +13 & 1.0 & 1.0 & +27 & 2.0 & 2.0 & +24 & 50 & 100 & T0-8U \\
\hline UTO-515 & 2-500 & 12 & 11 & 7.0 & 7.5 & +14 & +13 & 0.5 & 0.7 & +25 & 2.0 & 2.0 & +15 & 65 & 100 & TO-8U \\
\hline UTO.5334 & 5-500 & 16 & 15 & 5.5 & 6.0 & \(+14\) & +13 & 0.7 & 1.0 & +28 & 2.0 & 2.0 & +15 & 44 & 100 & TO-8T \\
\hline \multirow[t]{2}{*}{UTO.513} & 5-500 & 16 & 15.5 & 6.0 & 6.0 & +14 & +14 & 1.0 & 1.0 & +271 & 12.0 & 2.0 & +24 & 50 & 100 & TO-8U \\
\hline & & & & & & & & & & +362 & & & & & & \\
\hline UTO-545 & 10-500 & 10 & & 5.0 & 5.5 & \(+17\) & +46 & 70.5 & \% 0.5 & \(+36\) & Frate 2.0 & & - 415 & \({ }^{6} 60\) & & \\
\hline UTO.504 & 5-500 & 6 & 6 & 11.0 & 11.0 & \(+17\) & +17 & \%1.0 & \({ }^{2} 1.0\) & +31 & 3 T 2.0 & 2.0 & + +24 & 100 & \%71 & TO-8U \\
\hline UTO-505 & 10-500 & 9 & 9 & 8.5 & -9.0 & +18 & +18 & \% 10 & - 1.0 & \(+30\) & \% \({ }^{2} 2.0\) & 2.0 & \% +15 & -95 & \%100 & STO-8T \\
\hline UTO-5073 & 10-500 & 14 & 14 & 8.5 & 9.0 & \(+20\) & & -1.0 & \% 10 & +35 &  & 2.0 & + +15 & 110 & & -T0-8T \\
\hline UTO.5083 & 10-500 & -11.5 & 11 & 8.5 & 9.0 & \(+20\) & +20 & -0.7 & \({ }_{5}^{51.0}\) & +35 & 7+ 2.0 & 20 & + +24 & 110 & 标 71 & TO-8T \\
\hline UTO-5465 & 10-500 & 10 & 10 & 8.0 & 8.5 & +23 & +22 & -0.5 & 0.5 & +38 &  & 2.0 & + +15 & & & STO-8T \\
\hline UTO-561 & 10-500 & 11 & 10 & \% 9.0 & 8.5 & \(+28\) & + 25.5 & \(5 \% 0.7\) & 7.0 & \(\bigcirc 43\) & 3 & 2.0 & C) 415 & - 190 & 771 & YTO-8T \\
\hline
\end{tabular}

2 to 1000 MHz , (Listed In Order Of Increasing Noise Figure. Decreasing Gain)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline UTO-10434 & 10-1000 & 10 & 9 & 4.0 & 4.5 & +6 & +6 & 1.0 & 1.0 & +22 & 2.0 & 2.0 & +15 & 25 & 125 & TO-8T \\
\hline UTO. 1011 & 2-1000 & 14 & 13.5 & 3.5 & 4.0 & -5 & -6 & 0.7 & 1.0 & +10 & 2.0 & 2.2 & +15 & 8 & 125 & TO-8U \\
\hline UTO-10444 & 10-1000 & 10 & 9 & 4.5 & 5.0 & +12 & +12 & 1.0 & 1.0 & +28 & 2.0 & 2.0 & +15 & 35 & 125 & T0.8T \\
\hline UTO-1051 & 5-1000 & 10 & 9 & 5.0 & 5.7 & -5 & -6 & 1.0 & 1.0 & \(+10\) & 2.0 & 20 & +5 & 7 & 125 & TO-8U \\
\hline UTO-1001 & 5-1000 & 14 & 13.5 & 5.0 & 5.5 & -2 & -3 & 1.0 & 1.0 & \(+11\) & 2.0 & 2.0 & +15 & 10 & 125 & TO-8U \\
\hline UTO. 1002 & 5-1000 & 14 & 13.5 & 6.5 & 7.0 & + 7 & \(+7\) & 1.0 & 1.0 & +21 & 2.0 & 2.0 & \(+15\) & 23 & 125 & T0.8U \\
\hline UTO-1045 & 4-10-1000 & 9 & 8.5 & 6.5 & 7.5 & +17 & +17 & 1.0 & 1.0 & \(+30\) & 2.0 & 2.0 & +15 & 60 & 100 & TO-8T \\
\hline UTO-1003 & 5-1000 & 9 & 8.5 & 8.0 & 8.5 & +13 & \(+13\) & 1.0 & 1.0 & \(+27\) & 2.0 & 2.0 & +24 & 50 & 100 & TO-8U \\
\hline UTO-1033 & 5-1000 & 10 & 9 & 8.0 & 8.5 & +14 & +13 & 1.0 & 1.0 & \(+28\) & 2.0 & 2.0 & +15 & 48 & 100 & TO-8T \\
\hline UTO-1004 & 10-1000 & 6.0 & 5.5 & 12.0 & 12.5 & +20 & +19 & 0.7 & 1.0 & +33 & 2.0 & 2.0 & +15 & 110 & 71 & TQ Pr \\
\hline
\end{tabular}

For units with \(71^{\circ} \mathrm{C}\) Durn in temperature, \(B\) column is \(-5410+71^{\circ} \mathrm{C}\)
\(\triangle\) Preliminary. contact isciory.
Note 1: Thitd ordor intercen! poimt.
Note à Secomi arder intercept point.
Hote 3: RF inout oin is at DC ground.
Nots 4: Both if input and RF output pins are ar OC grouna.
Hote 5: A porrori of any DC vollage appind at the RF input pin will appear on the fF output pin (i.e. a resistive DC path exivis botween omsl.
The fuctory ean atso pronde information on oourating specific MiCamp moduies at temperatures above \(+85^{\circ} \mathrm{C}\) orbetow - \(54^{\circ} \mathrm{C}\) it is recommended that precsutions we taken io disure that the \(C W\) power acphed to the input of any UTO MiCamo modute racver cix. ceen +13 d 5 m or possible mermanem noise ingere degradation may result. Under certain conditions, higher Civ or pulse power ievele may be andined to specific modiabs whithout diliculy - contact the factory for recommendations. -




\section*{ypical Performance at \(\mathbf{2 5}^{\circ} \mathrm{C}\)}


Isolation vs. Frequency: Level of the \(f_{L}\) signal fed through to the \(R\) - and \(I\)-ports with respect to the level of the \(f_{L}\) signal at the L-port.

VSWR vs. Frequency: VSWR of the L-, Iand R-ports in a 50 ohm system. Some variation in the R-port VSWR will occur as a function of the L-port frequency as shown above. Curves for R-port VSWR are plotted for L-port frequencies of 4 GHz and 6 GHz . A plot of 1-port VSWR is also shown with \(\mathrm{f}_{\mathrm{L}}\) at \(2 \mathrm{GHz}, 4 \mathrm{GHz}\) and 5 GHz .



Conversion Loss vs. Drive Level: Conversion loss in a SSB system is a function of drive level ( \(f_{L}\) ) with \(f_{L}\) and \(f_{R}\) at approximately 3 GHz and \(\mathrm{I}_{\mathrm{R}}\) level at -6 dBm .


\section*{Conversion Loss and Noise Figure vs.} Input Frequency: The frequency ordinate refers to the \(f_{L}\) and \(f_{R}\) inputs with a \(f_{1}\) frequency of 500 MHz for conversion loss and a \(f_{1}\) frequency of 30 MHz for noise figure.
\(\left.\begin{array}{l}\text { LO } \\ \text { RF } \\ \text { IF }\end{array}\right\}\) \(\begin{aligned} & 10 \text { TO } 1500 \mathrm{MHz} \\ & \text { DC TO } 800 \mathrm{MHz}\end{aligned}\)
- MINIATURE PACKAGE: TO-8 (M2A)
- SMA CONNECTOR PACKAGE: (M2AC)
- LOW NOISE FIGURE: 6.5 dB (TYP.)
- HIGH ISOLATION: 35 dB (TYP.)
- HERMETICALLY SEALED


\section*{Guaranteed Specifications*}
\begin{tabular}{|c|c|c|c|}
\hline Characteristics & Min. & Max. & Test Conditions \\
\hline SSB Conversion Loss & & \[
\begin{aligned}
& 7.2 \mathrm{~dB} \\
& \\
& 8.2 \mathrm{~dB} \\
& 9.0 \mathrm{~dB}
\end{aligned}
\] & \begin{tabular}{l}
\(\mathrm{f}_{\mathrm{R}} 20\) to 600 MHz \\
\(\mathrm{f}_{\mathrm{L}} 10\) to 800 MHz \\
\(\mathrm{f}_{1}\) DC to 200 MHz \\
\(f_{\mathbf{R}} 10\) to 1500 MHz \\
\(f_{\mathrm{L}} 10\) to 1500 MHz \\
\(\mathrm{f}_{\mathrm{I}}\) DC to 200 MHz \\
\(\mathrm{f}, \mathrm{DC}\) to 800 MHz
\end{tabular} \\
\hline SSB Noise Figure & & \[
\begin{aligned}
& 7.2 \mathrm{~dB} \\
& \\
& 8.2 \mathrm{~dB} \\
& 9.0 \mathrm{~dB}
\end{aligned}
\] & \begin{tabular}{l}
\(\mathrm{f}_{\mathrm{R}} 20\) to 600 MHz \(\mathrm{f}_{\mathrm{L}} 10\) to 800 MHz \(\mathrm{f}_{1} .4\) to 200 MHz \\
\(f_{R} 10\) to 1500 MHz \(\mathrm{f}_{\mathrm{L}} 10\) to 1500 MHz \(\mathrm{f}_{1} .4\) to 200 MHz \(\mathrm{f}_{1} .4\) to 800 MHz
\end{tabular} \\
\hline Isolation \(f_{L}\) at \(R\) \(f_{L}\) at I \(f_{L}\) at \(R\) \(f_{L}\) at I \(f_{L}\) at \(R\) \(\mathrm{f}_{\mathrm{L}}\) at I & \[
\begin{aligned}
& 35 \mathrm{~dB} \\
& 30 \mathrm{~dB} \\
& 28 \mathrm{~dB} \\
& 20 \mathrm{~dB} \\
& 25 \mathrm{~dB} \\
& 18 \mathrm{~dB}
\end{aligned}
\] & & \begin{tabular}{l}
\(\mathrm{f}_{\mathrm{L}} 10\) to 500 MHz \\
\(\mathrm{f}_{\mathrm{L}} 500\) to 1200 MHz \\
\(f_{L} 1200\) to 1500 MHz
\end{tabular} \\
\hline Conversion Compression & & 1.0 dB & \(\mathrm{f}_{\mathrm{R}}\) Level \(=0 \mathrm{dBm}\) \\
\hline Desensitization Level & & 1.0 dB & \(\mathrm{f}_{\mathrm{A} 2}\) Level \(=-2 \mathrm{dBm}\) \\
\hline Third Order Intercept Point & & \[
\begin{aligned}
& +12 \mathrm{dBm} \\
& \text { (Typ) }
\end{aligned}
\] & \(\mathrm{f}_{\mathrm{L}}=+7 \mathrm{dBm}\) \\
\hline
\end{tabular}
*Measured in a \(50-\) ohm system with \(f_{L}\) at +7 dB . Downconverter application only unless otherwise specified
Schematic Diagram


\section*{Absolute Maximum Ratings}
Operating Temperature*
10 to \(20 \mathrm{MHz} \ldots \ldots-20^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\)
20 to \(1500 \mathrm{MHz} \ldots-54^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\)
Storage
Temperature \(\ldots \ldots .5^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\)
Maximum Peak RF Input
Power ......................... \(200 \mathrm{~mW} @\)
\(25^{\circ} \mathrm{C}\), derate to
50 mW at \(100^{\circ} \mathrm{C}\)
\(\left(2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\right)\)

Maximum Peak Input Current
at \(25^{\circ} \mathrm{C}\)...................... 50 mADC
*For the SMA connector package operation within \(0^{\circ}\) to \(50^{\circ} \mathrm{C}\) temperature range is recommended.

Outline Drawings
M2A


M2AC

dimensions are in inches imillimeters,

\section*{Typical Performance at \(25^{\circ} \mathrm{C}\)}

\begin{tabular}{l}
\(\therefore 1000 \mathrm{NHz}\) \\
\(\because-10: 0 \mathrm{AHz}\) \\
\hdashline-00 SHz
\end{tabular}
ve Level: The minimum recomnded drive level is +7 dBm . he maximum recommended drive \(\Rightarrow\) is +13 dBm .


Jonversion Loss vs. Input Frequency: Conversion loss of the mixer when used in an SSB system. The frequency ordinate :efers to the R-port ( \(f_{R}\) ) with \(f_{1}\) of 20 MHz . Data plotted with an \(\mathrm{f}_{\mathrm{L}}\) level of +7 dBm .


\section*{Conversion Loss vs. \(f_{1}\) Frequency:}

Conversion loss of the mixer when used in a SSB system. The frequency ordinate refers to the 1 -port \(\left(f_{1}\right)\) with \(f_{R}\) at 1000 MHz and \(f_{L}\) swept from 1000 to 1800 MHz .


VSWR vs. Frequency: VSWR of the \(L-, 1-\) and \(R\)-ports in a 50 -ohm system with \(f_{L}\) at +7 dBm . Some variation in the R-port VSWR will occur as a function of the L-port

\(f_{10}=1000 \mathrm{AHZ}\) AT 4708 m
\(P_{1 F}-10 \mathrm{dBm}\)

\section*{Conversion Loss in Up Conversion}

Mode: The frequency coordinate refers to the frequencies fed into the 1 -port at -10 dBm . The LO frequency is 1000 MHz at +7 dBm input level. The output signal is at R-port.
frequency. R-port VSWR is plotted for \(f_{L}\) at 1.0 GHz . Also shown are the L-port VSWR and the l-port VSWR with \(f_{L}\) at 1.0 GHz .


Isolation vs. Frequency: Level of the \(f_{L}\) signal fed through to the R-and 1 -ports with respect to the level of the \(f_{L}\) signal at the L-port.

M2A HARMONICS OF \(F_{\text {R }}\)
\begin{tabular}{|c|c|}
\hline \(F_{\text {a }}\) & dB SUPPRESSION \\
\hline 1500 & 49 \\
\hline 1200 & 36 \\
\hline 900 & 24 \\
\hline 600 & 21 \\
\hline 300 & 0 \\
\hline
\end{tabular}
test conditions
LO SIGNAL IS 1000 MHZ AI +7 dBm
IF SIGNAL IS 300 MHZ AI -10 dBm
300 MHZ SIGNAL FROM R PORT IS SEI
as reference and its har.
monics oata taken

M2A MIXER HARMONIC INTERMODULATION
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{} & & & \(>64\) & \(>64\) & \(>64\) & \(>64\) \\
\hline & & \(>64\) & \(>64\) & \(>64\) & \(>64\) & \(>64\) \\
\hline & 55 & 56 & 54 & 60 & 60 & 54 \\
\hline & 61 & 47 & 64 & 48 & \(>64\) & \\
\hline & 18 & 0 & 30 & 17 & 43 & \\
\hline & & 16 & 33 & 18 & & \\
\hline & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
\end{tabular}

Harmonics of \(\mathrm{f}_{10}\)
Fn, AND Fio AT 500 ANO 520 MHz , RESPECTIVELY.

\section*{CASCADABLE AMPLIFIER}

10 TO 1200 MHz
- LOW NOISE: 3.2 dB (TYP)
- HIGH GAIN-TWO STAGES
- ULTRALOW PHASE DEVIATIONFROM LINEARITY: \(< \pm 2^{\circ}, 100-1000 \mathrm{MHz}\)
- LOW VSWR: 1.2:1 (TYP), \(10-1000 \mathrm{MHz}\)
- MEDIUM LEVEL OUTPUT: +8 dBm (TYP)
- SMALL SIZE: TO-8


Guaranteed Specifications*
\begin{tabular}{|c|c|c|c|}
\hline Characteristic & Typical & \(0^{\circ}-50^{\circ} \mathrm{C}\) & \(-54^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}\) \\
\hline Frequency (Min.) & 2-1250 MHz & \(10-1200 \mathrm{MHz}\) & \(10-1200 \mathrm{MHz}\) \\
\hline Small Signal Gain (Min.) & 26.0 dB & 24.0 dB & 23.0 dB \\
\hline Gain Flatness (Max.) & \(< \pm 0.5 \mathrm{~dB}\) & \(\pm 0.8 \mathrm{~dB}\) & \(\pm 1.0 \mathrm{~dB}\) \\
\hline Noise Figure (Max.) & \[
\begin{gathered}
10-1000 \mathrm{MHz} \\
3.0 \mathrm{~dB} \\
10-1200 \mathrm{MHz} \\
3.4 \mathrm{~dB}
\end{gathered}
\] & \begin{tabular}{l}
\[
3.8 \mathrm{~dB}
\] \\
4.3 dB
\end{tabular} & \[
\begin{gathered}
4.3 \mathrm{~dB} \\
4.8 \mathrm{~dB}
\end{gathered}
\] \\
\hline Power Output at 1 dB Compression (Min.) & +8.0 dBm & +7.0 dBm & +6.5d8m \\
\hline VSWR (Max.) Input/Output & \[
\begin{gathered}
10-1000 \\
1.2: 1 \\
10-1200 \\
1.5: 1
\end{gathered}
\] & \[
\begin{aligned}
& 1.7: 1 \\
& 1.9: 1
\end{aligned}
\] & \[
\begin{aligned}
& 1.8: 1 \\
& 2.0: 1 \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Second Order Harmonic Intercept Point: +47 dBm (Typ.) \\ Second Order Two Tone Intercept Point: +41 dBm (Typ.) \\ Third Order Two Tone Intercept Point: +20 dBm (Typ.)}

DC Volts (Nominal) 15; DC Current at 15 Volts 35 mA
*Measured in a 50 -ohm system

\section*{Absolute Maximum Ratings}


Price Each 1-9: \(\$ 160\)

\section*{Typical Performance at \(\mathbf{2 5}^{\circ} \mathrm{C}\)}

Gain


Noise Figure


\section*{Power Output*}


\section*{VSWR}


\section*{Two-Tone Intermodulation}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Typical Antomatic Test Data} \\
\hline \multicolumn{4}{|l|}{\(V_{\text {Cc }}=12 \mathrm{~V}\)} & \multicolumn{4}{|l|}{\(V_{\text {Cc }}=15 \mathrm{~V}\)} \\
\hline HEC &  & (1) &  & \[
\begin{gathered}
\text { rfee } \\
\text { MWE }
\end{gathered}
\] & cicir & cicup & \({ }_{\text {cin }}^{\text {Cin }}\) \\
\hline ! 00. & \(1 \cdot 1\) & 1.8 & 5.4 & 100. & 0 & 1.1 & \(\underset{\sim}{*}\) \\
\hline 200. & ! \(: 1\) & ! 1. & 25.3 & 200. & ! : & 1:1 & 気, \({ }^{\text {c }}\) \\
\hline + + & 1.1 & 1.2 & 25.3 & +act. & 1.1 & 1.2 & 25.9 \\
\hline cras & 1.2 & 1.1 & -s.t & S00. & \(\frac{1}{1.2}\) & 1.2 & 25.9 \\
\hline Tos. & 1.2 & : 1 & 24.9 & \(\cdots\) & 2.2 & 1.1 & \%s. 4 \\
\hline cent. & 1.2 & 1.1 & 24.6
24.5 & 800. & 1.2. & 1.1 & 25.1 \\
\hline mas. & 1.3 & 1.2 & 24.3 & 1000 . & 1.2 & 1.1 & 24.8 \\
\hline 1000. & ! & \(1: \pm\) & 24.6. 6 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { TPEO } \\
& \text { IHER }
\end{aligned}
\]} & \multicolumn{2}{|r|}{5:1} & \multicolumn{2}{|r|}{S21} & \multicolumn{2}{|c|}{512} & \multicolumn{2}{|c|}{322} \\
\hline & MRC & anc & MPG & FHC & mac & PWHC & mac & PTH \\
\hline 140. & . 04 & 2.2 & 18.70 & -31.3 & . 01 & -6. 9 & . 07 & 160.5 \\
\hline 200. & . 05 & -17.9 & 18.41 & \(-5.3\) & . 01 & -11.2 & . \(0 \cdot\) & \(1 \leqslant \times 0\) \\
\hline 30 O. & . 05 & -34.1 & 18.46 & -84.9 & . 01 & -14.4 & . \(0 \cdot 7\) & 14 Cl . 5 \\
\hline \(\pm\) (0). & . 0 & -4!. 2 & \(13.4{ }^{\circ}\) & -112.0 & . 01 & -19.1 & . 0.7 & 124.0 \\
\hline 500. & .0\% & -51.8 & 18.54 & -140. 7 & . 01 & -23.9 & .0. & 202.3 \\
\hline \(\underline{6} 10\). & .08 & -62.: & 18.22 & \(\cdots 16.6\) & . 01 & -c9.0 & .10. & 8. 6 \\
\hline P00. & .09 & -59 & 17.61 & 165.0 & .01 & -s.e. & .05 & 5.8 \\
\hline E00. & . 10 & -89.? & 16.00 & 135.7 & . 01 & -35.: & . 03 & 19.2 \\
\hline Sn.0). & \(\cdot 10\) & -112. 5 & 16. 7 E & 106.3 & . 01 & -43.5 & . 03 & -104.E \\
\hline 1 14w & . 11 & \(-1+1.1\) & 16.55 & \(\therefore 3\) & . 01 & -4.7. & .08 & \(-153.5\) \\
\hline Eitus. & . 15 & -160.9
134.8 & 15.6 & 4.12 & . 02 & -5\%.0 & . 16. & -T-5 \\
\hline \multicolumn{9}{|l|}{\(V_{c c}=15 \mathrm{~V}\)} \\
\hline FFEC & & 11 & & 521 & & & & \\
\hline FHC & Mric & 14. & TAG & finc & mas & fric & Mnc & TMC \\
\hline 100. & . 08 & 59.5 & 20.06 & . 31.2 & . 01 & -4.-7 & .0. & 1.0 .8 \\
\hline 200. & . 0 & C. 5 & 19.75 & -5. 8 & . 01 & -10.1 & . 0.0 & 16.:- \\
\hline 300. & . 03 & \(\cdots 4.8\) & 19.73 & -84.9 & . 01 & -14.0 & .0. & 147.0 \\
\hline +60. & . 04 & -9.5 & 19.74 & -111.7 & . 01 & -18.0 & . 08 & 129.0 \\
\hline 500. & . 06 & -23.2 & 19.78 & -140.3 & . 01 & -2¢. & . 09 & 10.6 \\
\hline Cus. & . 0. & -36.5 & 19.41 & -16.. 4 & . 01 & -2..5 & .08 & c. 3 \\
\hline T00. & . 08 & -50.8 & 18.8.2 & 165.4 & . 01 & -42. 2 & . 06 & 63.5 \\
\hline Egio. & -10 & --0. 4 & 15.4 & 13.3 & . 01 & -3F.9 & . \(\mathrm{ma}^{4}\) & 31.3 \\
\hline 10. & . 10 & -93.6
-124.8 & 15. 36 & 10.1 & . 01 & \(-42.3\) & . 6 & -6.5.3 \\
\hline & . 10 & -124.8 & 1..36 & .0.5 & . 01 & \(\cdots 4.4\) & . 6 & -146.4 \\
\hline
\end{tabular}

Deviation From Linear Phase, Gain and Group Delay
\(\mathrm{V}_{\mathrm{cc}}=12 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { FFLL! } \\
& \text { MRE }
\end{aligned}
\] & \[
\text { DEU LIIN } 0
\] & \[
\begin{aligned}
& \text { REL } 0 \\
& \text { DEG }
\end{aligned}
\] & \[
\begin{gathered}
\text { GIIH IEU } \\
\text { DR }
\end{gathered}
\] & \[
\begin{gathered}
\text { ABS GRII } \\
\text { DB }
\end{gathered}
\] & \[
\begin{aligned}
& \text { GROLP DELRIM } \\
& \text { N-SEC }
\end{aligned}
\] \\
\hline 100. & -3.98 & . 00 & . 54 & 25.44 & .74 \\
\hline 200. & -1.92 & -26.4? & . 40 & 25.30 & P4 \\
\hline 300. & -. 48 & -.53.50 & . 43 & 25.33 & .75 \\
\hline 409. & . 95 & -80.68 & . 43 & 25.33 & \(\cdots\) \\
\hline 500. & 1.13 & -109.05 & . 46 & 25.36 & \(\cdots\) \\
\hline 600. & 2.33 & -136.35 & . 31 & 25.21 & .76 \\
\hline .00. & 3.55 & -163.-2 & . 01 & 24.91 & 98980 \\
\hline 800. & 2.80 & -193.60 & -. 080 & 24.60 & . 82 \\
\hline 900. & 1.94 & -222.40 & -. 45 & 24.46 & . 81 \\
\hline 1000. & 1.49 & -251.40 & -. 54 & 24.3.0 & . 82 \\
\hline 1100. & \(\underline{-17}\) & -281.61 & \(-.26\) & 24.4 .4 & . 92 \\
\hline 1200. & \(-7.68\) & -31..65 & -. 06 & 24.05 & 1.00 \\
\hline
\end{tabular}

GAIM DEU
DB
.63
.50
.50
.49
.51
.75
.03
-.33
-.51
. .63



\section*{FEATURES}

Precision Input Characteristics
Low \(V_{\text {os: }} 0.5 \mathrm{mV} \max (\mathrm{L})\)
Low \(\mathrm{V}_{\text {os }}\) Drift: \(5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) max (L)
Low \(\mathrm{I}_{\mathrm{b}}: 50 \mathrm{nA} \max (\mathrm{L})\)
Low \(I_{o S}: 5 n A \max (L)\)
High CMRR: 90dB min (K, L)
High Output Capability
\(A_{\text {ol }}=25,000 \mathrm{~min}, 1 \mathrm{k} \Omega\) load ( \(\mathrm{J}, \mathrm{S}\) )
\(T_{\text {min }}\) to \(T_{\text {max }}\)
\(V_{0}= \pm 10 \mathrm{~V}\) min, \(1 \mathrm{k} \Omega\) load ( \(\mathrm{J}, \mathrm{S}\) )
Low Cost

\section*{GENERAL DESCRIPTION}

The Analog Devices AD741J, AD741K, AD741L and AD741S are specially tested and selected versions of the popular AD741 operational amplifier. Improved processing and additional electrical testing guarantee the úser precision performance at a very low cost. The AD741J, K and L substantially increase overall accuracy over the standard AD741C by providing maximum limits on offset voltage drift, and significantly reducing the errors due to offset voltage, bias current, offset current, voltage gain, power supply rejection, and common mode rejection (see Error Analysis). For example, the AD741L features maximuin offset voltage drift of \(5 \mu \mathrm{~V} i^{\circ} \mathrm{C}\), offset voltage of 0.5 mV max, offset current of 5 nA max, bias current of 50 nA max, and a CMRR of 90 dB min . The AD741S offers guaranteed performance over the extended temperature range of \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\), with max offset voltage drift of \(15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\), max offset voltage of 4 mV , \(\max\) offset current of 25 nA , and a minimum CMRR of 80 dB .

\section*{HIGH OUTPUT CAPABILITY}

Both the AD741J and AD741S offer the user the additional advantages of high guaranteed output current and gain at low values of load impedance. The AD741J guarantees a minimum gain of 25,000 , swinging \(\pm 10 \mathrm{~V}\) into a \(1 \mathrm{k} \Omega\) load from 0 to \(+70^{\circ} \mathrm{C}\). The AD741S guarantees a minimum gain of 25,000 , swinging \(\pm 10 \mathrm{~V}\) into a \(1 \mathrm{k} \Omega\) load from \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\).
All devices feature full short circuit protection, high gain, high common mode range, and internal compensation. The AD741J, \(K\) and Lare specified for operation from 0 to \(+70^{\circ} \mathrm{C}\), and are available in both the TO-99 and mini-DIP packages. The AD741S is specified for operation from \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\), and is available in the TO-99 package.


\section*{GUARANTEED ACCURACY}

The vastly improved performance of the AD741J, AD741K, AD741L and AD741S provides the user with an ideal choice when precision is needed and economy is a necessity. An error budget is calculated for all versions of the AD741 (see further); it is obvious that these selected versions offer substantial improvements over the industry-standard AD741C and AD741. A typical circuit configuration (see Figure 1) is assumed, and the various errors are computed using maximum values over the full operating temperature range of the devices. The resu!ts indicate a factor of 8 improvement in accuracy of the AD741L over the AD741C, a factor of 5 improvement using the AD741K, and a factor of 2.5 improvement using the AD741J. The AD741S, similarly, achieves a factor of 3.5 improvement over the standard AD741. Note that the total error has been determined as a sum of component errors, while in actuality, the total error will be much less. Also, while the circuit used for the error analysis is only one of a multitude of possible applications, it effectively demonstrates the great improvement in overall 741 accuracy achievable at relatively low cost with the AD741J, K, L or S.


Figure 1. Error Budget Analysis Circuit

\section*{SPECIFICATIONS}
(typical @ \(+25^{\circ} \mathrm{C}\) and \(\pm 15 \mathrm{Vdc}\), unless otherwise specified)
\begin{tabular}{|c|c|c|c|c|}
\hline MODFLL & AD741J & AD741K & AD741L & AD741S \\
\hline \multicolumn{5}{|l|}{OHENI.OOP (iAIN} \\
\hline \(\mathrm{R}_{1 .}=1 \mathrm{hS!}, \mathrm{~V}_{0}= \pm 10 \mathrm{~V}\) & 50,000 min (200,000 typ) & & & - \\
\hline \(\mathrm{R}_{1}=2 \mathrm{k}!2, \mathrm{~V}_{0}= \pm 10 \mathrm{~V}\) & & 50,000 min (200,000 typ \()\) & 50,000 min (200,000 typ) & \\
\hline \multicolumn{5}{|l|}{Oer \(T_{\text {enip Range. }} \mathrm{T}_{\min }\) to \(\mathrm{T}_{\text {max }}\).} \\
\hline \multicolumn{5}{|l|}{OUTPUT CHARACTERISTICS} \\
\hline Voltage (1) \(R_{L}=1 \mathrm{k} \Omega, \mathrm{T}_{\text {min }}\) to \(T_{\text {max }}\) & \(\pm 10 \mathrm{~V} \min ( \pm 13 \mathrm{~V}\) typ) & & & * \\
\hline Voltage (a) \(\mathrm{R}_{\mathrm{t}}=2 \mathrm{k} \Omega, \mathrm{T}_{\text {min }}\) to \(\mathrm{T}_{\text {max }}\) & & \(\pm 10 \mathrm{~V}\) min \(( \pm 13 \mathrm{~V}\) typ) & \(\pm 10 \mathrm{~V}\) min ( \(\pm 13 \mathrm{~V}\) typ) & \\
\hline Short Circuit Current & 25 mA & * & * & * \\
\hline \multicolumn{5}{|l|}{F-RI:OLIENCY RESPONSE} \\
\hline Untry Ciain, Small Signal & 1 MHz & * & * & * \\
\hline rull Power Response & 10 kHz & * & * & * \\
\hline Skew Rate. Unity Gain & \(0.5 \mathrm{~V} / \mathrm{\mu s}\) & * & * & * \\
\hline \multicolumn{5}{|l|}{INPLTOHSET GOLTAGE} \\
\hline Initial, \(\mathrm{k}_{\mathrm{s}} \leqslant 10 \mathrm{k} \Omega\) (adjustable to 2 cro) & 3 mV max ( 1 mV typ) & 2 mV max ( 0.5 mV typ) & 0.5 mV max ( 0.2 mV typ) & 2 mV max ( 1 mV typ ) \\
\hline \(T_{\text {min }}\) to \(T_{\text {max }}\) & 4 mV max & 3 mV max & 1 mV max & \\
\hline 小y is temperature (untrimmed) & \(20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) max & \(15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \max \left(6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right.\) typ) & \(5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \max \left(2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right.\) typ \()\) & \(15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \max \left(6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right.\) typ \()\) \\
\hline is Supply, \(T_{\min }\) to \(\mathrm{T}_{\max }\) & \(100 \mu \mathrm{~V} / \mathrm{V} \max (30 \mu \mathrm{~V} / \mathrm{V}\) typ) & \(15 \mu \mathrm{~V} / \mathrm{V} \max (5 \mu \mathrm{~V} / \mathrm{V}\) ryp) & \(15 \mu \mathrm{~V} / \mathrm{V} \max (5 \mu \mathrm{~V} / \mathrm{V}\) typ) & * \\
\hline \multicolumn{5}{|l|}{INPUT OFIS:T CURRENT} \\
\hline Inical & 50nA max (5nA typ) & \(10 n A \max (2 n A t y p)\) & \(5 \mathrm{nA} \max (2 \mathrm{nA}\) typ) & \(10 n A \max (2 n A t y p)\) \\
\hline \(\mathrm{T}_{\text {min }}\) \(0 \mathrm{~T}_{\text {max }}\) & 100nA max & 15 nA max & 10nA max & \(25 n A \max\) \\
\hline Ayg w Temperature & \(0.1 \mathrm{nA} /{ }^{\circ} \mathrm{C}\) & \(0.2 \mathrm{nA} / /^{\circ} \mathrm{C} \max \left(0.02 \mathrm{nA} /{ }^{\circ} \mathrm{C}\right.\) typ) & \(0.1 \mathrm{nA} / /^{\circ} \mathrm{C}\) max ( \(0.02 \mathrm{nA} /{ }^{\circ} \mathrm{C}\) typ) & \(0.25 \mathrm{nA} /{ }^{\circ} \mathrm{C} \max \left(0.1 \mathrm{nA} /{ }^{\circ} \mathrm{C}\right.\) typ) \\
\hline \multicolumn{5}{|l|}{INPUT BIASCURRENT} \\
\hline Intial & 200nA max (40nA typ) & 75nA max (30nA typ) & 50nA max (30nA typ) & 75 nA max (30nA typ) \\
\hline \[
T_{\min } \text { to } r_{\max }
\] & & & 100 nA max & 250nA max \\
\hline Agy temperature & \[
0.6 \mathrm{nA} /^{\circ} \mathrm{C}
\] & \(1.5 \mathrm{nA} /{ }^{\circ} \mathrm{C} \max \left(0.6 \mathrm{nA} /{ }^{\circ} \mathrm{C}\right.\) typ \()\) & \(\ln \mathrm{A} /{ }^{\circ} \mathrm{C} \max \left(0.6 \mathrm{nA} /{ }^{\circ} \mathrm{C}\right.\) typ) & \(2 \mathrm{nA} /{ }^{\circ} \mathrm{C}\) max ( \(0.6 \mathrm{nA} /{ }^{\circ} \mathrm{C}\) typ \()\) \\
\hline \multicolumn{5}{|l|}{WPOTMPTDANCE} \\
\hline Differential & \(1 \mathrm{M} \Omega\) & \(2 \mathrm{M} \Omega\) & \(2 \mathrm{M} \Omega\) & \(2 \mathrm{M} \Omega\) \\
\hline \multicolumn{5}{|l|}{Midut volimate RANGE (Note 1)} \\
\hline Differembal, max safe & \(\pm 30 \mathrm{~V}\) & * & * & * \\
\hline Common Mode, max safe & \(\pm 15 \mathrm{~V}\) & * & * & * \\
\hline \multicolumn{5}{|l|}{Common Mode Rejection,} \\
\hline \(R_{S} \leqslant 10 \mathrm{k} \Omega . \mathrm{T}_{\min }\) to \(\mathrm{T}_{\max }, V_{\text {in }}= \pm 12 \mathrm{~V}\) & 80 dB min (90dB typ) & \(90 \mathrm{~dB} \min (100 \mathrm{~dB}\) typ) & \(90 \mathrm{~dB} \min (100 \mathrm{~dB}\) typ) & * \\
\hline \multicolumn{5}{|l|}{POWER SUPPI.Y} \\
\hline Rated Performance & \(\pm 15 \mathrm{~V}\) & * & * & * \\
\hline Operating & \(\pm(5\) to 18\() \mathrm{V}\) & \(\pm(5\) to 22 ) V & \(\pm(5\) to 22) V & \(\pm(5\) to 22)V \\
\hline Current, Quicscent & 3.3 mA max ( 2.0 mA typ) & \(2.8 \mathrm{~mA} \max (1.7 \mathrm{~mA}\) typ) & \(2.8 \mathrm{~mA} \max\) ( 1.7 mA typ) & \(2.8 \mathrm{~mA} \mathrm{max}(2.0 \mathrm{~mA} \mathrm{typ})\) \\
\hline \multicolumn{5}{|l|}{TRAPPRATURE RANGE} \\
\hline Operating, Rated Performance & 0 to \(+70^{\circ} \mathrm{C}\) & * & * & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline Sturage & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & * & * & * \\
\hline
\end{tabular}

Notr 1: For supply voltages less than \(\pm 15 \mathrm{~V}\), the absolute maximum input voltage is equal to the supply voltage.
- Specifications same as AD741J.

Specifications subject to change without notice.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{PARAMETER} &  &  & \[
67 \%
\] &  &  &  &  &  &  &  &  &  \\
\hline & \multicolumn{2}{|l|}{AD741C} & \multicolumn{4}{|l|}{\begin{tabular}{l}
ERROR BUDGET ANALYSIS \\
AD741] \\
AD741K
\end{tabular}} & \multicolumn{2}{|l|}{AD741L} & \multicolumn{2}{|l|}{AD741} & \multicolumn{2}{|l|}{AD741S} \\
\hline & \[
\begin{aligned}
& \text { SPEC } \\
& \text { (0 to }+7
\end{aligned}
\] & \[
\begin{aligned}
& \text { ERROR } \\
& \left.0^{\circ} \mathrm{C}\right) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { SPEC } \\
& 10 \text { to }+7
\end{aligned}
\] & \[
\begin{aligned}
& \text { ERROR } \\
& \left.0^{\circ} \mathrm{C}\right) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { SPEC } \\
& 10 \text { to }+7
\end{aligned}
\] & \[
\begin{aligned}
& \text { ERROR } \\
& \left.\hline 0^{\circ} \mathrm{C}\right) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { SPEC } \\
& \text { (0 to + }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ERROR } \\
& 70^{\circ} \mathrm{C} \text { ) } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { SPEC } \\
& \left(-S 5^{\circ} \mathrm{C}\right. \text { to }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ERROR } \\
& \left.+125^{\circ} \mathrm{C}\right) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { SPEC } \\
& \left(-55^{\circ} \mathrm{C}\right. \text { to }
\end{aligned}
\] & \[
\begin{gathered}
\text { ERROR } \\
\left.+125^{\circ} \mathrm{C}\right) \\
\hline
\end{gathered}
\] \\
\hline Gain (Error \(\left.=10 V_{i n} / \mathrm{C}\right)\) & 15,000 & \(660 \mu \mathrm{~V}\) & 25,000 & \(400 \mu \mathrm{~V}\) & 25,000 & \(400 \mu \mathrm{~V}\) & 25,000 & \(400 \mu \mathrm{~V}\) & 25.000 & \(400 \mu \mathrm{~V}\) & 25,000 \({ }^{1}\) & \(400 \mu \mathrm{~V}\) \\
\hline \(l_{b}\left(\right.\) Error \(=l_{b} \times\) resistor mismatib \()\) & 800nA & \(160 \mu \mathrm{~V}\) & 400nA & \(80 \mu \mathrm{~V}\) & \(120 n A\) & \(24 \mu \mathrm{~V}\) & \(100 \pi A\) & \(20 \mu \mathrm{~V}\) & 1500nA & \(300 \mu \mathrm{~V}\) & 250nA & SOMV \\
\hline \(\mathrm{I}_{\text {os }}\left(\right.\) Error \(\left.=l_{\text {os }} \times 10 \mathrm{k} \Omega\right)\) & 300nA & \(3000 \mu \mathrm{~V}\) & 100 nA & \(1000 \mu \mathrm{~V}\) & 15 nA & \(150 \mu \mathrm{~V}\) & 10 nA & \(100 \mu \mathrm{~V}\) & 500 nA & \(5000 \mu \mathrm{~V}\) & 25nA & 250رV \\
\hline \(\Delta V_{o s} / \Delta T\left(E r r o r ~=~ \Delta V_{o s} / \Delta T \times \Delta_{T}\right)\) & \(25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}^{2}\) & \(1125 \mu \mathrm{~V}\) & \(20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) & \(900 \mu \mathrm{~V}\) & \(15 \mu \mathrm{~V} \mathrm{f}^{\circ} \mathrm{C}\) & \(675 \mu \mathrm{~V}\) & \(5 \mu \mathrm{~V} / \mathrm{C}\) & \(225 \mu \mathrm{~V}\) & \(25 \mu \mathrm{~V} \mathrm{P}^{\circ} \mathrm{C}^{2}\) & \(2500 \mu \mathrm{~V}\) & \(15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) & \(1500 \mu \mathrm{~V}\) \\
\hline CMRR (Error \(=10 \mathrm{~V} / \mathrm{CMRR}\) ) & 70 dB & \(3300 \mu \mathrm{~V}\) & 80dB & \(1000 \mu \mathrm{~V}\) & 90 dB & \(330 \mu \mathrm{~V}\) & 90 dB & \(330 \mu \mathrm{~V}\) & 70dB & \(3300 \mu \mathrm{~V}\) & 80dB & \(1000 \mu \mathrm{~V}\) \\
\hline PSRR (assume a \(\pm 5 \%\) power supply variation) & \(150 \mu \mathrm{~V} / \mathrm{V}\) & 450رV & \(100 \mu \mathrm{~V} / \mathrm{V}\) & \(300 \mu \mathrm{~V}\) & \(15 \mu \mathrm{~V} / \mathrm{V}\) & \(45 \mu \mathrm{~V}\) & \(15 \mu \mathrm{~V} / \mathrm{V}\) & 45 \(\mu \mathrm{V}\) & \(150 \mu \mathrm{~V} / \mathrm{V}\) & 450رV & \(100 \mu \mathrm{~V} / \mathrm{V}\) & \(300 \mu \mathrm{~V}\) \\
\hline TOTAL & & 8.7 mV & & 3.7 mV & & 1.6 mV & & 1.1 mV & & 12.0 mV & & 3.5 mV \\
\hline
\end{tabular}
\({ }^{1}\) AD741J and AD741S...Open Loop Gain is guaranteed with a \(1 \mathrm{k} \Omega\) load.
\({ }^{2} A D 741 \mathrm{C}\) and \(\mathrm{AD} 741 . . \Delta \mathrm{V}_{\mathrm{OS}} \Delta_{\mathrm{T}}\) is not guaranteed (for complete specifications, contact the factory for data sheet).

\section*{INPUT CHARACTERISTICS}


Figure 2. Max Equivalent Input Offset Drift vs. Source Resistance

-Figure 3. Input Bias Current vs. Temperature


Figure 4. Common Mode Rejection vs. Frequency


Figure 5. Input Noise Voltage vs. Frequency


Figure 6. Input Noise Current vs. Frequency


Figure 7. Broadband Noise vs. Source Resistance

\section*{OUTPUT CHARACTERISTICS}

The AD741J and AD741S are specially selected for high output current capability. High efficiency output transistors, thermally balanced chip design and precise short circuit current control insure against gain degradation at high current levels and temperature extremes. The AD741J guarantees a minimum gain of 25,000 , swinging \(\pm 10 \mathrm{~V}\) into a \(1 \mathrm{k} \Omega\) load from 0 to \(+70^{\circ} \mathrm{C}\). The AD741S guarantees minimum gain of 25,000 , swinging \(\pm 10 \mathrm{~V}\) into a \(1 \mathrm{k} \Omega\) load from \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\). The AD741K and AD741 L are guaranteed with the standard \(2 \mathrm{k} \Omega\) load.


Figure 8. Output Voltage Swing vs. Frequency


Figure 9. Output Voltage Swing vs. Load Resistance


Figure 10. Open Loop Gain vs. Frequency

Analog Devices AD741, p. 4
BONDING DIAGRAM
All versions of the AD741 are available in chip or wafer form, fully tested at \(+25^{\circ} \mathrm{C}\). Because of the critical nature of using unpackaged devices, it is suggested that the factory be contacted for specific information regarding price, delivery and testing.


\section*{CONNECTION DIAGRAMS}
(Top View)

(H package)
(N package)

PHYSICAL DIMENSIONS
Dimensions shown in inches and (mm).


MIL-STANDARD-883
The AD741S is available with \(100 \%\) screening to MIL-STD-883, Method 5004, Class A, B, or C. Consult the factory for pricing and delivery.

\section*{ORDERING GUIDE}

ORDER
\begin{tabular}{|c|c|c|}
\hline MODEI:I. & TFAP. RANGI: & NUMBFR \\
\hline A07+iJ & \(0^{\circ} \mathrm{C}\) (0) \(+70^{\circ} \mathrm{C}\) & AD741 \({ }^{\text {a }}\) \\
\hline AD7+1k & \(0^{\circ} \mathrm{C}\) to \(+700^{\circ} \mathrm{C}\) & AD \(7+1 \mathrm{~K}^{*}\) \\
\hline ADT+11. & \(0^{\circ} \mathrm{C}\) ¢ \(6+70^{\circ} \mathrm{C}\) & A1)7+11.* \\
\hline AD741S & \(-55^{\circ} \mathrm{C}\) (0) \(+125^{\circ} \mathrm{C}\) & (1) \(\overline{+1} 15\) \\
\hline
\end{tabular}

\footnotetext{
*Add Pachage Type I.ctter: \(11=70 \cdot 99 . N=\) Mini-fItP.
}

\section*{TABLE B \\ ELECTRICAL SPECIFICATIONS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{gathered}
\text { Frequency } \\
(\mathrm{GHz})
\end{gathered}
\] & Type & \[
\begin{gathered}
\text { Cap. (Max. })^{8} \\
\text { pF }(C v))^{\prime}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{K}(\text { Min. }) \\
\frac{\mathrm{mV}}{\mathrm{~mW}}
\end{gathered}
\] & M (Min.) & Flatness Typical (dB) &  & \begin{tabular}{l}
VSWR \\
(Max.)
\end{tabular} & VSWR Typ. \\
\hline \multirow{9}{*}{} & 0.1-0.5 & 1050 & 500 & 1000 & 100 & \(\pm 0.2\) & -51 & 2.0 & 1.5 \\
\hline & 0.5-1.0 & 5100 & 100 & 1000 & 100 & \(\pm 0.2\) & -51 & 2.0 & 1.5 \\
\hline & 1.0-2.0 & 102B & 50 & 1000 & 100 & \(\pm 0.2\) & -51 & 2.0 & 1.5 \\
\hline & 2.0.4.0 & 2048 & 25 & 1000 & 100 & \(\pm 0.2\) & -51 & 2.0 & 1.5 \\
\hline & 4.0.8.0 & 408B & 15 & 700 & 70 & \(\pm 0.4\) & -50 & 2.5 & 1.7 \\
\hline & 8.0.12.0 & 812B & 15 & 700 & 70 & \(\pm 0.4\) & -50 & 2.5 & 1.7 \\
\hline & 8.0.16.0 & 816B & 15 & 450 & 45 & \(\pm 0.6\) & -48 & 3.0 & 2.2 \\
\hline & 12.0.18.0 & 208F* & 7 & 400 & 40 & \(\pm 0.5\) & -48 & 2.5 & 2.0 \\
\hline & 18.0.26.0 & 806F** \(\dagger\) & 5 & 250 & 25 & \(\pm 1.0\) & -46 & 4.0 & 2.5 \\
\hline \multirow{11}{*}{} & 0.1-1.0 & 110D & 500 & 700 & 70 & \(\pm 0.5\) & -50 & 3.0 & 1,8 \\
\hline & 0.5-2.0 & 5200 & 100 & 800 & 80 & \(\pm 0.5\) & -50 & 3.0 & 1,8 \\
\hline & 0.7-1.4 & 714D & 50 & 1000 & 100 & \(\pm 0.3\) & -51 & 2.0 & 1.5 \\
\hline & 1.0-4.0 & 104B & 50 & 800 & 80 & \(\pm 0.5\) & -50 & 3.0 & 2.0 \\
\hline & 1.0.12.0 & 112B & 25 & 500 & 50 & \(\pm 1.5\) & -50 & 4.0 & 2.5 \\
\hline & 2.0-8.0 & 2088 & 25 & 600 & 60 & \(\pm 0.7\) & -50 & 3.5 & 2.0 \\
\hline & 2.0-12.0 & 212 B & 15 & 500 & 50 & \(\pm 1.0\) & -50 & 4.0 & 3.0 \\
\hline & 2.0-18.0 & 218B* & 15 & 400 & 40 & \(\pm 1.0\) & -48 & 4.0 & 3.0 \\
\hline & 4.0.12.0 & 412B & 15 & 600 & 60 & \(\pm 0.7\) & -48 & 3.5 & 2.0 \\
\hline & 7.0.11.0 & 7118 & 15 & 700 & 70 & \(\pm 0.4\) & -50 & 2.5 & 1.8 \\
\hline & 7.0.12.0 & 712B & 15 & 600 & 60 & \(\pm 0.5\) & -50 & 3.0 & 2.0 \\
\hline \multirow[t]{5}{*}{} & & W812B & 15 & 700 & 70 & \(\pm 0.4\) & -50 & 2.0 & 1.7 \\
\hline & 8.5-9.6 & W8596B & 15 & 1000 & 100 & \(\pm 0.2\) & -51 & 1.7 & 1.4 \\
\hline & 12.0-18.0 & W208F & 7 & 500 & 50 & \(\pm 0.5\) & -48 & 2.5 & 2.0 \\
\hline & 18.0-26.5 & W806F \({ }^{\dagger}\) & 5 & 250 & 25 & \(\pm 1.0\) & -46 & 4.0 & 2.5 \\
\hline & 26.5-40.0 & W264F \({ }^{\dagger}\) & 2 & 250 & 25 & \(\pm 1.0\) & -45 & 4.0 & 3.0 \\
\hline
\end{tabular}

\section*{TECHNICAL NOTES ON SPECIFICATIONS:}
1. Detectors can be matched within \(\pm 0.25 \mathrm{~dB}\) over octave band widths and \(\pm 0.4 \mathrm{~dB}\) over wider band widths. Add \(10 \%\) to price per unit for matching in pairs, and add suffix letter " \(p\) " to the model number.
2. The 1 dB non-square-law point varies with the value of the video load. Typical values are -17 dBm for open circuit and -12 dBm for a 100 -ohm video load.
3. No bias is required to obtain the performance specified. All standard models have a built-in DC return. Detectors can be supplied without DC returns on special request.
4. RF Power Input must be limited to 50 mW . CW or 3 ergs spike. On models specified above 12 GHz , power ratings are 10 mW . CW or 1 erg spike. The video input must be limited to 0.5 volt forward voltage and 10 mA reverse current. Forward voltage is defined as a negative voltage at the video connector for a forward \((-)\) output detector. Voltage and power levels higher than those specified may result in permanent damage to the detector.
5. VSWR, \(K\) and flatness ratings are given for input powers from tangential sensitivity to \(\mathbf{- 2 3} \mathbf{~ d B m}\).
6. Flatness is defined as the RF power variation required to maintain a constant voltage output across the frequency range.
7. \(B W=2 \mathrm{MHz}, N F=3 \mathrm{~dB}\) @ambient temperature.

\section*{- Available only in DM, DO, DMM, and DOM Series. \\ - Available only in DMM, and DOM Series. \\ \(t\) Not available in field replaceable mount.}
8. Capacity. \(C_{v}\), can be supplied in other values. Add the letter " \(Z\) " to the model number to reduce \(C_{V}\) by \(50 \%\). Example: D204BZ would have 12 pF . Add \(5 \%\) to the price for " \(Z\) " models.


DM, DO SERIES

\section*{TANGENTIAL SIGNAL SENSITIVITY}

The figure of merit, M , defines the detector parameters and is given by
\[
M=\frac{K}{\sqrt{R_{v}}}
\]
where, \(K=\) open circuit voltage sensitivity in \(\mathrm{mV} / \mathrm{mW}\)
\(R_{v}=\) video resistance of detector in ohms
However, tangential signal sensitivity (TSS) is a measure of the combined detector-amplifier performance as a video receiver and is a function of temperature, bandwidth, and amplifier noise figure as well as the figure of merit of the detector. TSS has become accepted as being that signal power which produces 8 dB signal-to-noise voltage ratio: and at \(300^{\circ} \mathrm{K}\)
\[
P_{T S S}=\frac{3.22 \sqrt{B F}}{M} \times 10^{-7}
\]
with \(P\) in milliwatts, \(B\) in Hz , and \(F\) expressed as a power ratio.

An important consideration in achieving detector-amplifier sensitivity is optimizing video amplifier noise figure as a function of detector video resistance. Transistor video amplifiers are quite suitable for such application, and noise figures \(<3.0 \mathrm{~dB}\) are easily attainable for the source resistance ( 75 to 200 ohms) of the tunnel diode detector.

\section*{DYNAMIC RANGE}

Tunnel detector square-law performance is essentially unaffected by changes in microwave power level at small signal levels ( \(P_{\mathbb{I N}_{N}} \leqslant-23 \mathrm{dBm}\) ). At higher power levels there are necessarily deviations, since a strict adherence to square-law performance would require a conversion gain. Proper loading of the tunnel device can, however, extend square-law performance to beyond \(\mathbf{- 1 5 d B m}\), and dynamic ranges greater than 40 dB are typically achievable in systems with bandwidths of several MHz .

A particularly convenient application of the tunnel detector is its use in conjunction with narrow band 1 kHz amplifiers such as the HP415E SWR meter. On "low" input, excellent square-law performance is realized, and typical sensitivities are below \(\mathbf{- 6 5 d B m}\).

\section*{i/f NOISE CHARACTERISTICS}

The tunnel diode detector offers significant improvement for low-frequency narrow-band video applications where 1/f noise predominates. Tunnel detectors differ from crystal detectors in that the \(1 / \mathrm{f}\) noise corner is as much as three decades in frequency below that of the crystal detector. This is due in part to the high doping levels and low resistivity of the back diode semiconductor wafer, and to the fact that no bias is required for normal operation. This physical characteristic of the tunnel detector can improve the sensitivity of video receivers below 100 kHz ; e.g., in Doppler radar systems, by 15 to 30 dB , when the detector is properly integrated with a transistor video amplifier.

\section*{TEMPERATURE STABILITY}

In addition to performing well in systems requiring large dynamic ranges, the tunnel detector displays excellent temperature stability characteristics. Although the I-V characteristic of the tunnel diode is affected by temperature variations, the greatest change occurs in the p-n junction current region beyond the valley voltages; by comparison, the tunneiing region (where the detector operates under small signal conditions) is relatively independent of temperature. Typical variation in sensitivity for the tunnel detector is \(\pm 0.5 \mathrm{~dB}\) over the temperature range from \(-65^{\circ}\) to \(+85^{\circ} \mathrm{C}\). This represents a considerable improvement over competitive crystal devices.

\section*{APPLICATION OF BIAS}

A further microwave receiver consideration is that the tangential sensitivities mentioned herein are for unbiased tunnel detectors. This operational mode is generally optimal when sensitivity, VSWR, dynamic range, and system simplicity are all considered. When tangential sensitivity is of primary concern, improvements can be obtained by biasing the tunnel device to operate near the peak current. Increasing sensitivities, on the order of 2 to 5 dB , can be realized in this manner, at the expense, however, of reduced dynamic range and increased RF mismatch.

\section*{POWER HANDLING CAPABILITIES}

The tunnel diode's power handling capabilities are higher than the point-contact crystals; however, because of the low resistance ( 100 ohms compared to 5,000 ohms) it is much easier to exceed the power ratings through transient voltages. For example, a capacitor charged to 10 volts will generate a peak power of approximately 1 watt when discharged through the tunnel detector and only about 20 milliwatts when discharged through the crystal detector. For high reliability application CW input powers should be kept below 50 mW .


TYPICAL TUNNEL DETECTOR TAANSFER CHARACTERISTICS
SSEMBLY,TEST FINISH SPEC


OWN
CHE \(\qquad\) Aertedh AMF- 5035
MODEL NO. HIVES UUノノ
JOB NO.
CUSTOMER_-
SERIAL NO.

ELECTRICAL SPECIFICATIONS

SET GAUSS LEVEL TO FURL NOTES:
I. TEMP CYCLE LYES_NO \(-55^{\circ} \mathrm{C}\) TO \(+85^{\circ} \mathrm{C}\) 2. GLUE

\section*{. PLIOBOND __ ECCOBOND 55} SILICON \(\mathbb{F} O T H E R \quad 123\)

\section*{FINISHING}
\(V\) POT MAGNET WELL \& SHUNTS POT SEAMS
SILVER PAINT SEAMS
_ POT FLAT HEAD SCREWS
- PRIME \& PAINT
- L-770 VINYL TEXTURED
_ GREY GREEN 24148
- BROWN
- BLACK

NAMEPLATE LARGE SMALL __RUBBER STAMP _ SILKSCREEN
_FREQ ___ PORT MARKING _IN/OUT_BIAS ㄴI \(\underline{\imath} 2 \ldots 3\) — OTHER
—GRE Y
— FED
MIL
OTHER MIRE! PATE
1. CYCLE MIAGNETS iN THE UNITS lUTH C. AS COVEA
\(\therefore\) FUIC FERriTE
MA F


.\(\leq 0\)




1. Foil Ferrites
2. Cycle Magnates in chat with ab, Cites. cir.



FINISHING
- POT MAGNET WELL \& SHUNTS
- POT SEAMS
- silver paint seams
- pot flat head screws

二 PRIME \& PAINT
NAMEPLATE \(\qquad\) LARGE \(\qquad\)
— RUBBER STAMP \(\qquad\) _SILKSCREEN
_FREQ \(\qquad\)
_INIOUT_BIAS とIV2_3
- OTHER
R_—___
- L-770 VINYL TEXTURED
— GREY \(\qquad\)
GREY GREEN 24148
— FED \(\qquad\)
BLACK \(\qquad\) -MIL

1. Foil Ferrites
2. Cyclic Magnets in Unit witt mach Cotes. Cir.


K \& L Microwave 3MCl0 series Minicrure Ccuvity

\section*{Specifications}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Frequency \\
Range \\
(MHz)
\end{tabular} & \begin{tabular}{c} 
3dB \\
BW \\
\(\%\)
\end{tabular} & VSWR & \begin{tabular}{c} 
Average \\
Power
\end{tabular} & Impedance & \begin{tabular}{c} 
Number \\
of \\
Sections
\end{tabular} & Shock & Vibration & Temp. \\
\hline \(200-1000\) & \(1-10\) & \(1.5: 1\) & 2 Watts & 50 Ohms & \(2-8\) & \begin{tabular}{c}
\(30 \mathrm{G's}\) \\
\(11 \mathrm{M's}^{\prime}\)
\end{tabular} & \begin{tabular}{c}
\(10 \mathrm{G} \mathrm{\prime}\) \\
\(5-1000 \mathrm{~Hz}\)
\end{tabular} & \begin{tabular}{c}
\(-20^{\circ} \mathrm{C}\) \\
\(+85^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline
\end{tabular}


\section*{Loss Constant vs. Frequency}
\begin{tabular}{|l|c|}
\hline FREO. & LOSS CONSTANT \\
\(160-200\) & 3.0 \\
\(201-400\) & 2.5 \\
\(401-1000\) & 2.0 \\
\hline
\end{tabular}

To determine the out-of band or stopband attenuation for K\&L miniature cavity filters this series of curves are used. These curves show the attenuation as multiples of the 3dB bandwidth for filters with 2 to 8 sections.
The following formula is used to determine the stopband attenuation:
3dB BW's fromFO =
Reject Freq-Center Freq.
3dB BW
Example:
Center Freq. \(=500\)
\(3 \mathrm{~dB} \mathrm{BW}=10 \mathrm{MHz}\)
No. of Sections \(=6\)
Find the attenuation at 80 MHz and 520 MHz .
By substituting in the formula, the 3 db \(B W\) 's from \(\mathrm{FO}=520-500=+2\)

10
3 db BW's fromFO- \(-430-500=-2\)
10
Referring to the attenuation curves we find the attenuation in dB's for a 6 secthon response \(+2 \mathrm{BW}^{\prime}\) 's from FO to yield 62 dB and -2Bw's from FO to yield 62 dB.

\section*{Insertion Loss}

To determine the approximate insertion loss at the center frequency the following formula is used:
Insertion Loss =
(Loss Const.) (No. of sect. \(+1 / 2\) ) +0.5
Percent 3 dB BW
Example:
\(C F=500 \mathrm{MHz}\)
3 dB BW \(=10\)
No. of sections \(=6\)
The \(\% 3 \mathrm{~dB} \mathrm{BW}=\frac{100 \times 10}{50}=2 \%\)
Loss constant from table \(=2.0\) Insertion Loss \(=\underline{(2.0)(6.5)}+0.5=7.0 \mathrm{~dB}\)

Phone 301-749-2424 - TWX 710-864-9683

\section*{APPENDIX F: REAR-PANEL CONNECTORS}

The rear-panel connector configurations of F4, F7 and F8 are illustrated on the following pages.


PI (REAR VIEW)

SINGLE WIDE MODULE (REAR VIEW)




TRIPLE WIDE MODULE (REAR VIEW)


P! (REAR VIEW)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{P1} \\
\hline F1: & FUACTION & WIPE COLOR & P1N & FUNCTION & YiJRE COLOR \\
\hline 1 & & & 22 & & \\
\hline 2 & & & 23 & & \\
\hline 3 & & & 24 & & \\
\hline < & & & 25 & & \\
\hline 5 & & & 26 & & \\
\hline - & & & 27 & & \\
\hline 7 & & & 28 & -28V supply & (not used) \\
\hline 8 & & & 29 & +28 V supply & (not used) \\
\hline 9 & & & 30 & & \\
\hline 10 & +5 V supply & (not used) & 31 & & \\
\hline 11 & -5 V supply & (not used) & 32 & & \\
\hline 12 & & & 33 & & \\
\hline 13 & & & 34 & Po:er ground & Black \\
\hline 14 & & & 35 & & \\
\hline 15 & & & 36 & & \\
\hline 15 & +15V supply & Red & 37 & & \\
\hline 17 & -15V supply & (not used) & 38 & & \\
\hline 13 & & & 39 & & \\
\hline 13 & & & 40 & & \\
\hline 20 & & & -41 & & \\
\hline 21 & & & & & \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{ANOICATESA FUNCTICN NOT FOUND N THIS MODULE
DWR: LRD 790518
Approved:}} \\
\hline & & & & & \\
\hline
\end{tabular}```


[^0]:    ${ }^{1}$ Multiplex address in Data Set 1 ; LSB is bit 1.
    ${ }^{2}$ F5 has nonstandard rear-panel arrangement. Viewed from-rear, the connectors are: P1, top left; P2, top right; P3, bottom left; P 4 , bottom right.

