VLA TECHNICAL REPORT NO. 47

MODULE T6C BASEBAND CONTROL
W. E. Dumke

December 1980

CONTENTS

1.0 GENERAL DESCRIPTION 1
2.0 THEORY OF OPERATION 1
3.0 CIRCUIT DETAILS 2
3.1 A1 Card 2
3.2 A2 Card 4
3.3 Module Wiring Harness and A3 Card 7
4.0 FRONT PANEL INDICATORS AND CONTROLS 9
4.1 Auto/Man Switches 9
4.2 Man LEDs 9
4.3 Filter Thumbwheel Switch 9
4.4 CAL-ON Switch BNC Connector 10
5.0 ADDRESSES AND BIT ASSIGNMENTS 10
6.0 LIST OF DRAWINGS 14
7.0 RELATED PUBLICATIONS AND MEMORANDA 14

FIGURES

2.1 T6C BASEBAND CONTROL BLOCK DIAGRAM C13820B1A
3.1 T6C A1 CONTROL BOARD, D13820L1
3.2 T6C A2 CONTROL BOARD, D13820L2
3.3 T6C BASEBAND CONTROL AND A3 ASSEMBLY, D13820L3
3.4 SYNCHRONOUS DETECTOR TIMING
3.5 L8 MODIFICATIONS
5.1 BASEBAND T4, T5, AND T6 MONITOR AND COMMAND WORD ADDRESS ASSIGNMENTS
6.1 A13820C3 DRAWING LIST

1.0 GENERAL DESCRIPTION

The T6C Baseband Control module serves as an interface for command and monitor data between the T4C Baseband Filter and the T5C Baseband Driver modules and the M1 Data Set module. One T6C module is used for each antenna " D " rack and provides an interface for all four (A, B, C, and D) baseband channels. It also provides for the selection of either manual or automatic gain control independently for each channel. Manual filter selection however, is common to all four baseband channels. The T6C module also provides synchronization and generation of gating signals for the T5C synchronous detectors.

2.0 THEORY OF OPERATION

Operation of the T6C command and monitor system is similar to that of the T6A and B series modules. Refer to Block Diagram C13820B1A.

Input and output of data from the module are controlled by four parallel address lines from the M1 Data set. The address decoder controls the input and output functions of two shift registers through a series of gates. When the appropriate address appears, a 24 bit command word is serially entered into the 24 bit latch. To check the data link the received word can be read back from the command register into the data set if requested by the computer. The 16 least significant bits of the command word contain four sets of four bits which are used to select the required filters in the four T4C baseband filter modules. These four sets of bits enter four two-line to one-line multiplexers, the other inputs to which come from a single front panel BCD thumbwheel switch. The four multiplexers are individually controlled by the four manual/auto front panel switches, so the filter selection of any of the baseband filter modules can either be controlled by the computer or manually, as desired. Under automatic (computer) control the filter selection can be different for each baseband filter module, but in the manual mode the same four bit thumbwheel switch controls all four modules.

From the monitor shift register, a word can be read back into the DCS system. The 16 least significant bits of the monitor register input are connected to the multiplexer output lines to show the filter select signals actually being used and the four most significant bits indicate the state of the four front panel Manual/Auto switches. These four switches also select the ALC voltages applied to the ALC amplifier in the T5C Baseband Driver modules. The ALC voltages are either the output of the ALC loop amplifier or the front panel manual gain adjust potentiometer of the T5C Baseband Driver modules.

In the automatic position, the corresponding T5C Baseband Driver has its gain controlled from the output of the ALC loop amplifiers, and the corresponding T4C Baseband Filter has its filter selected from the DCS system.

The baseband control module also has analog multiplexers which permit any one of 24 differential input voltages to be monitored by the data set. These multiplexers are controlled by the same four address lines, with two seperate data strobes, that control the input and output of the digital data. The inputs to the multiplexers include ALC (Automatic Level Control), Cal Off (noise power at output of T5C module when the front end calibration noise source is turned off), synchronous detector output voltage, and T6C module power supply voltages. The last being reduced by resistive dividers when greater than ten volts positive or less than ten volts negative.
3.0 CIRCUIT DETAILS
3.1 A1 Card

A complete logic diagram is shown in Figure 3.1. All active components are mounted on a $4^{\prime \prime} \times 6 \frac{3}{2}{ }^{\prime \prime}$ wirewrap card. Switches and LED's are mounted on the front panel of the module and resistive dividers used in voltage monitoring are mounted on a seperate terminal board.

All inputs from the data set are low-true logic. The input buffers for the four address lines are of the low power type (74L04 inverting gates) to reduce the load on those particular outputs of the data set. The address decoder is a 74154 in a 24 pin package.

The control shift register consists of three 74164 serial-in, parallel-out circuits. The input data into this register is controlled by the input enable signal and the output clock. The output when reading back the word is controlled by the output 1 enable signal and the output clock.

The latch consists of six 74177 integrated circuits and the data is loaded into them by the input strobe signal. The four two-line to one-line multiplexers are 74157 integrated circuits. Pull-up resistors are provided on the filter select thumbwheel inputs to insure reliable operation.

The monitor shift register consists of three 74165 parallel-in, serial-out circuits and the data is loaded into them by the output strobe. The shifting out of the data into the data set is controlled by the output 2 signal and the output clock. Digital output circuits to the data set consist of 7438 gates with open connectors which drive a load resistor in the data set.

The analog multiplexer for DCS address 100^{\prime} through 117' consist of two 507A (Harris Semiconductor) units with balanced inputs and outputs. Input grounds are obtained at the source of the given signal to avoid errors due to ground loops. Note that the two halves of each 507A are shown as seperate blocks in the logic diagram. The voltages connected to the multiplexer inputs along with other DCS address information is given in Section 5.0.

Note that the Al card is a modification of the logic card in the now obsolete T6A and T6B IF Control modules. The original circuitry has been maintained with minor additions.

Additions include pull-up resistors and the Auto/Man switch monitor inputs and the filter select thumbwheel switch inputs to the command multiplexer. Command address $\overline{357}$ is now extracted from the decoder to be used on the A2 card for the Cal On and Cal Off gating signal synchronization. The A2 card also contains an additional analog voltage multiplexer chip to handle the increase in analog voltage monitoring from the baseband system.

3.2 A2 Card

A complete logic diagram is shown in Figure 3.2. The A2 card contains an additional analog multiplexer chip for T5C synchronous detector voltage monitoring in the same configurations as those on the A1 card. A decoder and synchronization circuit provide the Cal On and Cal Off gating signals to the T5C synchronous detector and gated ALC circuit. A diagram of these signals and their relation to system operation is shown in Figure 3.3.

Two problems exist with operation of a synchronous detector at the Central Electronics Room. One problem is the result of the CER modem transmit period (including various switching transients). During the transmit period no antenna IF signals are being received. This transient, while it only occurs for approximately 1 ms out of approximately 50 ms , can have a derogatory effect in a detector system when a maximum error of 0.1% is desired. The ALC circuit would be similarly affected. This problem is solved by utilizing the Central Electronics Room Track and Hold signal to gate both circuits. This signal is only valid when valid IF information is being received.

The other problem involves synchronization of the Central Electronics Room synchronous detector and ALC with the front end noise source that is injected into the front end on every other waveguide cycle, to measure front end effective noise temperature.

In the earlier system only the F 4 modules in the front end rack contained a synchronous detector. Therefore, it was trivial to derive a common gating signal for the noise source and the synchronous detector.

In the spectral line retrofit however, the synchronous detector and ALC in the T5C Baseband Driver (after the final analog filtering in the T4C Baseband Filter modules) were required in order to measure the total system effective noise temperature after the communications system and the final analog filtering. This required a system of knowing

SYNCHRONOUS DETECTOR TIMING
Figure 3.3

at the Central Electronics Room when the front end noise source had been turned on at the front end. The solution is based on the fact that the DCS commands at both the antenna and the Central Electronics Room are based on odd or even computer (or waveguide) cycles. The appearance of the command address can be used to synchronize a toggle flip-flop in both situations.

Two modifications to the system were required (one at the antenna 18 Timing Generator module and one at the Central Electronics Room T 6 module) to implement this system. The L8 Timing Generator module had a 74573 flip-flop added, wired as a toggle flip-flop. The flip-flop was clocked from the 1200 MHz carrier on signal to obtain the $9.6 \mathrm{~Hz} 50 \%$ duty cycle signal necessary to drive the noise source at the antenna through the F5 Front End Control module. This is shown in Figure 3.4. To synchronize this signal with the Central Electronics Room the strobe for the Walsh function command, address 376^{\prime} is used to clear the flip-flop. This normally occurs every 24 cycles, so initialization will have a slight delay associated with it.

The T6 Baseband Control module in a similar manner uses the command 357^{\prime} strobe to clear a 7474 flip-flop wired again as a toggle flip-flop. The clock is obtained from the Central Electronics Room Track and Hold signal. However, in this case the synchronous detector gating signals must only be valid during the time that the front end received signals are present. This is accomplished by "anding" the appropriate flip-flop output with the original Central Electronics Room Track and Hold signal. Thus two seperate gating signals are generated.
"Cal Off" is valid when the received noise power is present with the front end noise calibration source turned off.
"Cal On " is valid when the received noise power is present with the front end noise calibration source turned on.

It is important to note that command 357^{\prime} must be present on a periodic basis to insure proper synchronous detector operation. Only the command 357^{\prime} strobe must be present. 357' data is not utilized. Proper operation of the system can be diagnosed by looking at the polarity of the analog synchronous detector voltage. If it is negative, a problem is indicated.
3.3 Module Wiring Harness and A3 Card

These are shown in D13820L3C. The A3 printed circuit card contains resistive dividers for the power supply voltages monitored by the A1 card analog multiplexer. These dividers limit the monitored voltages to ± 10 VDC, and is the same card used in T6A and T6B. The resistors were not put on the A2 wirewrap card in order to make the A1 and A2 cards functionally independent for easier diagnostics.
Dl TGC BASEBAND CONTROL FRONT PANEL WIRING

TGC TERMINAL BOARD "A3" WIRING DIAGRAM

NOTE: GROUND DEFINITION \& CONNECTIONS
DEF: "A3 GND" = GND TERMINAL LUG ON TERMINAL BOARD

A2-GND
A3-GND
BLK
BUK
$A 1-G N D$
F.P. GROUNDS CONNECT TO "R1-GNO"LUG)

L8 DIVIDER MODIFICATION

Figure 3.4

4.0 FRONT PANEL INDICATORS AND CONTROLS

4.1 Auto/Man Switches (Channels A, B, C, D)

In the auto position, the appropriate T4C Baseband Filter receives its filter selection command from the T6C DCS interface. Also, the ALC amplifier in the appropriate T5C Baseband Driver receives its gain control voltage from the internal ALC loop amplifier.

In the Man position, the appropriate T4C Baseband Filter receives its filter selection command from the T6C Front Panel filter select thumbwheel switch common to all T4C's in the manual mode. Also, the ALC amplifier in the appropriate T5C Baseband Driver receives its gain control voltage from the T5C Front Panel manual gain control. Also the manual warning LED adjacent to the Auto/Man switch will light, and a warning signal is sent to the DCS digital monitor system.
4.2 Man LEDs (Channels A, B, C, D)

This red LED indicates that the adjacent Auto/Man switch is in the Manual mode. In normal operation this LED should be extinguished.

4.3 Filter Thumbwheel Switch

This BCD switch selects the filter for the appropriate T4C when in the Manual mode.

SWITCH	FILTER SELECTION
0	46 MHz Low Pass Filter
1	23 MHz Low Pass Filter
2	11.5 MHz Low Pass Filter
3	5.75 MHz Low Pass Filter
4	2.88 MHz Low Pass Filter
5	1.438 MHz Low Pass Filter
6	0.719 MHz Low Pass Filter
7	$0.210-0.390 \mathrm{MHz}$ Bandpass Filter
8	External Filter
9	Termination

4.4 Cal On Switch BNC Connector

This is a copy of the Cal On TTL gating signal distributed to all T5C Baseband Driver modules, synchronous with the Central Electronics Room Track and Hold signal. See Timing Diagram for further information.
5.0 ADDRESSES AND BIT ASSIGNMENTS

Refer to Figure 5.1.

DCS 5 MONITOR WORDS

Baseband Drivers and Control (T5 and T6)

Baseband Filters And Control (T4 and T6)

240' T4 Baseband Filter monitor coding identical to command word coding. See word 340 .

Baseband Drivers And Control (T5 and T6)

DCS 5 Command Word
340' T4 Baseband Filter Commands

Baseband Filter A Bandwidth		Hex Comm
46 MHz	LPF	0
23 MHz	LPF	1
11.5 MHz	LPF	2
5.75 MHz	LPF	3
2.88 MHz	LPF	4
1.438 MHz	LPF	5
0.719 MHz	LPF	6
$0.201-0.390 \mathrm{MHz}$	BPF	7
External Filter		8
Termination		9
Baseband Filter B Bandwidth		
46 MHz	LPF	00
23 MHz	LPF	10
11.5 MHz	LPF	20
5.75 MHz	LPF	30
2.88 MHz	LPF	40
1.438 MHz	LPF	50
0.719 MHz	LPF	60
0.201-0.390 MHz	BPF	70
External Filter		80
Termination		90

Figure 5.1B

Baseband Filter C Bandwidth		Hex Command
46 MHz	LPF.	000
23 MHz	LPF	100
11.5 MHz	LPF	200
5.75 MHz	LPF	300
2.88 MHz	LPF	400
1.438 MHz	LPF	500
0.719 MHz	LPF	600
$0.201-0.390 \mathrm{MHz}$	BPF	700
External Filter		800
Termination		900
Baseband Filter D Bandwidth		
46 MHz	LPF	0000
23 MHz	LPF	1000
11.5 MHz	LPF	2000
5.75 MHz	LPF	3000
2.88 MHz	LPF	4000
1.438 MHz	LPF	5000
0.719 MHz	LPF	6000
$0.201-0.390 \mathrm{MHz}$	BPF	7000
External Filter		8000
Termination		9000
357^{\prime} T5 Synchronization command (only address is used) (must be periodically sent for proper T5 synchronous detector operation)		

6.0 LIST OF DRAWINGS

The T6C Baseband Control Drawing List is given in A13820C3.
7.0 RELATED PUBLICATIONS AND MEMORANDA

VLA Technical Report $\# 5$, Module T6 IF Control, A. R. Thompson (Obsolete).

VLA Technical Report \#44, An Overview of the Monitor and Control System, D. W. Weber, March 1980.

VLA Technical Report \#48, T4C Baseband Filter, W. E. Dumke, December 1980.

VLA Technical Report 排9, T5C Baseband Driver, W. E. Dumke, December 1980.

Memorandum, Subject "Baseband System DCS Manual Revisions", W. E. Dumke, July 24, 1980.

Rack D Central Electronics Room Block Diagram, Drawing No. D16000B5D

