VLA Technical Report No 56
FOCUS/ROTATION CONTROL SYSTEM, MODEL E
D. WEBER, P. HARDEN, W. KOSKI DECEMBER 1984

TABLE OF CONTENTS
1.0 INTRODUCTION ..... 1
1.1 PERFORMANCE SUMMARY ..... 1
1.2 BACKGROUND ..... 1
1.3 F/R CONTROL SYSTEM DESCRIPTION ..... 4
$1.4 \mathrm{~F} / \mathrm{R}$ MOUNT DESCRIPTION ..... 9
1.5 DRIVE DYNAMICS ..... 14
2.0 M7, MODEL E F/R CONTROLLER DESCRIPTION ..... 21
$2.1 \mathrm{~F} / \mathrm{R}$ CONTROLLER LOGIC DESCRIPTION ..... 21
2.2 ROTATION AND RING CONTROL PROGRAM ..... 24
2.3 FOCUS CONTROL PROGRAM ..... 38
3.0 M11, MODEL B APEX INTERFACE LOGIC DESCRIPTION ..... 41
4.0 M8, MODEL C, F/R POWER SUPPLY DESCRIPTION ..... 45
5.0 M22, F/R SWITCHING MODULE DESCRIPTION ..... 46
6.0 SYSTEM TROUBLE SHOOTING ..... 48
7.0 TELESCOPE OPERATOR INFORMATION ..... 51
8.0 CONTROL/DATA BIT FORMATS, ANALOG SIGNALS \& RANGES ..... 54
9.0 SYSTEM CABLE DRAWINGS \& TRANSLATOR SCHEMATIC ..... 60DIAGRAMS
10.0 SYSTEM FUNCTIONAL SPECIFICATIONS ..... 61
11.0 APPENDIX ..... 65
ROTATION \& RING CONTROL PROGRAM FOCUS CONTROL PROGRAM

    LIST OF RELATED DRAWINGS
    
    M7, M11, M8, M22 ASSEAMBLY DRAWINGS \&
    
    IC LOCATION MAPS
    
    F/R CONTROL BIN WIRE LIST
    
    FUNCTIONAL MODULE DATA SHEETS
    FIGURE 1, F/R SYSTEM, MODEL E, FUNCTIONAL BLOCK DIAGRAM 6
FIGURE 2, PEDASTAL ROOM F/R COMPONENTS 7
FIGURE 3, APEX \& PEDASTAL ROOM JUNCTION BOX LAYOUTS 8
FIGURE 4, APEX F/R COMPONENTS 11
FIGURE 5, APEX ASSEMBLY,EXPLODED ISOMETRIC VIEW 12
FIGURE 6, F/R MOUNT - LOCATIONS OF MAJOR COMPONENTS 13
FIGURE 7, STEPPER MOTOR TORQUE/SPEED CURVES 20
FIGURE 8, APEX INTERFACE ANALOG ADJUSTMENT LOCATIONS 43

### 1.0 INTRODUCTION

This manual describes the new VLA Focus/Rotation Control system and was written to serve as a maintainance guide for the system and modules. The primary purpose of this manual is to provide a detailed functional description of the operation of the system, the modules and control programs. The emphasis is on practical data: module schematic diagrams, control programs, cable drawings, and bin wire lists are included to make this a comprehensive reference manual with all the data that are handy for use on the lab bench or at an Antenna.

A secondary purpose is to describe the functional operation of the mechanical components and the inter-relationships between these components and the control system hardware/software. The manual also has sections which briefly describe the $F / R$ Control System operation, the F/R Mount, the control and F/R Mount specifications and telescope operator CRT overlay \& diagnostic information. These sections may be read for information on these topics without bothering to plow through the detailed descriptions of the modules and programs.

### 1.1 PERFORMANCE SUMMARY

The following table summarizes the performance of the new $F / R$ System.

| Parameter | Focus | Rotation |
| :--- | :--- | :--- |
| Command execution time | $64 \mathrm{sec} / 12 \mathrm{inches}$ | $15 \mathrm{sec} / 180 \mathrm{deg}$ |
| Max drive rate | $0.197 \mathrm{in} / \mathrm{sec}$ | $16.7 \mathrm{deg} / \mathrm{sec}$ |
| Readout resolution, | $0.000732 \mathrm{in} / \mathrm{bit}$ | $1.318 \mathrm{arc-min} / \mathrm{bit}$ |
| (14 bit conversion) |  |  |
| Command repeatability | 0.5 bit, RMS | $2 \mathrm{arc-min}, \mathrm{RMS}$ |
| Physical stability | 0.001 in | $3.85 \mathrm{arc-min}$ |

### 1.2 BACKGROUND

A previous manual (VLA Technical Report No 42, F/R System Manual, Jan 1980), described the first version of the F/R Control System and the F/R Mount. This control equipment was designed in 1974 and is installed in most of the VLA antennas. Specifications for the new system resulted from the need for better performance and experience with the earlier mechanism and electronics. The new control system provides more powerful control, extensive local fault analysis, higher position resolution, more reliable position readout devices, faster mechanism response time and easier maintainance. It is also capable of relatively easy alteration of the control algorithms by changing the firmware. The F/R Mount has undergone extensive mechanical redesign and the Controller design has been made sufficiently general so as to be able to adapt to these changes.

Several experimental versions of $F / R$ Control systems have been used in recent years. A microprocessor controller with synchro position readouts was used in Antenna 27 in 1980. Although the controller operated satisfactorily, it was decided not to retrofit other antennas with this controller until some mechanical design changes were made to improve the the stability of the $F / R$ Mount.

The stability and repeatability of the Subreflector Rotation position is a very critical parameter in that small Subreflector angular position errors
cause large antenna pointing errors. Focus position instability impacts the visibility data phase. Section 10 describes the effects of Subreflector positional errors on pointing and phase. Much of the mechanical and electrical redesign effort has been directed at reducing the Rotation position uncertainty. The unreliability of the position readout potentiometers has also been a persistant problem which has cost many dollars for replacement parts and many man-hours for maintainance and repair time.

An approach to solving the Rotation position uncertainty is an index locking pin mechanism in which a tapered pin is inserted into sockets at angular positions associated with receiver feed horns. An $\mathrm{F} / \mathrm{R}$ Mount incorporating this feature was installed in Antenna 12 with a new $F / R$ Controller and operated on a trial basis for a year. The idea behind this scheme was that a snug-fit pin/socket combination would provide a tight lock and eliminate the typical 30 to 60 arc-minutes of Rotation ring gear-brake lost motion. The Antenna $12 \mathrm{~F} / \mathrm{R}$ Control System operated satisfactorily but there were reliability problems with the pin actuation motor so this approach was abandoned and the Antenna $12 \mathrm{~F} / \mathrm{R}$ Mount was redesigned.

The essence of the final mechanical re-design is to reduce the brake-ring gear lost motion by relocating the Rotation brake to the traveling platform and coupling the brake to the ring gear with only one gear pass. This reduces the Rotation gear slack to about four arc-minutes. The Rotation position readout sensor is relocated so as to be closely coupled (ie one gear pass) to the Subreflector mounting drum. This change eliminates about 1.5 degrees (out of 3200 degrees) lost motion in the existing Rotation ring gear-to-readout potentiometer gear train.

To improve reliability, the Rotation position readout sensor was changed from a potentiometer to a synchro and a high resolution (14 bits) Synchro to Digital Converter. Military reliability analysis has shown that in a given environment, synchros are an order of magnitude more reliable than multi-turn, precision potentiometers. The higher resolution readout has provided a great improvement in the capability of the controller to precisely set and monitor the Rotation position. The Focus position readout potentiometer was also replaced with a synchro and 14 bit S/D Converter. The use of synchros and an integrating S/D Converter has made the position readout circuitry virtually invulnerable to noise perturbations on the long cable runs from the Apex to the Pedestal Room.

After the Antenna 12 prototype system operated for a year without failure or noticeable performance degradation, it was decided to retrofit the new mechanical and electrical designs into all antennas as a part of the periodic antenna refurbishment schedule. The new $F / R$ Controller and reworked $F / R$ Mount have been installed in Antenna 20. Antenna 20 also has a 327 MHz dipole/ring feed system installed in front of the subreflector; this has added several mechanical components to the F/R Mount and Apex structure. When the 327 MHz receiver is in use, the feed ring is extended to enclose the 327 MHz dipoles. When the other receiving bands are used, the ring is retracted back toward a quadrapod spar. Although the ring is not part of the $F / R$ System, the $F / R$ System controls the ring motion because of the proximity of the ring actuator to the Apex junction box and the flexibility of the F/R control electronics.

The existing stepper motors and Translators have been retained but the Translators have been relocated to provide more room in Rack C.

The Apex to Pedestal Room cable structure has not been changed other than signal reassignment of some wires. A $3-w i r e 110 \mathrm{VAC}$ cable has been added to power the 327 MHz Ring actuator.

Beside the changes described above, a number of mechanical improvements have been incorporated in the $F / R$ mount mechanical design. Notable examples are:

Renovation of the aluminum Rotation ring gear bearing surfaces by steel inserts.

The use of better weather-proof flexible boots over the lead screws and spline shaft.

The use of heaters on the gear box and traveling platform to warm the gear train lubricant to about 40 deg $F$ in cold weather. This prevents cold weather lubricant stiffening which can cause drive sticking problems due to the marginal drive motor torques.

### 1.3 F/R CONTROL SYSTEM DESCRIPTION

See Figure 1, F/R Control System Block Diagram and Figures $2 \& 3$ which show the location of the $F / R$ Control System Components.

The $F / R$ Controller closes the position loops and activates all driving elements of the $F / R^{\text {M }}$ Mount, senses positions and discretes, analyzes conditions in the mount and Pedestal Room to detect faults and reports on these states to Central Control via Data Set 3.

In CMP (Central Computer control) mode, the F/R Controller receives a position command from the Data Set which activates an interrupt in either the Focus or Rotation portion of the controller. The controller tests the Multiplex address and command argument (some Focus arguments are not accepted because of mechanical constraints), and it calculates motor ramping parameters, steering direction and activates the associated brake and stepper motor translator. If brake voltage and current and translator power are above test thresholds and there are no system faults, the controller begins to emit drive pulses to the Stepper Motor Translators so as to null the error. The pulse rate is ramped from 100 Hz to 1000 Hz ( 500 Hz in Focus) in 50 Hz steps. Drive continues at 1000 Hz until a calculated ramp down position is reached at which time the stepping rate is ramped down to 100 Hz for convergence to the commanded set point. When the set point is reached the controller turns off the Stepper Translator $A C$ and activates the brake.

During ramp-up, main drive, ramp down and convergence, position changes are compared with what they should be to test for drive sticking or dragging. If this happens, the stepping rate is reduced to 100 Hz and the drive is ramped back up to 250 Hz (the peak torque speed of these motors) and the controller attempts to complete the command. In the event that the drive sticks again, the controller aborts the command. When drive sticking occurs, a "Drive Fault" bit is set in the controller status data readout and this bit flags this message on the Operator's Data Checker program and the Operator's F/R Overlay.

In the LOCAL mode (selected by the F/R Controller front panel switch), the $F / R$ system is controlled by actuation of the manual control switches on the F/R Power Supply. These switches are: Focus Drive Up/Down; Rotation Drive CW/CCW; and the Focus and Rotation Ramp/ 100 Hz switches. LED displays on the Power Supply panel indicate actuation of the brakes, translators etc. In the LOCAL mode the computer commands are ignored and command inputs come from the switches mentioned above. The portion of the control program which implements LOCAL control is similar to the portion which implements CMP (central computer) control and calls the same drivers to perform basic functions such as turning on the brakes, ramping up/down, providing monitor data to the Data Set, etc.

The controller is not directly connected to any circuitry in the Apex; all position and discrete readouts from the Apex are sensed by an Apex Interface unit which transfers this data to the controller via an optically isolated serial link. The Apex Interface front panel displays the Focus and Rotation position in 14 bit octal code and the state of various discretes and activity sensors on an LED annunciator. Logic in the Apex Interface tests for malfunctions; in the event that any of these occur an inhibit (YOWP!) is sent to the F/R Controller to disable all drive outputs. When limit conditions are sensed by the Apex Interface, drive inhibits are sent to the F/R Controller to inhibit further drive into the limit (but not out of the limit). The Apex Interface is isolated from the controller as a lightning protection measure;
it is the sacrificial element in the event of strikes on the Apex structure restricting damage to this unit which has a minimum of parts.

A Switching Module contains the brake controllers (DC power supplies) and solid state relays to switch the AC for the brake controllers, translators and 327 MHz feed ring actuator. A 400 Hz synchro exciter in the Switching Module provides the 400 Hz required by the synchros and the S/D Converters.

A NAP mode has been incorporated to enable the controller to ignore position commands until reset by a RESET command. This permits reduced performance operation in the event of a drive failure.

A ZOT BOX capability has been incorporated into the sysetm to permmit manual control of the Subreflector position by a ZOT BOX which may be plugged into either the $F / R$ control bin or the Apex Junction Box. Discrete and position readouts on the $Z O T$ BOX display the state of the $F / R$ Mount position.


FIG. 1 - F/R SYSTEM - FUNCTIONAL BLOCK DIAGRAM


## PEDESTAL ROOM F/R COMPONENTS



FIG. 2 -PEDESTAL ROOM F/R COMPONENTS


## PEDESTAL ROOM JUNCTION BOX

FIG. 3 APEX $\xi$ PEDESTAL RM. JUNCTION BOX LAYOUTS

### 1.4 F/R MOUNT DESCRIPTION

The $F / R$ Mount is almost inaccessible; most of the mechanism parts are enclosed by the gearbox or hidden by the barrel and support structure. This section was written to provide a brief description of the mechanism for electronics maintainance personnel who must understand how the mount operates in order to be able to maintain the electronics.

The $F / R$ Mount is a two axis mechanism consisting of three rings, four guide shafts, four lead screws, two gear trains, two drive motors, two failsafe brakes and two position readout synchros. Figure 4 depicts the $F / R$ Mount and Subreflector as they appear from the inside of the dish. Figure 5 depicts an exploded isometric view of the $F / R$ Mount and the associated components. Figure 6 depicts the locations of the motors, brakes and Focus position readout synchro.

The top ring is a gear box for the two drive trains; the motors are mounted on the top of the gear box. The Focus motor and gears rotate lead screws which move the Traveling (middle ring) platform up and down the Guide Shafts to produce the Focus motion. The Focus brake is mounted on the top of the gear box and is coupled to the Focus gear train inside the box.

The Rotation motor and gear train drives a sliding spline gear which rotates a large ring gear mounted on the Traveling platform to produce the Rotation motion. The Rotation brake is mounted on the traveling platform and is coupled to the Rotation ring gear through a single gear pass.

A flange on the center of the ${ }^{*} 42^{\prime \prime}$ diameter barrel is bolted to the Rotation ring gear. The Subreflector is bolted to the bottom of the barrel and counter-weights are bolted to the top of the barrel. The bottom ring is a supporting member for the guide rods and lead screws.

Rubber spring couplings between the drive motors and gear trains buffer the motors so that they are not subjected to large instantaneous inertial loads such as at initial drive motion. The spring deflection is proportional to the torsional loads imposed upon the motor by the drive.

The brakes are fail-safe; that is they are always engaged until energized.

The Rotation gear train reduction ratio is 108:1, that is, each 1.8 degree motor step rotates the Subreflector by $1.8 / 108$ or 0.01666 degrees so that 21,600 motor steps are required to rotate the Subreflector 360 degrees. The Focus gear train reduction ratio to the lead screws is 2.54:1. The lead screw pitch is . 200 so that five rotations of the lead screws are required to move the traveling platform one inch. The total Focus travel is 12 inches (ignoring that lost by limit switch inhibit action) so that the total number of motor steps required to traverse this Focus range is: 1.8 * 200 * 5 * 2.54 * $12=30480$ motor steps.

Focus and Rotation positions are read out as 14 bit values ( 16384 counts range). The motor-step/readout-resolution ratios are: $21600 / 16384=1.318$ steps/bit (also 1.318 arc-min/bit) in Rotation motion and 30480/16384 = 1.860 steps/bit (also 0.0003937 in/step and $0.000732 \mathrm{in} / \mathrm{bit}$ ) in Focus motion.

Rotation position is read out by a synchro mounted on a tripod above the
barrel. The synchro shaft is coupled to the center of the drum through a sliding "Trombone" which takes out the Focus motion of the barrel; see Figure 5 for details on this mechanism. A tubular shaft attached to the top of the Trombone drives the Rotation position synchro through a flexible coupling and pick-off gear (1:1 ratio) which drives an anti-backlash gear on the synchro shaft.

Focus position is read out by a 10:1 anti-backlash reduction gear box and synchro coupled to the Focus gear train. The gear box is used because the synchro and gear box mimic the 10 -turn helipot used with the older system.

Focus upper/lower limit switches sense the extremes of Focus motion and cause the $F / R$ Controller to inhibit further drive into the limit. There are no Rotation limit switches as the Rotation drive is capable of continuous rotation; in executing a Rotation command, the $F / R$ Controller rotates the Subreflector through the smallest angle to move to a new position. This permits faster band changes.

The 327 MHz feed dipoles travel up and down with the Subreflector Focus motion but do not rotate with the Subreflector Rotation motion. This nonrotation is accomplished by mounting the dipoles on a square shaft which is prevented from rotating by a square-holed collar attached to the top of the Rotation synchro gear box. The dipoles are caused to move with the Subreflector in Focus motion by a thrust bearing in the Subreflector which is attached to the square shaft. The square shaft passes through the Trombone, the Rotation synchro drive shaft and slides through the square-holed collar in Focus motion. Coaxial cables carry the RF signals from the feed and are routed through the square shaft. Since this square shaft penetrates the Rotation readout box, a seal ring under the square-holed collar prevents water entry. Details of this mechanism are depicted in Figure 4.


FIG. 4- APEX F/R COMPONENTS

DETAIL "A" F/R "TROMBONE"



FIG. 6 - F/R MOUNT - LOCATIONS OF MAJOR COMPONENTS

### 1.5 DRIVE DYNAMICS

The purpose of all this mechanical and electronic hardware is to position the Subreflector; the control system design must deal with the dynamics of the drives which involve large work, inertial and frictional loads. This section describes aspects of these dynamics which are important to electronics maintenance personnel because the considerations outlined below determined the characteristics of the control programs. These considerations were the result of analysis by the writers and many years of experience with the F/R Mount.

The drive motors are stepper motors which are high torque, low shaft speed devices (compared to conventional DC or AC motors) which are frequently used to implement drive systems with minimal or no gear trains. The motors are caused to rotate by time-sequencing the four motor winding currents with high power transistor switches. The center-tapped motor windings are connected to the power supply; the switches sink these currents to ground in accordance to a sequence of states which determine the direction of rotation. Each state change is called a "step" which causes the shaft to rotate by a discrete angular increment ( 1.8 degrees in these motors). The motors are driven by an electronic package called a Translator which contains a set of four transistor switches, associated logic and power supplies. The Translator switches state changes are caused by applying a drive pulse to either of two inputs which cause the motor to rotate in the cw or cow direction by one angular increment for each drive pulse.

An important characteristic of these motors is torque breakage which occurs when the imposed load exceeds the motor torque producing capabilities (particularly pronounced at higher speeds). These motors have two torque/speed curves which fall off with increasing speed; the lower curve is the maximum motor load (at a given speed) at which the motor will always start from a dead stop and the upper curve is the maximum load which the motor can drive if it is started at zero or low speed and gently ramped up in stepping rate. When torque breakage occurs, the motor stops and the only way to get it to drive again is to either reduce the load or reduce the stepping speed to a rate where the motor can resume stepping. Torque breakage does not gradually increase with the load; it is a threshold-like effect in which a slight increase in load at the critical torque causes the motor to intermittently fail to respond to translator drive signals. In this narrow torque-speed region the motor shaft motion is very erratic and jerky; another slight increase in load torque results in abrupt stoppage of the motor.

Figure 7 shows the HS1500 (Ant $1-20$ ) \& FD309 (Ant $21-28$ ) Torque/Speed curves. These curves are the upper, (start at a low stepping rate \& gently accelerate) curves and are based upon bench torque tests and Superior Electric data. The lower curve has not been determined for these motors because of the difficulty of making these measurements with the primitive equipment on site, but; it has been observed that the motors will not start in the F/R Mount if the initial drive rate is above 300 Hz .

This torque breakage phenomena has happened to the VLA F/R System many times due to unusually heavy loads (such as cold weather viscous friction drag) with the result that the drive is "stuck" and can only be (maybe) moved by repeated commands to move back and forth in a small region. Ice loading of the Subreflector and barrel can also cause sticking. One of the shortcomings of the old $\mathrm{F} / \mathrm{R}$ Controller design is that it does not contain provisions to deal with the problem other than to abort the command after a time-out. Drive rates
in the old controller have been set to values which (usually) work in the worst case drive situation - winter.

Does torque breakage harm the translators? Yes; repeated attempts to move a stuck drive can cause driver board failure although Superior Electric (the manufacturer) says that it shouldn't happen. A stuck drive motor does not generate a back EMF so the driver boards must sink a great deal more current during the switching transient time.

The torque developed by these motors is very sensitive to the line resistance between the motors and translators; if the motors are connected directly to the translators they develop about $20 \%$ more torque than is shown on these curves. The cable resistance is about 1 ohm for the 125 foot run of \#10 cable; it would take a lot of copper to significantly reduce the line resistance.

A second important property of these motors is motor resonance: literally a mechanical resonance in which the magnetic field acts as a torsional spring and the rotor moment of inertia acts as the mass. At the motor resonant frequency, the torque delivered by the motor is greatly reduced and the rotor vibrates (in shaft angle) at each step; the amplitude of the oscillation and decay are dependent upon damping resistors in the Translators. In the antenna 1-20 motors the resonance occurs at about 550 Hz and the available motor torque is reduced to about 450 oz -in, - about one-third of the available torque at $500 \& 600 \mathrm{~Hz}$. The Ant $21-28$ motors and translators are a newer design with no pronounced resonances (at least we have not noticed any resonances in bench torque tests).

A third important property of these motors is the large holding torque which they exhibit when stopped with a steady state current in the windings. This condition exists with the older version of the F/R control system.

The primary task of the controller is to get the drives into motion and to gently ramp the motors up to the maximum speed so as to quickly get to the commanded set point. Near the set point the drives are to be quickly ramped down and driven to the set point at low speed; attempting to stop at the set point at high speed results in an overshoot of several tens of steps because of mount inertia. Because of the large work and cold weather vicous friction loads, the drive acceleration profiles have been made very gentle so that the inertial loads are never more than about $10 \%$ of the available motor torque.

Ideallly one would like to start the drives at a very low initial rate, - say a few Hz , and proceed up from there. However; drive motion has been constrained to start at 100 Hz . Experience has shown that operating the drive trains at rates much lower than 100 Hz causes excessive gear train rattle. Gear train rattle is a mechanical oscillation caused by the stepping motion of the motor shaft; the intermittent motion causes multiple impacts of the gear teeth which reduces their life. The low mechanical resonant frequency of the drives aggravate this effect; the resonant frequency is about 6 to 8 Hz and is determined by the spring rate of the rubber coupling (low) and the composite moment of inertia of the gears and drive.

The speed ramp-up profile is a sequence of 50 Hz step increases in stepping rate, starting at 100 HZ and going up to a maximum of 1000 Hz in Rotation and 500 Hz in Focus. The duration of these steps is 100 pulses so
the drive acceleration increases with each step. The ramp-down profile is a sequence of 50 Hz steps to the convergence speed of 100 Hz with a step duration of 48 pulses; it is easier to decelerate than accelerate the drives.

The rubber spring coupling between the motor and drive plays a vital role; without it the motors would be unable to drive the heavy work and inertial loads. Stepper motor manufacturers recommend that the load inertia be less than three times the motor inertia for motors which are rigidly coupled to the drive; this ratio is $4: 1$ in the Rotation drive. The spring buffers the motor; it is deflected in proportion to the drive load. Consider the following: ---- for simplicity assume that the Rotation drive is only an inertial load; in accelerating the drive the motor sees the rotor moment of inertia and the drive moment of inertia on the other end of the spring. What happens when the motor speed is increased? The motor shaft follows the stepping rate change but the drive end of the spring lags behind the motor because the spring must first deflect (ie wind up) to apply torque accelerate the drive. The amount of wind-up depends upon the acceleration to be imparted to the drive. Because of the large moment of inertia of the drive, the drive position will lag behind the motor position as a function of the amount of motor acceleration, coupling spring rate and drive moment of inertia. If the speed change is a step change, the drive will eventually accelerate to the motor speed and unwind the spring to a zero deflection. When this happens the motor and drive will continue at the new motor speed with the spring undeflected (ie unwound). If the speed change is a constant acceleration, the spring winds up to a constant deflection and the drive position lags a constant amount behind the motor position as a function of the spring torque constant. To summarize: there is a transient deflection of the spring coupling which depends upon the nature of the acceleration (ie step, ramp etc), the moment of inertia of the drive and the spring constant. The result of this wind-up is that the drive position lags behind the motor position.

In the real world situation, the spring deflection is the sum of the transient deflection (described above) and the work (lifting), viscous and coulomb friction wind-ups.

When the stepping speed is changed, the motor rotor moment of inertia absorbs a portion of the motor torque; that is, not all of the torque shown on the curve above is available at the motor shaft. In the case of the Rotation drive the motor inertia is $0.0550 z^{-i n-s e c * * 2}$ and the drive inertia is 1.941 oz-in-sec**2, a ratio of about 4:1. Thus during acceleration, only $80 \%$ of the Rotation motor torque which goes into acceleration is available for drive acceleration. After the acceleration torque requirements are met, the remaining torque is available for the work, viscous and coulomb friction loads. This is the reason why the ramp-up profile has been made so gentle.

For a step change in stepping rate the transient wind-up torque is approximatly given by: $\quad \operatorname{Ttr}=\operatorname{Twu} \exp (-(K v+K c) * t i m e / I d)$ where Twu is the spring wind-up torque, Id is the drive moment of inertia, and Kv and Kc are viscous and coulomb friction factors. This is similar to the voltage developed across an inductance in an RL circuit for a step voltage input. For the ramp up sequence of this new $F / R$ Controller, the worst case transient torque occurs at the initial step to 100 Hz and is about $175 \mathrm{oz-in}$. The 50 Hz step transient torque is half this value. The transient decay time depends upon (mostly) viscous friction which varies with temperature; this has not been measured or calculated because of practical difficulties. The 100 pulse
period of each step is more than adequate for this decay. These figures are based upon a difference equation model of the $F / R$ Mount.

The spring torque constant is 103.7 oz-in/step. At the peak motor torque ( 1500 oz -in e 250 Hz , Ant 1 - 20) the coupling could wind up to as many as 14 motor steps before motor torque breakage. Thus the Focus and Rotation motors could be ahead of the drive as much as 19 arc - min in Rotation and 0.006 inches in Focus. Why is it important to consider the wind-up? At the completion of a command, the brake is engaged and the translator power is turned off; this allows the spring wind-up to release. A second reason is that at the start of a command execution, there is a lag in drive motion because of spring wind-up. One of the shortcomings of the older controller is that the wind-up is not released (because of the large motor holding torque) and remains as a steady-state torque between the motor and brake. The magnitude of this wind-up is the sum of all the drive loads at the time that the brake is engaged. If there is a large wind-up, it may gradually relax due to antenna vibration-induced brake slippage, - with consequent drive position shifts.

The actual load on the motor (and spring) is the sum of the work, inertial, viscous friction and coulomb friction so the total spring deflection is determined by this sum.

Viscous friction is proportional to velocity; the higher the drive rate the greater the viscous friction. Viscous friction is also an inverse logarithmic function of temperature: $K v=K 1+(K 2 / l n T)$. This temperature dependence causes great changes in the $F / R$ Mount viscous friction. With a hydrocarbon-based grease, over the +100 to -20 deg $F$ temperature range, Kv can be expected to change by a factor of about 650. An unobtrusive Kv load at summer temperatures becomes a huge load at freezing temperatures; at about +30 deg $F$, it's a toss-up as to whether the Focus drives will stick. This temperature sensitivity is the reason that the renovated $F / R$ Mounts have heaters to warm the Focus and Rotation drive gears. Prior to the use of heaters, the Focus positions were made identical for all bands in antennas in which the Focus drive had a strong tendency to stick in cold weather; as a result, for these Antennas, Focus is never driven in the winter. The heater controller puts about 600 watts into the drives when the ambient temperature is below about 45 deg $F$. A temperature sensor on the bottom of the gear box monitors the temperature which is typically about 5 to $10 \mathrm{deg} C$ above ambient when the heaters are in operation. Kv could be modeled for these drives but would be difficult because of the many complicated lubricant shearing surfaces. The actual viscous friction drag is not known for these drives because of the practical difficulties of instrumenting the requisite torque measurements. These measurements would have to be performed over a wide range of speeds and temperatures.

The choice of a $F / R$ Mount lubricant is something of a dilemma: the gearboxes are not sealed, so that a lubricant which has a lower viscosity in the winter will leak out of the gearbox holes in the spring; this leaves the drives without lubricant. On the other hand a lubricant stiff enough to stay in place in the summer has too much viscous drag in the winter. It is impossible the change the lubricant without a dis-assembly of the $F / R$ Mount.

Coulomb (rubbing) friction depends upon the force pressing the surfaces together, the roughness of the surfaces and a friction factor
dependent upon properties of the two materials. Coulomb friction of the drives has been observed (by the writer) to be about 25 oz-in at the motor shaft inputs to the drives; the barrel \& subreflector were not installed during these measurements so the actual values would have been higher because of the additional ~ 300 pound load.

Although the dynamics of the Focus and Rotation drives are very similar, the load parameters are quite different: Rotation has a small work load (about 100 oz -in of subreflector unbalance at the motor shaft) whereas Focus has a huge (drive up) work load (about 600 lb ) consisting of the heavy moving platform, the drum, subreflector and 327 MHz feed hardware. Viscous friction is more of a problem in Focus because the Focus ring gear (where most of the viscous friction occurs) is only a gear ratio of 1:2.54 down from the motor in comparison to the Rotation ring gear which is down 1:8 from the motor. The ring gears and race clearances are of similar size so the viscous frictions (at the gears) are similar. Winter experience shows that the Focus drive is much more vulnerable to cold weather sticking than Rotation. Both drives have roughly comparable inertial loads. In summary, the Focus is in general much more heavily loaded than Rotation; for this reason the maximum drive speed for Focus has been restricted to 500 Hz to avoid the bad torque dip at 550 Hz .

The new controller utilizes a motion analysis algorithm which detects torque breakage and causes the drive rates to be reduced to 100 Hz and then ramped back up to 250 Hz , the peak torque for these motors. If the torque breaks again, the drive is shut down. This motion analysis is a very powerful feature as the Rotation drive can be ramped to 1000 Hz (versus 400 Hz in the old controller) for fast response to band changes and the relialability of the system under adverse conditions is greatly improved because the motion analysis fallback drive insures that the controller will re-attempt drive at the speed which produces the maximum motor torque. The failure rate of the Translators should decrease since the driver transistors do not have to attempt to drive stuck mechanisms.

Finally, in conclusion it should be pointed out that the torque requirements of the $F / R$ Mount have never been fully characterized, either by mathematical modeling or by actual measurements. This should be done for the full range of operating temperature and drive speed. Some calculations have been done on simple aspects such as the work and inertial loads but the extremely variable viscous friction and coulomb frictional loads are unknown.


HTR 1500/1008/HS 1500 TORQUE vs. SPEED CHARACTERISTICS


TM600/M172-FD306 TORQUE vs. SPEED CHARACTERISTICS
FIG. 7 - TORQUE/SPEED CURVES

### 2.0 M7 MODEL E, F/R CONTROLLER DESCRIPTION

This section describes the $F / R$ Controller digital logic and the control programs. The control programs are the control logic of the system; the digital logic of the controller is the vehicle which is manipulated by the programs to implement the control functions.

### 2.1 F/R CONTROLLER LOGIC DESCRIPTION

During the following discussion the reader should refer to the M7 logic schematics which follow this section. The reader is also referred to the data sheets in the Appendix which describe the 8085 microprocessor, support chips and instruction set; this background is vital to understanding the operation of the controller.

The $F / R$ Controller has been implemented with two independent microprocessors (one for each axix) consisting of an 8085A microprocessor, an 8156A RAM/I/O port/Timer, two 8755A EPROM/I/O ports, address decode logic and two 2716 EPROMs for program expansion and antenna peculiar-control argument memory. The configuration of the processor(sheets $1,2 \& 5,6$ ), RAM and EPROMs is conventional and similar to that depicted in INTEL microprocessor data books to which the reader is referred for details on timing, memory and I/O read/write and instruction usage. Because the multiplexed ADDRESS/DATA BUS accesses many registers it is buffered by 74LS245 tri-state, bi-directional drivers. Both processors have identical architectures and are almost independent except for the power reset logic (sheet 10) and the 5 MHz processor clock which are common. Address decode logic (sheets 2\&6) provide address enables for the RAM, EPROMs and serial Input/Output Registers. These decodes are also used as strobes to reset interrupt request flip-flops, single step drive motors and initiate data input from the Apex Interface.

The Timer logic in the RAM can be driven by any (or none) of $10 \mathrm{KHz}, 1$ KHz or 100 Hz clocks as selected by the RAM Port C and a 74LS153. The $0-2 \mathrm{~K}$ EPROM I/O ports are configured to operate as output ports to output control discretes (eg Foc trans power cmd, etc) and clock control states to control the motor stepping rates. The $2-4 K$ EPROM I/O ports are configured to operate as an input ports: PORT A reads response discrete states and PORT B reads manual control discretes.

74 LS 373 latches are clocked by ALE to store the 8 bit lsb of the address for the 2716 EPROMs.

The Data Set interface logic is shown on sheet 9; the reader is referred to the Data Set Manual for details on the serial operations of loading a command from or reading data to a Data Set. In operation, a command is serially loaded into a 24 bit command input shift register by CLKO shift pulses, the processor is then interrupted by the command strobe STRO which then enters the RST 7.5 interrupt routine to read the SMA address, command and data flags, and command argument by a series of byte reads from the command and SMA registers via the tri-state ADDRESS/DATA BUS. The four Data Set SMA bits are trapped and stored in a 74 LS 174 latch by the command or data strobes. The SMA bits are decoded by the program to identify the command address. The command strobes and clocks are qualified by the SMA 3 ("8") bit so that addresses 320 327 (octal) activate the Focus processor and the addresses $330-337$ activate the Rotation processor.

Monitor Data readout is address qualified and output in a similar manner: the Data Set STRI pulse interrupts the addressed (ie Foc or Rot) processor which enters the RST 7.5 interrupt routine to read the SMA bits and command and data flags to identify the specific data being requested and outputs the requested data by a sequence of three byte writes via the tri-state ADDRESS/DATA BUS to the data output registers. The Data Set then emits CLKI pulses to serially read the Monitor Data. The data output operation is the only time-constrained processor operation; the code must respond to the interrupt and output the requested data within 100 microseconds before the Data Set CLKI pulses unload the data. The SMA-3 bit qualifies the data readout logic in that mux addresses 220-227 activate the Focus processor and mux addresses 230-237 activate the Rotation processor.

An 8 channel, single-ended analog multiplexer selects power supply, translator power, bin temperature and the synchro excitation current for $A / D$ conversion by the Data Set.

Data is serially input from the Apex Interface when the controller outputs a DATA REQUEST strobe pulse (address 38 H ) to the Apex Interface which activates the readout logic to cause a serial train of 6 bytes of data to be loaded into the Apex Focus and Rotation Data Registers, (sheets 387) by clocks provided by the Apex Interface. The data and clocks are isolated from the Apex Interface by optical isolators for lightning glitch protection. The registers are cleared during the initial stages of the data requesting operation by outputting zeros on the ADDRESS/DATA BUS which are then parallelloaded by the 38 H strobe which sets the $\mathrm{C} 1 \& \mathrm{C} 2$ bits to the parallel load mode. The processor then reads the Apex Interface data by a sequence of 6 byte read operations via the ADDRESS/DATA BUS.

A time base (sheet 10) provides processor and system clocks and a 5 MHz clock for the Data Set. Processor Reset logic on this sheet causes the 8085 reset line to be activated to re-initialize the processor. The 9602 one-shot is fired as a result of a SYSTEM RESET command, (Mux 337, octal), actuation of the COMPUTER/LOCAL switch, a power reset circuit or processor halt resets generated by a decode of the S0 \& S1 8085 processor states. The latter logic is a protective measure that senses that the processor is halted (perhaps through power glitches) to trigger the processor back into operation. During the year that Ant 27 had an experimental controller (without this So/S1 logic) there were two occasions where power glitches halted the controller.

A YOWP! input from the Apex Interface and connector interlock signals develop a DRIVE ENABLE term to halt drive when something bad is sensed by the Apex Interface or a cable is disconnecated.

Processor-to-processor communication is provided by four DM8551 tri-state latches which are loaded by one processor's ADDRESS/DATA BUS and readable by the other processor's ADDRESS/DATA BUS. This feature is not presently used.

The M7 module temperature is sensed by an LM3911 and op-amp circuit and read out as Bin Temperature. The scaling is $100 \mathrm{mv} / \mathrm{deg} \mathrm{C}$.

Sheets $4 \& 8$ contain the control interface logic to provide drive pulses to the Translators and turn on solid state relays (in the M22 Switching Module) to apply AC power to Translators, brakes and Ring actuator. The DRIVE ENABLE term (mentioned above) inhibits all outputs in the event that the Apex

Interface sends over a YOWP! signal. Inhibit logic on the Ring EXTEND and Ring RETRACT lines sense the concurrent presence of these commands and inhibit the SSR drive when both are active.

The stepper motor clock rate is generated by two decade counters on sheets 4 \& 8. Clock rate control terms from the $0-2 K$ EPROMs determine the counter radix. The minimum stepping rate is 100 Hz and maximum is 1000 Hz with many intermediate rates selectable via program control. A divide by 4 counter driven by the stepper clock causes interrupt RST 6.5 to be set to enable the program to analyze drive motion. The RST 6.5 request flip flop is reset by a 3BH strobe.

One-shot activity sensors on the Translator drive pulse outputs (sheets 4 \& 8) drive LEDs on the M8 panel to provide a monitor output and visual indication of the translator drive and polarity.

Limit switch inputs (sheets $4 \& 8$ ) provide direct inhibits to the UP/DOWN and CW/CCW Translator drive outputs.

A voltage clamping network on Dip Header A3 limits the 15 volt swing of the Translator drive pulses to a TTL high when the M7 is used in antennas 21 28 which use a newer version of Translator that requires TTL drive levels. When the controller is used in Antennas 1-20 this Dip Header should be removed.

A strobed one-shot generates a single stepper drive pulse for use in single-stepping the motors during convergence.

The Translator power is monitored by a divider circuit which reduces the voltage to a TTL level for monitoring by an EPROM I/O port bit. The M8 Translator LED displays are also driven by this circuit.

Front panel test points on the DB25 connector enable observation of important clock and control discretes. These signals and test points are:

| Signal | Test Point | Signal | Test Point |
| :--- | ---: | :--- | ---: |
| Logic Common | 1 |  |  |
| Apex Foc Data | 2 | Apex Rot Data | 14 |
| Apex Foc Load Clock | 3 | Apex Rot Load Clock | 15 |
| Foc SSR Brake Drive | 4 | Rot SSR Brake Drive | 16 |
| Foc SSR Transl Drive | 5 | Rot SSR Transl Drive | 17 |
| Foc Drive UP | 6 | Rot Drive CW | 18 |
| Foc Drive DOWN | 7 | Rot Drive CCW | 19 |
| Foc RST 6.5 | 8 | Rot RST 6.5 | 20 |
| Foc Data | 9 | Rot Data | 21 |
| spare | 10 | Ring EXTEND SSR Drive | 22 |
| spare | 11 | Ring RETRACT SSR Drive | 23 |
| Analog Data TO Data Set | 12 | spare | 24 |
| 5 MHz Clock | 13 | Drive Enable | 25 |

### 2.2 ROTATION AND RING CONTROL PROGRAM DESCRIPTION

## INTRODUCTION

The following discussion assumes that the reader is familiar with 8085 assembly language; this is vital to understanding the program operations. The programs are straightforward, well commented and easy to follow but also require an understanding of the control task, $F / R$ Mount mechanism, control system hardware and Data Set interactions. The preceding sections of this manual provide descriptions of these items.

The Focus and Rotation control programs are very similar and differ in oniy a few (but important) respects such as the fact that the Rotation drive can rotate continuously, therefore the Rotation program drives in either direction to null the error; the Focus drive cannot do so. Other differences are: Focus command limit tests, Ring commands (handled by the Rotation controller) and the maximum drive speeds, but; the number of similarities far outnumber the differences. Since these programs are so similar, the Rotation program is described since it is more complicated; this is followed by a description of aspects peculiar to the Focus program. Program listings are included in the Appendix. Memory and I/O Port maps follow this discussion.

The description is not instruction-by-instruction but rather a commentary outline of the logic of control flow and description of the hardware/software interactions. The reader should carefully study the associated portions of the programs during the commentary.

To minimize repititious in-line code, subroutines are used to perform functions that are used more than once: examples are device drivers to control the Translators, brakes, etc or to perform arithmetic comparisons of two 14 bit values.

There are two ways that the F/R Mount can be driven: COMPUTER mode (ie the central control computers via the Data Set) and LOCAL via the switches on the M8 panel. The section labeled LOCAL DRIVE HANDLER inputs and processes manual commands from these switches. This code and the COMPUTER mode code invoke the same subroutines and device drivers because of the similarities of the functions to be performed. The COMPUTER mode portion of the program will be discussed first followed by a discussion of the LOCAL mode.

There are 4 commands that are recognized and executed by the $F / R$ Controller: POSITION, RESET, NAP AND RING. The RESET command terminates the execution of POSITION, NAP and RING commands. The NAP command inhibits execution of POSITION and RING commands. The asynchronous execution of these commands is interrupted by the higher priority 39.2 Hz monitor data requests from the Data Set.

The program has been organized into logical chunks which are delimited by asterisks. As you scan the listing you will see the following sequence of chunks: RESET \& INTERRUPT, INIATIALIZATION, SYSTEM HANDLING, COMMAND POSITION HANDLER, LOCAL DRIVE HANDLER, CHECK RING STATUS, RAMP UP \& DOWN, TRANSLATOR \& BRAKE CONTROL, ERROR HANDLING ROUTINES, SUBROUTINES, APEX \& CONTROLLER DATA GATHERING ROUTINES, INTERRUPT ROUTINES AND ANALOG aND RAMP TABLES. These titles indicate the functions performed by the associated code.

You will note that the listings start with a series of EQUATES to assign mnemonic names to the otherwise obscure numbers such as addresses and I/O Port control codes.

The DATA SET TABLE is a set of Ram locations which are used to store formatted data to be output to the Data Set Data Register in sets of three bytes/data word. Section 10 details the data and command formats. The format description is keyed to the table location by labels such as POSD which is the drive position. An important point is that the central computer outputs commands as 2's complement values while the processor operates on straight binary integer arithmetic. As a consequence, the processor must complement bit 13 (msb) of the command in order to use it in arithmetic operations. Correspondingly, monitor data values output to the Data Set must be transformed to 2 's complement format from the integer format by complementing bit 13.

The states of all control discretes and the responses to these discretes are read out in the monitor data; this provides good visibility of the behavior of the F/R System.

The VALUES \& ARGUMENTS tables are RAM locations in which program parameters are stored during program operation.

The FLAG table are RAM locations in which program status flags are stored during program operation.

INITIALIZATION --- The initialization code (INIT) is actuated by the processor RESET line as the result of a power reset or by a RESET command. In INIT the I/O port directions are set up, all control discrete outputs are cleared and the RAM tables are cleared.

INTERRUPT VECTORS -- The RESET \& INTERRUPT code provides interrupt vectors to interrupt service code. TRAP interrupt has the highest priority, cannot be disabled and is used with the 8156 Timer logic function. RST 6.5 is used in motion analysis to signal that four drive pulses have been output and that it is time for the program to test the motion. RST 7.5 is used to signal that the Data Set has a new command or wants monitor data. RST 5.5 and INT interrupts are not used. When an interrupt has been sensed the Interrupt system is disabled by a DI (disable interrupts) instruction and the processor jumps to the appropriate interrupt-handing code.

## SYSTEM CONTROL

BOSS is the control portion of the code which manages all tasks and is in continuous looping execution. BOSS begins by calling for fresh data from the Apex Interface (via DSTOR), tests for a branch to the LOCAL mode, tests the command status to see if service is required for: RESCMD (an active RESET command); CHKDRV (an active POSITION command); CHKRNG (an active RING command); NAPATV (an active NAP command); tests requests for POSITION, RESET and NAP command modes to be established and if so sets them active. Next, BOSS tests (via APAOK) an Apex Interface analog value against high and low limits on each pass-through (a fault flag bit is set in the output data area if out of limit results), clears the flag if the fault goes away and finally returns to repeat the scan. In these tests the ORA A instruction is used to set the flags for the following jump instruction.

In testing the Apex analogs (in APAOK), a 16 bit comparison routine (RANGER) is called in which the 16 bit contents of registers DE are subtracted from the 16 bit contents of HL with the resultant difference in HL and the arithmetic sign of the diference in $C, \quad(0=+)$. A table of high and low limits (ANATAB), and 8 Apex analog data values (APATAB) are accesed by an address index (APAPTR, $0-7$ ). In the lower limit test, the lower limit is placed in DE and the analog value is loaded into HL for the RANGER comparison. In the upper limit test the analog data is placed in $D E$ and the high limit is placed in HL for the RANGER comparison. The results of these comparisons either set or clear an Apex Interface fault bit in the FLTSFT code.

In executing a RESET command the timer is stopped (via TSTOP) and the drives are ramped to a stop via DRVSTOP.

COMPUTER COMMAND EXECUTION
CHKDRV -- CHKDRV manages the motion of the drives in CMP (central computer mode). At the start of CHKDRV, the mechanism is moving, executing a position command; the DRVREQ flag is tested to see if a new, over-riding POSITION command has been received, if so, the new command argument (in CMDTMP) is compared with the current active command (in ACTVCMD) to see if the new position is different than the command in process. This comparison is done by loading the new argument in DE and the current argument in HL and calling VECTOR which will return with the absolute value of the difference in HL. CLOSE is called next to see if the position difference is less than 4 counts. If so, the command request (CMDREQ) is cleared by CLRREQ and the program falls into DRVTST.

If the difference is greater than 3 counts, the drives are first slowed to a stop by calling DRVSTP, the timer is reset via TSTOP and the program falls into DRVINT which determines the drive direction, acceleration parameters, initializes the motion counter, makes the temporary command the active command etc. If the new commanded position differs by less than 4 counts (via CLOSE) from the present position, the new command is ignored and control reverts to BOSS. DSTOR is called which sets the correct direction to drive to null the error in DIR, the direction flag.

DRVIN1 is the entry point for the get-it-there-somehow code; control has been transferred to this point from ERDRV which has determined that over a 100 pulse period the realized drive motion is not consistent with what it should be and the controller is being conditioned to attempt drive at the peak torque drive rate. This entry point provides an orderly restart of drive motion with the constraint that the maximum drive rate is 250 Hz ; the peak tor que speed for the Ant $1-20$ motors. EDRV has set a flag (GETIT) which is tested in determining the maximum drive rate step number. If CETIT is true, the maximum step number is 5 which is set in B. If GETIT is false, $B$ is set to 18 ( $17+1$ steps).

The number of velocity steps to execute is calculated by DIV, (the max is 17 steps if there is a long way to go) and stored in RMPTO. The DIV algorithm is that -114 (decimal) is set in $D E$, the absolute value of the position error is set in HL, FFH (or minus 1 )is set in A. Minus 114 is sucessively added to HL (the error) and $A$ is incremented until the carry flag is no longer set. If this happens, A contains the number of ramp-up steps to accelerate the drive through. Next, $B$ is compared with $A$, if $A$ is greater than or equal to $B$ (either a large distance to travel or $B$ has been set to 5 , the result of a
motion analysis fault), A will be set to B-1. If $A$ is less than $B, A$ is left unchanged and control is transferred to AOK.

AOK saves the step count in RAMPTO. If $A=0$, the distance to travel is small and control is transferred to NORMP without setting the ACCEL flag true. This causes the drive rate to be 100 Hz (only) and bypasses the call to Rampup. If A is greater than 0 , the distance to be traversed is large, the ACCEL and RMPUP flags are set and control falls into NORMP.

NORMP initializes the stepping rate clock to produce 100 Hz , the translator and brake power turn-on subroutines are called, the convergence flag (CONVRG) is cleared, the direction flag (DIR) is tested to determine the direction to drive, (if DIR $=1$, drive CCW) and the program falls into MOVIT. The time-out error handling address is loaded into the TRAP location for use by BLAP, the timer is set to 15 seconds via a call to TIMER, the drive is set active (DRVATV) and control reverts to BOSS.

DRVTST is the next set of control code in the CHKDRV control sequence and is entered at the beginning of CHKDRV when a position command is being executed but there is no new, over-riding command to deal with. DRVTST manages the sequence of control states which determine the stepping rate through the command execution. DRVTST first tests the ACCEL flag to see if the drive is to be ramped up in speed (ACCEL is true if the commanded set point is over 114 counts from the present position), if not; control is transferred to PLOD which drives to null the error at 100 Hz . If the distance to be traversed is over 114 counts, the ACCEL flag will be set and the drive must be ramped up to a high speed to get to the set point rapidly.

In this high drive speed sequence, the first state is acceleration, in which the stepping rate is ramped up to the maximum speed from 100 Hz ; the associated flag is ACCEL. The next state is main drive in which the drive runs at the maximum speed, (not necessarily 1000 Hz , it depends upon the highest step in the ramp sequence); the associated flag is MAIN. The next state is rampdown in which the drive rate is reduced to 100 Hz ; the associated flag is RAMPDN. The last state is convergence which nulls the remnant error; the associated flag is CONVRG. System control resides in each of these states for up to several seconds (depending on the distance to be traversed), when the end of the state is reached, control reverts to BOSS which initiates the next state. Although control resides in these states, they are frequently interrupted by the Data Set interrupt (RST 7.5) and the motion count interrupt, RST 6.5.

DRVTST starts with a sequence of tests of these flags to determine which state of the sequence is operative. DRVTST begins with a call to DSTOR for fresh data and first checks that the brake is disengaged; if not, control is transferred to an error routine. ACCEL is tested next; if the drive should be accelerating, control is transferred to ZIPUP which puts the top step number of the ramping sequence in $C$ and calls the RMPUP subroutinme which manages the process of ramping up the drive speed. When the ramp-up process has been completed, ZIPUP will clear the RAMPUP flag and set the MAIN flag which signals that the drive is at maximum speed and control returns to BOSS.

On the next pass through DRVTST control will be assumed by MAINCK in which the drives run at maximum speed and the position is tested to see if the drive has reached the ramp-down point. This point is determined by subtracting

276H from the present position using the RANGER subroutine. If the ramp-down point has been reached (or passed), the MAIN flag is cleared, the RAMPDN flag is set and control returns to BOSS.

On the next pass through DRVTST, control will be assumed by ZIPDN which calls the RMPDN subroutine which manages the ramp-down process. At the completion of the ramp-down, the RAMPDN flag is cleared, the CONVRG flag is set and control reverts to BOSS.

On the next pass through DRVTST, control will be assumed by MOVIN which manages the convergence process. The magnitude of the error is loaded in HL and CLOSE is called. If the Carry flag is set by CLOSE, the drive is at the commanded set point, the CONVGG flag is cleared and control reverts to BOSS. On the next pass through DRVTST, PLOD will stop the TIMER via TSTOP and shut down the drive via DRVSTOP. If the drive has not quite reached or has overshot the commanded set point, control is transferred to MOV1 which reverses the driving direction (if necessary), outputs the direction steering on PROM1 PORT A, updates the output data states and control reverts to BOSS. More than one pass through MOVIN may be required to finally stop the drive at the commanded set point.

A slight digression here: -- The convergence algorithm is based upon the assumptions that there is a one-to-one correspondance between the motor shaft position and the drive position (ie no gear backlash) and that the drive will not shift position during the - 300 milliseconds it takes for the brakes to engage. There is in fact, some gear train lost motion, (ie backlash) and a rubber spring motor coupling; therefore the Subreflector is not rigidly held in position when the motor is stopped and can move by the amount of the backlash (which is never zero) and the spring windup. This slackness can occasionally enable slight shifts in drive position during the brake engagement period. A shift (if it occurs) is manifested as a change in position of a few counts (at most) at the completion of a command. The driving force for these shifts are antenna vibrations or accelerations acting upon the mechanism or Subreflector unbalances. The effect is most pronounced in Rotation and barely discernable in Focus. A series of repeatability tests were performed on Antenna 12 after it had been in service for a year. 700 position commands were output (mostly Rotation) and the results were that the RMS error for Rotation was about 1.5 counts and the RMS Focus error was about probably possible to devise a better convergence algorithm which stubbornly insists (within a reasonable number of tries) upon achieving no more than 1 count error but there is presently no perceived need for it.

DRVSTP is the terminal phase of execution of a POSITION command and clears the DRVATV flag, updates the monitor data status, clears the control discretes in PROM1, PORTA and jumps to the BRKOFF subroutine, (not BOSS).

The RAMP UP \& DOWN subroutines are called by both the CMP (central computer control) and LOCAL portions of the program.

RAMP UP -- RMPUP is a subroutine called by ZIPUP in DRVTST and executes the process of modulating the motor clock control states, keeping track of the number of drive pulses in each step and terminating the ramping process at the proper stepping rate. Upon initial entry, the RAMP flag is set which indicates that ramping is in process. The initial clock rate is set to 100 Hz from the RAMP TABLE, the step number counter is cleared, the clock rate is set
in the output data and PROM1, PORTB control lines. A count of 25 RST 6.5 interrupts is put in B and WT65 is called from RPUP2. WT65 calls DSTOR for data, loops \& looks for the DRVPLS flag which indicates that 4 drive pulses have occurred, (DRVPLS is set by RST 6.5). 25 RST 6.5 interrupts are counted by decrementing $B$, (ie 100 motor pulses), then the next stepping rate is read from the RAMP TABLE, the step number is incremented and compared with $C$ to see if the step number is equal to the top step number. If it is, control is returned to ZIPUP which clears the RAMP flag, sets the MAIN flag and returns control to BOSS.

RAMP DOWN -- RMPDN is a subroutine called by ZIPDN in DRVTST and executes the process of reducing the motor stepping rate to 100 Hz in steps of 48 drive pulses/step. The procedure is almost identical to the ramp-up procedure and differs only in that the number of motor drive pulses/step is fewer and the clock rates are decreased. Upon entry the RAMP flag is tested to see if the drive has been ramped up, (it may not have been), the flag is cleared, the number of steps to ramp down is added to the base address of the ramp clock control state table, ( CK100 $^{\circ}$ ) and set in HL. The number of steps +1 to execute is set in C, the motor pulse count (of 12 RST65) is set in B and the clock control state for next lower frequency is read from the table. The RPDN1 and RPDN2 loop reduce the clock rate to the base rate of 100 HZ and control reverts to ZIPDN. The reason that RMPDN has fewer motor clock pulses than RMPUP is that it is easier to decelerate the drives (because of friction) than to accelerate them.

## ERROR HANDLERS

ETRN -- ETRN handles the problem of turning off the Translator power if it has not responded properly to the turn on control discrete. The control discrete is turned of $f$, the TRANSLATOR fault bit is set in the output data area and the command is reset by a jump to RSCMD.

EBRK -- EBRK handles the problem of turning off the brake power if it has not responded to the turn on control discrete; the actions taken are very similar to those of ETRN above.

EDRV -- EDRV is discussed in the DRIVE PULSE INTERRUPT \& MOTION ANALYSIS discussion.

## RING DRIVE HANDLER

CHKRNG -- CHKRNG is entered from BOSS during the test of the RING ACTIVE bit ( 80 H in ERRO+2) in the output data area and is analogous to the CHKDRV or LOCAL functions in POSITION commands in that it tests for the attainment of the commanded state within a specified actuation period. Since Rotation POSITION and RING commands may be executed concurrently there are two possible cases for the use of the timer: 1) If the Rotation command arrives first followed by a RING command, Rotation execution is started (which ties up the Timer), and the RING command execution is initiated, the appropriate Ring actuator lines are energized etc. At the completion of the execution of the Rotation command (a maximum of 16 seconds) control is transferred to CHKRNG from the BOSS scan and if either the EXT or RET switch bit is set (indicating that the commanded state has been attained), an additional 3 seconds of power on delay is added to CHKRNG just to insure that the actuator motion is completed. 2) If there is no Rotation command active, on the pass through BOSS, control is
immediately transferred to CHKRNG which sets the Timer for a 16 second period and the code is executed as described below.

The RING command is initiated from the Data Set command initiation code in response to a RST 7.5 interrupt which determines the direction to drive and energizes the appropriate motor lines. These operations are discussed in the Data Set Ring Command Initiation section.

Upon entry, the command direction flag EXTFLG is tested to see if the Ring is to be extended or retracted. If EXTFLG is true the command is extend, if false it is retract. EXTFLG determines whether to test the EXTEND or RETRACT flags (in ECHO +2 ) which indicate the state of the switches which are actuated by the drive mechanism at the completion of the motion. DSTOR updates the status of these two flags. If the designated switch is not actuated, a 16 second delay argument is loaded into DE and set in TIMER by RNGWIT which also sets the jump address of RNGWT1 in TRAP, (see the discussion of time-out errors in the TIMER INTERRUPT section), and the program loops in RNGWT1 until the time-out interrupt. When the 16 seconds have elapsed program control is transferred to RNGWT2. RNGWT2 first clears the RING FAULT flag (if set), determines the commanded direction from EXTFLG and tests the RING EXTEND bit in ECHO+2 to see if the Ring Extend switch has been actuated. If the command is RETRACT, the RETRACT bit is tested. If the appropriate bit has not been set, a RING FAULT bit is set in ECHO +2 and the RNGCMD flag is cleared in CHKRN2.

If the designated switches are actuated, indicating that the command has been completed, a 3 second delay (instead of 16 ) is set in TIMER and the code executes as described above.

If the command is successfully executed, the RING ACTIVE flag in ERRO+2 is cleared, the Ring motor power is turned of $f$ and the BNGCMD flag is tested to see if a new Ring command has just arrived. If not control is returned to BOSS. If so the new command is to be initiated, the RING ACTIVE flag is set, the registers are pushed and control is transferred to EXTRT1 (in the Data Set command initiation code) to reinitiate the command under the normal conditions of Ring command execution.

## ARITHMETIC SUBROUTINES

RANGER -- RANGER is a general purpose 16 bit arithmetic comparison subroutine which determines the absolute value of the difference of two 16 bit arguments, the sign of the difference and whether or not the arguments are identical. In calling RANGER the contents of DE are subtracted from the contents of HL with the resultant difference in $H L$ and the arithmetic sign of the difference in $C$, ( $0=+$ ). If $\mathrm{HL}=\mathrm{DE}$ the Zero flag will be set.

The A register, (accumulator) is loaded with the contents of $L$ (the least significant byte) and $E$ is subtracted from $A$ and the resultant difference is loaded into $L$. If the subtraction caused a borrow out of the high order bit, the Carry flag is set. The A register is loaded with the upper byte (in H); D and the borrow from the first subtraction are subtracted from $A$. The resultant difference is loaded into H and C is initialized to 0 . If the result of the two-byte subtraction is positive, (ie HL greater than DE), the JP (positive) transfers control to RNGR1 which tests for $H \& L=0$ by orring $H$ with $L$. If
the Zero flag is set $H L=0$. These positive results return control to the location from which RANGER was called.

If the result of the subtraction was negative, control falls through the JP instruction, $C$ is made 1 's and CMPHL is called to complement HL. The complements are $1^{\prime}$ 's complements so HL is incremented to complete the representation of the resultant difference if it is a negative value. Control is returned to the location from which RANGER was called.

VECTOR -- VECTOR is called from DSTOR to determine direction to drive to reach the commanded set point by the shortest physical path. VECTOR is called with HL = destination and $D E=$ present position. RANGER is called upon entry. Upon return from RANGER, HL contains the absolute value of the difference between command and present position. If upon return from RANGER, HL $=0$, the commanded set point is the present position; no direction decision can be made so control returns to DSTOR.

To determine the shortest direction, a value equal to half the total numeric range is subtracted from the difference and the state of the Carry flag determines the direction to drive. If you think of the positions as numbers wrapped around a circle, position 0000 H is adjacent to 3 FFFH ; for example, if the drive were at position 3000 H and it was commanded to position 100 H , it is obvious that the best way to go is through 3FFFH and 0000 H to 100 H . You and I see that but the mathematics of a simple subtraction by the processor to determine direction would try to drive to 100 H by driving the long way around through decreasing numbers. To implement this best direction algorithm, 2000 H (in DE, half the numeric range) is added to the position difference (in HL). If the Carry flag is not set, the best direction to drive is in the direction of increasing numbers (ie CW). Control is transferred to VEC1 which adds back the 2000 H subtracted above, $L$ is set in $A$ and orred with $H$ which sets the Zero flag if $\mathrm{HL}=0$. Control is returned to the calling location (DSTOR) with the $C=0$ flag set which designates that the CW direction is the best direction to drive.

If the Carry flag is set (CCW direction), $C$ is complemented in CMPHL and control is returned to the location from which VECTOR was called (ie DSTOR).

CLOSE -- CLOSE is a simple subroutine which determines whether a position error in HL is less than 3 counts. If $H$ is not 0 , control is returned immediately since the error is greater than 256. Next, L is compared with 3 and the Carry flag is set if the error is less than 3 . The calling code will test the Carry flag upon return.

## DEVICE DRIVERS

DSTOR -- DSTOR is an important subroutine which gathers data from the Apex Interface and pedestal room, formats and stores this data for use by the control programs and for output to the Data Set, drives the LED display on the M8 and senses fault conditions in the Apex Interface. Virtually all operations of the control programs are dependent upon data gathered by DSTOR; this single subroutine minimizes the data access function through the entire body of code.

DSTOR begins by pushing the contents of the registers onto the stack. The Apex Data Registers are cleared by the request, $B$ is set to 10 and the
processor enters a test loop which tests for the appearance of a 10 in the top two bits of the Apex Data Register. In the event that the Apex data does not show up within the alloted count, a fault bit is set in the output data area, Apex data storage operations are aborted and control is transferred to LP3-LP5 which does a lot of bit swapping.

If the data shows up within the alloted time, the Apex fault bit is cleared (if it was set), the position data is masked and stored (in both Data Set and internal formats), the difference between current and commanded position (ATVCMD) is calculated, (even if the command has been completed) and the absolute value of the difference is stored in the command error (ERRO) location in the Data Set data table. VECTOR is called which determines the direction to drive to null the error. Upon return from VECTOR the sign of the difference (in the C register) is placed in DIR. If $C=0$, the direction is CW. When a new command is about to be initiated, this direction initialization in DSTOR establishes the direction to drive to null the error.

The 8 -bit drive velocity data is formatted as 12 bit data and stored in the Data Set data table.

The Rotation Apex Discretes are next read \& stored; these are the Rot lim switches (currently non-existent) and the brake V*I discrete. The data format for Mux 234 (Section 10) shows the four Lambda code signals; these are actually not not read (from M8) at present but if the index pin were ever to re-appear these bits would be assigned to these functions.

The Apex Analog/Discretes data is read next which consists of the Apex Analog data(10 bits), associated mux address (3 bits), Ring discretes (EXTEND, RETRACT), and CW,CCW limit switches, (not presently used). These are processed as follows:

The Ring discretes (EXTEND \& RETRACT) are read and extracted by masking all other bits, shifted to the lsb position and merged with the old echo word to retrieve the old RING FAULT bit (set by RNGCHK). The result is stored as the new command echo (ECHO +2 ) in the Data Set data table.

The Apex anlog data and associated mux address bits are read again, this time masking the RING discretes. The 10 bit data is formatted to be read out as 12 bit data. The 3-bit mux address is divided by 4 and added to the base address of the Apex Data table (APATAB) and set into HL. The Apex Analog data (in $D E$ ) is stored in the table at this address.

The mux address of the Apex Analog data to be read out to the Data Set (ANAMX, not the mux address of the data stored above) is added to the table base address and this data is stored in the Data Set Apex Analog data table for subsequent readout.

The command status (DRVATV) is tested and if true is merged with the Ring Active, Nap Active, Timeout, cable interlock, Apex Interface fault, System fault and CMP/LOC mode switch bit.

After this reading and formatting, the registers are popped and control is returned to the location from which DSTOR was called.

TRNON -- TRNON is a subroutine called to turn on the Translator and test for
the detection of the Translator power supply voltage within 1 second from turnon. At entry, the address of the Translator error handling routine is set in location TRAP, the count for one second is set in TIMER, the command state is set in the monitor data table ( $D S C R+1$ ), and the control discrete is set on the PROM1, PORT A line. TRNON loops and tests for the arrival of this discrete on PROM2, PORT A. If the discrete arrives before the 1 second period, TIMER is stopped and control reverts to NORMP or LOCAL via TSTOP which executes a return to the calling source.

TRNOF -- TRNOF is called by PLOD to turn off the translator and is almost identical to TRNON except that it turns off the Translator and returns control to via TSTOP as in TRNON.

BRKON -- BRKON is called to turn on the brake (ie release) and test for the detection of brake voltage and current within 1 second. The brake error hanling address is loaded into location TRAP, the TIMER is set to 1 second, the brake command bit is set in the output data area (DSCR+1) and the control discrete line is set high on PROM 1, PORT A. DSTOR is called and the brake $V^{*} I$ bit is tested in a loop. If it is true within 1 second (ie before the TIMER TRAP interrupt), TSTOP is called to stop the timer and return control to DRVINT (via NORMP) to complete the initialization before returning to BOSS.

BRKOF is called to turn off the brake and test for the attainment of the command within 1 second as in BRKON. The operations are almost identical with BRKON except for the turned off discrete line.

## INTERRUPT DRIVEN SUBROUTINES

Some processor operations are Interrupt-driven because they are asynchronous with the command execution and are of a transcendent nature which requires immediate processor action. The interrupt service routines perform the following functions:

MOTION ANALYSIS -- This interrupt-driven subroutine performs the very important function of analyzing the drive motion to determine if the drive is dragging or sticking - a frequent problem with these motors \& Translators which have marginal torques for this application. The drives frequently stick in the winter time during cold snaps; a bad Translator driver or logic board will also cause dragging or sticking.

TRPR is entered when the controller has output 4 drive pulses to the motor. Upon entry, the registers are saved on the stack and the DRVPLS flag is set (DRVPLS is tested by WT65 in the RAMP up/down code to determine when a drive step has ended), if the controller is in LOCAL mode, the MOTION counter is cleared by TRPR1, the registers are popped and control reverts to the location which was interrupted. If in CMP (central computer mode), the CW/CCW steering direction discretes are tested and if both are zero (implying that a POSITION execution is not in process), MOTION is cleared, the registers are popped and control reverts to the location where the interrupt occurred.

If a POSITION command is being executed, the change of drive position is compared with what it should be to determine drive sticking. The analysis is done by accumulating 25 drive pulse interrupts (RST 6.5) in MOTION; this corresponds to 100 motor drive pulses. If MOTION $=25$, the last position
(LSTPOS) is compared with the present position (POSTN) by calling VECTOR, if the difference is 0 the drive is stuck, if the difference is less than 60 counts (ie 45 motor pulses) the drive is dragging. The selection of the 60 count threshold is arbitrary and not very critical; at the torque breakage threshold the effect is very pronounced and the motors do not respond to most of the drive pulses. If either of these conditions occur control is shifted to EDRV (get it there if you can code) which attempts to complete the commanded motion at a lower drive rate.

EDRV sets the STACK pointer to the top RAM address, (the contents of the PSW, $B, D, H$ registers pushed onto the STACK are forgotten in doing so), the DRIVE FAULT bit is set in the output data area and the ramp step number is tested. If the motor stepping rate is less than 300 Hz (peak torque is about 250 Hz ) the command is aborted via RSCMD. If the drive rate is above 300 HZ , the motion analysis flag GETIT is set true, the timer is stopped by a call to TSTOP, the drive is stopped by a call to DRVSTP, and the acceleration flag (ACCEL) is set false. The command is initialized again by jumping to DRVIN1 which is the the command initialion entry point for the get-it-there-somenow function. There is a good chance that the command can be completed at the expense of execution speed which is much better than staying stuck.

Motion analysis is not performed during the first 100 pulses of drive motion; during this period the drive coupling spring is winding up (see $F / R$ Dynamics) and there is a net deficiency in the amount of realized drive motion. The deferral action is controlled by the state of the step counter; motion analysis starts at the 150 Hz stepping rate.

DATA SET INTERRUPT -- This code services the Data Set interrupts which input the commands and access monitor data from the $F / R$ System.

BURP is an RST 7.5 interrupt resulting from a Data Set command input or a request for monitor data. When the interrupt occurs, the Sub-Mux Address and a Command or Data Flag are stored In the SMAEV register. The flags enable the processor to identify the interrupt as a command or data request and the address identifies the command or data argument. In the case of a command, the Data Set has shifted the command into the command input shift register and the command strobe requests the processor to read the command, the Sub Mux Address and the Command flag. In the case of monitor data request, the data strobe signals the processor that it is expected to read the Sub Mux Address and Monitor data flag, to identify the requested data and load it into the output registers for the Data Set to read via shift clocks.

On entering BURP the registers are pushed onto the stack, the Sub Mux event register (SMAEV) is read, the Sub-Mux address is saved and the command/data flags are decoded. In the case of commands, the command arguments are saved and the sign bit (bit 13) is complemented and saved in DE. The mux address is decoded to determine if it is a POSITION command (mux 0 , ie 330 in Data Set format), a sof tware RESET command (mux 1-331), a NAP command (mux $2-332$ ), or a RING command (mux 6-336). Undefined commands are stored in a bit bucket. After identification of these types of commands, control is transferred to code which sets command request flags.

POSITION COMMAND INITIATION -- If the decoded command is a POSITION command, control is transferred to DRVCMD which stores the unaltered command argument (in HL) in ECHO, the output data table. The argument is saved in CMDTMP for
subsequent use in initiating the command, the request flag, DRVREQ is set (to 1), the registers are popped in SKIP, the interrupts are enabled and control returns to the place where the interrupt occurred.

RESET \& NAP COMMAND INITIATION -- In a similar manner the RESET and NAP command flags are set, the registers popped via SKIP and control returns to the interrupted code.

The process of initiating the execution of these three commands is started in BOSS when the command request flags are tested. The reason that command initiation is handled by BOSS is that the initiation process may be complicated and require slowing the drives etc which is best handled in a controlled sequential manner.

RING COMMAND INITIATION -- In the event that the command is a RING command, the commanded action is initiated immediately in EXTRTC, (after testing for the NAP mode to see if the command should be ignored).

If the code is not in NAP and the Ring command is not active, the RING ACTIVE bit is set in the output data word ERRO +2 and the lsb of the command argument is tested (from ERRO+2) to see if the command is active, if so the command argument is tested (in EXTRT2) against the EXTFLG (set as a result of initiating the EXTEND command) to see if the RING EXTEND command is already being executed from a previous command. If so, control returns to the place where the program was interrupted via SKIP. If not, the RNGCMD flag (which indicates an over-riding ring command to EXTEND the ring during the process of executing a RETRACT command) is set and control is returned as above via SKIP.

In EXTRT1 the argument is tested (lsb = 1 for EXTEND, 0 for RETRACT) to determine the commanded action. If EXTEND, the extend data flag bit is tested to see if the Ring is already there, if so, nothing more needs to be done and control returns to the place where the interrupt occurred via SKIP. If the Ring is not at the EXTEND position, the EXTEND flag is set, the EXTEND power bit is set in DSCR +1 and the Ring Extend control bit is turned on in PROM1, PORT A which turns on the Ring Extend relay. The RNGCMD flag is cleared and control returns to the interrupted code via SKIP.

If the Ring command is RETRACT, the same sequence occurs but the Retract flag and data bit are set and the Ring Retract control bit is set which turns on the Ring Retract relay. Control returns as above via SKIP.

MONITOR DATA REQUEST -- Now for the monitor data output path of BURP. If the request is for Apex Analog data (Mux 225), the most recently used Apex Data table address (ANAMUX) is incremented so that the next Apex Analog data readout will be the next value. The mux address is multiplied by three to form an index which is added to $L$. $H$ is set to $1800 H$ (the base address of the DATA SET TABLE) for the data output sequence. The Data set output registers addresses are: DSDT1, DSDT2 and DSDT3. The data readout process must be expeditious as only 100 microseconds elapse between the STRI pulse and the unload clocks (CLKI).

TIMER INTERRUPT SERVICE -- BLAP is entered from the TRAP interrupt which cannot be disabled, has the highest priority and is used with the 8156 Timer for execution time-out functions which test for the attainment of important states within a specified time. If the tested state is not attained, the program
logic presumes a malfunction.
In setting up the timer/TRAP interrupt, a device driver enters the address of the associated error handling code into the error handling address, (ie TRAP) so that in the event of a time-out TRAP interrupt, the TRAP interrupt handling code (BLAP) has an address vector to the this error handling code.

BLAP first sets the Stack Pointer to the top of the stack and loads the error handling address (TRAP) into HL which is then pushed onto the stack, the timer is stopped via the TSTOP subroutine, a TIME-OUT fault bit is merged into the output status data, the RST 6.5 interrupt flip flop is cleared, the RST 7.5 interrupt is cleared, interrupts are enabled and a the RET instruction pops the error handling address of $f$ the stack into the program counter.

LOCAL COMMAND EXECUTION
The LOCAL section manages the motion of the drives when the controller is in the LOCAL mode. The M8 front panel switches are read to determine the operator's commands. In LOCAL the Translator is turned on, the drive rate is initialized to 100 Hz , the drive position and Apex discretes are read via a call to DSTOR and if there are no faults, the M8 switches are read to determine direction and whether or not to ramp the drive. If the distance to be traversed is small the operator will (probably) not ask for ramping so the drive will be driven at 100 Hz as long as a switch is actuated. If both direction switches are actuated the drive will be driven in the CW direction.

LCW1 turns on the brake, sets the CW drive direction bit in the output data area and tests the ramp switch; if ramping is called for RMPUP is called with a top step number of 17 (ie 1000 Hz ). Upon completion of the ramp-up LCW1 is entered. DSTOR is called to read the state of the CW switch and if it is still actuated the program continues to loop and drive the motor until the switch is released. When the switch is released the program jumps to LSTOP which calls RMPDN which slows the drive to 100 Hz , the brake is turned off, the drive status bits are updated in the output data area and the program jumps to LOCAL for continued looping.

LCCW and LCCW1 operate in an a similar manner in driving in the CCW direction.

While looping in the LOCAL mode, the BOSS scanning is inhibited.

### 2.3 FOCUS CONTROL PROGRAM

The FOCUS control program is almost identical to the ROTATION control program; the instructions compare 1:1 throughout most of the code. This section addresses the areas in which FOCUS differs from ROTATION.

The FOCUS program is not involved in RING control; this affects CHKDRV in that CHKRNG is not present. Correspondingly the Data SET command initiation is simpler in that EXTRTC and RETRCT are not present.

The output data formats are almost identical except that the RING ACTIVE bit is not present in mux 221, and RING FAULT,RING RETRACT \& RING EXTEND bits in mux are not present in mux 222. These bits are set by DSTOR and the Ring
handling code.
Because the Focus drive motor is heavily loaded in driving UP, experience has shown that it is best to restrict the maximum Focus drive rate to 500 HZ because of the severe resonance hole in the motor torque curve at 550 HZ . Therefore; in calculating the number of steps to ramp the Focus drive in DIV, the maximum number is restricted to 7 , the pointer to the 500 Hz rate in the RAMP TABLE.

VECTOR is not in the FOCUS program arithmetic subroutines as there is only one possible direction to drive to null a position error. These FOCUS subroutines have CMDCHK which tests the command arguments against hi and 10 limits to prevent the subreflector from being driven into the limits in CMP control. It is possible to drive Focus into the limits in the LOCAL mode. The upper limit is tested first, if the command msb is less than 3 AOOH ( 35000 octal), the argument is next compared with 0500 H ( 2400 octal). If the argument is greater than the high limit or is less than the lower limit, control is returned to DRVINT with the Carry flag set. This condition aborts the command initiation and sets the OPERATOR ERROR fault.

DSTOR does not read the RING EXTEND \& RETRACT bits from the Apex Interface data.

The motion analysis code in TRPR tests for motion greater than 43 counts and is based upon the Focus drive motion of 1.318 steps/bit. This value is 60 in TRPR in the ROTATION code since the the Rotation drive moves 1.318 steps/bit.

Memory Map:


I/O Port Map:
8156 RAM I/O PORTS 1 1D 1 TIMER MODE \& MSB COUNT

8755 EPROM \#2 I/O PORTS | OB |
| :---: |
| PORT B DIR |
| PORT A DIR B |
| 08 |

8755 EPROM \#1 I/O PORTS 03











### 3.0 M11 APEX INTERFACE LOGIC

The Apex Interface contains the logic and conversion equipment to sense conditions in the Apex and serially transmit this data to the F/R Controller upon request. Except for the common time base, analog multiplexer-A/D logic and display logic, the logic is partitioned into two independant, asynchronous sections associated with the Focus and Rotation processors in the $F / R$ Controller.

The Apex Interface logic schematics follow this text.
The Apex Interface is powered by a dedicated power supply in the M8 to isolate all Apex signal lines to the Apex Interface. The links between it and the F/R Controller are isolated by optical isolators to protect the balance of the system from disagreeable phenomena associated with lightning.

The Time base logic on Sheet 1 generates system clocks, scan clocks for the multiplexed front panel numeric display, Sample/Hold \& A/D Blank/Convert terms and the multiplexer address terms for the analog multiplexer. The $A / D$ conversion sequence operates continuously at a 10 KHz rate and is initiated by -10 (not 10) term which sets flip flop D17 which in turn sets the $\mathrm{S} / \mathrm{H}$ to the Hold mode, 10 us later the trailing edge of -10 triggers the second half of D17 which initiates the $A / D$ conversion. The A/D -DRDY (A/D EOC) term triggers a one-shot delay pair to provide a delay for the A/D bits to settle. The delay pair generates an A/D load strobe which parallel-loads the A/D data into static storage register D22 \& D23 and advances the multiplex address counter D28. The leading edge of the 80 term clocks flip flop D 17 off to cause the $\mathrm{S} / \mathrm{H}$ to revert to the Sample mode so the multiplexer has 45 us of settling time before the next Hold command. When the A/D converter is converting focus or Rotation velocity data, the converted value is strobed into storage register B18/B19 \& C18/C19 for subsequent readout.

The Synchro/Digital Readout Control logic for the two axes are identical, so the following description applies to both sets of logic. This logic causes the position values, $A / D$ data and discretes to be sequentially unloaded to the F/R Controller in response to a data request from the controller via the optical isolator B1. The request sets a control flip flop B30 to initiate the readout sequence and if the A/D is not in the process of conversion, the sequencer control flip flop $B 30$ is triggered on by gate $B 23$. If the $A / D$ converter is busy, the trailing edge of -Sample/Hold turns on B30. This action insures that the data is never read out during the A/D conversion process which takes about 35 us. The sequencer control flip flop B30 inhibits the Rotation Synchro to Digital converter to keep it from converting during data readout and enables a train of ones to travel down shift register B29 which is clocked by a 5 MHZ clock. Four clock pulses later, gate B 23 generates a the -Rot Data load strobe which parallel-loads registers B22 through B11 with the A/D data, analog mux address, Apex discretes, Rotation velocity and Rotation position data. On the fifth clock pulse, the shift register Q4 term enables the shift counter (B26\&B27) to begin counting and also enables shift clocks to be output by gate B23. The shift clock train unloads the Rotation Data register and provides a load clock to the F/R Controller via differential driver B6. The shift counter shuts down the unload sequence at a count of 64 (it was preset to a count of 21) by clocking control flip flop B30. The four B24 inverters provide about 50 ns of delay in the shift clock to prevent a B30,B29 propagation delay glitch from being output with the clocks. One-shot

D12 is triggered by the -Rot S/D Inh term to provide a discrete front panel indication that the Rotation data readout/conversion process is active.

The data unload time is 9.8 microseconds and the unload logic may be delayed by as much as 35 microseconds due to A/D delay so the maximum readout delay after the data request is 45 us and the minimum is 10 us.

Sheets $2 \& 3$ are the data unload registers, Apex switch inputs and fault logic. Apex discretes are shown at the top of the sheets and drive Schmidt input inverters for enhanced level discrimination. All discretes are sensed via contact closures to ground and sink .5 ma of current during the nonactivated state of the switch. Fault logic senses illegal states such as the concurrent sensing of both Upper and Lower Focus limits or more than one Pin switch. In the event that this sort of immoral (it has happened) behavior is sensed, an alarm term - YOWP! is sent directly to the controller to inhibit all action. Focus and Rotation limits are also sent directly to the controller. Rotation CW/CCW limits are wired in the module and bin inputs but no longer exist in the mount or cabling between the Apex \& bin.

Sheet 5 contains the front panel display logic which consists of a 3line, 10 channel multiplexer to drive the numeric display segment encoder on the display board. The inputs to the multiplexer are the Focus and Rotation position storage registers and the position data is multiplexed by the scan term as a sequence of 10 octal characters. A digit selector, driven by the four bit scan terms enables the cathode of each digit in succession while the anodes are driven by the 7-segment encoder. The Scan counter driven by the 10 KHz scan clock.

All the analog and conversion circuitry is contained on Sheet 4 and consists of an 8-channel single-ended multiplexer, Sample and Hold, A/D Converter and Integrating Synchro to Digital Converters. The operation of these devices is described in the Data Sheet section of this manual so they will not be described here. For an in-depth discussion of the Integrating. Synchro to Digital converter see the DDC "Synchro Conversion Handbook" or the Analog Devices "Synchro \& Resolver Conversion" book. The operation of these devices is quite simple and the logic to interact with them was described above. The alignment process for the analog components is quite simple and can be done by removing the front panel adjustment panel cover. The +10 volt reference is set first. A high quality DMM is plugged in to test connector pins $1 \& 13$ on the front panel connector and pot R 2 is adjusted to produce +10 volts $+/-2 \mathrm{mv}$. Next, momentary switch Si is actuated down to feed analog ground into the Sample \& Hold input to set the A/D zero. Pot R2 is adjusted to produce a 0 volts reading on the Data Tap (set to Mux address 225 or 235, DS\#3). Next the switch is actuated up to feed the +10 volt reference voltage into the Sample \& Hold input and the A/D gain is adjusted by pot R3 for a +10.000 reading on the Data Tap (addresses $225 \& 235$ ). The 10 bit A/D Converter is scaled at $10 \mathrm{mv} / \mathrm{bit}$ and is a 10 volt span device so the Data Tap readout will change in steps of 20 mv .

There are no gain or zero adjustments for the S/D converters. Differential amplifiers E15 read out the synchro argument velocity; these should be set for zero output by offset pots E13\&E14 on the bench when synchros and the 400 Hz inputs are connected to the module.

The F/R Mount temperature is sensed by an AD590 temperature sensor
mounted in a metal box bolted to the underside of the F/R Mount gearbox. The temperature verifies the operation of the heaters and is scaled to produce 100 $\mathrm{mv} / \mathrm{deg} C$. The scaling and offset resistance values should be set up on the bench before installation in the antenna.

Figure 8 (below) depicts the location of these analog data adjustments and the display messages.


The numeric displays show positions as 4 digit octal values derived from the $S / D$ converter 14 bit straight binary code output; the value may range between 0000 (full DOWN/CCW) and 3777 (full UP/CW). The associated values seen on the Data Tap octal display will be: 2000 and 1777 respectively since the msb is inverted to make the monitor data a $2^{\prime}$ s complement value.

The discretes display indicate the following when illuminated:
UL \& LL - Focus Upper or Lower limit switch actuated
CW \& CCW - Rotation CW or CCW limit switch actuated
RR \& RE - Ring Retract or Ring Extend switch actuated
M1,M2,M3 - Apex Interface analog mux address bits
FA - Focus Data readout to controller active
RA - Rotation Data readout to controller active
AA - A/D Converter active
$P, L, C, U, K, X, Y, Z$ - Band $P i n$ Switch Actuated (not presently used)

The test point connector permits observation of the following functions:

| PIN | FUNCTION | PIN | FUNCTION |
| :--- | :--- | :--- | :--- |
| 1 | A/D align switch out put | 14 | analog spare |
| 2 | S/H output | 15 | analog spare |
| 3 | YOWP! | 16 | A/D blank/-conv |
| 4 | S/H state | 17 | A/D data ready |
| 5 | G/D load strobe | 18 | -10 time base term |
| 6 | 5 MHZ clock | 19 | 80 time base term |
| 7 | Focus output data stream | 20 | Rotation output data |
| $\quad$ stream |  | stream |  |
| 8 | Focus unload clocks | 21 | Rotation unload clocks |
| 9 | Focus data load | 22 | -Rotation data load |
| 10 | Focus readout enable | 23 | Rotation readout enable |
| 11 | Focus readout start | 24 | Rotation readout start |
| 12 | Focus readout request | 25 | Rotation readout request |
| 13 | Analog ground |  |  |







The M8 F/R Power Supply contains the system logic $+5,+/-15$ volt and Apex Interface +5 and $+/-15$ power supplies. This unit also serves as a control/display panel for processor-driven display LEDs to indicate important discrete states such as Command Active, Translator power on, Brake V*I ok, Up drive line pulsing, etc. Figure 9 depicts the $M 8$ panel and the associated states. Manual control switches enable manual slew control of the Focus and Rotation axes at either a 100 Hz stepping rate or by ramping to travel long distances. Band select switches and associated LEDs enable future manual control of an Index Locking Pin if the need should arise. To reduce wire count the 8 band switches are encoded into a 3 bit code by a 74 LS 148 encoder on the display board. The $F / R$ Power Supply schematic diagrams follow this text.

The number of $D C$ output lines on the module $I / O$ connector exceeds the number of modules presently powered; the extra wire capacity has been installed for future expansion in the event that more modules are to be installed in the bins.

Monitor States \& Controls:

UL/LL - Focus limits
CW/CCW - Rotation limits
UP/DWN -Focus drive dir
CW/CCW - Rot drive dir
BRK - Brake voltage*amps
TRANS - Trans power on
CMD - Command active
MOT - not used
EXT - Ring Extend
RET - Ring Retract

P,L,C,U,K Pin select
switches \& LEDs, not used
Drive UP/DWN - slew Focus when depressed
Ramp/100 Hz - ramp speed or drive e 100 Hz
Drive CW/CCW - slew Rot when depressed


Figure 9, M8 Displays \& Controls



### 5.0 M22 F/R SWITCHING MODULE

The switching module contains solid state relays to power the Translators, brakes and Ring actuator, Brake controllers to power the $F / R$ Mount brakes and a 400 Hz Synchro Exciter to power the position readout synchros. The relays are optically (internally) isolated and are driven by providing a current sink from an open collector power nand or open collector buffer gate in the $F / R$ Controller logic. The Brake controller is the standard Warner Electric MCS 805 unit which has been removed from the wall of the Pedestal room and installed in the M22 to make them easier to change in the event of failure. During the installation in M22, the output voltage adjustment pot is removed from the Brake Controller PC board and installed on the M22 front panel with longer wires to enable the brake voltage to be adjusted on the front panel. A manual switch and test points on the panel enable manual actuation and adjustment.

The F/R Switching Module schematics follow this text.

## BRAKE CONTROLLER ADJUSTMENT PROCEDURE

The following procedure has been abstracted from the Warner Electric MCS-805-1 Manual:
"Brake Release Adjustment: Prior to operating the Fail Safe Brake, the proper electrical release adjustment must be made as follows:

With the brake mounted and ready for operation, turn the potentiometer adjustment screw on the MCS-805-1 Power Supply counterclockwise as far as possible. Turn on power to provide AC input to the power supply. Next, slowly turn the adjustment screw clockwise until the Fail Safe Brake armature completely disengages from the magnet. Armature release and engagement must be checked by hand until the autogap adjustment is made. Using a DC voltmeter, note the voltage reading at this point, which is determined the instant the armature disengages. If this point is overshot by two volts or more, reset the potentiometer to its full counterclockwise position and repeat the adjustment procedure. Complete the set point adjustment by turning the adjustment screw to a setting six volts higher than the disengagement voltage. Lock the adjustment screw by tightening the locknut provided on the potentiometer. This adjustment must be made with the brake at room temperature for an expected operating range of -50 deg $F$ to 250 deg $F$. The MCS-805-1 control output changes to track the brake release point as it varies over the -50 deg F to 250 deg $F$ temperature range."

The bin cooling fans, brake, 400 Hz Synchro Exciter, Translator and Ring Actuator power are fused and distributed from the M22.

The Synchro Exciter is a 400 Hz power oscillator powered by a 12 volt, 8 amp transformer mounted on the Synchro Exciter Chassis. The exciter circuitry is contained on a removeable PC board mounted on the Synchro Exciter chassis. The exciter circuit consists of a bridge rectifier, 723 voltage regulator, 900 HZ oscillator, flip flop and a push pull, class B power amplifier which drives a $400 \mathrm{~Hz}, 30 \mathrm{VA}, 24 \mathrm{VCT}$ (primary) to 26 volt secondary transformer. In operation a DC voltage of about +10 volts (set by a front panel 500 ohm pot) is produced by the 723 regulator; this is the power switching voltage. An LM 340 T regulator generates +5 volt logic power for the logic on the board. A 555 timer connected as an oscillator generates a 900 Hz (approximatly) clock which toggles a 7474 to generate a square wave 450 Hz signal which in turn drive 7406 open collector buffers. The 7406s drive 2 N 2219 transistors which
in turn drive $2 N 3055$ power transistors to produce the power switching signals.
A current transformer (the primary is 9 turns of \#26 wire through a Magnetico 13960 current transformer) generate a voltage proportional to the synchro load current. This signal is fed to a rectifier/filter in the M7 where it is read as monitor data. The termination circuit in M7 scales the voltage at 1 volt/synchro load thus enabling a confirmation that currents are present in both synchro rotors.

The front panel synchro excitation level should be set to produce about 20 volts peak; it is not at all critical since the Synchro to Digital converters/synchro combination will operate with voltages as low as 5 volts. Bench tests have confirmed this. An adjustable 25 ohm power resistor is installed in the primary of the transformer to reduce the transformer output voltage so as to lower the dissipation in the regulator circuit. This resistor should set to about 10 ohms. Four 4.7 uf, ceramic capacitors across the transformer secondary (roughly) tune the output circuit to about 400 Hz .

A photograph of the 400 Hz waveform at the 222 front panel test points is shown below. The scales are: 10 volts/div and 500 us/div.


### 6.0 SYSTEM TROUBLE-SHOOTING

An important system design consideration is the ablity to monitor the conditions in the electronics and the $F / R$ Mount to identify malfunctions and diagnose faults. There are two places in which this is done: locally within the $F / R$ Controller and remotely at the control center via Data Checker and the Operator F/R Overlay. A great deal of diagnostic information is brought back in the Monitor data. This section describes some trouble-shooting guidelines for the system based upon remote observations via the monitor data and direct measurements at the antenna; section 9 describes the usage of the Operator F/R Overlay.

The maintainance technician's credo: THE ESSENCE OF TROUBLE-SHOOTING IS TO OBSERVE THE CONDITIONS OF THE SYSTEM AND RELATE THEM TO THE CONDITIONS WHICH SHOULD EXIST FOR THE MODE OF THE SYSTEM. THIS COMPARISON IS THE ONLY BASIS FOR EFFECTIVE TROUBLE SHOOTING.
A) CHECK COMMUNICATIONS WITH CONTROLLER

This is the most basic aspect of fault isolation.
a. Is analog data present? -- look at mux 0-7, power supply voltages, also see MW1.
b. Is analog data within limits? -- check for bad power supplies.
c. Is digital data present? --- examine DS \#3, 220 - 227, Foc; 230-237, Rot. If missing or bad, send a RESET to restart the processor; does the data reappear? If not the controller is bad or is not hearing the Data Set.
d. Is the digital data reasonable? --- evaluate as shown in $D$.
B) CHECK FAULT \& MODE FLAGS

Are there fault or mode flags coming back from the controller? These are major descriptors of the conditions seen by the $F / R$ Controller.

OPERATOR -- the opertor has sent an out of range Foc command.
CONTROLLER -- the controller has sensed an illegal condition during program execution.

DRIVE -- the mechanism is not driving properly, probably a bad translator, cold sticking, mechanical drag or jam.

TRANSLATOR -- translator did not turn on or off within 1 sec.
BRAKE -- brake voltage*current bad or did turn on or of $f$ within 1 sec .

UPPER/LOWER LIMIT -- limit switch activated, should never happen under Computer control, result of some malfunction.

TIMEOUT -- commanded position has not been attained within
allotted time.

APEX INTERFACE DEAD -- Apex Interface has not responded to a data request from $F / R$ Controller.

CABLE INTERLOCK -- a bin I/O cable is loose or disconnected.

SYSTEM -- a system malfunction has been sensed by controller.
RING -- 327 MHz ring is not moving.
APEX ANALOG FAULT -- one of the Apex Interface signals is out of range.

YOWP! -- Some serious fault has been sensed by Apex Interface, all brake, translator \& Ring drive is inhibited.

LOCAL mode -- the controller will not accept commands in the LOCAL mode, go set the M7 switch to CMP mode.

APEX INTERFACE DEAD -- the Apex Interface is not responding to data requests from the $F / R$ Controller

CMD ACTIVE -- a position command is being executed
NAP ACTIVE -- position and ring commands are being ignored, send a RESET command to clear NAP mode.
C) CHECK COMMAND-F/R RESPONSE

The analysis of the controller response to a command is a very important aspect of system trouble shooting. The digital monitor data should be examined in these tests as the command and response discretes provide detailed information about what is happening in the system.
a. Send a position command, does ECHO = CMD ?
-- yes: command input logic is working, the controller responded to a CMD from the Data Set, interpreted as it properly \& initialized the control program.
-- no: command not being heard, may be bad F/R Controller, Data Set, Ant Buffer, IF/LO problem.
b. Does a position command cause any drive movement ? -- yes: but slow \& with a DRIVE, TRANS or BRAKE fault, check the digital data for conditions. The drive appears to be sticking, check the translator.
-- no: \& with DRIVE, TRANS or BRAKE faults, indicates a drive problem, bad translator, stuck drive, check the digital data for conditions. Check the translator, wire a substitute motor into the pedastal room junction box. Will it run in the LOCAL mode? Climb up to $F / R$ Mount \& disengage motor from the mount, will it run in the LOCAL mode?
c. Will controller accept a NAP command? Test by sending a POSITION command after a NAP command.
-- no: $F / R$ Controller is not working properly, NAP command is a very simple command to execute.
d. Will the controller accept a soft reset command? (mux 321 \& 331). RESET causes Apex data to be all zeros until updated.
-- no: $F / R$ Controller is not working properly, a soft RESET is the simplest command to execute.
e. Will the controller respond to a hardware RESET command, MUX 337?
-- no: F/R Controller is really busted.
D) CHECK MONITOR DATA VALUES AND STATES

All discrete control states, all sensible response states and analog monitor data from the $F / R$ Controller and Apex Interface are available for fault analysis. Section 5.0 details the data formats. In general any command will activate several of these control and response discretes; if there is a problem these states should be examined on a Data Tap. If a Position command is to be executed, the translator power, brake, steer up/down (cw/ccw) and clock enable control discretes should be 1's. The clock rate control discretes should sequence through a lot of states if the drive is to be ramped up in speed. The response discretes should show brake $V * I$,translator power on and drive up/down (cw/ccw) pulsing.

The following analog/digital data values should be examined:
a. Is synchro: = 2 V ? -- yes: synchro excitor in M22 is ok = 1 V? -- yes: one synchro rotor lead open = 0 V? -- yes: synchro excitor in M22 bad or fuse blown
b. Is the position readback stable?
-- yes: synchro \& S/D converter probably working, drive a little, does the position change?
-- no: S/D converter bad, no synchro excitation or a synchro wiring problem.
c. Is mount temp ~ 10 deg above ambient when ambient is <45 F?
-- yes: heaters \& temp probe ok.
-- no: mount heaters may not be working, is drive sticking?
d. Is bin temp $>30$ deg $C$ ?
-- yes: damage can result, go check the fans.
e. Are power supply voltages within tolerance?
-- no: go fix the problem.
7.0 TELESCOPE OPERATOR CRT OVERLAY DESCRIPTION

A replica of the new F/R System Overlay is shown below; all fault flags are shown.

| NEW FOCUS/ROTATION AND (22) |  |  |  |
| :---: | :---: | :---: | :---: |
| SYSTEM | FOCUS | ROTATION | APEX INTERFACE |
| LOCAL |  |  | MOUNT TEMP 16.900 |
| TIMED OUT | NAP | NAP | -15 V -15.010 |
| SYSTEM FAULT |  |  | +15 V 15.020 |
| I/O Cables | UP TRANSL | CW Transl | +5 V 5.005 |
| YOWP! | DRIVE PULSES | DRIVE PULSES | $+10 \mathrm{~V} \quad 10.000$ |
| RING | LOWER LIMIT |  | FOC VEL 0.000 |
| ExTENDED |  |  | ROT VEL 0.000 |
|  | BRAKE | BRAKE | GROUND 0.000 |
|  | DRIVE | DRIVE | ANALOGS NOT OKINACTIVE |
|  | TRANSLATOR | TRANSLATOR |  |
|  | CONTROLLER | CONTROLLER |  |
|  |  |  | F/R CONTROLLER |
| POSITION | 7469 | -3471 | +5 V 5.005 |
| COMMAND | 7469 | -3471 | +15 V 15.005 |
| CMD ECHO | 7469 | -3471 | -15 V -15.010 |
| ERROR | 0 | 0 | FOC TRAN 2.600 |
|  |  |  | ROT TRAN 2.550 |
|  |  |  | SYNCHRO 2.010 |
|  |  |  | BIN TEMP 24.00 |
|  |  |  | GROUND 0.000 |
| $\begin{aligned} & F=F O C U S, \quad R=R C \\ & S=S T O P, \quad E S C-N \end{aligned}$ | $\begin{aligned} & \text { ATION, (N=NAP } \\ & \text { MASTER CLEAR } \end{aligned}$ | RING CMDS) E=E | W=RETRACT |

Section 6.0 of this manual details a fault isolation procedure which may be referred to for an expansion of the the information discussed below.

F/R FAULT MESSAGES

SYSTEM FAULT - The F/R Controller has detected a serious system fault.

I/O CABLES - Some bin I/O cable has been disconnected or is loose.

RING FAULT - The 327 MHz ring has not attained the commanded state within the allotted time.

TIMED OUT - The commanded position has not been attained within the allotted time.

BRAKE - The brake $V^{*} I$ has not reached the commanded state within 1 second.

TRANSLATOR - The translator has not reached the commanded state

| LOCAL | - Although not a real malfunction the CMP/LOCAL switch was left in LOCAL. CMP should normally be displayed here. |
| :---: | :---: |
| CONTRO | ROLLER - CONTROLLER indicates that the controller has sensed a malfunction in its operation. |
| ANALOC | OGS NOT OK - Indicates that an Apex Analog fault has been reported by the $F / R$ Controller. |
| INACTI | IVE - Indicates that the Apex Interface is not responding to data requests from the $F / R$ Controller. This is a major malfunction |
| F/R DI | DISCRETES DISPLAY |
| UP TR | TRANSLATOR - The Focus translator is being driven with UP pulses. Down is the complementary case. |
| CW TRA | RANSLATOR - The Rotation translator is being driven with CW pulses. CCW is the complementary case. |
| LOWER | LIMIT - The Focus drive has driven to a limit switch, this should never happen under central computer control, something is really wrong. UPPER LIMIT is the complementary case. |
| RING | EXTENDED - The 327 MHz Ring has been extended into position and has actuated the position sensing switch. RING RETRACTED is the complementary case. When the Ring is traveling between the two positions neither switch should be actuated; there is no other readout of Ring position. |
| NAP - NAP indicates that the processor is ignoring position and ring commands. A RESET command clears this mode. |  |
| COMMAND/POSITION DATA |  |
| POSITION - POSITION is a decimal value which ranges between +8191 to - 8192. Typical (Ant 20) Rotation command arguments are: L --xxxx; C --zzzz; K -- yyyy; vvvv; $X$-- tttt. |  |
| COMMAND | ND - COMMAND is the decimal value of the position command set point. |
| COMMAND ECHO - COMMAND ECHO is the command argument heard by the $F / R$ Controller and is returned as monitor data to verify command reception. |  |

```
COMMAND ERROR - The controller calculates the difference between the commanded position and the present position; this is read out as monitor data.
```


## APEX INTERFACE ANALOG DATA

MOUNT TEMPERATURE is the temperature sensed on the middle of the bottom of the gear-box and serves to verify that the gear-box and platform heaters are working in cold weather. The heater controller switches on when the ambient temperature is below about 45 deg $F$. The temperature readout is in degrees $C$ and should be about 10 deg $C$ above ambient when the ambient is below 45 F . When the F/R Mount temperature drops below 0 deg, the controller signals an Apex Analog fault.

APEX INTERFACE POWER SUPPLIES indicate the voltages which operate this interface. The +/- 15 volts should be within +/- . 3 volts and the +5 volt tolerance is $+/-.15$ volts. The +10 volt tolerance is $+/-0.040$ volts. This data has a granularity of .020 volts/bit. Ground is a measure of A/D zero drift and should be less than $+/-0.040$ volts. Foc and Rot velocities are a measure of drive velocity and are scaled 13 volts/in/sec for Focus and 5.2 volts/deg/sec for Rotation.

## F/R CONTROLLER ANALOG DATA

F/R POWER SUPPLIES indicate the voltages which operate the $F / R$ Controller and associated logic. The $+/-15$ volts should be within $+/-.1$ volt and the +5 should be within $+/-.2$ volts. The translator power should be $+2.6+/-.2$ volts. These translator voltages are present only during command execution. The Synchro voltage should read $+2+/-.5$ volts. Ground is a measure of the Data Set A/D zero drift and should be less than +/ . 010 volts. Bin temperature reads out directly in deg $C$ and should be less than 30 deg.

### 8.0 CONTROL/DATA FORMATS

Mux refers to the multiplex address in octal format. RAM loc denotes the byte symbolic address in RAM memory.

COMMAND FORMATS:

| Mux addr | 320/Foc | 330/Rot | 336/Ring |
| :---: | :---: | :---: | :---: |
| Ram loc Data | rampas <br> null | rampas <br> null | none <br> null |
| b23 80H | 0 | 0 | 0 |
| b22 40H | 0 | 0 | 0 |
| b21 20H | 0 | 0 | 0 |
| b20 10H | 0 | 0 | 0 |
| b19 08H | 0 | 0 | 0 |
| b18 04H | 0 | 0 | 0 |
| b17 02H | 0 | 0 | 0 |
| b16 01H | 0 | 0 | 0 |
| Ram loc | rampbs | rampbs | none |
| Data | Foc arg | Rot arg | null |
| b15 80H | 0 | 0 | 0 |
| b14 40H | 0 | 0 | 0 |
| b13 20H | 2**13,msb | 2**13,msb | 0 |
| bl 210 H | 2**12 | 2**12 | 0 |
| b11 08H | 2**11 | 2**11 | 0 |
| b10 04H | 2**10 | 2**10 | 0 |
| b9 02H | 2**9 | 2**9 | 0 |
| b8 01H | 2**8 | 2**8 | 0 |
| Ram loc | rampes | rampes | none |
| Data | Foc arg | Rot arg | Ring arg |
| b7 80H | 2**7 | 2**7 | 0 |
| b6 40H | 2**6 | 2**6 | 0 |
| b5 20H | $2 * * 5$ | 2**5 | 0 |
| b4 10H | 2**4 | 2**4 | 0 |
| b3 08H | 2**3 | 2**3 | 0 |
| b2 04H | 2**2 | 2**2 | 0 |
| b1 02H | 2**1 | 2**1 | 0 |
| b0 01H | 2**0 | 2**0 | ext/ret, |

A SYSTEM RESET command (Mux 337)causes abortion of active commands and re-initiallizes the two processors. A software RESET command (Mux $321 \& 331$ ) resets the addressed processor. The control argument is not used in RESET commands.

NAP commands (Mux 322/Foc \& $332 /$ Rot) cause all subsequent position commands to be ignored until cancelled by a RESET command. The command argument is not used.

DIGITAL MONITOR DATA

Digital monitor data formats are a composite of values and associated discrete or fault data. A 1 in a fault bit denotes a fault state.

Focus Digital Monitor Data:

| Mux addr | $220 /$ Foc | $221 /$ Foc | $222 /$ Foc |
| :--- | :--- | :--- | :--- |
| Ram loc | posd+2 | erro+2 | echo+2 |
| Data | faults | modes | null |
| b23 80 H | operator | 0 | 0 |
| b22 40 H | controller | cmd active | 0 |
| b21 20 H | drive | nap active | 0 |
| b20 10H | translator | timeout | 0 |
| b19 08H | synchro, $=0$ | Apex Int dead | 0 |
| b18 04H | brake | cable int 'lk * | 0 |
| b17 02H | upper lim | system * | 0 |
| b16 01 H | lower lim | cmp/loc, $0=10 c$ | 0 |


| Ram loc | posd+1 | erro+1 | echo+1 |
| :---: | :---: | :---: | :---: |
| Data | Foc pos | Foc pos error | Foc cmd echo |
| b15 80H | 0 | 0 | Cmd bit echoed |
| b1 440 H | 0 | 0 | Cmd bit echoed |
| b13 20H | 2**13, msb | 2**13, msb | 2**13, msb |
| b12 10H | 2**12 | 2**12 | 2**12 |
| b11 08H | 2**11 | 2**11 | 2**11 |
| b10 04H | 2**10 | 2**10 | 2**10 |
| b9 02H | 2**9 | 2**9 | 2**9 |
| b8 01H | 2**8 | 2**8 | 2**8 |
| Ram 100 | posd | erro | echo |
| Data | Foc pos | Foc pos error | Cmd echo |
| b7 80H | 2**7 | 2**7 | 2**7 |
| b6 40H | 2**6 | 2**6 | 2**6 |
| b5 20H | 2**5 | 2**5 | 2**5 |
| b4 10H | 2**4 | 2**4 | 2**4 |
| b3 08H | 2**3 | 2**3 | 2**3 |
| b2 04H | 2**2 | 2**2 | 2**2 |
| b1 02H | 2**1 | 2**1 | 2**1 |
| b0 01H | 2**0 | 2**0 | 2**0 |

* 1 = no fault, low true

| Mux | 223/Foc | 224/Foc | 225/Foc |
| :---: | :---: | :---: | :---: |
| Ram loc | dscr +2 | ader+2 | anad+2 |
| Data | clock control | Apex Foc Discr | Apex Anlg Faults |
| b23 80H | 2**7,msb | 0 | gnd |
| b22 40H | 2**6 | 0 | 0 |
| b21 20H | 2**5 | 0 | foc vel |
| b20 10H | 2**4 | 0 | +10 volts |
| b19 08H | 2**3 | 0 | + 5 volts |
| b18 04H | 2**2 | Foc brk $V^{*} \mathrm{I}$ | +15 volts |
| b17 02H | 2**1 | Foc upper lim | -15 volts |
| b16 01H | $2 * * 0$ | Foc lower lim | mount temp |
| Ram loc | dser +1 | ader +1 | anad+1 |
| Data | cmd sense | Foc vel | Apex analog data |
| b15 80H | Foc trans pwr | 0 | 0 |
| b1 4 40H | Foc brake pwr | 0 | Mux addr 4 |
| b13 20H | 0 | 0 | Mux addr 2 |
| b12 10H | 0 | 0 | Mux addr 1 |
| b11 08H | Foc drv up | 2**11,msb | 2**11,msb |
| b10 04H | Foc drv down | 2**10 | 2**10 |
| b9 02H | 0 | 2**9 | 2**9 |
| b8 01H | Foc clock en | 2**8 | 2**8 |
| Ram loc | dser | ader | anad |
| Data | activity sense | Foc vel | Apex analog data |
| b7 80 H | motor pulsing, $=0$ | 2**7 | 2**7 |
| b6 40H | down pulsing | 2**6 | 2**6 |
| b5 20H | up pulsing | 2**5 | 2**5 |
| b4 10H | trans pwr mon | 2**4,1sb | 2**4 |
| b3 08H | 0 | 0 | 2**3 |
| b2 04H | cable intl'k | 0 | 2**2,1sb |
| b1 02H | Yowp! | 0 | 0 |
| b0 01H | loc/comp | 0 | 0 |



[^0]

SPECIAL PURPOSE MONITOR DATA

Fault monitor data is a selection of the data listed above which has been formatted to combine all fault data into one single word for convenience in examining fault bits. The $F / R$ Mount temperature data has been put into a dedicated monitor word for convenience in driving a strip chart recorder.

Focus and Rotation Special Purpose Monitor Data

| Mux addr | 226/FOC | 236/Rot | 227/FOC |
| :---: | :---: | :---: | :---: |
| Ram loc | faul +2 | faul +2 | temp+2 |
| Data | faults | faults | F/R Mount Temp |
| b 23 80H | lab test | lab test | 0 |
| b22 40H | lab test | lab test | 0 |
| b21 20H | lab test | lab test | 0 |
| b20 10H | timeout | timeout | 0 |
| b19 08H | Apex Int dead | Apex Int dead | 0 |
| b18 04H | cable Int'lk | cable Int'lk | 0 |
| b17 02H | system | system | 0 |
| b16 01H | Motion Analysis | Motion Analsis | 0 |
| Ram loc | faul+1 | faul+1 | temp+1 |
| Data | Apex Analog | Apex Analog | F/R Mount Temp |
| b15 80H | gnd | gnd | 0 |
| b14 40H | 0 | 0 | 0 |
| b13 20H | Foc vel | Rot vel | 0 |
| bl 210 H | +10 volts | +10 volts | 0 |
| b11 08H | +5 volts | +5 volts | 2**11,msb |
| b10 04H | +15 volts | +15 volts | 2**10 |
| b9 02H | -15 volts | -15 volts | 2**9 |
| b8 01H | mount temp | mount temp | 2**8 |
| Ram loc | faul | faul | temp |
| Data | faults | faults | F/R Mount Temp |
| b7 80H | operator | operator | 2**7 |
| b6 40H | controller | controller | 2**6 |
| b5 20H | drive | drive | 2**5 |
| D4 10H | translator | translator | 2**4 |
| b3 08H | synchro, $=0$ | synchro, $=0$ | 2**3 |
| b2 04H | brake | brake | 2**2,1sb |
| b1 02H | upper lim | 0 | 0 |
| b0 01H | lower lim | 0 | 0 |

9.0 SYSTEM CABLE DRAWINGS, TRANSLATOR SCHEMATICS \& MOTOR DRIVE WAVEFORMS















# INSTRUCTIONS for SLO-SYN ${ }^{\circledR}$ TRANSLATOR Type TM600 

## INSPECTION

When unpacking the SLO-SYN Translator, examine the unit carefully for any shipping damage. The "Damage and Shortage" instruction packed with the unit outlines the procedure to follow if any parts are missing or damaged. Check to see that the following items have been received.

1. SLO-SYN Translator Type TM600.
2. Eight terminals for \#14 - \#16 wire, Superior Electric part number 8244-009.
3. One terminal for \#14 - \#16 wire, Superior Electric part number 8244-002.
4. Base speed control potentiometer, 10K ohms, $1 / 2$ watt, linear taper, Superior Electric part number 144664-004.
5. High speed control potentiometer, 500 K ohms, $1 / 4$ watt, CCW audio taper, 10 turn, Superior Electric part number 201893-001.

DESCRIPTION
The TM600 is an open chassis unit which incorporates a d-c power supply together with the sequencing and switching logic needed for bidirectional control of a SLO-SYN Stepping Motor. It will drive a SLO-SYN motor in either the half-step ( $0.9^{\circ}$ increments) or the full-step ( $1.8^{\circ}$ increments) mode and is intended for base mounting.
The TM600 receives pulses from a minicomputer, microprocessor or similar pulse source and converts the pulses into the switching sequence needed to drive a SLO-SYN motor in steps. The external pulse source controls the step rate, direction, acceleration, deceleration and the number of steps taken. An internal oscillator is also provided for manual or "off-line" positioning.


## SPECIFICATIONS

| Dimensions (Maximum) | length: 153/4" $(400 \mathrm{~mm})$ | Half-Step/Full-Step Mode Selection |  |
| :---: | :---: | :---: | :---: |
|  | width: $131 / 8^{\prime \prime}(333 \mathrm{~mm})$ | High Level | open circuit, 3.2 VDC to 6 VDC |
|  | height: $101 / 4^{\prime \prime}(260 \mathrm{~mm})$ | Low Level | 0 to 0.5 VDC |
| Weight (Maximum) | $54 \mathrm{lbs} .(24.5 \mathrm{~kg}$ ) | Loading | 4mA sink max. |
| Power Input Requirement | 120/220/240 VAC ${ }_{-15 \%}^{10 \%}$ | Low Voltage Sense |  |
|  | 50/60 hertz, 12 amperes maximum | High Level | open collector output rated at |
| Temperature Range | operating: $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ air temperature at fan intake port storage: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | Low Level | 30 VDC max. 0 to 0.7 VDC |
|  |  | Loading | 30 mA sink max. |
|  |  | Fall Time | 2 microseconds max., 1000 |
| Internal Oscillator Range | base speed: 0 to 1000 pulses per second $(0$ to 2000 pulses | Rise Time | 2 microseconds max., 1000 |
|  |  |  |  |
|  | per second in hait-step mode) | Fault Condition | motor voltage below 40 VDC |
|  | high speed: 200 to 10,000 |  | +12 VDC bias voltage |
|  | pulses per second (400 to |  | below + 9.5 VDC |
|  | 20,000 pulses per second in half-step mode) |  | -12 VDC bias voltage |
| Stability | $\pm 15 \%$ or $\pm 50$ pulses per second, whichever is greater, over stated temperature and voltage ranges | High Temperature Monitor High Level | above -8.5 VDC |
|  |  |  | open collector output rated at |
|  |  |  | 30 VOC max. |
|  |  | Low Level | 0 to 0.7 VOC |
| Acceleration and |  | Loading | 30 mA sink max. |
| Deceleration Ranges | 0.05 to 1.7 seconds, potentiometer adjustable | Fall Time | 2 microseconds max., 1000 |
| Base Speed Control | 10k ohm, single-turn, linear taper potentiometer | Rise Time | 2 microseconds max., 1000 ohms to 30 VDC max. |
| High Speed Control | 500 k ohm, ten-turn, CCW audio taper potentiometer |  |  |
|  |  | Temperature Trigger Conditions | logic 1 to logic 0 transition |
|  |  |  | when heat sink temperature |
|  |  |  | rises to $195{ }^{\circ} \mathrm{F} \pm 9^{\circ} \mathrm{F}$ |
|  |  |  | $\left(90^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right.$ ) |
|  | nput/Output Signals |  | logic 0 to logic 1 transition |
| Pulse Output Compatible Imput/ Output Signals |  |  | when heat sink temperature |
| High Level | open coilector, rated at 30 VDC |  | $\left(74^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$ |
| Low Level | 0 to 0.7 VDC |  |  |
| Loading | 30 mA sink max. | RS232C Compatibie Input/Output Signals |  |
| Fall Time | 2 microseconds max., 1000 ohms to +30 VDC max. | Pulse Output +8 VDC to +12 VDC |  |
|  |  | High Level | +8 VDC to +12 VDC |
| Rise Time | 2 microseconds max.,1000 ohms to +30 VDC max. | Low Level | -8 VDC to -12 VDC |
|  |  | Loading | 3 k ohm min. |
| Pulse Width | 10 to 25 microseconds | Fall Time* | 1 microsecond max. |
| Pulse Input Terminals |  | Rise Time* | 1 microsecond max. |
| High Level | open circuit, 3 VDC to 6 VDC | Pulse Width | 10 microseconds min. |
| Low Level | 0 to 0.5 VDC | Pulse Input Terminals |  |
| Loading | 4mA sink max. | High Level | +3 VDC to + 25 VDC |
| Pulse Input Requirements |  | Low Level Loading | -3 VDC to - 25 VDC |
| Fall Time | 2 microseconds maximum |  | 3 k ohm min. |
| Rise Time | 2 microseconds maximum | Ise Input Requirements |  |
| Pulse Width | 10 microseconds min. |  |  |  |  |
| Trigger Edge | 0 to 1 level transition (Trailing | Fall Time* | 3 microseconds max. for 25 VDC input |
| Direction Control |  | Rise Time* | 3 microseconds max. for |
| High Level | open circuit, 3.2 VDC to 6 VDC |  | 25 VOC input |
| Low Level | 0 to 0.5 VDC | Pulse Width | 10 microseconds min. |
| Loading | 4 mA sink max. | Trigger Edge | 0 to 1 transition (trailing edge) |
| Base Speed and High Speed On/Off Controls |  | Direction Control |  |
| High Level | open circuit. 3.2 VDC to 6 VDC | High Level | + 3 VDC to + 25 VDC |
| Low Level | 0 to 0.5 VDC | Low Level | -3 VDC to -25 VDC |
| Loading | 4 mA sink max. | Loading | 3k ohms to 7k ohms |

Base Speed and High Speed On/Off Controls
High Level
Low Level
Loading

Half-Step/Full-Step Mode Selection

High Level Low Level Loading

Low Voltage Sense
High Level
Low Level
Loading
Rise Time
Fall Time Fault Condition

|  | +12 VOC bias voltage |
| :--- | :--- |
|  | below +9.5 VDC |
|  | -12 VDC bias voltage |
|  | above -8.5 VDC |

High Temperature Monitor
High Level
Low Level
Loading
Rise Time
Fall Time
Temperature Trigger
Conditions
+3 VDC to +25 VDC
-3 VDC to -25 VDC
$3 k$ ohms to $7 k$ ohms
+8 VDC to +12 VDC
-8 VDC to -12 VDC
3 k ohms min.
1 microsecond max.
1 microsecond max. motor voltage below 40 VDC +12 VOC bias voltage
below +9.5 VDC
above -8.5 VDC
+8 VDC to +12 VDC
-8 VDC to -12 VDC
$3 k$ ohms min.
1 microsecond max.
1 microsecond max.
logic 0 to logic 1 transition
when heat sink temperature
rises to $195^{\circ} \mathrm{F} \pm 9^{\circ} \mathrm{F}$
$\left(90^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right.$ )
logic 1 to logic 0 transition
when heat sink temperature falis below $165^{\circ} \mathrm{F} \pm 9^{\circ} \mathrm{F}$
$\left(74^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$
*The rise or fall time may be calculated as follows:

$$
\text { Trise or T fall }=\frac{90 \% \text { of high level }-90 \% \text { of low level }}{\text { slope }}
$$

$$
\text { where slope }=\frac{6 \text { volts }}{4 \% \text { of pulse width }}
$$

for example, if the high level is +12 VDC, low level is -12 VDC and pulse width is 10 microseconds.

$$
\text { slope }=\frac{6}{.04 \times 10}=15 \text { volts } / \mu \mathrm{sec} .
$$

$T$ rise or $T$ fall $=\frac{(12 \times 0.9)-(-12 \times 0.9)}{15}=1.44 \mu \mathrm{sec}$. max.

## MOUNTING

The TM600 is an open chassis unit designed for base mounting. Horizontal mounting on the floor of an enclosure is the preferred method due to weight and accessibility considerations. Mounting holes are provided in the flanges at the base of the unit.

When planning the installation. it is important to allow sufficient room for servicing the unit. Figure 1 shows the minimum
clearances required to allow removal of the cover and printed circuit boards. In any case, a minimum clearance of 2 inches must be provided all around the unit to allow proper air circulation. Details on replacing the circuit boards are given in the Service section of this manual.
A kit to allow rack mounting of the TM600 is also available. The kit, part number 207800.001, includes a $19^{\prime \prime \prime}$ ( 483 mm ) wide by $101 / 2^{\prime \prime}(267 \mathrm{~mm})$ high panel, two mounting brackets and the necessary hardware.


MOUNTING DIMENSIONS
FIGURE 1

## ELECTRICAL INSTALLATION *

The electrical installation consists of three parts: Motor Connections; Control Interface; and AC Input Connections. Figure 2 shows a typical installation and identifies the Motor, Control and AC Input wiring.

## MOTOR CONNECTIONS

Six of the eight terminals for \#14-\#16 wire provided with the TM600 should be used for making the motor connections. As shown in the Connection Diagram, Figure 3, one phase of the motor should be connected to terminals 7,8 and 9 of one motor drive circuit board and the other phase to terminals 7,8 and 9 of the other motor drive board.
CAUTION: It is extremely important that the motor be connected correctly. Double check the wiring at the motor terminals and at the drive boards before energizing the translator.
The three leads for each motor phase must be twisted together their entire length to avoid stray inductance. For distances up to 15 feet, use \#14 wire. For distances between 15 feet and 50 feet use \#10 wire. If motor leads longer than 50 feet are necessary, consult the factory for recommendations.
The motor shell must be connected to earth ground by a separate lead or via the machine to which it is attached. The motor leads should be routed along an axis $90^{\circ}$ to $180^{\circ}$ with respect to the axis along which the power leads are routed
to provide maximum noise immunity and minimum emi (radiated or conducted noise).

## INTERFACE

The TM600 uses two distinct interface methods. The first is called negative logic which means that the control will carry out the intended command when that input is at a low voltage level. The requirements of this low level are given in the specification for the respective input terminal. Each terminal is pulled up to +12 VDC. Any device which pulls the input to the specified low level, such as an open-collector TTL device, a transistor or a switch is capable of activating the input.

The three recommended interfacing techniques are shown in Figures 4,5 and 6 using the CCW PULSE input as an example.

The second interface method is one which is compatible with applicable paragraphs of the Electronic Industries Association Standard RS232C. Basically RS232C defines voltage and load requirements for interface circuits. These requirements are reflected in the TM600 specifications for the RS232C 1/0 terminals. The recommended interfacing technique uses integrated circuits specifically designed to meet RS232C requirements. Using the CCW PU (RS232C) input of the TM600 as an example, Figure 7 shows the recommended interface technique.



CONNECTION DIAGRAM
FIGURE 3


NEGATIVE LOGIC INTERFACE SWITCH CLOSURE TO SIGNAL COMMON

SWITCH CLOSURE TO SIGNAL GROUND figure 4


NEGATIVE LOGIC INTERFACE TTL or CMOS
OPEN COLLECTOR INTEGRATED CIRCUIT


IIL OR CMOS INTEGRATED CIRCUIT INTERFACE figure 6

negative logic interface
DISCRETE OPEN COLLECTOR

dISCRETE DPEN CONNECTOR
FIGURE 5


EIA-RS232C LOGIC INTERFACE

EIA - RS232C interface technique figure 7

## interface connections

All interface connections are made to the 36 -terminal connector on the Oscillator/Translator board. It is recommended that these connections be made with shielded cable (Alpha Wire Corporation \#5313 or \#5303; Beldon Corporation \#9541 or equivalent). \#22 or \#24 wire is suggested. The wire need only be stripped and tinned. Connect one end of the shield to signal common (pin 31 or 32 on the connector). Terminal num. bers for RS232C connections are given in parentheses.
For the purposes of this discussion, the following terms are defined.

| w level" for negative logic interface | 0 to 0.5 VDC |
| :---: | :---: |
| "high level" for negative logic interface | 3.2 to 6 VDC |
| "low level" for RS232C | -25 to -3 VDC |
| "high level" for RS232C | 3 to 25 VDC |

For the negative logic interface, the function is activated when the input is at a low level. For RS232C logic. the function is considered activated when the input is at a high level.

## Base Speed Controls

The 10 k ohm potentiometer for base speed control should be connected to terminals 6, 23 and 24 as shown in Figure 3. This control adjusts the internal oscillator base frequency within a range of 0 to 1000 full-steps or 0 to 2000 half-steps per second. The oscillator will run at the base frequency setting when the BASE SPEED input, terminal 7 (18) is activated. The translator will drive the motor at base speed whenever the PULSE OUTPUT terminal 22 (26) is connected to the CW PULSE input, terminal 8 (15) or to the CCW PULSE input, terminal 10 (13). The required sequence is to first connect the pulse output terminal to the desired pulse input terminal and then activate the base speed input.

Acceleration and deceleration are not provided in the base speed mode since the base speed, by definition, is a rate at which the motor will start and stop without error. The optimum base speed setting is dependent on motor frame size as well as external frictional and inertial loading.

## High Speed Control

Connect the 500 k ohm 10 -turn potentiometer supplied to terminals 4 and 5 as shown in Figure 3. This control adjusts the high frequency of the oscillator within a range of 200 to 10,000 pulses per second in the full-step mode or 400 to 20,000 pulses per second in the half-step mode. Changing the setting of the base speed control will affect the high frequency to a small degree. The oscillator will run at the high frequency setting when the HIGH SPEED input, terminal 12 (14) is activated. The correct sequence is to first connect the pulse output terminal to the desired input pulse terminal and then to activate the high speed input. Since the base speed setting will affect the high speed frequency. recheck the high speed after adjusting the base speed.

Acceleration and deceleration are provided when operating in the high speed range. Activating the high speed input will cause the motor to ramp up from the preset base speed to the high frequency setting. When the high speed terminal is deactivated the motor will ramp down and stop.

## Direction Control

As an alternative to supplying pulses to CCW PULSE input, terminal 10 (13), for counterclockwise rotation, the CCW DIRECTION input, terminal 9 (16) can be used to control direc. tion with pulses being supplied only to CW PULSE input, terminal 8 (15). With pulses supplied to the CW PULSE input the motor will turn clockwise (as determined facing the nameplate end of the motor) when CCW DIRECTION is deactivated and counterclockwise when CCW DIRECTION is activated.

## Step-Mode Selection

The translator is normally in the full-step mode. The half-step mode is selected by activating the HALF-STEP input, terminal 11 (17). In the full-step mode each input pulse results in a motor step increment of $1.8^{\circ}$. In the half-step mode, the step increment will be $0.9^{\circ}$.

In the full-step mode, the windings are energized in a fourstep sequence as shown in the following chart.

SWItching seauence
FULL-STEP. TWO WINDINGS ON MODE

| SWITCHING <br> STEP $\dagger$ | MOTOR LEAD OR TERMIMAL |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | RED <br> (1) | WHITE/RED <br> (3) | WHITE/GREEN <br> (4) | GREEN <br> (5) |
| 1 | ON | OFF | OFF | ON |
| 2 | ON | OFF | ON | OFF |
| 3 | OFF | ON | ON | OFF |
| 4 | OFF | ON | OFF | ON |
| 1 | ON | OFF | OFF | ON |

$\dagger$ Provides clockwise shaft rotation as viewed from nameplate end of motor.
For counterclockwise rotation, switching steps will be performed in the reverse order.

When the translator is operating in the half-step mode. the windings are energized in an eight-step sequence as shown in the switching sequence chart for half-stepping.

HALF STEP MODE

| SWITCHING <br> STEP | MOTOR LEAD OR TERMINAL |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | RED <br> $(1)$ | WHITE/RED <br> (3) | WHITE/GREEN <br> $(4)$ | GREEN <br> (5) |
| 1 | OFF | OFF | OFF | ON |
| 2 | ON | OFF | OFF | ON |
| 3 | ON | OFF | OFF | OFF |
| 4 | ON | OFF | ON | OFF |
| 5 | OFF | OFF | ON | OFF |
| 6 | OFF | ON | ON | OFF |
| 7 | OFF | ON | OFF | OFF |
| 8 | OFF | ON | OFF | ON |
| 1 | OFF | OFF | OFF | ON |

\& Provides clockwise shaft rotation as viewed from nameplate end of motor. For counterclockwise rotation. switching steps wall be performed in the re.
verse order.

Use of the half step operating mode provides greater positioning resolution together with a lessening of the effect of primary motor resonance.
Since mode selection must not be switched wi.ile the motor is stepping, it is suggested that this function be hard.wired. For halfstep mode selection, connect the HALF-STEP iniput terminal 11 to Vo terminal 31 . or connect the RS232C HALF. STEP input terminal (17) to +12 V , terminal 23 .

## External Pulse Inputs

As mentioned previously, pulses must be supplied to the CW PULSE input, terminal 8 (15), for clockwise rotation of the motor shaft and to CCW PULSE input, terminal 10 (13), for counterclockwise rotation. Input pulse requirements are given in the specifications section.

## Pulse Output

Pulse output of the internal oscillator is available on PULSE OUT, terminal 22 (26).

## Low Voltage Monitor

This function monitors the various internal voltage supplies and is activated when these voltages go below a safe operating level. The signal itself is labeled FAULT and is brought out on terminal 20 (27). Whenever a low voltage condition exists the Fault signal will latch even though the actual condition may be momentary.

## High Temperature Monitor

This signal is activated by a thermostatic switch mounted on one of the drive board heat sinks. The HIGH TEMPERATURE output is on terminal 21 (25). The temperature switching levels are defined in the specifications.

## INPUT VOLTAGE CONNECTION

WARNING: Voltages required for operation of this unit can cause injury. Therefore, only persons qualified to install and service electronic equipmeilt should perform installation or servicing procedures on this unit.

The TM600 is wired at the factory for operation from a 120 volt ${ }_{-15 \%}$, $50 / 60$ hertz, power source capable of providing up to 12 amperes. The unit can also be operated from 220 or 240 volt a-c, $50 / 60$ hertz sources by making the proper wiring changes to the primary of the power transformer. These changes are made at terminal strip TB1 and are shown in the TM600 Schematic Diagram, Figure 13.
Once the transformer primary connections have been matched to the voltage of the power source, the input power connections can be made to terminal strip TB1 as shown in Figure 3.
Be sure to connect the chassis grounding stud to a suitable ground. Terminal lugs are provided for making these connections. Use two smaller lugs for the a.c input connections and the larger lug for connecting to the grounding stud. It is recommended that \#14 wire be used for the power connections.
The a-c input leads should be routed along an axis $90^{\circ}$ to $180^{\circ}$ with respect to the path of the motor leads.

Check for proper a-c input and transformer primary connections before energizing the translator. Energize the unit and check to see that there is full supply voltage between the hot and common leads and between the hot lead and the chassis. There should be zero volts between the common lead and the chassis.

## OPERATION

The functions of the controls for the TM600 are as follows:

## Base Speed Control

This control adjusts the internal oscillator base speed within a 0 to 1000 pulse per second range in the full-step mode and
a 0 to 2000 pulse per second range in the half-step mode. Acceleration and deceleration are not provided since the base speed, by definition, is a rate at which the motor will start and stop without error. The optimum base speed setting is dependent on motor frame size as well as on external frictional and inertial loading.
Recommended maximum base speeds for each motor type are given in the table.

## RECOMMENDED MAXIMUM BASE SPEED

| MOTOR <br> IYPE | MAXIMUM BASE SPEED, <br> (STEPS PER SECOND) |
| :---: | :---: |
| M092.FD.310 | 550 |
| M093-FD-301 | 475 |
| M112.FJ.326 | 350 |
| M172.FD.306 | 210 |
| M172.FD-308 | 175 |

## High Speed Control

This control adjusts the oscillator high frequency within a 200 to 10.000 step per second range in the full-step mode and within a 400 to 20,000 step per second range in the half-step mode. Since the base speed setting will affect the high speed frequency output, the high speed setting should be rechecked. whenever the base speed is readjusted.

## Base Speed/High Speed Switch

The translator will drive the motor in the base speed mode when the base speed terminal is activated and in the high speed mode when the high speed terminal is activated. A direction must be selected before actuating the base speed or the high speed.

## Direction Switch

This function selects either the clockwise or the counterclockwise direction of motor shaft rotation (facing nameplate end of motor). When operating from the internal oscillator, the direction must be selected before activating the base speed or high speed.

## Half-Step Control

This function determines whether the motor will be driven in the half-step or the full.step mode. The motor will take $0.9^{\circ}$ steps in the half-step mode and $1.8^{\circ}$ steps in the full-step mode. The stepping mode must not be changed while the motor is stepping. Therefore, it is recommended that this be a hard-wired function.

## SEQUENCE OF OPERATION

## Operating From The Internal Oscillator

The Connection Diagram, Figure 3, shows a recommended method of using toggle switches to operate the translator from the internal oscillator. Proceed as follows:
a. Select the half-step or the full-step mode of operation. The mode selection should be hard-wired.
b. Place the Direction switch in the CW or the CCW position.
c. Place the Base Speed/High Speed switch in the Base Speed position. The Translator will drive the motor at the base speed. Start and stop the motor by moving the switch between Base Speed and Off.

## SEQUENCE OF OPERATION (Cont'd.)

d. Adjust the Base Speed control to select the fastest rate at which the translator will reliably start and stop the motor. Then decrease the base speed by 20 steps or $10 \%$, whichever is greater, to provide a safety margin. It is recommended that a larger safety margin be provided if load variations are anticipated or if a very low base speed is used. The base speed should be adjusted above the range shown with a dotted line in the performance curve for the motor used. If it is necessary to operate the motor in the dotted area of the speed range, refer to the discussion of resonance control in the performance section.
e. To operate in the high speed range place the Base Speed/High Speed switch in the High Speed position. The oscillator will accelerate the motor from base speed up to the selected high speed and will decelerate the motor when the switch is moved to the Off position.

Acceleration and deceleration are factory adjusted to their maximum settings. In many applications these ramps can be reduced. depending on the combination of motor and load. Refer to "Adjusting Acceleration and Deceleration" for instructions on changing the ramp times.

## Operating From External Pulse Input

To operate the TM600 from an external pulse source, pro. ceed as follows:
a. Select the half-step or the full-step mode. This should be a hard-wired function since the stepping mode must not be changed while the translator is driving the motor.
b. Apply pulses to terminal $8(15)$ for CW rotation (facing nameplate end of motor) or to terminal 10 (13) for CCW rotation. Pulses must meet the Pulse Input Requirements given in the Specifications section. Since the motor cannot instantaneously follow a pulse train at a frequency higher than its maximum base speed, the pulse rate must be accelerated and decelerated at rates compatible with the specific motor frame size and the load characteristics.

## Adjusting Acceleration and Deceleration

CAUTION: Voltages are present on this unit which can cause injury. Therefore, only persons qualified to service electronic equipment should perform adjustments or servicing procedures on this unit.
Note: The Base Speed adjustment must be completed before adjusting acceleration and deceleration.

To adjust the ramps. connect an oscilloscope probe to TP12 on the Oscillator/Translator circuit board (see Figure 11). Connect the scope probe common to TP7 and trigger the scope externally using the HIGH SPEED INPUT. TERMINAL 12. When the Base Speed/High Speed switch is placed in the High Speed position. the voltage on TP10 will rise from 4 volts to a nominal of 11 volts. The time required for this voltage rise to occur is the acceleration time. Conversely, the time re.
quired for the voltage to drop from 11 volts to 4 volts when the switch is moved from High Speed to Off is the deceleration time. The acceleration or deceleration time may be changed by adjusting the appropriate potentiometer on the Oscillator/Translator circuit board (Figure 11). Turn the potentiometers clockwise (facing screw end) to increase the ramp times or counterclockwise to reduce the times. Adjust R36 to change acceleration and R24 to change deceleration.
Recommended minimum acceleration times for each motor are listed in the chart.
recommended minimum acceleration times

| motor TYPE | ROTOR INERTIA, LB.IN2 (kgem ${ }^{2}$ ) | INITIAL VELOCITY. (FULL STEPS PER SECOND) | FINAL VELOCITY. (FULL STEPS PER SECOND) | minimum acceleration TIME. (SECONOS) |
| :---: | :---: | :---: | :---: | :---: |
| M092-FD. 310 | $\begin{gathered} 0.42 \\ (1.23) \end{gathered}$ | 550 | 10,000 | 0.164 |
| M093.F0.301 | $\begin{gathered} 0.64 \\ (1.87) \end{gathered}$ | 475 | 10.000 | 0.252 |
| M112-FJ.326 | $\begin{gathered} 2.75 \\ (8.05) \end{gathered}$ | 350 | 10.000 | 0.372 |
| M172-FD-306 | $\begin{gathered} 21 \\ (61) \end{gathered}$ | 210 | 6,000 | 0.766 |
| M172-FD-308 | $\begin{gathered} 21 \\ (61) \end{gathered}$ | 175 | 5,500 | 1.132 |

## PERFORMANCE CHARACTERISTICS

Performance characteristics for motors compatible with the TM600 are given in the performance curves.
The part of each speed vs. torque curve represented with a dotted line is an area of possible resonance. Depending on the amount of friction and inertia in the system. The motor may not operate satisfactorily at the speeds shown in the dotted area. Operating in the half-step mode may provide satisfactory operation in this range, but again this is dependent on the load characteristics.

## Pulse Position Control

An alternate method of controlling this motor characteristic is a feature of the TM600 called "Pulse Positioning". This technique utilizes a form of electronic damping to virtually eliminate motor resonance. The "One Winding 0 n " mode is used as the braking mode for this technique, so there will be some loss of motor torque.
For example, the full-step torque shown in the performance curves is based on the fact that each winding $\left(A, A^{\prime}, B, B^{\prime}\right)$ is on $50 \%$ of the time and off $50 \%$ of the time. This timing is commonly known as a $50 / 50$ translator duty cycle. When pulse positioning is used the $50 \%$ on time will decrease. thus lowering motor torque when compared with the full.step mode. The curve in Figure 8 indicates approximate toraue loss when the Pulse Position control is fully counterclockwise.

The following technique can be used to calculate torque loss at a given speed with any adiustment of the Puise Position Control. Connect a scope probe to R83. R84. R85 or R35 on the Oscillator/Translator circuit board (Figure 11) and connect the scope probe ground to $\mathrm{V}_{0}$ (terminal 31 or 32 ). The translator waveform shown on the oscilloscope will allow calculation of the percentage of "on" time which is necessary in order to determine torque loss.

Figure 9 represents a typical translator logic waveform. The
"on time" is designated " t on" and the amount of "on time" lost because of the Pulse Position control adjustment is designated " $t$ one on". The ratio of $t$ one on/t on is the percentage of on time lost due to the Pulse Position control adjustment. Subtract this percentage from $100 \%$ and use the resulting number to determine actual torque loss from the curve in Figure 10.

In Figure 9, $t$ one on is one division and $t$ on is five divisions, therefore the ratio of $t$ one on to $t$ on is $20 \%$. Subtracting $20 \%$ from $100 \%$ gives a Percentage Of Translator On Time value of $80 \%$. Figure 10 shows that $75 \%$ of full-step torque is available at this setting of the Pulse Position control.

percent torque vs. translator on time FIGURE 10

approximate torque loss with pulse POSITION CONTROL FULLY COUNTERCLOCKWISE


TRANSLATOR LOGIC WAVEFORM

## TYPICAL TRANSLATOR LOGIC WAVEFORM

 FIGURE 9trpical performance characteristics


## PERFORMANCE CHARACTERISTICS (Cont'd.)

## Mid-Range Stability Control

All stepping motors exhibit an instability in speeds ranging upward from 1000 steps per second which can result in "holes" in the speed-vs. torque curves due to loss of synchronization or rotor velocity modulation. The TM600 is equipped with a Stability Control which utilizes velocity information obtained from the electronics to compensate for rotor velocity modilation. Since each motor requires a different amount of stabilization, a 4-position DIP switch (SW1) is provided on the Oscillator/Translator board (Figure 11) to allow the circuit to be adjusted for each motor. The switch positions for each motor are listed in the chart.

CAUTION: Voltages are present on this unit which can cause injury. Therefore, only persons qualified to service electronic equipment should perform adjustments or servicing procedures on this unit.

| MOTOR | POSITION 1 | POSITION 2 | POSITION 3 | POSITION 4 |
| :---: | :---: | :---: | :---: | :---: |
| M172.FD.306 | OFF | OFF | OFF | OFF |
| M172-FD.308 | OFF | OFF | OFF | ON |
| M112.FJ.326 | OFF | OFF | OFF | ON |
| MO93.FD.301 | OFF | OFF | ON | OFF |
| MO92.FD.310 | OFF | ON | OFF | OFF |

Due to their larger size, M112 and M172 motors must be run at a higher current level. A DIP switch on each motor drive board (Figure 12) provides this increase. The unit is adjusted for 4 amperes per phase. To change the level to 5 amperes per phase for M112 and M172 motors, set positions 1 and 2 of SWI on the motor drive board to OFF. The power must be off when making this change.

## Duty Cycle

It is difficult to specify a meaningful Duty cycle rating for each motor because of the variety of mounting configurations, speeds and loads encountered in each possible application. None of the motors specified for this drive will operate continuously under all speed and load conditions without adequate heat sinking. The limiting factor, in any case, is the maximum motor shell temperature which must not exceed $90^{\circ} \mathrm{C}$.

## INITIAL INSTALLATION CHECKOUT

If the Installation and Operation instructions have been followed carefully, the TM600 translator should operate properly with no further adjustments. Should the unit fail to step the motor properly, perform the following checks.
CAUTION: Voltages are present on this unit which can cause injury. Therefore, only persons qualified to service electronic equipment should perform adjustments or servicing procedures on this unit.

1. Check all installation wiring carefully for wiring errors or poor connections.
2. Check to see that the correct a-c power level is being supplied to the translator and that the power transformer primary connections are correct for the input voltage.
3. Be sure that the SLO-SYN motor is a correct model for use with the TM600 translator.
4. Be sure that the proper procedure is being used in operating the translator.
5. Check to see that triggering pulses are being received at terminal 8 (15) for clockwise motion. For CW motion, pulses must be received at terminal 10 (13) or, alternately, a CCW Direction signal must be present on terminal 9 (16). Pulses must not be present on Terminals 8 (15) and 10 (13) simultaneously.
6. With an oscilloscope, check the collector to emitter waveform (Vce) of the power output transistors to see that the motor windings are being energized in the proper sequence. Connect the probe ground to terminal 5 of either Motor Drive circuit board. Connect the scope probe to terminals 8 and 9 on each Motor Drive Board one at a time and check the waveform. A typical waveform is shown in Figure 16. Each division on the vertical scale equals 50 volts.

7. If the motor will not drive the load at the desired speed and the preceding checks indicate the translator is operating correctly, the combination of friction load and inertia may be too great for the motor to overcome. This situation can usually be overcome by reducing the operating speed. In severe cases, it may be necessary to use a motor having a higher torque rating or to drive the load through a speed reduction gear train.

## SERVICE

If a problem develops with a circuit board, the board should be removed and returned to the factory for service. Consult the factory if a malfunction occurs that cannot be cured by the preceding checks. To remove the curcuit boards proceed as follows:
CAUTION: Voltages are present on this unit which can cause injury. Therefore, only persons qualified to service electronic equipment should perform adjustments or servicing procedures on this unit.

1. Turn off the a-c power to the translator and wait 30 seconds for the d.c power supply to discharge.
2. Remove four screws in the top cover and remove the cover.


OSCILLATOR/TRANSLATOR CIRCUIT BOARD
FIGURE 11


## SERVICE (Cont'd.)

3. To remove either Motor Drive circuit board, proceed as follows:
a. Disconnect the flat cable connector at the top of the board.
b. Disconnect the motor and power supply leads from the terminal strip mounted at the rear of the board.
c. Remove the screw which fastens the " U " channel heat sink at the lower part of the board to the chassis.
d. Slide the board approximately $1 / 2$ inch rearward to clear the mounting slot. Then either lift straight up or remove the board toward the rear of the unit.
4. To remove the Oscillator/Translator circuit board, proceed as follows:
a. Disconnect the flat cable connector at the top of the circuit board.
b. Remove the two screws holding the interface connector in place and remove the connector by sliding it to the right to clear the mounting bracket.
c. Grasp the board firmly and remove the 36 -position connector from the board.
d. Remove the board toward the rear of the unit to clear the mounting spaces at the front of the board.
If any unusual problems are encountered in the installation or operation of the SLO-SYN Translator, contact the factory or the nearest Superior Electric sales office.






TB13-11, Orange, Quiescent Drive


TBl3-7, Red, Quiescent Drive


TBl3-7, 100 pps Drive


TB13-7, 500 pps Drive



HTR-1008/1500 Drive Pulses
at $\mathrm{F} / \mathrm{R}$ Control TP-14
$500 \mathrm{pps}, 5 \mathrm{~V} / \mathrm{cm}, 1 \mathrm{~ms} / \mathrm{cm}$


TM-600 Drive Pulses
at $F / R$ Control TP-14
$500 \mathrm{pps}, 2 \mathrm{~V} / \mathrm{cm}, 1 \mathrm{~ms} / \mathrm{cm}$

FIGURE 32b: HTR-1008/1500 TRA:USLLTOR DRIVE NAVEFORMS, ANTENNA I THROUCH 20

### 10.0 SYSTEM FUNCTIONAL SPECIFICATIONS

SUBREFLECTOR POSITION EFFECTS ON ANTENNA POINTING ERROR
The following specifications were abstracted from a note by Peter Napier, 20/2/81 and are the design criteria for the F/R Controller and F/R Mount. These specifications are adequate for 22 GHz normal operation, or very high dynamic range observations at 1.5 and 5 GHz . The specifications result in some loss of performance if the VLA is used at 44 GHz .

Definitions:

```
_0 = pointing error on sky
X = movement of subreflector transverse to main reflector axis
o = tilt of subreflector orthogonal to main reflector axis
O = rotation of subreflector around main reflector axis
F}=\mathrm{ focal length of main reflector
M = cassegrain magnification
R = feed circle radius
```

Subreflector Transverse Movement Sensitivity:
_ $0=$ X $\mathrm{X} / \mathrm{F}$ for $\mathrm{O}^{0}=5 \mathrm{arc}-\mathrm{sec}, \quad \mathrm{X}=0.009 \mathrm{in}$.
Subreflector Tilt Sensitivity:

Subreflector Rotation Sensitivity:

Focus Position Sensitivity:
A 0.20 wavelength position error causes a $5 \%$ gain loss.
At a wavelength of $1.2 \mathrm{~cm}, Z=0.09 \mathrm{in}, 2.25 \mathrm{~mm}$.

Barry Clark says _Z should be less than 0.01 in, 0.25 mm .
These last two parameters are associated with the two drive motions.

F/R CONTROL SYSTEM SPECIFICATIONS -- The F/R Control System design shall be sufficiently general so as to enable alteration of the control algorithms by changes to the control firmware and (if necessary), minor alteration of the hardware.

The controller shall be designed such that the F/R Mount hardware is given maximum protection from damaging conditions such as over-drive into the stops, sensing of dragging or stuck drives etc.

The controller shall be capable of concurrent, asynchronous control of two subreflector axes and ring position. There shall be two commands for each Subreflector axis: a 14 bit, 2 's complement, right justified POSITION command (Mux 320/Focus, Mux 330/Rot) and a NAP command (Mux 322/Foc, 332/Rot) to cause position commands to be ignored until cleared by a RESET command. The SYSTEM RESET command (Mux 337) aborts active commands in both processors and reinitializes the programs. A software RESET command (Mux $321 \& 331$ ) performs the same functions in the addressed processor without affecting the other one. The Ring command (Mux $336 /$ Rot) argument shall be a right justified (lsb) single bit arguement of 1 to EXTEND the ring and a 0 to RETRACT the Ring.

The controller shall be capable of accepting over-riding commands during command execution. If the over-riding command is to a different set point than the command in execution, the controller shall first slow the drive to a stop and then initiate execution of the new command.

The controller shall have both COMPUTER (ie central control computer) and LOCAL manual modes to permit manual slew of the drives from the local control panel. In the LOCAL mode, all components are driven under processor control to provide fault sensing and protection to the F/R Mount.

Zot-Box provisions shall be made to permit manual control of the drives from both the Apex and Pedestal Room.

Position Readout resolution shall be 14 bit. One lsb $=1.318 \mathrm{arc}-\mathrm{min}$ in Rotation and 0.0007324 inches ( 0.0188 mm ) in Focus.

Position Readout repeatability of the synchro/converter combination shall be $+/-1$ count.

Linearity of the synchro/converter combination shall be 10 arc-min or less, rms, (principally determined by the synchro linearity)

Common-mode noise rejection of Synchro-to-Digital Converters shall be > 80 db .

Position Readout transducers shall be size $15,400 \mathrm{~Hz}, 26$ VRMS, (rotor voltage) synchro transmitters.

The controller position servo control repeatability shall be $+/-1$ count (mechanism slop not included in this spec.)

The controller shall continuously sense all limit sensor states and hardware-inhibit further drive into the limit (but not out of the limit) in the event that these limits are reached.

The Apex Interface shall continuously sense obviously erroneous fault conditions (such as sensing concurrent limits, multiple pin switch actuation, etc). In the event that such conditions occur all drive outputs shall be inhibited.

The controller shall be protected from lightning effects by the use of an Apex Interface Unit which presents position and discrete data to the $F / R$ Controller via optically-isolated lines. Lightning mitigating surge arrestors shall be used in all lines to the Apex.

Mechanism motion shall start at 100 Hz and the controller shall ramp the Rotation drive rate to 1000 Hz in 50 HZ steps. After ramp up, the drive shall move at 1000 Hz until a calculated ramp-down point is reached at which time the drives shall be ramped down to 100 Hz for convergence to the commanded set point. The ramp up duration is 5.1 seconds and the ramp down period is 2.5 seconds.

The Focus ramp up duration is 3.9 seconds and the ramp down period is 1.8 seconds.

The controller shall continuously analyze drive motion to sense motor torque breakage with a $50 \%$ motion analysis tolerance. In the event that tor que breakage is detected, the controller shall reduce the drive rate to 100 Hz and attempt to complete the commanded motion by ramping drives up to 250 Hz (peak tor que speed for these motors). In the event that the torque breaks again, the command shall be aborted. If torque breakage occurs, a fault flag shall be sent to the central control computers via Monitor Data.

In executing a position command, the controller shall determine that the Translator and brake are activated when commanded on and that the Translator voltage and Brake voltage and current are above test thresholds. In the event that these conditions are not met the controller shall set a fault flag for the central computers.

The controller shall continuously monitor analog voltages in the Apex Interface and shall set a fault flag in the event that any values are out of tolerance. Mechanism drive velocities shall be read out as Monitor Data.

The controller shall test the state of the Ring position discrete sensors when a Ring position command is in process. In the event that the sensors do not signal attainment of the commanded state within 16 seconds after command initiation, a fault flag shall be set. The state of the Ring position sensors shall be read out as monitor data.

The controller shall monitor the 400 Hz synchro excitor current load as an analog signal.

The controller shall have provisions to sense Antenna ID number to use as an address for antenna-peculiar control arguments.

The controller shall have up to $6 k$ of control program memory EPROM sockets wired for each axis, (present usage is less than $2 k$ ).

The controller shall have provisions for each processor to pass arguments to the other. An example of a possible use is for the Rotation Controller to
pass position arguments to the Focus Controller to inhibit Focus drive when the Rotation drive is in a certain region.

The Apex Interface shall display the position of both axes in octal numeric displays and the state of Apex discretes on an LED array.

The M8 Power Supply shall have an LED display to indicate the state of processor functions such as Command Active, Translator power sensed, Brake voltage and current sensed, drive pulses present on the UP or Down etc lines to the Translators, etc.

The M8 Power Supply shall have hardware provisions to permit manual command of 8 wavelength Index Locking locations and display the PIN IN/OUT states and actuation of the 8 socket switches. These features shall also be capable of central computer control by modification of the Rotation Controller firmware, (not presently installed).

The Apex Interface shall sense and read out the temperature of the $F / R$ Mount gear box to verify operation of the gear box heaters in cold weather.

When the controller receives a Focus command it shall test the argument against software limits and if found to be outside these limits the command shall be rejected. The purpose of this test is to prevent the Focus drive from being driven into the limits under computer control.

The controller shall contain a background timer to shut down the drives and abort the command in the event that a command is taking too long to execute. A time-out flag shall be set in the Monitor Data.

The controller shall have protective logic on multiple-line drive outputs in which there could be potentially damaging conditions resulting from more than one output being active at any given time. This is a protective feature to protect the mechanical hardware from the inadverdant effects of noise glitches etc. Examples of such devices are the Ring motor in which the Ring Extend And Ring Retract command outputs should not be concurrent.

A connector interlock line shall sense that any Bin I/O cable has been disconnected; in this event all drive outputs shall be inhibited.

11 APPENDIX
Rotation and Ring Control Program
Focus Control Program
List of related drawings
M7, M11, M8, M22 Assembly Drawings, IC location maps
Bin Wire list
Special Function Module Data Sheets: 8085, 8156, 8755, A/D, S/H, +10 reference, $S / D$ Converter, temperature sensors, analog multiplexer

|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  | ；Evants |  |  |  |
| aine $=$ | 2tPA： |  | U4 |  |
| \％ric＝ | firs： | E－${ }^{3}$ | $\therefore \%$ |  |
| 3622 $=$ | ciede： | Ebul | 1．4 | Pron i．Fint a |
| idibj＝ | O\％为： | 5id | Sis |  |
| dese $=$ | A2TA： | E03 | 38 |  |
| 人 ${ }^{\text {a }}$ | Pros： | i $\quad$ i | 0 |  |
| 为我 | Fi0n： | EdV | U14 | ：Pati 2．Fort a 0 a |
|  | FED： | Eij | 25．6 |  |
| \％${ }^{\text {a }}$ | find： | Eid | 184 |  |
| S1\％＝ | mita | 2iij | 17 | ；${ }^{\text {chat }}$ jogt A |
| ＋ibit＝ | 柆为： | EQ | idi |  |
| 96：${ }^{\text {a }}$＝ | siple： | E®j | 54 | ：ANAM Port i |
| UiC | T：30： | E： | 16.4 | ：TEER LS |
| Sie | ア\％\％！ | Eb | \％ 1 | chen Has |
| $386=$ | Pust： | Eq： | 23 | ：203 Lis |
| US＝ | P05n： | Ebij | 2\％ | ：35 M93 |
| W2：$=$ | 12： | EU | 2．4 | ：VEcoity |
| 320 | Hfuch： | Eid | － 2 i | a mpes dorate |
| S30 $=$ | SiAL： | Edid | 204 |  |
| \％\％$=$ |  | Eidi | $20 i$ |  |
| 边 | DSCL： | Edil | 394 | ：is cho lse |
| 3］＝ | Dscotio | Eed | 314 | ： 0 C idj |
| 603＝ | SETH： | Edt | $32 \%$ | ：03 64TA 56 |
| ［6］＝ | ISta： | こ3d | 334 | ：ī Eata |
| 634＝ | 3573： | EQ | 34：3 |  |
|  | Sumeiv： | E4 | 154 | ： 0 A ETEHT |
| ¢3a＝ | Alp ： | cidi | 304 | －APET DATA NEG |
| 205 $=$ | SESos： | Euil | 35.4 | ；iST 6.5 RESET |
| ¢34F $=$ | Ratore： | Eab | 4FH | ：AAM HOEE PORT：A，B，\＆C GUT |
| dit＝ | Probi： | caid | bFin | ¿PROK FOnt gutput |
| 为为为 | PGin： | Eiij | 63 | ；FROH PJRT THFUT |
| ivi ${ }^{\text {a }}=$ | RSTE： | Eti | 19月 | ；STH HABK，DISAELE 5.5 |
|  | Fatse： | Edu | $\theta$ |  |
| Sipf＝ | Trib： | E2ill | UFF |  |
|  | ASTA SET TABLE |  |  |  |
| Sw |  | 36 | 185\％ | ，Stant of nde athma |
| －50 | P05： | 3 | I |  |
| ［6］ | ¢！：a： | $\square$ | 1 |  |
| 136 | EAD | 5 | 3 | ； $22-60$（0） |
| Cis | Bnit | 3 | 3 |  |
| an | SEC： | ：${ }^{\text {a }}$ | ！ |  |
| ： 3 | － 2 it | B | ； |  |
| \％ | Finc： | 0 | ： | ： 30 |
| ： | nu2： | 3 | ； | ： 3 Fl 237 |
|  | chlus a modatents |  |  |  |
| ：313 | 子ists： | 3 | $\therefore$ | ：CSSTIOM，URSIOHED |


| 181A | 6STP05: 05 | 2 | :LAST POSITIOH |
| :---: | :---: | :---: | :---: |
| 10.6 | Chethe: 0 S | 2 |  |
| 1315 | ATVCAD: 0 S | : | : ACTIVE CSO |
| 1328 | FIFAST: DS | 1 | ; Eproh port lhane |
| 1521 | PIPSST: DS | 1 | ; ${ }^{3}$ |
| 13.2 | 23P45: ES | 1 | :sam port latoe |
| 1023 | AMPES: OS | 1 | ; ${ }^{\text {e }}$ |
| 1824 | R P PCS: 73 | 1 | $:^{*}$ |
| 1825 | \%OTIOH: 03 | 1 | : WOTION AKALYSIS COBHER |
| 1826 | SMPFO: DS | : | ;AAMP IO This suep |
| 1327 | Stip: is | ; | © CJRREHf RAMP STE? |
| 18.8 | Thisp: os | 2 | ; ADDRESS of Eino cote |
| 182A |  | 1 | :APEX äx Cits |
| 10.8 | AFPith: ©S | 1 | ; APEA Mox pointes |
| 193 C | AFATAB: OS | 16 | ; APEX Alialog storage tible |


| 15.50 | RESCAD: 03 | 1 | : RESET REQUEST |
| :---: | :---: | :---: | :---: |
| 1530 | OUVATV: US | ! | : DRIVE ACTIVE |
| i 53 | HPATV: DS | : | :HAP ACTIVE |
| 18.57 | Ofinet OS | 1 | : Drater request |
| 1840. | \%arceas 0 | ! | ; hap recuiss |
| 1341 | SCLEL: 03 | 1 | dit id acceleante |
| 1042 | EHifup: is | 1 | ; RAMP UP STAge |
| i343 | SAIM: DS | 1 | :alli ginle stage |
| : ${ }^{4}$ | nution: is | 1 | ; Rant doun stang |
| 1045 | conveg: is | : | - Cuinergahte strá |
| 1845 | Ditple: is | $i$ |  |
| 1947 | Dle: is | ! | :CURERHT DIRECTIOH |
| :04\% | LURA: OS | 1 | :last lirection |
| 1347 | QAM: is | 1 | :GMpen up in hat |
| icti | BETIT: DS | 1 | diet It thear sonehan |
| 184E $=$ | EABFLij: EAl | ; | :EH0 of flags |

;RESET I INTERUPT

| 393 | 0 Ong | 9 |  |
| :---: | :---: | :---: | :---: |
| 30te F S | DI |  |  |
| 9asti istien | JHP | IHIT | ; GET THINGS ORGAMILED |
| 848 | ORG | 24 H | :TRATSEKICE |
| 1224 FJ | Di |  |  |
| 1325 (30236 | dip | BLAF | :STOP, MHAT S Mrohg |
| ¢ $\frac{1}{2 c}$ | 6 n \% | 2 CH | ;AST 5.5 |
| 62655 | Ei |  |  |
| 320 0 | PET |  | : 1074300 |
| 234 | 306 | 946 | :RST 0.5 SEVICE |
| vi34 31 | U1 |  |  |
| 2035 51206 | $1 n^{2}$ | TPP安 | : $40 \%$ CLE |
| 2030 | 880 | 383 | ;0uT-it-20unios |
| 2033 : 5 | $3!$ |  |  |
| 20339 234820 | Vinf | :717 |  |
| 3 yc | Dia | $30:$ | OHST 7.5 SERVICE |
| 2093C 5 | ii |  |  |
| 8035 C377\% |  | SivR | ;SERVICE D.S. REQ |

```
；h1TMALEATlon
```

| Sidy |  | 026 | 48 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | illi： |  |  |  |
|  |  | A 2 | S？ 19 yb | H：SET STAG |
| 9043 3E4F |  | HVI | A． n G¢E |  |
| T045 0329 |  | EUT | nato | OST U |
| Q64？3EFF |  | HivI | A．PROET |  |
| P6490302 |  | 067 | P：DDA | SET FAGM FEAS FOR DUAMT |
| 30460303 |  | OHT | Flobs |  |
| 304］ 3 Et |  | al | A．PSIM |  |
| Dear 530 A |  | ＊it | f205i | ：SEt fron pints for input |
| －485 10380 |  | 067 | jubs |  |
| Otc 3 A5 |  | AA | 4 |  |
| 3054030 |  | Wid | Silfta | ；2Es0 Poris |
| 90．50 311 A |  | 0 OH | RHPTB |  |
| W， 058.515 |  | 007 | 2－H5T |  |
| 365A 0380 |  | bit | Bipra |  |
| cest 93ti |  | jul | PlpTs |  |
| bise 20018 |  | LXI | 4． 1964 |  |
| ceol 47 |  | ney | 5.4 |  |
|  | Gu2： |  |  | －cteir hehort |
| 30027 |  | 30\％ | H．A |  |
| Wec3 23 |  | Inx | ： |  |
| \％ige 4 |  | Dot | ： |  |
|  |  | 能 | 1008 |  |
| $\triangle 5680338$ |  | OUT | RESES | ：SETjP Thteraufts |
| Fima 3 ET |  | \＃17 | A，RSTEH |  |
| Sioc is |  | 08 | 3事 | ： $37 \%$ |
| ［76］FB |  | Ei |  |  |

## 

```
: OSTEN HANDLINO
```

$8053:$

| CALL | OSTOR | ；UATHER DATA |
| :---: | :---: | :---: |
| － 0 A | ERRO＋2 |  |
| 4int | S8ii | ：ChECK If AfEX OK |
| jiic | RSCATP | ：RESET STSTEA IF HOT |
| 1 h | P2PTA |  |
| A：A | bit | －checar for local hode |
| $J 2$ | CJCAL |  |
| L9A | RESCH |  |
| ORA | A | chater jor soft reset |
| Jh？ | Cadms |  |
| 10.4 | DR：ATV |  |
| ORA | A | ：CHECK for orlie active |
| dil | candiv |  |
| 20．A | Maraty |  |
| de $A$ | 4 |  |
| ini | APAOK | ：If TES，lation reajests |
| Ifi | dinket |  |
| Eid | 4 | ：TRIUE REDUEST |
| jiz | DEVITT |  |
| じ | \％hated |  |
| 6 RF | A | ：\＃AP REGUEST |
| 32 | APAOX |  |
| STA | HAPATV | ：SET ACtIVE |



3133 3.43515
$\$ 13867$
-13C Calge 2
313F 2ALC13
:1542 50
3143 ZALE1S
$3 i+6$ CDODG4
614968504

j14F CDE464

a55 AF
1156 324A18
2159 327218
215 C 321213
A15: 122718
1102 323F13
316534113
3108323518
1468 322519
S10E 3A1415
Di7l Ejed
9173 321419
3176241015

| 60FE CJT2 | Jif | Starli |  |
| :---: | :---: | :---: | :---: |
|  | seritit |  |  |
| 13182 |  | 0 | :SET BIT |
|  | STAFST: |  |  |
| \$1923118 | STA | AHAD +2 |  |
| 2135 32138 | ST4 | FAOL ${ }^{\text {a }}$ |  |
| 3its CJOEGS | Nip | EnS |  |
|  | ¢hoño |  |  |
| tigb af | 20A | $A$ |  |
|  | Sid | fosid 2 |  |
| 314F 221213 | STA | Fill | ; ADOED Fon mbi 220 |
| \$1123.8518 | S1A | EnRO+2 |  |
| vilis 31413 | L0. | FSULT | : AADEET FOR H0x 226 |
| U118 E6E | Aiil | CEb |  |
| Dita 32149 | 374 | $F \cdot \mathrm{Al}+2$ |  |
|  | SSCA5 : |  |  |
| 110811097 | LXI | SP, 1980 A | ifeset stan fothter |
| 3123 CDE 434 | CALI | TSTOP |  |
| 3183 CDAE日 | call | DRVSTP |  |
| 9126 120203 | CALL | TRH0F |  |
| 312921303 | H1 | H, FiAGS |  |
| ग12C bbay | ari | S. iendilu | (-Fisis) And 255 |
| y12E AF | Hid | A |  |
|  | CLRLF: |  |  |
| 612F 77 | ny | H.A |  |
| 9138 23 | Inx | is |  |
| i131 ${ }^{5}$ | OCR | 8 |  |
| 1132 C22F01 | jnz | ClRL? |  |
| 9.35 Cucte | vap | coss |  |

## 

; connand pesition haidoce?
CGODR:


LOA BRVREG
ORA A : DO HE HAVE A HEL C:AO?
ill

LHEO RTVCRD :OET bctive cho

CALL COSE
jo clrrea if yes, clear request
Call TSTOP :STOP TlHER \& DRIVE
gall givsip
neVIMT:
vRA A iLLEAR REGEESTS, flagS, \& fAULTS
GETIT
SH FClot
Gif STEP
STA ERVREG
STM hicei
Sin enaot 2
sTA rotion :IKIT rotich combtef

Min Bidn
(Hi) CHOTAP


21FS 222818
AFE 21903A
2001 CUCabd
vict 3EFF
320 323518
2209 C30E畐

213 intye 3213 5828 2215 E094 217 C 45394 212！ 144118 8210 07
 6221 34213 622487 5225024932 3243 3＋318 122357
$922 C 125502$ 8225 ja44is 32287
2033 6274 P 2
3236344518
Q3： 87
20．jA C28202
－230 C5E4
524 CoAES2
0． 43 00V2 03 2246 C30592
3249326.3

324 45
今20 C040
355 Af
$925 i 324210$
325425
9255324318
2258 CJOETA

425824018
125E 11876
0261004894
siot ？
$i=5587$
g． 200 CAOEV
acs Ar
320A J．430
3ed $2 F$
320 3：44：8
dinl CJeEd

| SH0 | TR．SP | ：Setup ergor hatoler |
| :---: | :---: | :---: |
| Cli |  | \％ 50.3 SECS |
| Chil | THER |  |
| aiv！ | A，idue |  |
| 3T4 | ORvait | ：SEt drive mitive |
| נ能 | 5053 |  |

Chata：

| N⿵冂 | A |  |
| :---: | :---: | :---: |
| STA | dnveq | ：CLEAR CHE MEQUEST |
| Einist： |  |  |
| CSLi | ESTOR | ：GET latest data |
| i月 | APACR |  |
| Ani | eti |  |
| 32 | E5ak | ：ERAKE ERADR andoliho |
| LUA | MCCL |  |
| ORA | A | ；Check for acceleratioh |
| 12 | ？20］ | ：if Hot．Plub Aloho |
| LİA | RAMPUP |  |
| OR．${ }^{\text {a }}$ | A |  |
| Jat | CIPMp |  |
| 60． | Hida |  |
| 6RA | $\lambda$ | ：1H Hain brive |
| j ${ }^{\text {a }}$ 2 | SAIHCK | ：If Yes，check haeik to ramp dona |
| Livi | Ahņon |  |
| ORA | A | ；If Reat dowia |
| Jhz | CiFig | ；lf yes，Râns Doilh |
| Pl0D： |  |  |
| CDA | Contra |  |
| 0 EA A | A |  |
| iH： | H0V15 | if HES．HOVE IH |
| CALL | cistap | ；STOP ILIES |
| ARLL | ERYSTP | ：stop dilve |
| CAll | fracf | ；TVRG Off tanhslator |
| Jap | S9S5 | ：SEE MHAT＇S HEXT |
| IIfop： |  |  |
| LDA | nhPTO | ：GET STEP 70 RAMP 10 |
| HOV | $i, A$ |  |
| CALL | napup | \｛RAMP 10 IT |
| XRA | A | ：AAMFJP TO MAlh |
| STA | Enhaip |  |
| CHA |  |  |
| STA | HALH |  |
| JMP | boss |  |

nainch：

| LHLD | ERRO |  |
| :---: | :---: | :---: |
| ix！ |  |  |
| elicl | NALCAR | ；AI ThE Rasp ount folit？ |
| 306 | A．i |  |
| 0 A A | $\dot{4}$ |  |
| j2 | 2035 | ： 907 YET |
| 18A | $\stackrel{\text { ¢ }}{ }$ | if YES，\＃Ais to rampoh |
| STA | Haid |  |
| C．A $A$ |  |  |
| STA | SARFDN |  |
| de | ETES |  |

2！90ii：

0274 C076 3
E277 AF
4270 324418
327825
$927 C 324518$
227f C305鬲

2282 2ADJIS
9285 $6065 \%$
$\therefore 2630292$
wian AF
g29C 324518
F29FiJoEg

W2？ 3 347！
32054
3296 344818
0299 ？
ROPA CAEEM
229077
Q20E 3248：
32A 3 jipals
32At EEx
62R5 32 Th 18
12月9 Dut
22．5 CJUEES

224E 6076：3
Q28i A5
2.5232398

2265 JABRIS
Siss E6f？
32EA 32日AIS

025F C．3i854
H01！
Call rapdh ；amp dona froll curreit step

| ORA |  |
| :---: | :---: |

STA REAFDH
ChiA
jTA cutioné
गHP Elss
LaLl EARO

CALL ClOSE ；HITHEA 3 COUTS
JHi Heli
XiAA A ；if yes，SET fOR ShuTionin
STA COAVRG
Jhe Eiss
niv1：

nev 6.4
LOA LOR ：LAST DIAECTIOH
CHP © ；iHE jane？
il boss

STA LDR ：LSST DIR＝CORREH DIA
LUA DSCR +1

ST：00CA＋1
aitt pifin achame directiou
Jhi buas

DRISTP：

| CALL | 2月90\％ | －hake sure ramped doan |
| :---: | :---: | :---: |
| XRA | A | ：CESR DRIVE ACTIVE |
| STA | DRivat |  |
| LDA | DSCOT |  |
| nill | 6 f 部 | ；Shut Doini ceks a DiR |
| STA | DSCRti |  |
| OUT | PIfTA |  |
| J ${ }^{2}$ | BRKOF | ；EMonge braxe |


；LJCAL ORIVE HaKOLER

LOCAL：
call Thyon ；TRAKSLATOR on halie if local
XRA A
STA ESCR 2
OUT PIPTE ：SET FBR leqia DRIVE
Lu：
GALL DGTAR ：GET DATA
LiA EARO：？


！in PAPE ；OET ATEGTOH
nifi 3
ifi
j2 Lilp ：HOLE ip
CH： 2

in PIPTA
Ain：：31：：STlli If locat？
12 iCL1

| $22 \mathrm{~EB} \mathrm{C50203}$ |  | CALL | Tritup |  |
| :---: | :---: | :---: | :---: | :---: |
| 925E C31031 |  | vip | ascko | anesei sicter |
|  | iijP： |  |  |  |
| $22: 1605503$ |  | CALL | 6：90\％ | ：Disenoane senke |
|  |  | LDA | OSCR 1 |  |
|  |  | 0 OL | \％ | ：SETUF jp dir |
| AEF9 32dAIS |  | STA | DSCat |  |
| د2FC Br c |  | 6 bit | ficta |  |
| $32 F E 8509$ |  | i． | P2Pra |  |
| Weis E0id |  | s．s． | 1 |  |
| g3e 2 CRapab |  | J | LiPi |  |
|  |  | nvi | 6.7 |  |
| 9367 ci4003 |  | CALL | RHPUF |  |
|  | UPP1： |  |  |  |
| 338 Ac cryed |  | CALL | USTDK | ：OET DRTA |
| 330050 |  | If | flets |  |
| 93 F 石62 |  | ani | 2 |  |
|  |  | Ji | lipl |  |
|  |  | JH？ | LST03 | iff hot，SHut dokn |
|  | ifinit |  |  |  |
| 9317 C6F53 |  | call | 5fich | ：OLSERjatue drane |
|  |  | LDA | TSCH20 |  |
|  |  | UR1 | 5 | ；SETUP DOH：DRIVE |
| 33if 320ate |  | STA | $0 \cdot 6 \mathrm{~A}+1$ |  |
| ：322 13 yc |  | OJT | P1PTA |  |
| 3324 4809 |  | IH | P2PTó |  |
| ri3］［091 |  | nin！ | 1 | ；RAMP？ |
| 9723 Casdes |  | U2 | LOWHI |  |
|  |  | 剈： | $i .7$ |  |
| 3320004063 |  | CALL | Afrip |  |
|  | Unill |  |  |  |
| cisiz Cufyed |  | call | OSTOR |  |
| \％j5］Dis ${ }^{\text {dy }}$ |  | if | 32P：8 |  |
| \＄335 E6094 |  | AHI | 4 | ：3TILL 304 HE Down |
| 4337 ［430¢\％ |  | j2 | LDAH1 |  |
|  | LSTOP： |  | ：1F HOT． | Sint $304 \%$ |
| cosh colbes |  | CALL | R品吅 | ；RAMP DOMA |
| 6330 3．48AL8 |  | LJa | ESCRT |  |
| 934t EOF2 |  | A ${ }^{\text {［ }}$ | \％ 23 |  |
| －1342 320418 |  | STA | $0 \mathrm{SCR}+\mathrm{i}$ |  |
| 1345 0390 |  | 001 | plpta |  |
| 3347 C91864 |  | Call | EnK0f | ：EHGAGE BRAǨ |
|  |  | Jup | lucal |  |


；RAMF tip a oduh

R：PuP：
：350347：

97510
035225
2353 $124 \% 18$
d35́ 2：1F97
959
EJi Bunp


CHA
sta Ranp ：SET TPUE


PFifi：
－1354 322713


: TAARSLATOR \& ERAKE COATROL

Thnon:

| Ex: | A, ETEM |  |
| :---: | :---: | :---: |
| 3:10 | isip |  |
| ix: | \%, 190 | :OME SEC |
| iali | inisk |  |
| : $\mathrm{DA}^{\text {A }}$ | OECPri |  |


| 133E 5604 | Onl | 394 |
| :---: | :---: | :---: |
| 3JCt 32JAIS | STA | OSCR+1 |
| 03CJ ! 300 | 007 | PIPTA |
| TROH: |  |  |
| 2JC5 CbF904 | CAil | OSTOR |
| e3ce obis | I\% | PIPTA |
| 8JCA Et [b | Ais | 那 |
| iJCC CAC503 | i2 | Tath |
|  | Tf | Titios |

Thunf

| $6302213 E 4$ | (x! | B, ETA |  |
| :---: | :---: | :---: | :---: |
| 8305 222318 | S4.0 | TRAP |  |
| 8388 26406 | [al | 4, 170 | OUKE SEC |
| 8308 C0C354 | Cat | Tlata |  |
| bet jedis | 10. | DScat |  |
| 3JE1 E6TF | RHI | 7F\% |  |
| 8JEJ J2edis | STA | BSCR+1 |  |
| 93Es [8ta | OUT | Plpta |  |
| iroff: |  |  |  |
| 3368 C0F964 | CALL | DSTOR |  |
| -1353 VES | IH | P2PTA |  |
| 33 ED E6:\% | ABI | 13H |  |
| 6]EF 220 dis | Jic | tapif |  |
| E3F2 CJE40́4 | J ${ }^{\text {P }}$ | istor |  |

SRKOH:

| 63F5 215334 | CXI | H, E8R |  |
| :---: | :---: | :---: | :---: |
| 3358222818 | Sitio | TRAP |  |
| 3358216408 | LKI | H, 18 Ef | ;oME SEC |
| fure Ciciad | CALL | thats |  |
| 44ti 3A3A18 | LidA | OSCat |  |
| $34{ }^{3}+6$ F64 | Ent | 4 H 11 |  |
| 9436 320918 | STA | DSCR +1 |  |
| 8490960 | 007 | PiPTA |  |


| 0488 CDF934 | CALL | DSTOR |
| :---: | :---: | :---: |
| Q4te DR28 | If | Afocr |
| 9410 ESy 4 | Alli | 4 |
| 3412 C.405044 | $\sqrt{2}$ | 8R, 01 |
| -415 C3E4i | J4P | tistor |

ERKOF:
LX: H,EBRK
SHLLD TRAP
LXI H,10E :OHE SEC
CALL TIAER
IDA ESCR+1
AH: BEF
SiA DSCP+1
out pipta
8418215364
3413222818
a41E $21640^{2}$
8421 CDCES4
3424 J.amas
i427 EobF
3429520.118

242C 03 c
$3426 \operatorname{cor} 94$
S4 31 182
240] Evt
24.35 222:0i4
34.58 C35484

|  | Lx: | H.EBEX |  |
| :---: | :---: | :---: | :---: |
|  | SiLb | TRAP |  |
|  | LXI | 3, 106 | :ORE SEC |
|  | CALL | TIMER |  |
|  | CDA | OSCR ${ }^{\text {ch }}$ |  |
|  | AHi | \%Ef月 |  |
|  | SiA | OSPT 1 |  |
|  | out | Ppia |  |
| 23F! |  |  |  |
|  | CALL | D310? |  |
|  | If | afotis |  |
|  | Stis | 4 |  |
|  | jil2 | Sthiol |  |
|  | inc | istop |  |

ETEn：


ERBK：

| 3453 3．atal8 | 6月9 | SSCat |  |
| :---: | :---: | :---: | :---: |
| 0456 E6BF | Aiii | 6日F\％ |  |
| 9458 329315 | SiA | SSCRt！ |  |
| 345E PJeg | OET | Pipla |  |
| 8450.14218 | 6A | posita |  |
| 9406 6.93 | $0 \cdot 1$ | 94H |  |
| \＄402 3 20218 | StiA | rosd +2 |  |
| 8455321218 | STA | FAJL |  |
| $840803103 i$ | $J H P$ | RSCHO |  |

EDRY：

LDA FRULL
inl i
BTA FAUL＋2
LiJA STEP
CPI 4
If EDRV
niv！A．THEE
STA GETIT ：SET GET IT THERE SOREHOM

CALL ERVSTP
YRA A ：CLEAR ACC FOK ENTRY

EDRYI：
LDA POSET2 ；SET DRIVE fAULT
0R！2月
STA POSD 2
STA TABL ；ADDED FOR AHX 226
Jifp RSCHD ：SYSTEN RESET

RAMGER：$\quad$ ： $\mathrm{AL} L=: \ddot{H L} L-D E i$

| STE 70 | Hov | A， 1 |  |
| :---: | :---: | :---: | :---: |
| 44， 3.3 | 83 | E |  |
| 3475 | niv | L．$A$ |  |
| \＃4： 0 | 4 | A，${ }^{\text {a }}$ |  |
| iff 9 A | S88 | E |  |
| itids 6 ？ | niv | \％．A |  |
| b4ai meat | Bil | C． 2 | ： $0=1+$ |
|  | 3 | thext |  |
|  | 0 Na | ᄂ |  |
| \＄4．47 CDATIS 4 | CH：C | Caprit |  |
|  |  |  |  |
| 34A 70 | 370 | A，i |  |
|  | ini ${ }^{\text {a }}$ | 3 | ：ZERO flAù SET If Hi＝a |
| SAACO | CET |  | $i=0) \Rightarrow$ rolR |

infhl:

| $34 A D 7 C$ | Hov | A.ii |
| :---: | :---: | :---: |
| 34AE 25 | $6{ }^{6}$ |  |
| 844507 | noiv | H, A |
| 848370 | \%ow | A, $L$ |
| 845125 | Ca |  |
| 8422 of | 30V | 1.4 |
| 449323 | 1\% ${ }^{\text {\% }}$ | if |
| 94840 | RET |  |

C!OSE:
348576
348637
3487 C
4488 75 1489 FEA2 34586

CACHK:
$348 C 76$
$34 B D F E J A$

402 37
$24 i j i=$
340.4 FES 5

P4C 08
34C. 35
C4C3 05
i4 40 3F
シdiA $C$
a4ca Jent
atif 70
5403031 C
g.4027C

3403 E63F
8405 5668
24078310
34693.424 .3

E40C Fole
W4DE 322419
$34 E 10315$
CHE 3
Thas:


6 eit
Hol
$0 i i$
501
A!
0 Al
001
LDA
ORI
STA
007
RET
TSTOF:
(i)

34E7 E6CF
ate $322+18$
THEC DJIS
24E $3 E 45$
क्ष4\# 0319
542214000
3455 222918
(4) 3

| Koy | A, ${ }^{\text {\% }}$ |
| :---: | :---: |
| PI |  |
| it | \%0\% |
| ST |  |
| RET |  |
| ipl | 58 |
| Nid |  |
| CTC |  |
| 12 |  |
|  |  |
| SEI |  |

; 4 に 3 ?

```
A. \({ }^{\prime}\)
```

A
A. i

2
RET

Hion:



P3T0:

| 8459 55 | PUSH | FH |  |
| :---: | :---: | :---: | :---: |
| 34FA C5 | Plish | 5 |  |
| 345055 | fusi | 0 |  |
| dific e5 | PöS | 4 |  |
| 340 AF | IRA | 4 |  |
| 34FE ijis | OBT | SIFT |  |
|  | WYI | 3.ie |  |
| U1: |  |  |  |
| \$50208829 | I'H | PGit |  |
| 4504 5sc) | abi | St3 |  |
| -5it fega | CH | 387 |  |
| 35\% CA24咅 | J2 | LP? |  |
| 6598 | ICR | $\varepsilon$ |  |
| 959 C C23235 | JH2 | LPi |  |
|  | 10A | ERROf |  |
| 3512 ¢0 ${ }^{\text {¢ }}$ | OnI | $63 \%$ |  |
| -5.54 325513 | STA | EfRO+ |  |
| bisit Esis | An! | 1EH | : 6 SDOE F 2 A Hax 226 |
| SET 47 | noi | B, 4 |  |
| 6514 34i415 | L0A | Fiblt |  |
| :350 6 6i | BEA | b |  |
| 6516321419 | STA | FAult |  |
| 9521 -3¢3\% 5 | Jif | [P] |  |
| LP? |  |  |  |
| 5524 3/4519 | 10.4 | EfROt |  |
| 3527 Eeft | AGI | 157i |  |
| 35\%9 320518 | 3i4 | Enrot |  |
| 3520341418 | LDA | F.üL |  |
| $35 \%$ Eof7 | AB: | 8574 |  |
| 353131418 | STA | Gill |  |
| 85348823 | if | posi |  |
| 65] ${ }^{\text {br }}$ | bid | L.A |  |
| 25370829 | 14 | fosif |  |
| 1539 E03F | An! | 3F: |  |
| 353667 | nov | H, ${ }_{\text {i }}$ |  |
| 353 C 211918 | SHLD | POSTH: |  |
| 4535 EE28 | afl | 2 FH |  |
| -554167 | HOV | $H_{6} \mathrm{~A}$ |  |
| 9542228318 | SHLD | Poso |  |
| 9545 EET9 | XRI | 23: |  |
| Wi547 57 | Hov | 0, A |  |
| 354850 | hov | E, i |  |
| 3549 2AIE1S | [ HL | AIVChD |  |
| 854 C C99804 | CALL | Rangen |  |
| 954F 220318 | Sild | ERaO |  |
| 655 73 | 38 V | A, C |  |
| 3553324713 | STA | DIf |  |
| Fi56 832 | if | bic |  |
| 9558 Etab | in | 0\% |  |
| f55 6 | nev | L.A |  |
| 25582080 | Will | A, it |  |
| 455029 | BAO | 7 |  |
| SSE 29 | DA, | 4 |  |
| W55F \% | Q $\mathrm{S}_{\text {g }}$ | \% |  |
| 3500 | 2 AD | * |  |
| 350 ! 220cle | SHLD | AOCR |  |
| 25040588 | ii | AP9CR |  |


| 3506 Est | A.:1 | 67\% |  |
| :---: | :---: | :---: | :---: |
| 9508 320818 | STA | ROCR 2 |  |
| 655E E6t ${ }^{\text {a }}$ | A $\mathrm{SI}^{\text {I }}$ | Hin |  |
| 256047 | Her | B. A |  |
| -50E 3A621S | LDA | POSD 2 |  |
| 8571 Effi | ANi | \%FCH |  |
| 4573 E3 | OFA | $E$ |  |
| 95974 32618 | 51. | POSD+2 |  |
| 65770328 | If | apoch |  |
| 1579 E694 | An] | \% 4 | ; 5RAME I: |
| 3576 \% | REC |  |  |
| 95754 | Hov | B,A |  |
| \$570 3A2315 | UAA | aness |  |
| \%59\% EOFJ | A6I! | modh |  |
| 9582 68 | ORA | E |  |
| :353322318 | STA | KhF3S |  |
| 3556 8.1.4 | 007 | Anfib |  |
| i588032i | IH | Alind |  |
| 3158A 65 | H0V | L.A |  |
| 9588 2520 | 13 |  |  |
| 3580 EED2 | XRI | 2 |  |
| 9585 47 |  | 8, ${ }^{\text {d }}$ |  |
| Sjofecie | An! | 15: |  |
| 259237 | sio | . |  |
| 93930 | noir | \#. ${ }^{\text {a }}$ |  |
| 1595470 | 30 | A, 8 |  |
| 0595 E\% ${ }^{\text {d }}$ | A ${ }^{\text {I }}$ | 了 |  |
| E978 8 | OiA | \# |  |
| 45938 | Hov | H.A |  |
| 8599 | Did | ir |  |
| 359 ${ }^{\text {E }}$ ES | XCH6 |  | : SAVE If DE |
|  | AH1 | 136 |  |
|  |  |  |  |
| -3508 37 | ORA | $\dot{A}$ |  |
| $859 \mathrm{EC24665}$ | 1HZ | As06is |  |
| \% 5 Al E8 | XCHo |  |  |
| $65 A 2221518$ | Sill | 302 |  |
| -595 88 | \%CHO |  |  |
|  |  |  |  |
|  |  |  |  |
| 95 ${ }^{\text {a }}$ \% 9 | RRC |  | ; 14 |
| ${ }^{5} 5 \mathrm{AT} 7 \mathrm{~b}$ | fRic |  |  |
| 35486 | HOV | L.A | :SETEP HL |
| 05 A9 2606 | WV! |  |  |
|  | ! ${ }^{1}$ | E, APATAS |  |
| djaE 39 | DAD | 8 |  |
| -9.4F 73 | Hor | \% E | : Sive Afex analog In IT |
| \$583 23 | 17x | 4 |  |
| 298172 | nov | 3.8 |  |
| 355? 3ṅAL | 25: |  |  |
| 95956 | 4n: | \%iif | ; 3603 |
| E587 91 | \$6 |  | : 2 |
| Fibe of | dil | 1.i | setip ni |
| P59 20 | BiI | H.1 |  |
|  | 210 | B | : Fora hidex |
| - 530 C | 3818 | A, $H$ | : GET leiue into hi |
| ט59? 23 | iny | : |  |
| PCBE ${ }^{\text {O }}$ | nor | H. ${ }^{\text {a }}$ |  |
| -3595 69 | noy | 1.A |  |


| 356 220F18 |  | SHLO | Sind | ;STURE IT ide dita set |
| :---: | :---: | :---: | :---: | :---: |
| LPj: |  |  |  |  |
|  |  | LDA | ORVATV |  |
| ט5 5 C6 57 |  | ORA | A |  |
| 35Ci 34231s |  | 10A | EMPBS |  |
| BSCA CAB435 |  | $J$ | LP4 |  |
| 白CD Fobl |  | ORI | j! |  |
| esta |  | WVI | C.4 4 \% |  |
| 858160805 |  | Jhip | 425 |  |
| LP4: |  |  |  |  |
| 3504 Eors |  | AMI | 6FEM |  |
| C5de |  | ail | C.6 |  |
| L.55: |  |  |  |  |
| 3549 322318 |  | 374 | WhFES |  |
| 1598 31.4 |  | OTT | APPT8 |  |
| 59805080 |  | ii | PIPTA |  |
| 350F 310910 |  | STA | OSCR |  |
| 3562 E607 |  | A ${ }_{\text {a }}$ | wif |  |
| 35E4 EEG7 |  | XRI | 97i |  |
| -550 47 |  | niv | $B, A$ |  |
| W5E7 3, 2518 |  | 10A | ERRO+? |  |
| : 5 EA E08 |  | ant | 659\% |  |
| CSEC Ea |  | ORA | 5 |  |
|  |  | ORA | $i$ |  |
| 35 EE 36518 |  | 374 | ERRO+2 |  |
| 95F! EOLE |  | AH: | IE: | : $*$ ADOEO FOR $10 \times 225$ |
| 355] 47 |  | Mar | $E, A$ |  |
| 3574 3.1448 |  | LTA | faucti |  |
| 4557 E059 |  | Ahl | 3896 | :STRIP IAFO |
| asf 5 |  | ORA | $\Sigma$ | :AGd UPJATE IHFO |
| 3574 32i418 |  | STA | FAll ${ }^{\text {a }}$ |  |
| © 550 DE |  | pup | : |  |
| CijF M |  | Pop | 0 |  |
| - 5 Fit |  | pop | 0 |  |
|  |  | POP | fis |  |
|  |  | RET |  |  |

## ;*************************?************

BLAP:

| [x] | SP. 9900 H |
| :---: | :---: |
| LHLJ | TRAP |
| ¢ 3 Sif | if |
| CALL | TSTOP |
| LBA | ERROt? |
| 0.8i | ! 54 |
| STA | ERNOL2 |
| LUA |  |
| 28i | 10:4 |
| STA | faikl 2 |
| Uit | SESO5 |
| WII | A,FSTEN ;RESET T.5. UTSABLE E.S |
| O5 | 5i\% :5ln |
| $E I$ |  |
| 2Ei | :GUTO ERROR HAMELE: |

inpin:
RUT AESES ;RESET O.5
El
filsth rini

| \$627 65 | PGSH | 3 |  |
| :---: | :---: | :---: | :---: |
| 362805 | Fibsin | 0 |  |
| 3629 E5 | PuSh | 4 |  |
| S62A JEFF | WV1 | A,TRUE |  |
| 1020 324018 | STA | DRVPLS |  |
| do2f 8 E88 | ! | PIPTA | ath bocal? |
| fo31 ESOL |  | ¢! ${ }^{\text {¢ }}$ |  |
| Co.jl CAbEDO | J | TRPR! |  |
|  | LEA | CSCAFi |  |
| S0.39 EOEC | A.is | 1 CH |  |
| 5636 Cabedo | U | TAPG1 |  |
| ¢6.jE JAE518 | cos | HOTIOK |  |
| 364136 | [in | $\dot{\beta}$ |  |
| 4642 FE 19 | Cbl | 25 |  |
| $9{ }^{\text {9\% }} 44$ C26Fd | JH2 | TSPT2 |  |
| \%647 2A1A18 | ( HLD | LSTPOS |  |
| 1544 Es | 3 CHO |  |  |
| 3648211015 | LHLD | PCSTH |  |
| G64E 221A13 | Sito | Lsipos |  |
| 305: 3A4ALS | [id. | GETIT |  |
| 20.5437 | UAA | A |  |
| 3055826000 | 312 | inpeg |  |
| 265 3A2718 | LDA | STEF | SGET STGF |
| dess regz | CP! | 2 |  |
| 5050 Jiobes | u | TAPAL |  |
| Thpat |  |  |  |
| 1060 007304 | Caill | Dinges |  |
| ¢603 71 | noy | A,i\% |  |
| 906487 | if 4 | A |  |
| \%005 C2634 | inic | EDV |  |
| 900 72 | 301 | A. L |  |
| 2009 FE28 | CP1 | 4.5 |  |
| Scos 3 Hodis | $\therefore$ | EDR |  |
| imphi |  |  |  |
| gese AF | URA | A |  |
| Tipfoz: |  |  |  |
| 3605322518 | SiA | 60710n |  |
| T672 51 | pop | H |  |
| 057301 | pop | 0 |  |
| 067461 | POP | 8 |  |
| 2675 F! | fap | fin |  |
| 8676 | SET |  |  |
| SURP: |  |  |  |
| 96775 | fils | PS\% |  |
| -6\% is | PUSH | B |  |
| 35:\% 55 | PiS\% | 0 |  |
| SOIA Ej | PijSii | 4 |  |
| 5678085 | iH | Sunt |  |
| doi0 47 |  | S.A |  |
| Soze tobl | $4{ }^{4}$ | en |  |
| T6S 45 | 0 H | i. ${ }^{\text {a }}$ |  |
| $\therefore 53173$ | 3 | 4.5 |  |
| $\therefore$ Ste 050 | \%is | 38 |  |
| \%est fas | Fi | 2H |  |
| 3 cso miond | 12 | 69884 |  |
| cte FEIB | iP1 | tin |  |
| Sose idita | $\because$ | CTapa |  |
| Coex | 34 | Pistre |  |
| :07) Feta | S¢ | 484 |  |



| 96FA 51 | pop | $i$ |
| :---: | :---: | :---: |
| BbFB Cl | fop | 5 |
| SGFC Fil | pop | 8 Sin |
| 16.5053 | Ei |  |
| dori ig | RET |  |



| : ASALCO TA5LE | 40 |  |
| :---: | :---: | :---: |
| AKATAE: |  |  |
| DH |  |  |
| OH | ¢4FCH, 658 Ca | :-15/4 |
| 7h |  | ; +154 |
| 37 |  | ; |
| in |  | ; +16 |
| 01 | duch. mFFE\% | PVOC VEL |
| \%in |  | : 207 VEL |
| $8 \%$ | 675C4.9894 | : 3.0 |

; PAnP TABLE

| ¢715 ${ }^{\text {a }}$ | Chity: 03 | S6: |
| :---: | :---: | :---: |
| 2724 34 | ckise: is | $34 \%$ |
| 172150 | B8 | 5 H |
| 472260 | 58 |  |
| 872367 | DS | 60 |
| 372471 | 05 | 711 |
| 872575 | CK4dy ${ }^{\text {c }}$ | $75 i$ |
| 4726 \% | 08 | T8. |
| 837288 | 08 | 884 |
| 9728 22 | 08 | 624 |
| \$72983 | 08 | 834 |
| 3724 | Vi | 65\% |
| 372836 | 08 | 8611 |
| Qifl 27 | 08 | 877 |
| 47288 | 75 | 894 |
| A72E 89 | 05 | 89\% |
| 472593 | CKIndias 08 | งิ่ |

3739 EnD 》

; MAY 39, 3
:EGUATES


| (3is |  | 3 kio | 1083 | :Start of ena nemony |
| :---: | :---: | :---: | :---: | :---: |
| 13\% | P030: | j3 | 3 |  |
| did | Erat | I5 | j |  |
| \% 5 | 660: | 3 | 3 | ; is2- 30 Ena |
| is | 30ヶ\% | B | 3 |  |
| 6sic | dect | is | j |  |
| : | Mintit | 5 | 1 |  |
| ar | Fijle: | S | 3 | : 2 S |
| :315 | 362: | 8 | i | : $3 \times 23$ |
|  |  |  |  |  |
|  | Qustix: | B | 2 | sposition, ungigned |


| 181A | LSTPOS: BS | 2 | - Lasit positioh |
| :---: | :---: | :---: | :---: |
| 18ic | Chathp: is | 2 | ;TEAPARARY ChD |
| 1815 | ATVCAD: In $^{3}$ | 2 | - active cand |
| 182\% | FIFAST: 65 | $i$ | iepron Inage |
| 1821 | PIPEST: OS | $!$ | efraom lhage |
| 1822 | APs S is | : |  |
| 1823 | nhiss: 0s | i | : Rah Inage |
| 1824 | RAPCS: ES | , | - An ${ }^{\text {a }}$ MagE |
| 1325 | dyTlow is | $i$ | : hotion analisis counter |
| 18.6 | Gieñ: IS | ! | :EREUUEKCY Step for amp |
| 1327 | IMPTA: DS | : |  |
| 1828 | TRAP: 05 | 2 | : ADORESS OF ERRO CODE |
| 1324 | AnABX: ©S | 1 | : APEX AOX Cita |
| 16.8 | AP AF7R: 05 | : | ; APEX ade folmter |
| - 20 | APATAE: DS | ic | :APEX Alishof Storage |
|  | 2065: |  |  |
| 1336 | asscon: os | 1 | AESET Cad |
| 1839 |  | 1 | : baite abtive |
| 1338 | HAPATV: DS | 1 | : W. ${ }^{\text {P ACTIME }}$ |
| : 8 7 | 23heas is | 1 | didite reguest |
| 1843 | HAPREG: ES | 1 | : Fisp request |
| 1841 | MiEl: is | ! | - 0 : 0 aclelerate |
| 1842 |  | 1 | : RAMP Jf STAGE |
| 1043 | Man: IS | : | andil ERIVE STAGE |
| 1544 |  | i | : RAMP donll stide |
| 1645 | conurn: DS | 1 | :COnteronicl stace |
| 1346 | DRLPGS: ES | 1 | : 4Th dilve pulse occuatd |
| 1647 | TEF: DS | ! | :Cugatht oliection |
| 6443 | UJIN: IS | 1 | : LAst olnecticy |
| 134? | Raxp: Dis | 1 | ; AAPPED UP OR Hot |
| 184A | GETIT: is | ! | :aET IT ThERE Soñ hoh |
| 185 | abtiat is | 1 |  |
| 184 C | EXTfLG: OS | 1 | :RING EXEAJ flag |
| 1650 | EHEFG: Exil | 1 | ; EMO OE ELAOS |

ancset \& IhTERUAT

| 0480 | ORG | \% |  |
| :---: | :---: | :---: | :---: |
| 3000 f 3 | 01 |  |  |
| diat 03404 | dap | IW1T | :GET THIHGS ORGAMLIED |
| 9324 | 086 | 24 H | itraf service |
| 0 mit 4 F | II |  |  |
| 2025 c31307 | Jip | 8id ${ }^{\text {P }}$ | :STJP. MHAT'S MgQng |
| SidC | 3 ai | 2\% | ASST 3.5 |
| 92025 FB | E! |  |  |
| 200 | A\% |  | : MOT USED |
| 2334 | परी | 34 | : 2 ST S. 5 Stice |
| cist: | 71 |  |  |
| 大95 630\% | $3 i$ | P\% | ;ackudedoe drive phase |
| -438 | 120 | 33 | ; 3it-of-bauhas |
| $4{ }^{4} 93$ | cl |  |  |
|  | Sis | I.14 |  |
| 2ibic | uñ | 3 in | :HST 7.5 SESVICE |

WHJC FJ
10.70 6388e？

II
JAP StiRP SEAVICE D．S．EEG
：IHITIALIAATM：

| 640 | 080 | def |
| :---: | :---: | :---: |

inIT：

| 2943 36319 | （1］ | E0，1936n | ：SET STAL |
| :---: | :---: | :---: | :---: |
| 0045 3E4F | 317 | A．Rhoje |  |
| －245 0318 | GUT | Stha |  |
| G447 3EF5 | nipl | A．PROLIT |  |
| 0649 9302 | Qut | jidúa | SEt Prou furcs yor output |
|  | UTT | FiDOS |  |
| 3i4i 368 | Hi | A，Fixin |  |
| dis 4503 A | 3it | F200A |  |
| 9551035 | 037 | P3088 |  |
| S653 ${ }^{\text {AF }}$ | XiA | 1 |  |
| \％r94 313 | E！ | aibita | ：ZERO PORTS |
| 4056 0314 | OUT | Papte |  |
|  | 037 | 2\％PTC |  |
|  | 0 ij | BIPTA |  |
| c65i 530 | WH | P1575 |  |
| Qus 20：b4 | U1 | 7．1904\％ |  |
| not 4 | 304 | B，A |  |
|  | bup： |  | ；CLEAR MENORY＇ |
| 6062 77 | $n$ | B．${ }^{\text {a }}$ |  |
| 7965 2.3 | in | Hi |  |
| 3064 | da | B |  |
|  | 342 | L00p |  |
| 36080355 | 007 | nesej | ：SETUP jHTERAUPTS |
|  | 313 | A．ASte： |  |
| ijoi jig | 85 | 98\％ | ；314 |
| 1760 fB | E！ |  |  |

## ；＊＊＊＊＊＊＊＊＊＊＊\＃＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊

；STSTER andmLlag

5053：

| 360 CDEE 5 | CiAL | jutor | ；ôathen data |
| :---: | :---: | :---: | :---: |
| d471 340．518 | ［0A | ERtO 2 |  |
| 0074 E688 | anl | \＃3\％ | －CHECK APEX LHEREACE OK |
| 9076 C22551 | JWZ | ESCHO | ；RESET STSTEG If hot |
| 2079888 | $1 \%$ | BTPTA |  |
| ： 370 Esil | ＊ H $^{\text {I }}$ | If | ：CHECK for local mode |
|  | $\sqrt{2}$ | LUCAL |  |
| －98\％3A3C19 | 108 | AESCito |  |
| 2093 67 | 納 | A | checai for soft reset |
| ciss caibel | dH2 | Cats |  |
| 2657513010 | 20， | detay |  |
| ¢08 87 | DEA | － | ©CHECK DRIVE ditile |
| 19030 02400 | 3.42 | CORDE |  |
| cose 3 ¢3513 | L8A | ERROT 2 |  |
| 20， 508 | St | Qry | doneca hinu atiote |
| 2093 i23jej | $\pm 172$ | Chanto |  |
|  | 10． | \＃Ap ATV |  |
| 30906 | Dis | 4 | ：Cincock hap rcilve |
|  | 34： | AFAjk |  |
| 3690323513 | （6） | drvata |  |
| 枵动 67 | 494 | s | ；drive request |


| deal C350日i | Jih | URVITH |  |
| :---: | :---: | :---: | :---: |
| 3 3044 3.4418 | 10A | WFEEA |  |
|  | 028 | A | ；hap request |
|  | $\sqrt{2}$ | AFAOK |  |
| 40AB 32JESS | STA | HRPATV | ；SEt Active |
| STAE उPG518 | L0A | ER20 2 |  |
| 2， 21 For | ORI | 23 | ：Shon actue |
|  | 5TA | ERRO＋2 |  |
| Aran： |  |  | ：CHECK APEX VOLTAGES |
| 5086 ja 2618 | 18A | APAPTR | ：GET bü poihter |
| \％${ }^{\text {B6 }}$ 3 36 | INA | A | ：hETT Hhalde Ti look at |
| fiyd Eow？ | Ainl | 973 | ： 3088 |
| －455C J．2318 | STA | APAPIA | ：Save gen vilue for hext pass |
| dibe FS | P65\％ | PSh | ；SAVE FOR FURTHER USE |
| ？6ib 07 | RLC |  | ：SHIF：left for moro indexiho |
| chit 4 | \％ | $i . A$ | ；Sake in C |
| 900 37 | NCO |  | ；Shlfi mial for 2 hord lideximg |
| vec 3 5 | HoV | E，A | ：SNE 1月 E |
| deca 18308 | di | H，AHATAB：Vmltage ganges |  |
| Stct 100 | W11 | D．${ }^{\text {d }}$ | ：SET UE FOR indexito |
| 106\％ 17 | 080 | 1 | ：POLHT TO \＆GET LOM Lhat in je |
| ScA 5 | H0V | E．if |  |
| jucb 23 | InX | i＇ |  |
| 动他 | niv | 11.1 |  |
| dicl 3 | In | i＇ |  |
| Sut es | fus | H | ：SUE PJThTER |
| Sut 212010 | UXI |  |  |
| ：0\％2 36\％ | W12 | 8.4 | ：SET íc |
| 1984 | U40 | 8 | ：FJRM IHDEX |
| 2085 45 | $30 \%$ | i． 7 | ：GET ADJUSTED VALUE IH70 WL |
| Sidob 21 | In\％ | H |  |
| 230 \％ | 30\％ | त， 1 |  |
| Stes Eodr | AM！ | 9\％\％ |  |
| 3094 EEp ${ }^{\text {a }}$ | NRI | 38 |  |
| $305 C 5$ | HiV | H．A |  |
| Cige ef | 304 | L，i |  |
| 3GgE ES | Pllsh | H | ：SAle Aislog |
| 3ybf CoAfis | CALS | \｛AMEE？ | ：CHECKL LOM LIHIT |
| 6it2 31 | P\％？ | 0 | ：GET A：ALAUG |
| gexj ${ }^{\text {a }}$ | P0？ | 4 | ：OET POIHTER |
| 2024 79 | ney |  |  |
| 2055 37 | 0，A | A |  |
| 3056 C2Fsed | J ${ }^{\text {L }}$ | A AAFLT |  |
| 3 AF 975 | 404 | A，${ }^{\text {a }}$ | ：GET MIGH LIKIT |
| Siges 23 | 138 | $!$ |  |
| gen ${ }^{\text {a }} 6$ | nit | \％， |  |
| SGEC O\％ | Hov | 1，A |  |
| 306 Cumat | CHia | SAMOET | ：CHECK HIOH LHIT |
| SWFlf： |  |  |  |
| Widic | rit | PS\％ |  |
| dri 47 | \％0\％ | 3．4 |  |
| Stict | ink | $\dot{3}$ |  |
| － | WI | 4．354 | ：BiT Mask |
| CLEAT： |  |  |  |
| Sbfs ir | Pici |  |  |
| TuFo ${ }^{\text {a }}$ | SCR | E |  |
| Sefo icrsio | vine | Fltsf |  |
| fuba 57 | Will | D，A | －OR HASK |
| bers ar | LiA． |  |  |
| 36505 | nov | E，A | ；AND MASK |


| Suf0 79 | Sov | $\hat{A}, \hat{C}$ |  |
| :---: | :---: | :---: | :---: |
| SUFE B7 | OAA | A | ; HALE A fall |
| qubp 3.alis | iva | SHadt |  |
|  | , $\mathrm{iHz}^{2}$ | SETRLI |  |
| \$1054 4 | A An $^{\text {a }}$ | E | ; SESET $5: 7$ |
|  | Jhe | STGRLT |  |
|  |  |  |  |
| 210982 | IRA | $i$ | : SET EIT |
|  |  |  |  |
| $314 \begin{gathered}\text { 3 } \\ \text { 210 }\end{gathered}$ | 314 | A140+2 |  |
| (107 51139 | 31.4 | Pälti |  |
| 1160 6.06\% | 3.9 | Buss |  |

CiDRS:
1113 dF
all4 51213
$\$ 117321218$
311A 326518
हilij JAiqio
C123 E6EA
012232146

0125310619
128 C0ES它
-12E CDARZ
BLAE CDCEM
aill 21JCis
31344611
9136 AF
\#137 71
4135
dity
3:3A 02376
i1.30 Clogen

##  ; COHAAND POSITIOH Handies

CHKDRV:
IDA DRVEE
GRA A :DO HE RAVE A HEN CMD
jL DRUTSI ;IF MO WORK DH OLD CHO
LRLD CHDTAP
xCHO

CALE VECTOR :ChECK̃ If iHEH-OLDi<4
CALL CLOSE
ic ilareq if yes ciear neauest
GALL TETUF :STAF TLHER AKD DELVE
CALL DUVST
GAVIHT:
3150 is
in5E 3i4h1s
xiol 32 Z 18
\$104 321:is
i:

$3 \mathrm{~B} \in \mathrm{D} 32418$
\$176 328518

| 3173322518 | StiA | \#8T104 | ;ihlilailie motioh countea |
| :---: | :---: | :---: | :---: |
| 1176 JA1415 | LDA | F.SUL 2 | : ADODED FQR : AjX 236 |
| dil9 E6E | in! |  |  |
| $\$ 178321415$ | STA | FAibl 2 |  |
| ¢17E 2AlCis | じios | Că07nf |  |
| \$151221518 | SHid | aivordo | make teap chd the rctive chi |
| 7154 CDFEA5 | CALL | fSTOR |  |
| 8187 3.44718 | Uif | $0: \mathrm{i}$ |  |
| 918A 36488 | ST. | 601\% | : SEtup last dinectidh |
| \%190 2R1sis | L:LD | P9STH |  |
| 6198 272 Als | Snit | LSTPOS | :SETuf list pestion |
| D193 2abals | (ict | ERR0 |  |
| 31960006 | CALL | close | : Expo i 4 |
| doy UAESA | $j$ | 395 | ; If close don't du ahthing |
| dici libert | (X) | 0.-114 | ;fig step to antp io |
| 210580 | 317 | 8.19 |  |
|  | CiA ${ }^{\text {a }}$ | detit |  |
| 51446 | DRA | A |  |
| alas exindy | , 2 | Dir | [1F H0T |
| 5143685 | 321 | B. 5 |  |
| OIV: |  |  |  |
| SiA SEF | nv: | A, -1 4 St | 255 : 4 HLL COMTAM STEP TO Ramp to |
| OWi: |  |  |  |
| ETAc 30 | 14R | A |  |
| aide i? | 2in | 6 |  |
| 3LE DAACol | $\therefore$ | OH! |  |
| BE! 8 | dip | 5 |  |
| 3i82 Pab7el | $J$ | dos |  |
| D195 65 | OCR | 5 |  |
| 8156 | Wij | 4.8 |  |
| AEK: |  |  |  |
| 9:3i 320710 | STA | Stipt | : AVE PEStilt |
| 918A 87 | 0RA | A | : if A=0 DOH'T RAMF |
| Fies catodl | 32 | M0? ${ }^{\text {ap }}$ |  |
| 318E 3Eff | Hiv | A,TRUE |  |
| 31633246 | Sti | diciel | ; CETJP POR RAAP |
| 3163524218 | 83.4 | RAMPUP |  |
| NORAP: |  |  |  |
| ilce 25 | CHA |  |  |
| 167 32450 | STA | cohyrg |  |
| DiCA CJFigu | CALC | ERKOH | ; Activate brake a tratslator |
| dico CDABg | CALL | Thiou |  |
| 3188 AF | XRA | A |  |
| 3171320818 | STA | - $\mathrm{SCR}_{2}+2$ | :UPDATE lHAGE |
| 519403016 | 031 | Pipt6 | : SET FOR [0Ehr |
| 3 30] 3A47:3 | 60i | D! |  |
| 818987 | ORA | A | ; Hill ${ }^{\text {a d drecta }}$ |
| 3104 3-6A1s | 109 | dscar 1 | :GET IHAGE |
| gibo caesti | Wi | icii |  |
| $3 \mathrm{EC6}$ foty | dia | A 7 | : DRIVE CiA |
| de? CuETal | 3 H | novit |  |
|  |  |  |  |
| Wes foge | 921 | W5in | FIRIE COA |
|  |  |  |  |
| gite 3unte | 9 Si | Sobril | :UPDATE \ARAQE |
| thes 030\% | Bij | $\because$ Afta | : SEND IT |
| 315C 21576 | di | 4, EDAK |  |
| def 2iasis |  | TSAP | : EETUP ERROR HASDLER |
| dirc 2ions | Al | H.15030 | - is júcs 10 get theke |
| atrs cioub | CALL | THER |  |


| $\begin{aligned} & \text { WIF } 3 E 5 F \\ & \text { HIFA } 323 n \end{aligned}$ |
| :---: |
|  |  |
|  |  |

CLRREA:
2238 AF
3201323518

6204 CDFE 5
02470523

- 280 E084
d2d5 CA47:5
22 है 3.4158
8211 57
3212 CAEAD
:215 3:4218
j215 67
221983002

321F 57
322 e C24F E 2
923 3:4418
1226 B7
222760022
122A 3A4519
S25 B7
622E 22763
B231 COE93S
2.2J4 CDA2S2

3237 COCES4


21pit:
LDA RHPTO ;GET STEP TO RAAB TO
Hoir C.A
CALL KAPUP ; fniap io If
YRA A ;RAHPUP TO HAIH
$S T R$ RAMpljp
CKA
STA HAIN
JHP BJSS

तAlick:
2i4F 2月0313

1255 i04F05
295 i)
025957
a, \%A Cabequ
7250 A5
225 j 3 j 1 s
3201 : 5
20233484
1265 6e50

263 (6729
$3 \cos$ as
$320 i$ 32448
Hil A, hue
STA DNATH :SET DEIVE ACTIVE
nH Lus
reA $\quad \pi$

UNVTST:
CALL OSOR ;OET LATEST OATA

1. $\quad$ apjck


:DA NCLES
GRA A :CHECK FOR ACGELERATIC:

EA RARPM
URA A : ik RAMP UP
1HZ ZIFJP :IF YES, RAMP UP
LOA HATH
ORA A :IG Main dRIVE

LDA SAMPD


PLOD:
LOA COHing
ORA A ;CDNYERGIRO?

call tsió s stop ther
CALL DEVSTA ;STOF DRIVE
CALL TPHốf ;TURK Uff TRAMSLATOR
dHP BOSS ;GEE \#HAT'S HEXT

2030 3A2710
224845
9241094934
3244 AF
2245324218
32482 F
294932438
A24i cJoEva

LHLD ERRO
Läl D.6276
¿hll bagean at the rahp dohu foist?
nov $\mathrm{A}, \mathrm{C}$
0RA $A$
J B BOS

STA HARH
CHA
Bin anarol
vin eOss
21f5:

| ifti | AnPob | denar doult phut chanent sit |
| :---: | :---: | :---: |
| 1RA | A |  |
| STA | fa:FOH |  |



CHA
STA TUALVR
3HF BLSS
hovin：
$\$ 276249318$
227960305

```
aIC 07Sodz
```

si2f if
3250324513
9283 C30003
223654478
320945
Bion Jñale
52508

301 ?
-2 324818
1275 JAMA13
2. 236 Ex
924 32.343
1900300
22F C30ET
ज42 $2072 \mathrm{~B}^{3}$
D245 A5


dide Eot2
G2.4E 32PA!
2201030 A
5293 C31405

|  |
| :---: |
| $\therefore 8 \mathrm{Z}$ \％ 723018 |
|  |
| didC Sor2 |
|  |
| 22810308 |
| ：383 C31405 |


; local drive handler
locat：
－25b 02 月564
325 AF
926A $32 \mathrm{~B} \cdot 18$
9280 013！
22bf COFED 5

：1CS E0日
3107 C225b！

HCE EOO
SECEESA


$220^{5}$ Cxtinj
420806
520． co 5
$\therefore 304$
EOD 56：
DOF Cabs
BE2 ED

|  | CHA |  |
| :---: | :---: | :---: |
| STA | iuiliva |  |
| 3 H | ouss |  |
| H0v14： |  |  |
| （int） | ERRO |  |
| Call | close | ；＂17nin＋ |
| IhC | H2\％ 1 |  |
| XRA | A |  |
| STA | courbag |  |
| vir | 5035 |  |
| Hivil： |  |  |
| Lid | Oir | －Cungent dinection |
| nov | C．A |  |
| 109 | i0：\％ | ；Last binection |
| $6{ }^{6}$ | $i$ | ：THE SAE？ |
| di | 3055 |  |
| nov | A，¢ | iff ido，change dinectians |
| STA | 101\％ | ：HAES LAST DIR THE CUAPEMT UTR |
| LDA | $5308+1$ |  |
| Yi | the | ；Fif didecton blts |
| 374 | $\underline{56 a}+1$ |  |
| 307 | か：¢A |  |
| 3 P | biss |  |
| EnvStP： |  |  |
| Cati | Sapla | ：HAKE sure ramped iont |
| Y ${ }^{\text {A }}$ | A | ：SEEAR Drive active |
| Sid | ESVATV |  |
| IDA | OSCR＋1 |  |
| A．M？ | bF 27 | ；SHOT DOMA CLETS a DiRECTION |
| 374 | DSCRT！ |  |
| UUT | Pipti |  |
| נif | BMMDF |  |

bocal:

YRA A
STA BSCR+2
OUT PIPIG :SET FOR 10AHZ
にじ:
call ostga :GET data
LDA ERRO+2
AHI BA BAEX FAllt
dH2 BSLAD ;IF YES, RESET SYSTEA
IH PEPIB :GET DIRECTIUN
Ainl 6
:F1 4
J Liii ;HOVE EA
CF $\quad 2$
II CNCH :HONE COK
Ii FiFio : oft jand sin
4Hi brat : Strip EXthamous
ady B.A

$\because$ LGL4 ;if MOT
HVI L.l ; ASSGURE EXTEAD

| 125473 |  | nev | $A, B$ |  |
| :---: | :---: | :---: | :---: | :---: |
| des feit |  |  | 15i |  |
|  |  | 12 | COL2 | ：If Exican |
| H2EA 2 |  | UCR | l | get retaict |
| S2ES fejo |  | CPI | 331 |  |
| 220063035 |  | ，in 2 | 10：4 | If some dian shita |
| U62： |  |  |  |  |
| 3276 corsat |  | Catl | ［1760］ | ． |
| 12F379 |  | Mr | A．$L$ | ase flat |
| 92F4 57 |  |  | A |  |
| v2F5 3538 |  | WY | A，Bid | ：SET EMESE UGAT |
|  |  | M1 | C．0．6 | ；ESt linut slehi |
| 32F9 C2FFO2 |  | $\mathrm{in}^{2}$ | Lic3 | ；if Bot Extaid |
| 02Fi 3E4\％ |  | IV： | A，4\％ | ：BEt netasci light |
| Q 256 O |  | DiR | $i$ | ：SET aty loht blan |
| Wh 630 | しごす | 067 | MFTA | ：lignt on |
| 3131 3.12418 |  | 67 | nipcs |  |
| 2134 31 |  | DRA | $i$ |  |
| ：305 32248 |  | STA | 解CS |  |
| ejut 0315 |  | uni | Qupto | STAnt if mamkng |
|  |  | Ji | chanto |  |
| 10．4： |  |  |  |  |
|  |  | 12.4 | i |  |
| cise Eju？ |  | WT | 3 HPT 4 | ：cleas light |
|  |  | 43 | RHPCS |  |
|  |  | aini | 39 i | ；Sthl ELilik |
| －515 322418 |  | STA | AHPCS |  |
| ¢316 0318 |  | O6\％ | EabTC |  |
| cisla c50s |  | IH | F2PTA |  |
| ころ16 Éól |  | Ahi | siin | ：S7Ll If locat？ |
| ais cabiol |  | it | ich |  |
|  |  | CALL | Thiot | if mot，thaschton iff |
| 35.40596 |  | NAP | Sऽ\％ | ：EESET Sister |
| ich： |  |  |  |  |
| E327 Cofld |  | Qaid | ERKOH | dolsengage brale |
| i．32a 3AfAls |  | DEA | OSCR＋1 |  |
| 159 509\％ |  | Onl | ？ | ；SETUf Cl dia |
| －32\％5xply |  | STA | OSCR Cl |  |
| ：332 3 3\％ |  | 607 | PIPTA |  |
| 85．34 DE39 |  | IH | P2FT8 |  |
| i¢5 Eopl |  | 風 | 1 | ； 8 An？ |
| 3538 C，440］ |  | $\sqrt{2}$ | 6Hi |  |
| U3J8 EE15 |  | ivi | 6，17 | ：if Yes，ramp io lyotis |
| 859067478 |  | cail | ARPUP |  |
| CCUI： |  |  |  |  |
| d34 CaFeb |  | 6：06 | 23the | ； OCT DATA |
| \％${ }^{4}$ |  | A | $\therefore \mathrm{CPib}$ |  |
| djas toil |  | 4 H | 2 | ：Still noving Ch？ |
|  |  | is | ：Chl |  |
| E4， 1780 |  | Jhi | CSIEP | if MeT．Sun dout |
| 6ü̆： |  |  |  |  |
|  |  | 3，46 | Entob |  |
| 159\％ 3 9月18 |  | 2i． | OSCnt？ |  |
|  |  | \％u | 2 | actup con in |
| 15\％ 5 Sela |  | 3 OH | bSCR ${ }^{\text {a }}$ |  |
| 4 abs |  | in | Siti |  |
| 1504 454 |  | ： 4 | P2PTE |  |
| 0 aj Esp |  | ，\＄17 | 1 | ：\％Asp？ |


| 235E Cata ${ }^{3}$ |  | 32 | LCOL |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | nin | C， 17 |  |
| $0303 \mathrm{cotab4}$ |  | CALL | EAPbP |  |
| U0¢1： |  |  |  |  |
| 3360 Cateet |  | CALL | 8Stan | SEC ORA |
| $356 \%$ 1969 |  | It | Prets |  |
| E365 Es64 |  | AHI | 4 | gatlil moving cin |
| Stod Abedy |  | J2 | Cढ̈l |  |
|  | LSTJF： |  |  |  |
| 1375 inde |  | CAL！ |  |  |
| （13） 3 3idis |  | Len | $3 \mathrm{CH}+\mathrm{i}$ |  |
| 8376 E52 |  | ail | bith | dugh dfa clis a dia |
| 3378 320h18 |  | 37 | $0308+1$ |  |
|  |  | 6tit | PIPTA |  |
| 6370 61485 |  | C．ALl | Bakof |  |
|  |  | in | buat |  |



```
; SMG CaEc% STATUS
```

;
4183 Jatio
3300 57
$29704+154$

a30 ESE:
4385 : 44 man

33511204

ajo 60.012



T? ${ }^{5} 5$ EB
ajato comads
bSA9 CAFES5

33Af jaǵs18
JE2 EOEF
435432519
1337 JA1418
BJEA EGE:
~3BC 321413
2J5F 3 A CLC
302 37
3jC3 3 A解 19
33Co itatit

H10 IEAj
3]EV CAFPa
che EOt.
302 CAFFG3
33053.9308
33033.1410
8] $3: 3$ EODF
2300321415
CEE C3TE4

3JE5 FED3

| Chtum： | E4 | Extrion | ：it nho Exisid |
| :---: | :---: | :---: | :---: |
|  |  | 4 |  |
|  | 「 | Cumet |  |
|  | UA | EC： $0+2$ | － 0 ¢T STGG SIATOS |
|  | Min： | $i$ | ；THEAE TET？ |
| ChMRH： | LXI | E，1039 | ：16 SEC MAIT |
|  | 12 | EMotil |  |
|  | LXI | 9，303 | ：5 SEC MAIT |
|  | IH | FiPta |  |
|  | AH！ | iain | ：STHLI In LOCAL？ |
|  | 32 | 6H0H2 |  |
| Rugilt： | Lal | H， 460 Cl |  |
|  | SHLD | in $\mathrm{A}^{\text {P }}$ | ：SET Map fulnt |
|  | 3 CH |  |  |
|  | CALL | Hiner |  |
| RHGMIL： | CALl | DSTOR |  |
|  | Jăp | Riontl |  |
| R16612： | LDA | zarot？ | ；RESET ilheolj fadit |
|  | Ahl | DEFA |  |
|  | STA | EREO＋1 |  |
|  | 18i | faille | ；Adoto for hay 236 |
|  | SNI | BEF： |  |
|  | Stid | FADL＋2 |  |
|  | LOA | ExTrig | ：Get exteno flat |
|  | ORA | A |  |
|  | 6A | ECnot |  |
|  | 12 | anchis | ；if hat exteho |
|  | A ${ }^{\text {P }}$ | 3 |  |
|  | Cl | ！ |  |
|  | J | Finori4 |  |
|  | 成： | 1 |  |
|  | $\because$ | Fifinit |  |
|  | 5 ST | ECMOT |  |
|  | （id | FADIt | ：＋Abse for mit 236 |
|  | rinl | د6\％ |  |
|  | Si | $\therefore$ Alit 2 |  |
|  | vis | CHERH？ |  |
| SHEXI | A ${ }^{\text {a }}$ | j |  |
|  | iPI | j |  |


|  |  | J2 | Rhonit |  |
| :---: | :---: | :---: | :---: | :---: |
| BuEA E6t2 |  | AHI | E |  |
| G3EC CAFFos |  | ה | manls |  |
| gief 3Ex |  | W11 | 3, 2 |  |
| B75! 320818 |  | STA | ECHO+ |  |
|  |  | 10. | FAdL 2 |  |
| buF7 Eejr |  | Ani | B0F: |  |
| 3359 3214:3 |  | STA | F.34l? |  |
| 3ifi c 31464 |  | vip | COXPH2 |  |
| \% 55 fot | Shan't: | dk? | 4 |  |
| 3401329818 |  | 8TA | EHTH |  |
| 7494 1.1418 |  | 10. | $5 \mathrm{~A} 4 \times 2$ |  |
| 54378623 |  | dit | 2 n |  |
| 240 324:3 |  | 3T4 | F.3042 |  |
| its 45 |  | Yef | $\stackrel{1}{ }$ |  |
| 5483248 |  | STA |  |  |
| 24te 48 | Cument | PRA | 4 |  |
| A411 210 c |  | STA | Exte | ; CLEAR FLAGS |
| :4:4 3.9513 |  | 10. | Ensilit |  |
| $3{ }^{17}$ E07\% |  | A ${ }^{\text {a }}$ | Pra |  |
| 9449 320518 |  | 34 | Exat | :ClEAR RCTIVE |
|  |  | 16. | $036 \mathrm{C}+1$ |  |
| joif Estr |  | A.15 | mich |  |
| 3421 32648 |  | Sid | BSCRt | ituan dfa |
|  |  | WT | Stitis |  |
|  |  | 60. | nibcha |  |
| \%49 ${ }^{\text {a }}$ ? |  | 0? ${ }^{\text {a }}$ | $\stackrel{1}{ }$ |  |
| 342, incese |  | 12 | 363s | :if ibi |
| 34203 30518 |  | U0A | ERECt 2 |  |
|  |  | ORI | Eib |  |
| i432 32asis |  | STA | Erate | : ASSTME ACTIVE |
| 3435344513 |  | LSA | futacad |  |
| 3433 Eot |  | A.1 | 1 |  |
| 249i5 |  | PUSH | 3 |  |
| 3458 C |  | PYS: | E |  |
| 243C 55 |  | PUSH | 0 |  |
| 84J0 5 |  | FUSH | H | :SET STACK UP |
| 34.3E 131188 |  | Jif | Exinti |  |
| 9441 3.6818 | CHMRET: | LEA | ECHOT 2 | ;att nilig status |
| [444 E002 |  | Ainl | 2 | ;GERE YET? |
| 3446 630601 |  | WF | CHEAK! |  |

## 



Snfu:

|  | [JA | RABP |  |
| :---: | :---: | :---: | :---: |
| Ci4c ai | 0, ${ }^{\text {A }}$ | 4 | 3anpeo ip? |
| arib is | P\%2 |  | SASTGEM if kAffed uf |
| :dis 2: | Cia |  |  |
| $34453+23$ | STi. | Raxp | ;35 Prue |
|  | LAI | H, CKISt | ; jTatt of ande thite |
| -45 58 | iia | $\stackrel{A}{4}$ | icin anap step |
| Priti: |  |  |  |
| 1458 :20:5 | STA | Siti | datic mitst ste? |
| j45: $\mathrm{sin}^{\text {a }}$ | Sil | 5, \% |  |
| : 486 | As\% | +i, 1 | :STEP SPEE |
| :45C 32i8is | Si. | $0 \mathrm{Sa}^{2} \mathrm{R}+3$ |  |

3450301

340160964
946405
Bacs Coctit
246823
446 302518 $\therefore 40 \mathrm{C} 3 \mathrm{C}$
345059
CHOE C．5034 e471 C9

347234913
14755 57
$\$ 4766$
64774
3473：24715
447 B itaj88
347E 3 A 2613 चंप्रो or
34822060
$3454 \mathrm{i}^{\circ}$
34536
340645

$34577 E$
$\therefore 43.435518$
2430 ampl

1926
$\therefore 42 \mathrm{~B} 2 \mathrm{Bat}$

『47 8
$\div 40625794$
349819

349C CDFEGS
145F 3R46：8
3428 A
44A CATCD
34．5 AF 3447324618
d44A C9
4.45213725

144E 222013
548120649
8454 Cectus
2487 ：ATA18
b43a fusu
$34 \overline{\mathrm{O}} \mathrm{C}$ C 32 Ba 1 G
3455039

|  | CuT | Pifis | ：EREOUTE It |
| :---: | :---: | :---: | :---: |
| Mrip2： |  |  |  |
|  | CALL | Hios | ；üdt fôr hatenijpt |
|  | OCn | 5 |  |
|  | jitz | RPip 2 |  |
|  | ini | ： | ：HEXT PREAUEHCY |
|  | 20． | STEP |  |
|  | inf | A | ：hexp Sitp |
|  | CHP | c | －DONE THE HEXEER UF SEPSS TO DO？ |
|  | 3.12 | SPWPI |  |
|  | 68T |  | ：ir yes |
| RHpgit： |  |  |  |
|  | OA | nAñ |  |
|  | ORA | A | PRATPED ECH？ |
|  | RE |  | ；RETUAK If anate dona |
|  | WeA | A |  |
|  | STA | RAMP | ：SET RAMP FALSE |
|  | CXI | $0.0 火 18 \%$ | ：PoInt to ranp tagie |
|  | LJA | STEF | ；aEt STEP COUNT |
|  | 3iv | L．A |  |
|  | ה！ | 2． 0 |  |
|  | 94i | 0 | ；GOR Pbinter |
|  | 1\％ | 4 |  |
|  | 6 | $\therefore$ BA |  |
| PDit： |  |  |  |
|  | Wiv | 3.12 | ： H AT 48 PULSES |
|  | 30 y | A，月 | ：AET FREdEEACY |
|  | 9i．i | Cickt 2 |  |
|  | bit | PIFTG | ：START IT |
| SPEM： |  |  |  |
|  | CALL | 3165 |  |
|  | DCS | 3 |  |
|  | 3in2 | Rfon？ |  |
|  | DCA | $\stackrel{1}{4}$ | ：HEXT FREALEHCY |
|  | UCR | C | ；DOHE STEPPIHG？ |
|  | JH2 | RPOHI |  |
|  | RET |  | －lf yes |
| WTS： |  |  |  |
|  | CALL | USTOR | ：OET JATA |
|  | LDA | ORVPLS |  |
|  | ORA | A | ；Ihierific |
|  | 12 | H105 |  |
|  | XRA | A | ilf yes，cla flag a metuky |
|  | STA | DRVPLS |  |
|  | $\overline{R E T}$ |  |  |


－TRAGSLATOR a ERAME COATRAL
Tous：

SHLD TAGF
（A：M，ide filie SEC
chle tiaER ；StaRt that


STA OSCR＋1 ：UFOATE LAGGE
OUT flPTA ；DO IT

7ne：


54CE 2137等5
840122038
3474216409
vi407 Comers
34DA 3.3 Al 18
Sad E0tF
$\therefore 405$ 220AG



de：Eold
$34 E 8$ C2E434



0514214505
351722018
a518 21646
3510 COO 25

852 E 0 F
4525320418
2503030 y

550 628
Ex Eow
351162.405

454 65E5
j5．3：jañ 15

TMOD：

3RTOH：

SHES TAR
al HiNO ：OTE SEC
CABL THER
LES DSCR 1
IRI GEH ：SET SRAKE DISERGAGE BIT
STA ESCK＋l
Qut PIPTA ；DISE：GAGE
24001：
GALL DETOR
in mpide
ANI 4 ；READY YET
$32 \quad 38 \mathrm{KOL}$
JHP TSTOP ：MES．STOP TIHER \＆RET
B．ané：
UZI BREBRK ：ERORA ADOR
SHLT TGẠP

CALL Thán
10A D $\quad$ SCR 1
Ai：1 Difí ；OESET BIT
STA DSCR +1
OUT pIFTA ；EhgAGE begke
304F1：
CALL DSTOR
In ABDCR
AHi 4 ：EMESGES IET
3 KZ ERFI
iap isur



|  | CALL | Disten |  |
| :---: | :---: | :---: | :---: |
|  | iH | PIPTA |  |
|  | 4.5 | ：${ }^{\text {\％}}$ | IS IT OH MET |
|  | 12 | T20\％ |  |
|  | 3． F | TSTGF |  |
| Tinoti |  |  |  |
|  | （XI | H．ETAM |  |
|  | SHLD | Tap |  |
|  | EX | H，Let | ：ane Sec |
|  | CALL | THEA |  |
|  | LPA | Dick＋1 |  |
|  | A 1 | T： | ：AESET Trans foner att |
|  | STA | 2SCR +1 |  |
|  | 305 | flita | ；ibit aff |
| Troff： |  |  |  |
|  | init | 35008 |  |
|  | ！${ }^{\text {a }}$ | fiPIA |  |
|  | A ${ }^{\text {a }}$ | int | ；15 It Off Yet |
|  | 919 | Thoff |  |
|  | Jat | Sotop | dr ies，stof linea a metuni |
| 3R\％ou： |  |  |  |
|  | UX | 4．20nin |  |
|  | SHE | TiAp |  |
|  | （1） | H，ivo | ：OnE SEC |
|  | Cial | Ilabr |  |
|  | LJd | DSCH2 |  |
|  | int | $4{ }^{4}$ | ；SET brake disergage bit |
|  | S74 | CSCat |  |
|  | Qht | PIPTA | －DSETGAGE |
| 8010： |  |  |  |
|  | Cill | OSTOR |  |
|  | IH | mfoce |  |
|  | AM1 | 4 | ：READY YET |
|  | 32 | 3R101 |  |
|  |  | TSTOP | ：YES．STOP THER \＆RET |
| Exiout： |  |  |  |
|  | U11 | B．EBAK | ：ERROA ADOR |
|  | SH6 | Thin |  |
|  | LXI | 81．104 | ：0HE SEC |
|  | CALl | T1能的 |  |
|  | 10． | DSCR Cl |  |
|  | Aisl | 吘年 | AESET BIT |
|  | STA | DSCR＋i |  |
|  | 001 | PIFTA | ：ehgate diake |
| 3PMF1： |  |  |  |
|  | iAll | Disios |  |
|  | IH | AFOTR |  |
|  | 9ii | 4 | EEnGGEE AET |
|  | $3 \%$ | EAF！ |  |
|  | is | 3iur |  |

ETRN：ithinslator

| 353A E67F |  | ลial | 750 | :AESET FOMER SIT |
| :---: | :---: | :---: | :---: | :---: |
|  |  | S7. | OSCR +1 |  |
| pisuf Djed |  | 001 | PIPTA | ;idali OFF |
| 0541510218 |  | LiA | POSOL2 |  |
| 5544 Fois |  | On! | 13: | : SET FAijlt bit |
| 5546326218 |  |  | Pustat |  |
| 654\% 32 i 218 |  | S1A | Fitl |  |
| 4540 i.3250 |  | , 能 | ASCHO | : EESET SYSTE: |
|  | ESRK: |  |  | S 3 RARE |
| 9545 3Adal8 |  | LJA | OSCRTI |  |
| :352 E08F |  |  | Q $\mathrm{BFF}_{5}$ | : AESET 519 |
| 1554 320.418 |  | SiA | OSCR +1 |  |
| 0557036 |  | Obit | PIPTA | : Enotog brake |
| 4559 : 49218 |  | OH | Pesurz |  |
| 85508584 |  | CRi | 94i | : SEf fallt bit |
| 855E 320218 |  | S14 | PJCot2 |  |
| 6561312128 |  | STA | FAML | ;*ADOED FOR HOX 236 |
| 356433561 |  |  | SSCHD | ? RESET STSTEA $^{\text {a }}$ |
|  | ¢3nv: |  |  | :5R1VE |
|  |  | W1 | SP. 190 OH | ;RESET Stack |
| E6a 241418 |  | 6.4 | Fiblt ${ }^{\text {a }}$ | ;*S0DED FIR HWX 23o |
| 3500 Fsoi |  | 65 | : ${ }^{\text {\% }}$ | : SET ERIVE falli dit |
| 2505 :214:3 |  | 3i.4 | Finlta |  |
|  |  | Li. ${ }^{\text {d }}$ | glep |  |
| 35751504 |  | ifl | 4 | CGECOR AAAP STEF |
| 25: [4045 |  | j | Env: | ; jtef ( joghz, stiten heset |
| Oif jef: |  | IVI | A, iRUE |  |
| 357632418 |  | STA | GETIT | iset get lit there solutidu |
| SE7F ine 935 |  | CALL | TET8 | :STOP Tltier ako dotve |
|  |  | CALL | EfbSt |  |
| 35645 |  | ASA | A | :Clent nicl for ehtay |
| :36 2367e |  | jap | 5ivlin | ; lito diviht |
|  | E3RV1: |  |  |  |
| 153. 3 Ab21s |  | iDA | P0SD 2 | :SET ORIVE FAMLT |
| 358 C F62 |  | ORI | 26 H |  |
| \$5st 329218 |  | SIA | POSOt2 |  |
| 3591321218 |  | SiA | Phiji | ; PADDED FOR BiJ 236 |
| 5594632541 |  | inf | RSCHD |  |

## 

: sügroutllies

| Vector: |  | : AL $_{\text {deSTIHATIO }}$ |
| :---: | :---: | :---: |
| CALL | Singer | : DEFFOSITIOH |
| 42 |  | : if $\mathrm{HL}=\mathrm{B}$ |
| LXI | 1. - - 9 anh |  |
| DAD | 0 |  |
| JWC | VEC1 |  |
| \% 3 |  |  |
| CA |  | :CHAMGE DIPECTOM |
| 9iv | 6.4 |  |
| CALL | L\#p: |  |
| Pect: |  |  |
| 4.1 | $0.2080 \%$ |  |
| 8.10 | 0 |  |
| SOV | A, $i$ |  |
| ORA | \% | Cobinctlon, s is posulive |
| RET |  | : SERO flag sei fin hlei |


|  | RAHEES: |  |  |
| :---: | :---: | :---: | :---: |
| 35 A5 in | nov | A, 1 |  |
| ¢530 31 | Sis 3 | E |  |
| 9531 of | H0i | 6.4 |  |
| -5b2 70 | nut | A, ${ }^{19}$ |  |
| ¢5s3 9 94 | 553 | 0 |  |
| 2594 67 | \% ${ }^{\text {\% }}$ | in, A |  |
|  | H1 | 6.3 | : $\bar{c}=1$ |
| 2507 f2eds | JP | ก ¢0R1 |  |
| 355A ${ }^{\text {a }}$ | UCO | $i$ |  |
| 356360185 | CALL | CAPML |  |
| Ratit: |  |  |  |
| 355870 | H 04 | A. 1 |  |
| 8585 E4 | 0 Ra | H |  |
| 950, 0 | AET |  | $\therefore \therefore=0+01 R$ |
| CHPHL: |  |  | THO'S COMPLIAEAT HL |
| blit 7 | noti | P, |  |
| W5C2 ${ }^{\text {a }}$ | Cas |  |  |
| Citi 6 | Hiv | 4. 4 |  |
| : 50475 | 能 | 4.l |  |
| Bisus if | itA |  |  |
| -306 6 | 30 V | - 1.4 |  |
| 05073 | ini | : |  |
| S68 6 | REI |  |  |
|  | CLOE: |  | ; HL ( 1 |
| 356976 | 401 | A. ${ }^{\text {a }}$ |  |
| F5C. 57 | 38.8 | $\beta$ |  |
| j5cs Cb | nit |  |  |
| 35iciol | nob | A. $i$ |  |
|  | Cfi | 3 |  |
| What 0 | RET |  | ;CARSY SET If less that 4 |
| TinEA: |  |  |  |
| 2500 3ECi | Wil | A, ACF: | jehable that after count loaded |
| 85020.318 | OUT | ? $C_{\text {Cob }}$ |  |
| 950470 | HOH | A, $i$ | ;it contalh ther period |
| 55aj 0310 | Qut | 11420 |  |
| $9507 \pi$ | Hov | A, ${ }^{\text {d }}$ |  |
| E50S Eobs | AnI | 3FH |  |
| -93A fosid | An | $8{ }^{3}$ |  |
| SEnc jiso | $04 T$ | Thnt |  |
| 3505 5h2413 | L9A | RHPCS |  |
| ¢5E1 Fotis | QRI | $13 \%$ | Sty for leatz CLK |
| 25:3 32248 | STA | StFCS |  |
| 95E 0318 | 037 | EHFTC | : START IT |
| 8580 | Ret |  |  |
| TiTap: |  |  |  |
|  | Lif | AnPCS |  |
| jFEC EOCF | : $\mathrm{Hi}^{\text {I }}$ | W6: | dibat Clk Off |
| UFEE J2i4l8 | Oi | ajos |  |
| DF¢ 036 | Mis | THPTS |  |
| 26f3 je4f | Bn! | A. + Fin | istor cuditer |
| 05550315 | 031 | 60.80 |  |
|  | LXi | B, Ba |  |
| c5fa 220:3 | 376 | :\%AF | : Shoulo takr happeit |
| ISfo is | RET |  |  |


|  | ;*************************************** |  |  |
| :---: | :---: | :---: | :---: |
|  | : APEX A CONT | lies da | A GATHERING \& FORKATTILG |
|  | OSTAR: |  |  |
| d5fE 55 | fus: | Fin | ; SAME Reolsters |
| j5FF C5 | P1/ | 5 |  |
| rioji 05 | P3S\% | 0 |  |
| Pode 5 | \% 3 HW | \% |  |
| nich ${ }^{\text {a }}$ | , 1RA | A |  |
| ROQ3 0350 | UbT | Aipif | - Request mpex bata a clemr shlf heolsters |
| 3065 dobi | : 17 | 8.18 | : DITA SHOULD SHCH UP In TEA LGAPS |
|  | UP1: |  |  |
| 36378829 | I\# | fo3: |  |
| Boty Ency | An: | \% 6 |  |
| Tod3 PEse | C?I | 2) ${ }^{\text {a }}$ | : LOJA For this patien |
|  | $\sqrt{2}$ | 1.2 |  |
| 30189 | 060 | E |  |
| Sil cinde | 112 | LPI |  |
| 8014 548518 | Lid | Esinot2 |  |
| 86:17008 | int | Bis | SET APEM FAULT 8 OT |
| roty 30518 | STA: | Ethot2 |  |
| doit Eoit | AN: | [Ein | ¢ADOED FOR BUX 230 |
| cols 47 | SVV | E, ${ }^{\text {a }}$ |  |
| Solf Jalite | L0A | Fabi +2 |  |
| \$022 52 | $0 \mathrm{~A} A$ | b |  |
| 80.33 321418 | 51.4 | FAULT 2 |  |
| $\therefore 326030480$ | dif | [P3 | : ondp apex data gathering |
|  | iF2: |  |  |
| Bin29 3ADS18 | 19 A | ERapot |  |
| dozt Eof? | Sil | 6F7\% | ;hEset faill bit |
| Ste 3icisis | STA | EMPO+2 |  |
| 2t.31 3A148 | LUA | Fädic | ;*NDOED FOR Hidx 236 |
| geju E6Ft | AHI | bF7\% |  |
| Ctis 31418 | STA |  |  |
| 26.398929 | If | F日SL | :POSITION LON BYTE |
| Poj8 of | $10 \%$ | C.A |  |
| de 365 | Hov | $E, A$ |  |
| 26.j2 0829 | 1\% | push |  |
| 20.3F Eojf | A. 1 | 3F\% | : A ASK FOR 14 BIT |
| 104167 | 301 | \%, A |  |
| 5042 37 | dill | V, ${ }^{\text {a }}$ |  |
| ¢643221818 | SHLJ | pasth | :STORE UHSIGUED FOSITIOM |
| 9540 EES\% | 2 LI | $2 H$ | :FLiP Sigh bit |
| 364 67 | nor | B.A |  |
| doty 2iblds | SHLD | POSD | :store sighed pistlok |
| Fictic 2AIE18 | [ CLi i | ATVC:40 | :CET NLTIVE COAndidd |
| 364F 60775 | CALL | -ECTOR | : DIstance frok curasht to hen positioh |
| 265820318 | SHLO | Eako | ; SHOR DISTARCE |
| tese 7 | nov | A, i |  |
| 1650 32473 | STA | 5\% | STOAE HEM DIRECTIOA |
| 350 Ce24 | ir | VEl | :AET LESNITH OATA |
|  | iRi | cin | flle 3ion 3il |
| cose of | Sis | i. A | : Hove into hl |
|  | H2: | $r,{ }^{\text {d }}$ |  |
| fook | 2 Ac | H |  |
| tosi 2 | BAD | n |  |
| Sood 29 | CAD | i |  |


| 266329 | Did | \＃ |  |
| :---: | :---: | :---: | :---: |
| 3604220018 | 3 HLj | ADCR | Shtil mesidit |
| 1667 9828 | in | APDCR | ：üt mpea discretes |
| 8069 E697 | A ${ }^{\text {I }}$ | 975 |  |
| 206532 Et 5 | STA | 200ft？ | ：Stidin Then |
| doos Estu | Ani | 出 3 H | ： ARSk Llntis |
| F0\％ 47 | noi | B．A |  |
| \％071 3A．318 | LDA | Pusid 2 | ；det lamge |
| doty Cobi | AH1 | UFCH | ineset linlts |
|  | gRa | 5 | ：goka Meio mage |
| 1677 312288 | STA | 3050 | ：डibiil IT |
| 7679 4628 | in | APDC？ |  |
| Diot Sera | A3： | $\dot{i}+$ | ；emake ine |
| coit Pa | Rac |  | ：SHIFT fon display |
| 26754 | H0\％ | B，4 |  |
| qued 3A2318 | 6if | MnPss | ：EET Infog |
| ceds Eor！ | niti | 414 | －RESET SIT |
| 50058 | $0 \cdot \mathrm{~A}$ | E | ：FOnh heu indee |
| 163647 | B $\mathrm{H}^{2}$ | 5.4 |  |
| 15．37 2325 | 13 | 4isaj | ：GET KIng Info |
| \％68 EEis | 27： | 5ib | ；FLIP EITS |
| 46938505 | Ain！ | cien | ：SThip |
| 503087 | －くLic |  |  |
| 305687 | KLC |  |  |
| 308545 | now | C．A |  |
| 6093.8 .6318 | 10A | ECHO＋2 |  |
| －6\％3 Eovi | Minl | 4 |  |
| 359551 | ORA | $i$ |  |
| 90\％ 320818 | 514 | ECHOT？ |  |
| $109 \%$ | H0V | A，C |  |
| 36 A 47 | $2 i 6$ |  |  |
| 36987 | RLC |  |  |
|  | ORA | \％ |  |
| \＄600 323318 | STA | ATPBS |  |
|  | OUT | anpls | ；VISPLAil dit |
| S6R2 052C | In | AnAL | ；aPEX ANALOG LOM BYTE |
| colt of | nov | L，A |  |
| B6月5 620 | in | A．AA | ：APEX Ahalug high bite |
| duA7 EEQ2 | XRI | 2 | ；FIP SIGH 817 |
|  | Hol | 8，A | a Shive resitit in b |
| coniteic | AH1 | 1EH |  |
| desic 97 | ．40D | A | ；SHIFT LEFT OHCE |
| ECAD 67 | nov | H，A | ；SAVE LN |
| 施呙 78 | H0\％ | A． 6 | ；GEt e back |
|  | dini | j |  |
| 208 54 | 069 | it | ；emph Hen higa byte hith extenoed slou |
| \％os？\％： | Hoy | H．i | ：PUT IT IN H |
| mes as | CAD | ： | astift buce hore to doun 12 biy malog |
| \＃684 Eă | Namg |  | Sidive If DE |
| te5j Es 38 | AHI | $35 \%$ | ：ASA THE WUX |
| －cos？ | 3 SC |  | ：$/ 4$ |
| B258 95 | 2ric |  |  |
| at 69 of | His | 1，${ }^{\text {A }}$ | SETGi B |
| S6EA 2000 | W1： | H．${ }^{\text {d }}$ |  |
| 大̇3C Jlacls | ixl | 3．AFATA | ：GEt APEX analou table mota |
| 3685 0 | 8 AL | B | ；FORM IHDEX |
| soit 73 | Sis | A， | ：EAE APEX AMatoo ： 17 |
| 306123 | ini | $\stackrel{H}{4}$ |  |
| 36C： 72 | dot | 7， 0 |  |




3715 :30
-76 : ancta
$\therefore 77^{7} 5$
ज1A CJEDS
Tia 3 ? 519
©id fold
372? 32515
$37: 5141413$
272 E013
: inientat poutians



push a cin othiojor aEt
CALL TSTOAP :STOF i:ñER

on! ion ;SET Tiñ-allt falli b!t

A.MI 184


BIE 47
0795 E6n7

179273
$379]$ E0．38
5795 FE2S
\＄97 CATME
agia FEs
PDC thoje
B79F 54218

中1A4 32018
4TA7 32120
47nis C3700s
37 A5 083
BiAF

678287
215：EOS：
ST85 EET
97857
17535
3759865
0756
：T3C 37
© $750 \mathrm{CADFg7}$
B7CD FE！

dTCS FED
『 7 CT CAEE 7
かった FEgo
2「Cん CAFO日
चTCF 21518
970279
375321718
0706637068
3709224618
B7DC E8
\＄700221Cis
gite is
bit： 323518
1754637068
478773

37E（37088
JJE Tis

3752037098
EXFRG：
1755 5
sifo is
E575 05
875 E
 DFC 37

ChDAd：

DRVCHD：

CADEST：

MAPSET：

GTRTC：

Hov S．A ：She la a
skI b7H inson sid

nov A． 5 ：CEI E EACK

CTI 28H

GI $10:$
12 DisRg ad UAiA AEUEST
LUA POSD 2

STA PVSD＋2
cta Fabl ；adDOLD fön hur a．3o
HMP SKIP ；ERROR

H H l， A

nov A，A



nati E，L
Wil b，TruE

Ein A

CPI 1
a CODAST ：SVETE RESET
CPI 2
IG HAPSET ：HAP REAUEST
C21 6
JU EKTATC ：RIHG EXTEMDRETRACT

Hov A．C
Sis hiult？
JHP SKIP ；ABD LEAVE
SHLD ECHO ；SHOM RECEDVD COAHAHD
KCho

nev A， 8
sta darabe ；atoshlon request dictive
jif SKIP
Mov A．$B$
STA hejcit areset shaten mequest
Jal Sa！f

AOV i．8
STA HEREG ：hiñ NEDJEST
JHP Skip
ABSH 3
Pひ3： 3
PESH 0
戸うごィ
STA MAFFEO ：HAR RODE？
ORA $A$

| bity 2270 is | 132 | sir | if in haptline |
| :---: | :---: | :---: | :---: |
| 3680 343518 | 60A | En¢ ${ }^{\text {a }}$ +2 | :ring comand active? |
| 186347 | nol | E, ${ }^{\text {\% }}$ | :SNE 14 6 |
| 9804 E68i | Ani | Stir |  |
| 9680 こ24588 | 362 | EXTRT2 | if atilve |
| 63s9 78 | nis | 4, 8 | ;aESTDE A |
| 683A F689 | 0is | 3.4 | :SET AIHO ACTIVE |
| +88ic 3.0813 | 31\% | ENOT2 |  |
| 06978 | 301 | 4,1 | ;OET Lis |
| visie 67 | DRA | f | :EXTE D ? |
| 2811 CA329 | EMTRT: 12 | 2EHit | if hot \%etaact |
| s8it 3 Amsis | I0A | ECH0t2 | :GET PGSITIOH |
|  | A ${ }^{\text {a }}$ | $i$ | TGERE? |
| - ${ }^{\text {a }}$ 19 3EF5 | Mil |  | ; SET ExTEMD flag |
| $3815.32+18$ | 374 | EXTFió |  |
| 3815 C2709 | JHi | Ship |  |
| ¢021 54.418 | Lisi | Uscha | :GET OLSCRETES |
| 1324 Fol0 | ORI | $15^{3} \mathrm{H}$ |  |
| 4925 J23A15 | STA | iscin 1 | :UfUATE DiStretes |
| 8829 9308 | OUT | PIETA | :START HOTOR again |
| 3025 | VRA | A |  |
| 632C 324518 | 31A | 2h60 ${ }^{\text {a }}$ |  |
| tot c3iocs | Jip | Silf |  |
| 38323 Aisis | EEACT: lda | 60\%0+2 | :OET POSLITIOH |
| 8835 E062 | An! | 2 |  |
| 4837 3593 | WHI | A, | :SET AETEACT FLAG |
| 163 324018 | STA | EXTFLO |  |
| 8̇3C C270s? | Jhi | SkIP |  |
| \%63F 324518 | STA | RNocat | -cear secono comanno fino |
| 384: 3APALS | Le. | $35 \mathrm{CS}+1$ | ; Get dischetes |
| 3845 ¢624 | CN! | 23 H |  |
| Sidi 32amis | STA | OSCR +1 | :3pdate discretes |
| 8044 03ie | OUt | FiPIA | ; STAnt motor mulia |
| -84C C.370)s | נHP | 3nlt |  |
| 964F JA4Cis | EXRT2: IDA | ExTfin |  |
| 3852 E501 | An! | 1 |  |
| 085480 | CAP | $l$ |  |
| 1955 Ca7008 | J2 | SKIP |  |
| \$858 70 | 801 | $A_{1} L$ | ;GET LSA |
| 0359 fồ2 | ORI | 2 | ;SET FEAG |
| * 055 S 2693 | An! | 3 |  |
| 5650324818 | STA | RMGCHD | :SET SECond conataid flag |
| 9800 C37208 | JP | SKip |  |
|  | ITAES: |  |  |
| 463 79 | H0\% | A, C | foEt AJX ADOR |
| crost FE35 | CP! | 5 |  |
| 3006 620509 | 3.42 | ERù | if hot, jkip the folioniho |
| 36\% 21:A18 | (\%) | A. AniAhi | ;POMT To nija counten |
| 530634 | 14\% | 3 | : \%hasabht counter |
|  | NXAT: |  |  |
| 200507 | 8 C |  | citur fon hidexinu. j * a |
| SEE 8: | 408 | $i$ |  |
| 3so of | not | :, $\mathrm{i}^{\text {d }}$ | :H2 POMTS TO PALUE |
| 4572 3615 | BhI | : 2 , 6 |  |
| 5672 78 | nu | A. ${ }^{\text {a }}$ | :cet uf the three outs fûa ujtpuit |
| 13730.332 | 007 | EDDTI |  |
| 437523 | 1 A 2 | i |  |
| E976 76 | nov | A, ${ }^{\text {d }}$ |  |
| :367 D335 | 004 | -3972 |  |



M7, Model E F/R Controller

| A13740208 | Top Bill of Materiels |
| :---: | :---: |
| D13740P16 | Top Assembly Drawing |
| D13740S07 L | Logic Schematic |
| A13740W06 | Master Wire List |
| A13740W07 Har | Hand Wire List |
| A13740W08 | Machine Wire List |
| A13740W09 | Connector Wire List |
| A13740P12 | IC Module Ass'y (IC location matrix) |
| C13740M07 F | Front Panel |
| C13740AA09 | Front Panel Silk Screen Artwork |
| C13740M21 | Rear Panel |
| C13720M53 1 | 16 Pin Logic Connector Board |
| C13720M54 | Universal Logic Connector Board |
| B1 3050M03 S | Support Bar, Top \& Bottom |
| B1 3720M15-1, | ,-2 Rail Modification, Top \& Bottom |
| C13720M17 I | Insulated Spacer |
| B13720M49 S | Side Panel Insulation |
| C13720M50 M | Modified Side Panel |
| C13050M22-1 | Perforated Cover |
| B13050M04 | Guide Block |
| M08 Model C, F | F/R Power Supply |
| A13740211 | Top Bill of Materiels |
| D1 3740P18 | Top Assembly Drawing |
| A13740W11 | Wire List |
| D13740S11 | Schematic Diagram |
| C13740M35 | Front Panel |
| C13740M36 | Rear Panel |
| C13740M37 | Mounting Bars, Top \& Bottom |
| B13740P19 | Front Panel PCB Assembly Dwg |
| A13740Z12 | Front Panel PCB Bill of Materiels |
| B13740AB02 | Front Panel Display PCB Artwork |
| C13740M26 | Front Panel PCB Drill Dwg |
| B13740M38 | PS2 Mounting Bracket, Version 1 |
| B1 3740M39 | PS2 Mounting Bracket, Version 2, for LND-Z-152 |
| C13740AA02 | Front Panel Silkscreen Artwork |
| C13740AA03 | Rear Panel Silkscreen Artwork |
| B1 3050MO4 | Guide Block |
| Model B, Apex Interface Unit |  |
| A13740Z09 | Top Bill of Materiels |
| D13740P15 | Top Assembly Drawing |
| A13740W02 | Master Wire List |
| A13740W03 | Hand Wire List |
| A13740W04 | Machine Wire List |
| A13740W05 | Connector Wire List |
| D13740S08 | Logic Schematic |
| C13740M23 | Logic Connector Board Modification |
| C13720M53 | Logic Connector Board |


| A13740P11 | IC Module Ass'y (IC Location Matrix) |
| :--- | :--- |
| C13740P13 | Front Panel PCB Assembly |
| A13740206 | Front Panel PCB Bill of Materiels |
| B13740AB01 | Front Panel Display PCB Artwork |
| A13740M24 | Front Panel PCB Drill Drawing |
| D13740M06 | Front Panel |
| C13740AA07 | Front Panel Silk Screen Artwork |
| C13740M40 | Rear Panel |
| C13740P17 | S/D Converter PCB Assembly |
| C13740AB04 | S/D Converter Artwork |
| C13740M31 | S/D Converter Drill Drawing |
| C13740M17 | Insulated Spacer |
| C13050M03 | Support Bar, Top \& Bottom |
| B13720M15-1, | Rail Modification, Top \& Bottom |
| C13050M22-1 | Perforated Cover |
| C13720M50 | Side Cover |
| C13720M49 | Side Cover Insulation |
| B13722M05 | Display Filter \& Polarized Screen |
| A13740AD03 | Front Panel Display Legend |
| B13050M04 | Guide Block |

M22 Model B, F/R Switching Module

A13740Z13 Top Bill Of Materiels
D13740P20 Top Assembly Drawing
Ci3740S10 F/R Switching Module Schematic Diagram
A13740W12 F/R Switching Wire List
C13740M41 Support Bar, Top \& Bottom
C13740M32 Front Panel
C13740AA04 Front Panel Silkscreen Artwork
C13740M29 Rear Panel
C13740M33 Synchro Excitor Chassis
C13740M34 Brake Controller Mounting Bracket
D13740AB06 Synchro Excitor PCB Artwork
D13740M43 Synchro Excitor PCB Drill Drill Drawing
D13740P21 Synchro Excitor PCB Assembly Drawing

## Bin Assembly

A13740W10
A1 3740 Z 15
D1 3050M08
B1 3050M59
B1 3050M26
C1 3740M04
D1 3740D01
C1 3740 M 16
C 13740 M 15
C1 3740M17
C13740M14
C 13740 M 11
B1 3740M28
C1 3050M54
B1 3050 M 47
Bl 3740M1 Z

F/R System E, Bin Assembly \& Wire List
F/R System E, Bin Assembly Top Bill of Materiels
Bin Assembly
42/34 Bin Rear Panel
42 (single conn only) Bin Rear Panel
Fan Mounting Bracket
F/R Bin Wiring Geometry
Bin W I/O Panel Mtg Brkt, Left
Bin W I/O Panel Mtg Brkt, Right
Bin W Rear Protective Shield
Bin W Top Protective Shield
Bin W I/O Panel
Cable Clamp, Cmd/Data I/O Conn
Bin Rear Filler Panel
Bin Front Filler Panel, 2 - 4 Wide
Connector Lock Plate

F/R System Cabling
B13740W10 F/R System Model E, Cabling Structure
B13740P22 F/R Mount Temp Probe Assembly
B1 3740P42 F/R Mount Temp Probe Base Plate
D13740S16 Wiring Diagram Prime Focus Box, Ant 12 Only
D13740S17 Wiring Diagram Prime Focus Bos, Ant 20-Up
B13740W10 Simplified Wiring Diagram Prime Focus Box, Ant 20 - Up
D9890062 Anemometer System
Translator Drawings
B13740S01 Superior Electric HTR1008 \& HTR 1500 Translator Schematic
206031 Superior Electric HTR1008 Schematic \& Connection
Diagram
EM1 85201
Superior Electric HTR1500 Schematic \& Connection Diagram
D13740P02 TM600 Translator Slide Assembly
A13740201 TM600 Translator Slide Ass'y Bill of Materiels
D13740M02 TM600 Mounting Frame
D13740M03 TM600 Front Panel

F/R Mount Mechanical Drawings
C13740M93 Weber's Funny Bracket, Focus Synchro Gearbox SD4601 Sterling-Detroit Focusing Feed Mount Mech Drawings


| DRAWN BY |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DESIGNED BY |  |  |  |  |
| APPROVED BY |  |  |  |  |

## LOCation F



NOTES: -

1. NUMBERS LIKE (FGI) INDICATE BOARD LOCATION \& PIN LOCATION.

Special sub ass'y
Item Boo \# D wo \#

$\qquad$


NATIONAL RAIDIO ASTRONOMY OBSERVATORY
Socorro, New Mexico 87801
$v$ Project .M-7E
A Title: F/R CONTROL MODULE



NATIONAL RAIDIO ASTRONOMY OBSERVATORY
Socorro, New Mexico 87801



上ос $A$


SPECIAL SUB ASSY'S

ITEM
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$ ——_ _
$\qquad$ ___ _ _ ___ NO TE
PUUL UP RESISTOR
BOURN/ AIIGR-002
GOQ








| REV | DATE | DRAWN BY | APPRV'O BY | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |


| DRAWN BY | DATE |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| DESIGNED BY |  |  |  |  |
|  |  |  |  |  |
| APATE |  |  |  |  |


wo 3-D.ETAL

special sub assy's

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

NATIONAL RADIO ASTRONOISY OBSERVATORY SOLORRO. NEW MEXICO B7BOI

Loc C- D.GITAL


S:-ECIHL SUB AEEY'S

$\qquad$

NATIONAL RADIO ASTRONOMY ozservatory SOEORRO, NEWMEXICO ETBOI


NATIONAL RADIO ASTRONOMY OBSERVATORY SOLORRO, NEW MEXICO 87BOI






FOCUS-ROTATION RACK-"C" (F/R SYSTEM MODEL"D")


A-1




MODULE LOCATIONS \& GENERAL ARRANGEMENT


IO CONNECTOR PANEL



BIN VENTILATION FANS


WIRE LIST


## WIRE LIST



WIRE LIST


| WIRE LIST |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  |  |  |  |  |
| CONNECTOR TYPE: $200838-3$ ICONNECTOR PAGE: 2 |  |  |  |  |
| $\begin{array}{\|l\|} \hline \mathrm{PIN} \\ \hline K K \\ \hline \end{array}$ | FUNCTION | TYPE | FROM | T0 |
|  |  |  |  |  |
| LL |  |  |  |  |
| MM |  |  |  |  |
| NN |  |  |  |  |
| - |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| $\square$ |  |  |  |  |
| - |  |  |  |  |
| $\square$ |  |  |  |  |
| $\square$ |  |  |  |  |
| - |  |  |  |  |
| - |  |  |  |  |
| $\square$ |  |  |  |  |
|  |  |  |  |  |
| $\square$ |  |  |  |  |
| - |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| $\square$ |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| NATICNAL RADIO ASTRCNOMY CBSERYATORY ITTLE: FIR SVSTEM D |  |  |  | $\begin{aligned} & \text { IDGTE: } \operatorname{Jnn} 83 \\ & \text { IREV: } \end{aligned}$ |
|  |  | Liven | Yow/0 | 1S4EE: 50 OF50 |

WIRE LIST


WIRE LIST


WIRE LIST
RACK: C IBIN: W ISLOT: 4-52 IMODULE: $M$ 7, F/R CONT ITYPE: 60 P. LIST BY:
|WIRE BY:
CONNECTOR TYPE:200277ー4 CONNECTOR PAGE: I


WIRE LIST
RACK: C BIN: W SLOT: 4-I2 IMODULE:M7, FIR CUNTITYPE: 50 PIN LIST BY:

IWIRE BY:
CONNECTOR TYPE: 200277 -4 CONNECTOR PAGE: 2


WIRE LIST


WIRE LIST



WIRE LIST


## WIRE LIST



WIRE LIST
RACK: C IBIN: W ISLOT: 8-52 MODULE: R.N/B.N JmPE TYPE: 34 PiN LIST BY: WIRE BY:
CONNECTOR TYPE: 2 Er \&3S: -3 CONNECTOR PAGE: $2 \mid$


RACK: C BIN: $W$ SLOT: $9-51$ MODULE: M 8 , FIR PW TYPE: 50 piN LIST BY: |WIRE BY:
CONNECTOR TYPE: 200277-4 CONNECTOR PAGE: 1


WIRE LIST


WIRE LIST


WIRE LIST
RACK: C IBIN: W SLOT: 9-52 MODULE: M8, FIR PWE TTYPE: 34 PI LIST BY: |WIRE BY:
CONNECTOR TYPE: $2.00 \% 3 \varepsilon-3$ CONNECTOR PAGE: 2 |

| PIN | FUNCTION |
| :--- | :---: |
| KM | FOC RAMP sW |
| LL | ROT DRU cW SW |
| MM | ROT RAMP sW |
| AN | ROT DRY COW SW |

WIRE LIST


WIRE LIST


WIRE LIST
RACK: C BIN: $X$ SLOT: $1-T 2$ MODULE: M1, DATA S ar ITYPE: 34 PIN LIST BY: |WIRE BY:
CONNECTOR TYFE: $200838-3$ CONNECTOR PAGE: 1


WIRE LIST


WIRE LIST


WIRE LIST


WIRE LIST


WIRE LIST


WIRE LIST

| RACK: C IBIN: $x$ ISLOT: 9 -J1 JMODULE: M 22 , F/R SWTCHITYPE: 50 fin |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| LIST | BY: \|WIRE | BY: |  |  |
| CONNE:TOR TYPE: 200277 -4 ICONNECTOR PAGE: 11 |  |  |  |  |
| PIN | FUNCTION | TYPE | FROM | TO |
| A |  |  | $x-8 \mathrm{~J} 2-A$ |  |
| E | Fou Brake ssR dev |  | $x-852-B$ |  |
| c | Foc Trans sse dev |  | $x-852-c$ |  |
| t | Rot Banke SSR dRV |  | $x-852-p$ |  |
| E | Pime Rrtrait $5=R$ drv |  | $x-852-E$ |  |
| F | Rot Teans $s=R$ dev |  | $x-852-F$ |  |
| H | R,wa Extriml $\mathrm{sse}_{\text {de }}$ del |  | $x-852-D$ |  |
| $J$ |  |  |  |  |
| $k$ |  |  |  |  |
| $L$ |  |  |  |  |
| M |  |  |  |  |
| $N$ |  |  |  |  |
| P |  |  |  |  |
| R |  |  |  |  |
| S | Synciteo ExC R1 |  |  | $x-8 \sqrt{2}-5$ |
| T | Sywcheo ExC R1 | Wh, \#26 Tpal |  | $x-852-\tau$ |
| $u$ | SYwcheo ExC R2 | BLk, $\pm_{26}, T P^{*}{ }^{+}$ |  | $x-8 \sqrt{2}-4$ |
| V | Sywares ExC R2 |  |  | $x-852-V$ |
| W | Syunctes ExC RI |  |  | $x-8 \sqrt{2}-W$ |
| $x$ | SYNCHEO ExC R1 | \| Wh, ${ }^{\text {t }} 26, T P^{*}{ }^{\text {a }} 11$ |  | $x-852-x$ |
| $Y$ | SYNCHGD EXC R2 | BLkj ${ }^{\text {T }} 26, \operatorname{Tr~}^{\text {tit }} 10$ |  | $x-8 \sqrt{2-y}$ |
| $z$ | Symenrs ExC R2 | BLIC, ${ }^{\text {II }} 26$, T $P^{\# \#}$ |  | $x-852-z$ |
| a |  |  |  |  |
| $\underline{\square}$ |  |  |  |  |
| $\leq$ |  |  |  |  |
| $\underline{\text { d }}$ |  |  |  |  |
| $\underline{e}$ |  |  |  |  |
| f | Symentao Man - $\mathrm{H}_{1}$ |  |  | $x-8 \mathrm{JI}-\mathrm{m}$ |
| ¢ |  |  |  |  |
|  |  |  |  | $x-851-p$ |
| WACIMAL RADIO ASTRONO:MY CSSERYMATCRY IPFOJ: |  |  |  | 106.TE: $\operatorname{lu} 883$ |
|  |  |  |  | lREV: |
|  |  | Inves l:n Al3 | 3740w10 | 1S4EE-28C= 50 |

WIRE LIST


$n$
$n$
-1
0
0
0
0
0
$\frac{\text { Bin I/O \& B B To Brn }}{\text { InTERLOEK CiRcuTS }}$

J2-Cmij/Aata I/o Sronals Pontic Elock - 201298-3 14 Pin , SocuizTs


J6 Anemometer Inputs signals


Pane BLock - 201298-3
14 pin socket
note:
a) not Tabs put on intrahock system
$F / R$ System $E$
A1324申w1d
ShT. 31A of 56

$$
\begin{aligned}
& \text { M8c Powse Suppli I/O } \\
& \text { Signal fin As=ignments } \\
& \text { SHEßT z } \\
& \text { 7/28/83/tur }
\end{aligned}
$$






* INDICATES A FUNCTION NOT FOUND IN THIS MODULE

Flo Systean D

M/I-B, Ap心x Interfacie
Connscroe pa Pin As=ch~munar; $7 / 28 / 93 /$ ow SHEET 2




$$
\begin{aligned}
& \text { F/r Tins Ilo } \\
& \text { Pnusi Conneryor } \\
& \text { J5 To Foc } \ddagger \\
& \text { Ror Treanslators }
\end{aligned}
$$






* indicates a function not found in this module

CID SWETEM D


Amp 201037-1, Rin I/O Gonn


WIRE LIST
RACK: C IBIN: $\omega / X$ ISLOT: I/O -JI IMODULE: IIO PANEL JI ITYPE: 104 P.N LIST BY: IWIRE BY: $\quad$ ZoT BOK/Jumper CCNNE:TOR TYFE: $201037-1$ ICONNECTOR PAGE: 1


WIRE LIST


WIRE LIST


WIRE LIST


WIRE LIST
RACK: C IEIN: $W / X$ SLOT: I/O-J2 IMODULE: I/O PONEL JZ ITYPE: 14 PO~ LIST BY: IWIPE 3Y:

CMD/DATA I/O SMGALS
CCNNEGTOR TYFE: $201292-3$ ICONNECTOR PAGE:


WIRE LIST
 LIST BY: IWIRE SY: CCNNECTOR TYFE: $200277-4$ ICONNECTOR PAGE:


WIRE LIST


WIRE LIST


WIRE LIST
 LIST BY:

WIRE BY:
FoG \& Rot trans Drive
CONNECTOR TYPE: $200838-3$ |CONNECTOR PAGE: 2

| PIN | FUNCTION |
| :---: | :---: |
| GK |  |
| LL |  |
| MAM | INT'LK LINE |
| NI' | INT'LK LINE |



| FROM | TO |
| :---: | :---: |
|  |  |
|  |  |
|  |  |





## intel

8085A/8085A-2
SINGLE CHIP 8-BIT N-CHANNEL MICROPROCESSORS

- Single +5V Power Supply
- 100\% Software Compalible with 8080A
- $1.3 \mu$ Instruction Cycle (8005A); $0.8 \mu 8$ (8085A-2)
- On-Chip Clock Generator (with External Crystal, LC or RC Network)
- On-Chip Syatem Controller; Advanced Cycle Siatus Information Avaliable for Large Syatem Control
- Four Vectored Interrupt inputs (One is Non-Maskeble) Plus an 8080A. Compatible Interrupt
- Serial In/Serial Out Port
- Decimal, Binary and Double Precislon Arilhmetic
- Direct Addresaing Capability to 6ak Bytes of Memory

The Intole 8085 A is a complate 8 bit parallea Contral Proceasing Unilt (CPU). Its inatruction net is $100 \%$ sottware compalion with the B080A microprocestior, and it is designed to umprove the present 8000 A 's porlormance by higher ay zem spose
 The 8085A incorporates all of the tealures that the 8224 (clock generator) and 8228 (eyatem controlleri provided tor 60804, mersby ottering a high level of ayslem integration.
The bossa uses a multiplexed data bus This address is split between the 8 bit addrest bus and the a bit date bus im on-chip eddress latches of 8155/8156/8355/8755A memory products allow a diroct interfice with the BCosA.


Figure 1. 2085A CPU Functional Block Diagram
inter

| 8 ymbol | Typo | Name ane Punction | 8ymbol | Trpe | Heme and Punction |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{0}-A_{15}$ | - | Addrose Eves: The mone sganiticant Byta of the memory sadrest or the 8 bits of the vo acocrese 3 zetraco during Hole and hall mocese and during AESET. | REAOY | , | heody: If AEAOY is high during roed or write crele. it inaicaties in the memory or ponpheran is retady send or rocesve date in REAOY |
| ${ }^{10}{ }_{0}$ | vo | Multhplexed Addresworte Bue: Lower 8 bits of the memory eddrese (or VO addrass) acpest on the bui during the first clock eycie (T 11ate) of a machine cycte it then becomes the cata bus dunng the second and thisd clock cycles. |  |  | number ol clock cyelas tor READ to 00 high belore completing th rase of write cyele. READY mu conform to apecilised setup and hoid times |
|  |  |  | HOLD | ' | Hold: Incicates that another master is requasting the ute of the addrow and dasta butes. The cpu. upon receiving the hold request, will rellinquish the use of the bue to rent bus transioc Internel) procese ing can continue. The proceseo can regain the bue only after the HOLD is romoved. When the HOLO 18 acknowledged. the AddreseDete $\overline{\text { RD. Wh. end }} 10 \mathrm{M}$ hnes are 3 -stated. |
| ALE | ${ }^{\circ}$ | Adereen Latch Enable: II occurs during the firte clock sate of a macture cycle and enebles the adoress to gol latethed ino the on-chip laten of peripherass. The talling eoge of ALE is set to guarantee sotup and hold times for the address intormaHon. The lalling adge of ALE cm alro te used to strose the status alto be used io sirone information. ALE is never 3 -stated. |  |  |  |
|  | 0 |  <br> $S_{1}$ can be used as an advanced RWW atelus. $10 / \overline{\mathrm{M}} . \mathrm{S}_{0}$ and $\mathrm{S}_{1}$ become valid at the beginning of a machine cycle and remain stable throughout the crete The folling edge of ALE may de uned to latich the state of these lines. | HLOA | - | mold Acknowiodge: Indication thai the cpu heas rocaves the holo roQueet and that it will rollinquish the Ous in the next clock creia MLOA goes low attier ine Hold rocuesi in removed the cpu takes the Dut one hath clock creto attor HLOA goen low. |
|  |  |  | NTA | 1 | Interrupt Requost: 18 used os on cemplec only during the nexx to the satt clock cyclo of en instruction <br>  wall be intibited from incrementung and en INT will be issuad. Ouring this cyclo a AESTART or CALL in. the intertuot service routine. The WTA is enabied and dizebied by colmerero 1115 direoved oy Rosen and ceplod. |
|  | - | Resd Control: A low level on RD indicates the salacted memory on VO davice is to de reed and inat the Date Bus its avaitabie for the data transter. 3 -atated during Hold and Hall modes and during RESET. | $\overline{\text { NTX }}$ | 0 | Intermupl Acknowledge: lo used inbteed of (and hes the same uming te) AD during the instruction cyele stier an INTR is sccepted It can be uted to sclovete en 8259A interrupt chup or tome ather interfupl port |
|  | 0 | Wrike Centrel: A low tevel on $\bar{W}$ F indicates the date on the Oate Bus is to be written into the selected memory or to location. Deta is eet up at the trailing edge of WR 3 stated during Hold and Hell modes and during RESET | AST SS RST 75 RST 75 | 1 | Aostart initoriupta: Thase throe inDuts have the seme tuming as iNTA except they cauce on internal AESTART to be eutomaticality inserted. <br> The priority of these interrupte is ordered as shown in Trole 2 These interrupta have a hagher priority then INIR in edations. trey may be indindually masked out vang the sim instruction |


| Table 1. Pin Descriplion (Continued) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8 rmboal | $7 p 9$ | Nome and Function | symbor | 7po | Name and Function |
| Taue | 1 | Trea: Trap interrupt io anonmeskeble AESTART interiupt. 1 h recognized at the aume tume as ONTR ot AST 5 S-7 3 His Unatliected by any mask or intortupt Enable $n$ has the mignent prionty of eny internupt (See Tavie 2) | Reset out | - | Resen Out: Aowet Out indication to boing resel. Can be usto as 0 syblem robet. The sionem synchronized to the procestio. clock and lasta an intogral number. of clock periods |
| RESET Ti | 1 | Revet in: Sasis the Progrem CountTor to zare and rocesta the interrupt Enable and hlDa tup-1lope The data and acotross butes and the control unes ste 3 -btetec auring RESET and because of the | ${ }_{1}$ | 1 | $x_{1}$ and $x_{2}$ : Are connected 10 : cryolal: LC. or AC nolwork 10 dim <br>  - logec gete The inpuit trequencor 4 alviosed by 2 to oive the procestral internal operating trequancy |
|  |  | asynchronove natury of RESET. the processoris internal regmiers and theos may be etrored by RESET with | CLK | 0 | Clock: Clock output for une ase mon tem clock. The period of CLK ${ }_{n}$ twice the $X_{1}$. $X_{2}$ inpul period |
|  |  | Senmint-tngoered input. allowing connection to an R-C notwork tor poweron RESET dalay The CDU 4 nold in the revet condition as tang | SID | 1 | Serial Inpul Dote Une: The detit on this line is losided into accumulatore ort 7 whenever a Rilw instruction expeuted |
|  |  | as RESETTV IS APPumed. | 800 | - | serist Output Dets Lime: The our. put SOD ie ent or revet es specitios by the SIM ineiruction. |
|  |  |  | $v_{\text {cc }}$ |  | Power: +5 voli eupply |
|  |  |  | $v_{38}$ |  | Oround: Poterence. |

Table 2. Interrupt Prlorlty, Restert Address, and Sonallivity

| Mome | Priorty | Address Branched To (1) When interrupl Occurs | Type Trigger |
| :---: | :---: | :---: | :---: |
| trap | 1 | 24 H | Rising edge AND high level unil sampled |
| RST 7.5 | 2 | 3 CH | Rising edge liatichad). |
| AST 8.5 | 3 | 3 H | High leval untir samplea. |
| RST 55 | 4 | 2 CH | High ievel until sampled. |
| INTA | 5 | See Note (2). | High ievel until tampleo. |

notes

1. The eaoreas branctes the PC on the zack before branching to the inaicated sodrose
.

## FUNCTIONAL DESCRIPTION

The 8085A is a complete 8-bit paralleel central processor.
itis doesigned with N -channel deoletion loacs anc requires Itis dosigned with N -channel depletion loads and iequires
 ${ }^{8080 A}{ }^{\prime}$ p performance with higher system speod. Also it is designed to it into a minnum systom of three iciss The crio 835s or $8755 A$
crip . 8355 or $8755 A$
The 8085A has twelve addras sable 8. bil tegisters. Four of
them can function only as two 16 -bit register others can be used interchangasably as 8 -bit registers or as 16 -bit register pairs. The $8085 A$ register set is as follows

| Mnemonic | Regitior | Coniente |
| :---: | :---: | :---: |
| ACC | nul | 8 blts |
| ${ }^{\circ} \mathrm{C}$ | gram Count | tida |
| BC.OE.hL | General-Purpose <br> Registers: data pointer (HL) | $\begin{aligned} & 8 \text { bils } \times 6 \text { or } \\ & 16 \text { bils } \times 3 \end{aligned}$ |
| SP | Stack Pointer | 10-bit addre |
| Fiags or F | Flag Regiater | Stlags 88 -bil |
| The soesa uses a multipiexed Data Bus. The address is split between the higher 8-bit Address Bus and the lower 8 -bit Aodress/Data Bus. During the first $T$ state (clock cycle. of a machine cycla the low order address is sent out on the Address/Data bus. These lower 8 Dits may be latched externally by the Address Laten Enable signal ALE. During ithe rest of the machine cycie the data bus is used lor memory or $1 / O$ data. |  |  |
| The 8085A providen RD. Wh, $S_{0} . S_{1}$, and 10 IM signals for bus controi. An Interrupl Acknowledge signal (INTX) is aiso provided. HOLO and all interrupts are aynchronized with the processor's intemal clock. The 8085 A also provides Sortal Input Data (SID) and Serial Output Data (SOO) lines for aimple serial iniertace. |  |  |
| in adation to these leatures. the 8085A has three mask. able vecior interrupl pins and one nonmaskabie TRAP inlerrupt |  |  |

## INTERRUPT AND SERIAL I/O

Tho B085A has 5 interrupt inputa INTA. AST 5 S. AST 65 .
RST 75 . and TRAP INTA I BOBOA 7 INT Each of the three RESTART Induta S 5 . 65 . and 75 . nas a programmable mask thap is also a RESTART interrupt Dut II is nonmaskable
The three maskable interrupls cause the internal
 Cupls are enabled and it the interrupt mask is not set. The anon-maskadie TRAP causes the internal execulion of a madie or masks (See troble 2. )
Thete are two difterent types of inguts in the restart inter'CuDTs RST 5.5 and RST 6.5 are high tovel-sensitive like same timing on the 8080) and are recognized with the Fame liming as intR RST 7.5 is isang eogea-sonsitive
lip- AST 75 . only a pulse is required to set an internal
which generales the internal interruot requesi Soe Section 52.7 -The AST 7 incernal interrupt request. alffected by
Chapter $S$.
sot untut the request is serviced. Then it is reset automatically. This llip-Hop may aiso be reset by using the
SIM instruction or by issuing a RESET IN to the Boasa. The RST 75 internal lip-fllop will be eet by a pulse on the AST 75 pin even when the RST 7. Sinterrupt is masked out. The status of the three RST interrupt masks can only be
affiected by the SIM instructuon and RESET N . See SIM.

The interrupis are atranged in a fixed priority that deter mines which interrupt is to be reccognized it more than one is pending as foltows: TRAP - highest priority.
RST 75 . RST E.5. AST 55 . INTR - - owest prionty. Thit priority scheme does not lake into account the prionty ol a routine that was started by a nigher priority intertupt are ie-enabled betor an RST 7.5 routine it the interrup The TRAP interrupt is uselul lor catastrophic events such as power falure or bus error. The TRAP input is recog nized lust as any other interrupl but has the highest
priority it is not aflected by any flag or mask Tha ThAP priority 11 is not ariected by any liag or mask. The ThAP
in both edge and level sensitive. The TRAP indul must go migh and remain high unitil is acknowledged. It will not be recognized agann untulit goess low. then high again This avoida any false triggerng due to noise or
logic gilithes. Figure 3 Nllustrates the TRAP interrupt request circuitry wirhin the Boess . Note thot the servicing of eny interrupt ITRAP. RST 7.5. RST GS RST 5 S INTR disables all fulure interrupis cexcept TRAPs1 until an E
instruction is executed.


Figure 3. TRAP and RESET IN CIrcult
The TRAP interrupt is special in that it disabies interrupts. but preserves ine previous interrupt enable status. Per-
torming the lirst RIM ingtruction foilowing a TRAP inter. rupt allows you to aetermine whether interrupts were enabied or dissbied prior to the TRAP All subsequent
RIM instructions proyide ciursent inter RIM instructions provice current interrupl enable status,
Perlorming a RIM insticuction following INTR or RST Pertorming a RIM instruction following INTR. of RST
$55-75$ will provide current interrupt Enabie siatus. revealung that interrupts are disabied See ine descripthon of the RIM instruction in Cnapter 5
The serial I/O system is also controlled by the RIM and
Sim insticuctiona SID is read by Rim. and SIM seis the SIM instiucta
SOD data

## inted

8085A/8085A-2

## DAIVING THE $X_{1}$ AND $X_{2}$ INPUTS

You may arive the clock inpuls of the 8085A or 8005A-2 ternel cloch en Cuned cis of in RC network, or a alil: 1 MHz. and musl be twica the desired internat cloch requency. hence. the cos5A is operated with if MH2 ryblal ifor 3 Mryz clock and ine eossa-2 can be oporated
 if muat have ine loinowing characterisicia
parallel resonance at twice the clock trequency desired $C_{b}$ Hoad capacisince $\leq 30 \mathrm{pl}$

rive lovel. 10 mW

Note the use of ine 20DF capachor betweon $x_{2}$ and
pround. This capacitor is required with crystal reovencies Delow 4 MHz 10 essure oscliletor startup al he correct troaugncy. A parallel|resonant LC circult mey de usec as the trequency-determining network tor he $8085 A$. providing thal is liequency toietance of are chosen from the tormula



To minumize variations in irequency, it is recommencon hat you choose a value for Cout thal is at tiesat twice ing Cin. or 30 DF . The uze of an LC circuit is not rectom An RC circull may do usiod es the trequency-colerminime network for the 8085A if manitalining a procise clock his uency is of no impariance. Varistions in ing on-chs when using the RC mode. Its advantage is 118 low come, ponent cost. The driving trequency generateo by ime circuil shown is approximately 3 MHz . H is not rocom ended that trequencies greatly higher or lower inenm. me stiempied.
Gigute 4 showi the recommended clock derver cucturs Note in D and E that pullup resistors are requirod 10 asturn that the high level vonage of ine input is at teast a v

For driving fisquencies up to and including $6 \mathrm{MHz}_{2}$ yo may supply the oriving signal to $x_{1}$ and beave $x_{2}$ copen
 to 10 MHz . stabilliy of the clock generalor will be imprower by driving both $x_{1}$ and $x_{2}$ with a push-pull source ifigurn $x_{2}$ is not coupleol beck tio $x_{1}$ tirough ine oriving critcua
inter
8085A/8085A-2

## GENERATING AN 8085A WAIT STATE

 y your system requirementa are such that slow memorion foeripheral devices ats being used. he hircuir shown in roure 5 may be used to insen one wait trate in oach tiosa machno cycioThe 0 flip-illops should be chosen so the - CLK is rising edge-triggered

 Figure 5. Gen
CPU
As in the 8000 the AEADY line is used to axtond the reed and write pulise lengths so that the 8085A can be used with When it is incougn with ll by the cpu to rolinquish the bu Buses.

## SYSTEM INTERFAC

The s085A tamily includes memory components. which ine directly compalible to the 8085A epu For example. yysiem consistung of the throe chipe. B0a5A, 8158. and
d355 will have the tollowing features.
-2K Bytes ROM

- 256 Byles RAM

1 Timer/Counter

- 48 -bit I/O Ports
- 6 -bil IIO Part
- 4 inierrupt Levels
- Serial in/Serial Out Porta

This minimum system. Using the standard I/O techniqua as snown in Figure 8

In addition 10 standard $1 / \mathrm{O}$. the memory mapped $1 / 0$ illores on etticient in sadressing lacnnique. With in lor t1O address. thereby. using the memory adaress to iO manipulation Figure 7 shows the system conilgura ion of Memory Mapped I/O uaing boesA

The sossa cou can also interace with ine standard memory that doess not have the multiplexed addresss/date bus. If will require a simple $8212 ; 8$-bit lateni as shown in Figure 8.


8005A Minl
Technlaua)


Figure 7. MCs-85"0 Minimum Syatom (Memory Mapped VO)


Figure 8. MCS-85" Systom (Using standard Memorioa)
inte"
ASIC SYSTEM TIMING
The boosa has omultiplexed Data Bus. ale is used as e arrobe to sampla the lower e-bils of address on the Data
Bus figure op shows an insticuction fatch. memory read Sus Figure 9 shows an insiluctlon fatch. memory read
and $1 / \mathrm{O}$ write cycle cas would occur during processing of the OUT instructiont. Note that during the $1 / 0$ write and resc cycle that the $1 / 0$ por address is copiad on both the upper and lower hall of the address.
Theres are seven possable typos of machine cycles. Which
ot these seven takes olace is datined by the status of the of these seven takes place ta datined by the satatus of the
inces status lines $10 / \bar{M} . S_{1}$. Sol ano the inree control monais ( $\overline{\mathrm{AD}}, \overline{\mathrm{Wh}}$, and $\overline{\left.\mathrm{NT} \mathrm{N}^{2}\right)}$. (Soe Table 3.) The status ines can be used as advancea conirols ifor cavico selec-
 transter ot date is to take place, so are used as commano lines
A machine cycie normally consists of three $T$ stales, with the exception of OPCOOE FETCH. which normally hes
either four or 3 Ix $T$ states iunless WAIT or HOLD stales ere forcea oy the recenp ol 1 REAOY or HOLD inpulsi. Any Thtate musi beo one of ten possible stales, shown in lable 4 .

| macrune ercle |  | Sivas |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ococoot fetck | 10f | $\bigcirc$ |  |  |  |  |  |
|  | (man) | : | - |  | : | ! |  |
| \%OResp | (1091) | : | - |  |  | - |  |
| ${ }_{\text {acknowleoce }}$ |  |  |  |  |  | - |  |
|  |  | : | : |  |  | : | : |
|  | ${ }^{1611}$ ack or | $\bigcirc$ | - |  |  |  |  |
|  | Rastitant | is |  |  |  |  |  |

Trable 4. 00a5A Machine State Chart

| mothes | Slecti b Bumi |  |  |  | cosatal |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1180 | 10 mm |  | A $D_{0} \cdot A D$ | п̄o.mb | intalale |
| $\mathrm{T}_{1}$ | ${ }^{*}$ | $\times$ | * | x | 1 | $1{ }^{1}$ |
| T | $\times$ | $\times$ |  | $\times$ | $\times$ | $\times$ |
| $T^{\text {mant }}$ | $\times$ | $\times$ | $\times$ | $\times$ | $\times$ | $\times$ |
| r, | $\times$ | $\times$ | $\times$ | * | * | $\times$ |
| ${ }^{5}$ | 1 | 0. | $\times$ | rs | 1 | 1 |
| T | 1 | 0 . | * | is | 1 | 10 |
| T0 | 1 | 0 | $\times$ | 13 | 1 |  |
| Tackit | * | Ts | rs | rs | Ts | 10 |
| Thatit | 0 | is | ! is | rs | Ts | 10 |
| TH010 | $\times$ | Is | Is | is | is | 1.0 |



Figure 9. soesA Back Syatom Timing


| 8085A/8085A-2 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| 8ymbet | Parametar | 2095A [1] |  | $00054.2^{\text {[/] }}$ |  | Unlte |
|  |  | Min. | mex. | Min. | Max. |  |
| larc | ClK Cycte Period CLK Low fimo (Standard CLK Lomolng) | 320 | 2000 | 200 | 2000 | na |
| 1 |  | 80 |  | 40 |  | n8 |
| 12 | CLK High TIme (Standara CLK Loading) | 120 |  | 70 |  | $n$ |
| t.1, | CLX Rise and foll Time |  | 30 |  | 30 | ns |
|  | X, मा <br> $X$, Aising to CLK Falling | 30 | 120 | 30 | 100 | 18 |
| Iure |  | 30 | 150 | 30 | 110 | ${ }^{3}$ |
| ${ }_{1}$ | $X_{1}$, Rising to CLK Falling $A_{\text {A }-15}$ Valld to Leading Edge of Coniroill | 270 |  | 115 |  | n) |
| ${ }_{\text {Lach }}$ |  | 240 |  | 115 |  | ns |
| ${ }_{\text {A }}$ |  |  | 575 |  | 330 | n |
| ${ }_{\text {P }}^{\text {AFA }}$ A | Acdrain foal AEAD (INer Losing Edge of |  | 0 |  | 0 | m |
| $t_{\text {A }}$ | Ag.1s Volld Bolore Tralling Edge of ALEIU | 115 |  | 50 |  | n |
| 1 ALH |  | $\infty$ |  | 50 |  | ns |
| Tabr |  |  | 220 |  | 160 | n |
|  | Kddress ( $\lambda_{6-\ln }$ ) Valid After Control | 120 |  | 60 |  | no |
| ${ }^{1} \mathrm{cc}$ | Width of Controi Low (RD. WA, INTM) Edos of ALE | 40 |  | 230 |  | ns |
| ${ }^{\text {ccL }}$ | Tralling E Edge of Control to Leeding Edge ol ALLE | 50 |  | 25 |  | 0. |
| Tow | Data Valld 10 Tralling Edge of WAiTE | 420 |  | 230 |  | $n$ |
| Tmage | HLOA to bug Enable |  | 210 |  | 130 | ni |
| mane | Bua Floal Alter MLOA |  | 210. |  | 150 | n3 |
| 4 HaCR | HLOA Valld to Tralling Edge of CLK | 110 |  | 40 |  | $n$ |
| Tmot | HoLD Hold jime | 0 |  | 0 |  | 88 |
| mos | HoLD Solup Time to Tralling Edge of CLK | 170 |  | 120 |  | n8 |
| ${ }_{\text {INM }}$ | INTR HoId TIme | 0 |  | 0 |  | nt |
| 1/153 | Falling Edge of CLK | 160 |  | 150 |  | n8 |
| in | $\begin{aligned} & \text { Addresg Mold Time After ALE } \\ & \text { Tralling Edge of ALE to Leading Edge } \\ & \text { of Conirou } \end{aligned}$ | 100 |  | 50 |  | n3 |
| 'tc |  | 130 |  | 80 |  | ns |
| L, ck | ALE Low Ouring CLK HIgn | 100 |  | 50 |  | ns |
| \% 109 | ALE To Valld Dala During Road |  | 480 |  | 278 | na |
| Low | KLE To Vald dala During Wrilo |  | 200 |  | 120 | no |
| $\underline{1}$ | ALE WIdTh ALE TO AEAOY STADIC | 140 |  | 80 |  | n8 |
| Lray |  |  | 110 |  | 30 | n8 |

## intel

8085A8085A. 2
a.c. Characteristics (Continued)

| Symbet | Parameter | ${ }^{80055}{ }^{(27)}$ |  | $2085 A \cdot 2^{(2)}$ |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. | Min. | Max. |  |
| trae | Tralling Eage of $\overline{\text { READ }}$ to Re-Enabling of Address | 150 |  | 80 |  | ns |
| ${ }^{\text {a }}$ D | $\overline{\text { EEAD }}$ (or $\overline{\text { NTA }}$ ) to valid Data |  | 300 |  | 150 | ns |
| 'RV | Control Trailing Edge to Leading Eage of Next Contiol | 400 |  | 220 |  | ns |
| 'ROH | Data hoid Time Attee READ INTA ${ }^{\text {I }}$ | 0 |  | 0 |  | ns |
| ' AYY | AEADY Hold time | 0 |  | 0 |  | ns |
| ${ }^{\text {'RYS }}$ | READY Solup Time to Leading Edge of CLK | 110 |  | 100 |  | ns |
| two | Data Valid Alter Traling Edge of WFiTE | 100 |  | 80 |  | ns |
| IWDL | LEADING Edge of Write to Data valic |  | 40 |  | 20 | ns |

notes

whiorose liaik. So ends, ayo steble

For all output uming when $C_{C}=150$ of use the toliowing corrocion tectore
35 of $\& C C 150$.


- Oulpur tumingtate measured with puraly capscillive load


A.C. TESTING INPUT, OUTPUT WAVEFORM
Mantourmo
A.C. TESTINQ LOAD CIRCUIT


8085A/8085A-2
initer

| 8085A |  |  |  | 8085A. 2 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{\text {AL }}$ | - | (1/21 T-45 | MIN | ${ }_{\text {A }}$ | - | (112) T-50 | MiN |
| tha | - | (1/21 T-60 | MIN | In | - | (112) T-50 | MIN |
| : 6 | - | (11/2) $\mathrm{r}-20$ | MIN | ${ }_{4}$ | - | (1121 T-20 | MIN |
| LLCK | - | (1/2) T-60 | MIN | ${ }_{\text {LCK }}$ | - | (1/2) T-50 | MIN |
| ibs | - | (11/2) $\mathrm{T}-30$ | MIN | the | - | (1/21 T-40 | MIN |
| $1{ }^{1}$ | - | ( $5 / 2 / 2+$ N) T - 225 | MAX | ${ }_{\text {i }}{ }_{\text {A }}$ | - | (15/2+N) T-150 | MAX |
| ${ }_{\text {tap }}$ | - | $(3 / 2+N) T-180$ | MAX | 'sD | - | $(3 / 2+N) T-150$ | MAX |
| ! ${ }_{\text {RAE }}$ | - | 11/21 T-10 | MIN | $t_{\text {t }}$ | - | (1/2) T-10 | MIN |
| ${ }^{\text {cha }}$ | - | (1/21 T-40 | MIN | ${ }^{\text {c }} \mathrm{CA}$ | - | (1/21) T-40 | MIN |
| tow | - | $(3 / 2+N)^{T}-60$ | MIN | iow | - | $(3 / 2+N) T-70$ | MIN |
| ing | - | (1/2) T-60 | MIN | iwd | - | (1/21 T-40 | MIN |
| ${ }^{\text {c }} \mathrm{Cc}$ | - | (3/2+N) T-80 | MIN | 'cc | - | (3/2'N ${ }^{\text {d }}$ T-70 | MIN |
| ${ }_{\text {c }}$ | - | 11/21 T-110 | MIN | ${ }^{1} \mathrm{CL}$ | - | (1/2) T-75 | MIN |
| ${ }_{\text {A A Y }}$ | - | (3/21 T-260 | MAX | ${ }_{\text {char }}$ | - | (3/2) T-200 | MAX |
| ! hack | - | (1/2) T-50 | MIN | ${ }^{\text {thack }}$ | - | (11/2) T-60 | MIN |
| 'habs | - | (112) $T+60$ | MAX | ${ }^{\text {maga }}$ | - | (1121 T+50 | max |
| ${ }^{\text {HAGE }}$ | - | (1/2) T+50 | MAX | ${ }_{\text {trabe }}$ | - | [1/21 T +50 | MAX |
| ${ }_{\text {a }}{ }_{\text {c }}$ | - | (2/2) T-50 | MIN | ${ }^{\text {a }}$ Ac | - | (2212) T-85 | MIN |
| 1 | - | 11/21T-80 | MIN | 1 | - | (1/2) T-60 | MIN |
| $\underline{1}$ | - | (11/2) T-40 | MIN | $\mathrm{i}_{2}$ | - | (112) T-30 | MIN |
| l HV | - | (3/2) T-80 | MIN | Inv | - | (3/2) T-80 | MIN |
| L Los | - | (4/21 T-180 | MAX | 'loh | - | (4/2) T-130 | MAX |
| vore Nis equal to the total WAIT states T.icye. |  |  |  | E. N | ult | the total WAIT ratioe. |  |

## WAVEFORMS




AEAD OPERATION WITH WAIT CYCLE (IVPICAL) - SAME READY TIMING APPLES To WRITE

inter
8085A/8085A-2

## WAVEFORMS (Continued)

HOLO


Table 6. Inatruction set Summary



-all mnemenice copyrigntes eintel corporation raye.

## intel'

## 8155/8156/8155-2/8156-2

## 2048 BIT STATIC MOS RAM WITH I/O PORTS AND TIMER

- 256 Word $\times 8$ Bits
- Single +5V Power Supply
- Completely Static Operation
- Internal Address Latch
- 2 Programmable 8 Bit I/O Ports
- 1 Programmable 6-Bil I/O Port
- Programmable 14-Blt Binary Counter/ Timer
- Compatible with 8085A and 8088 CPU - Mulliplexed Address and Data Bus - 40 Pin DIP

The 8155 and 8158 are RAM and wO Chips to de used in ithe 8085 A end 8088 microprocessor aystems. The RAM porition


The $1 / 0$ portion consiste of three oenersl purpose $1 / \mathrm{O}$ porte. One of the three ports can be programmed to be stalue pins. thus allowing the other two porte to operate in nendahake mode.
A 14 -bit programmable countertimer is also incluced on thip to provide elther a square wave or terminal count puise
for the CPU



Figure 1. Block Diegram


Figure 2. Pin Conflouration

| Symbor | trpe | Name and Function |
| :---: | :---: | :---: |
| deset | 1 |  high on this line reseta the chip and initializet the innee vO ports to inpul mode. The width of RESET pulse anould typically be iwo boash clock grcie limes. |
| ${ }^{10} .7$ | vo |  <br>  <br>  |
| CE or CE | 1 |  |
| ¢ | 1 |  blow. the FAM content will be resd out to the AO Bus. Otherwise the content of the elected VO pert or command/status rogisters will be reed to the AO bue. |
| $\overline{\text { wh }}$ | 1 | Wrese Controd: Inpul iow on this ine with the Crip Enable setive causoat the datio on the AdoreozData Bua to 00 willen to the RAM or VO porte and commendistatue regititer, dopenoing on iosM. |
| ALE | 1 |  of the Cripe Enable and icial into the cmip at the talling edoge of ALE. |
| 100 | 1 | VO Memery: Solecte meanory il iow end vo end commendistalus regiviers it high. |
| $P_{\text {Par }}(8)$ | $v 0$ | Fert A: These 6 pina ars general purpose vo pins. The indout direction is belectiot by programming the commend registio. |
| $\mathrm{PB}_{0 \rightarrow-\mathrm{r}}(\mathrm{\theta})$ | $v 0$ |  the command reopister. |
| ${ }^{\text {P }} \mathrm{C}_{5}$. $8(8)$ | $\checkmark$ | Porl C: These 6 pons can function as etther input port. output port. or as control signalsfor PA and PB Programming is done inrough the commend raguter. When PCo-s are used as control argnels, they with provide the tollowing: <br> $\mathrm{PC}_{0}$ - A INTA (Port A intamupt) <br> ${ }^{\mathrm{P}} \mathrm{C}_{1}$ - ABF (Port A Buttor Fuh) <br> ${ }^{\mathrm{PC}} \mathrm{C}_{2}$ - ASTB (Port A Strode) <br> ${ }^{P C_{3}}$ - 8 INTR (Port B interrud) <br> PG4 - 8 BF (Port B Butior Full) <br> $\mathrm{PC}_{\mathrm{g}}$ - 8STB (Port B Strabe) |
| timerin | 1 | $\overline{\text { rimor inpuas: inpul to the countertimer. }}$ |
| MMEROUT | 0 | Timer Output: This output cen be onther a square wave or a pulse. dopending on the umer moce |
| ${ }_{\text {cte }}$ |  | Vonege: +5 volt supoly |
| ${ }_{5 s}$ |  | Qround: Oround reference. |



Figure 4. $\mathbf{8 1 5 5 / 8 1 5 6}$ On-Board Memory ReadWrite Cycle

## inter

PROGRAMMING OF THE
COMMAND REGISTER
The command register consists of eight latches. Four pirs, $0-3$ I define the mode of the pors. .twa bits ( $4-5$ )
ansole or disable the interrupt trom port C when it acts an conirol port, and ine last two buts 687 / are tor the timer The commana register contents can be altered at any ume by using the "O address $\times \times \times \times \times 000$ during a WRITTE operation wilh the Chip Enable active and $10 / \mathrm{M}=1$ The gure 5. The cont of the command byte is defined in never be read.


Figure 8. Command Regiteter Bit Aasignment

## READING THE STATUS REGISTER

The statua register consists of seven latches. one for each iti: $81 \times 10.5$, for the stalus of the ports and one ( 6 , for the stanus of the timer.
he status of the timer and the $1 / O$ section can be polled by reading the Status Register (Addrase $x \times x \times x \times 000$.保 mogister shares to the status registor since the command gister shares the same $1 / O$ acdress and the command egister is selected when a write to that addreas is ussued.


Figure 6. status Register Bit Aesignment

## inted

## INPUT/OUTPUT SECTION

The IO moction of the 8155/B 158 conalita of Ive registers:
(See Figure 7) - Commana/8 tualua Aegloter ( $\mathbf{C} / 8$ ) - Both registars are serves the dual pursose $\times 1000$. The $\mathrm{C} / \mathrm{S}$ addrass cerves the dual purpose
When ite C/S regislers are selectiod during WRITE
operation. a command is writen inio ine commer regitater. Tne comiente of this registor are not accesssible uniougn the pins.
When the $\mathrm{C} / \mathrm{S}$ ixxxxx000) is selected during a READ operation, the status intormation ot the vo ports and
the umer becomes avaliable on the $\mathrm{ADO}_{0-7}$ lines.

- Pa Register - This regizser can be programmed to be the conients of the $\mathrm{C} / \mathrm{S}$ Register. Also depending on the command, intis port con operato in oither the basic moce or the strobed mode isoe timing diagram. The The adins assess of this regiviter io $x \times x \times \times 001$.
- Pe rogolower - This register functiona the same as PA Rogiter. The I/O pina assionned are PBo-7. The Addrees of this rogiteter is $x \times x \times \times 010$.
- PC Aegiatior - This regiater has the addross $\mathrm{XXXXXO}=11$ and contialis only 8 bits. The 6 bitz can be programmeo to be either input pons. output ports or as control

Whon PCo-s is used as a control pon. 3 bits are assigned for Port A and 3 tor Porr $B$ The firstitit is an interrupt that the 8155 sends out. The socond is an
Outpul signal indiceting whethar the butter ha tull or Outpul signal indicating whether the butter is full or
omply. and the thrra is an input pin to acceot a atrobe

When the 'C' port is programmed to either ALT3 or ALTA the control aignais lor PA and PB are innialized as iollows:

| CONTROL | INPUT MODE | OUTPUT MODE |
| :---: | :---: | :---: |
| BF | LOW | LOW |
| INTR | LOW | High |
| STB | Input Control | Inpul Control |

8155/8156/8155-2/8156-2


Figure 8 anows how $1 / O$ PORTS $A$ and $B$ are atructurec .

inter
8155/8156/8155-2/8156-2

| Pn | ALT 1 | Alt 2 | Alr 3 | Alt 4 |
| :---: | :---: | :---: | :---: | :---: |
| ${ }^{\text {PCOO}}$ | Input Port | Oulput Port | A INTA (Port a interrupt) | A INTR (Port A Interrupt) |
| PCl | Input Port | Output Port | A BF (Port A Butter Full) | A BF (Port A Bufter Full) |
| PC2 | Input Port | Oulput Port | A STB (Port A Strobe) | A STE (Port A Strobe) |
| PC3 | Input Port | Output Port | Output Port | 8 INTR (Port B interruod) |
| PC4 | Input Port | Output Port | Output Port | B BF (Port E Butier fulli) |
| PCS | Input Port | Output Port | Output Port | B STB (Pon B Strobe) |

Note in the diagram that when the vo ports are programmed to be output ports, the contents of the output portac can still bee read by a READ operation when appropritiely addressed
The outputs of the $8155 / 8156$ are "plliten -free" meaning that you can write a "1" to a bit posilion that was proviNote also that the outout latch is cleered when the pon enters the input mode. The output laten cannot be toeded by wetiting to the port it the port is in the input mode. The asult is that each lume a porl mode is changed from inp 10 RUtpul, the output pins will go iow. Wion ine $815 S / 5$ nter the input moce.
When in the ALT 1 or ALT 2 modes. the bits of PORT $C$ output modie cespectively above in the simple inpu or output mode. respectivaly.
anaing fill provide un unput por with nothing co ana will provide unprodiclable resulta:
configured in a how the $8155 / 1 / 8156$ vo ports might be


## intel

8155/8156/8155-2/8156-2

## TIMER SECTION

The timer is a 14 -dic down-counter that counis the TIMER in puises and provides either a sauare wave or pulse when terminal count iTC, is reached.
The timer nas the l/O addreass $x \times x \times x 100$ or the low order byte of the register and ine $1 / 0$ adoress $\times \times x \times x 101$ for to lonced tirst one byto al a tume. by selecting the tume addreesses Bits 0.13 of the nigh order count register will specily the eiengit of the next count and bits 14.15 of the hign order regiser will specily the tumer Output mode
isee Figure 10 ) The value londed into ine count lengin regisier can heve any value trom 2 H through 3 FFH in Bils $0-13$


Figure 10. Timer Forme There are four modus to choose trom: Mz and MI define the timer mode. at shown in Figure 11.


Figure 11. Timer Modes
Biss 6-7 TMz and TM1 of command register contents are used to start and atop ine counter. There are foup commands to choose trom:
TMz TM1
0 NOP - Do not allect counier operation. STOP - NOP it timer has not slarted. atop counting it the lumer is funning
STOP AFTEA TC - Stop immodiately atier present TC
1 START - Load mode and CNT lengin and stan immeciately after loading it and stan immectataly atier loading it
ummer is not presently running: il timer is running. start the new mode and CNT longith immedatioly atter prosent TC is
reached.

Note that while ene counter it counting. you may load now count and mode into the count length registers Betore the new count and mode will be useod by thy counter. You muss lesue a START command to 1 in
counter. This applies even though you may only want to change ine coumt and use the previous mode.
in case of an odd-numbered count. the firet nall-cycio of the squarewave oulput. which is high, is one count
longer than the second iow) hall-cycle, as shown in Figure 12


The counter in the 8155 ta not initialized to any particuler mode or COUn1 when hardware RESET OCCurt buI RESET tollowing RESET Until a START command is issued via the C/S register.
Please note that ite timer circuit on the $8155 / 8156$ chip
is designed to te as equare-weve timet, not an even is dosigned to be aspuare-weve timer, not an event counter. To achiave this. It counts down by twos iwice
in completing one cycle. Thus. 1 la rogistera do not con. tain values directly representing the number of TiMER in pulses recesved You cannot toad an intial value of 1 into the count registor and cause the timer to operate. as tit the detection of single puises. it is suggested thal one of the hardware intertupt ping on the 8085 a be used, Alter ine timer has staried counting down. the volues tesioing in the count regiriers can be used to calcuiaio
the actual number of TIMER in puises required to com. plete the timer cycle if cessired. To oblain the remaining count. periorm the following operations in order:

1. Stop the count
2. Read in the 16 -bit value trom the count length registers
3. Reset the upper two mode bits
4. Resel the carry and rotate right one posilion all 16 bitb inrough carry
B. If carry is set. add $1 / 2$ of the full original count $1 / 2$ full

Note: Il you alaned with en odd count and you rend ine count length register before the third count pulse occura. you will not be abie 10 discern whether one or two counte counts out the Regarcilese of this. the sis5/56 always counts out the right number of pulses in penerating the
TiME OUT wavelorma.

| 8155/8158/8155-2/8156-2 |  |  |
| :---: | :---: | :---: |
| EXAMPLE PROGRAM |  |  |
| Following is an ectual sequence of program ateps that adjusta the 8155/56 count register contente to obtain the count, extracted from intele Application Note AP38. "Application Techniques tor the intel 8085A Bus "First store the value of the full original count in register HL of the 8085A. Then stop the count to avo.d getling an incorrect count value. Then sample the timer-counter, storing the lower-order byte of the current count register in register C and the higher-order count byte in register 8 . Then. call the tollowing 8080A/8085A subroutine: |  |  |
| ADJust. 78 | mov A, 8 | :Load accumulator with upper hall : of count |
| E83F | ANI 3 F | ;Reset upper 2 dite and clear carry. |
| $1 F$ | far | :Rotase cight miough carry. |
| 47 | MOV B.A | :Store shifted value back in 8 . |
| 79 | mov A.C | :Load accumulator with lower half. |
| IF | rar | :Rotate fight infough carry. |
| 45 | MOV C.A | : Store lower byto in C . |
| O8 | RNC | iff in $\mathbf{2 n a}$ half of count, return. iff in lat half. go on. |
| $3 F$ | CMC | Cliear carry. |
| 7 | MOV A.H | Olvide tull count by 2. (11 HL ie odd. diaregara remainder.) |
| If | rap |  |
| 67 | mov hia |  |
| 70 | mov A,L |  |
| $1 F$ | far |  |
| ${ }^{6}$ | mov l.a |  |
| 09 | dAD ${ }^{\text {a }}$ | : Double-preciation add HL and BC. |
| 4 | mov B.H | ;Store resuls back in 8 C. |
| 40 | mov C.L |  |
| co | REt | Return. |
| Atter executing the subroutine. BC will contain the remaling geunt in the current count cycie. |  |  |



Figure 13e. s085A minimum System Configuration (Memory Mapped IVO)
inter

## 3088 FIVE CHIP SYSTEM

Figure 13 b enowa a five chip aystam containing

- 1.25K Bytes AAM
- 2 K Bytoe fO
- 38 1/O Pine
- 1 interval Timer
- 2 interrupt Levale



## inted <br> 8155/8156/8155-2/8156-2

absolute maximum ratines*

| mperature Under Bras | $0^{\circ} \mathrm{C} 10.70^{\circ} \mathrm{C}$ |
| :---: | :---: |
| Storage Temperature | $-65^{\circ} \mathrm{C} 10 \cdot 150^{\circ} \mathrm{C}$ |
| voltage on Any Pin |  |
| With Respect to Grouna | $v$ |
| Power Dissipation |  |

- NOTICE: Stressose ebove mose hisred under "Absourta Maximum ratings may ceuso pormeneni damage to im device This is o stress rating onty and functional opera. lion of ine device of these or ony other conditions abovy
hose indicated in the operational sections of thy specitication is not impliect Exposurg io sosolute mar. mum rating condilions tor exionded perioas may alloci
device ratiabilly.
D.C. CHARACTERISTICS $\pi_{A}=0^{\circ} \mathrm{C}$ :0 $70^{\circ} \mathrm{C} \cdot v_{\text {cc }}-5 v \pm 5 \%$ )

| SYMBOL | parameter | MIN. | max. | Units | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {LL }}$ | Input Low voltage | -0.6 | 0.8 | V |  |
| $V_{\text {IH }}$ | Inout high Voltapt | 2.0 | $V_{\text {cc }}+0.5$ | $v$ |  |
| Vol | Output Low Voltage |  | 0.45 | $v$ | $\mathrm{bc}_{2}=2 \mathrm{~mA}$ |
| Voh | Output High Voltage | 2.4 |  | $v$ | bH $=400 \mu \mathrm{~A}$ |
| 4 L | Input Leakape |  | 110 | $\mu \mathrm{A}$ | OV $\leqslant V_{\text {IN }} \leqslant V_{C C}$ |
| 16 | Output Loskoge Current |  | $\pm 10$ | $\mu \mathrm{A}$ | 0.45 V < $\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\text {VCC }}$ |
| ${ }^{\text {cte }}$ | Vec Supply Curiont |  | 180 | mA |  |
| IIL (CE) | $\begin{aligned} & \hline \text { Chip Enable Loakage } \\ & 8155 \\ & 8156 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & +100 \\ & -100 \end{aligned}$ | $\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A} \end{gathered}$ | OV < $\mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {cc }}$ |

${ }^{4} \mathrm{C}$. TESTING inPut, OUTPUT WAVEFORM
anioutour


a.C. TESTING load Circuit



6-42


## intel ${ }^{\prime}$

8755A/8755A-2 16,384-BIT EPROM WITH I/O

## - 2048 Words $\times 8$ Blts

- Singie +5V Power Supply ( $\mathrm{V}_{\mathrm{cc}}$ )
- Directly Compatible with 8085A and 8088 Microprocessors
- U.V. Erasable and Electrically Reprogrammable


## - Internal Address Lstch

The intere B755A is an arsasble and alectrieally reprogrammable ROM (EPROM) and I/O chip to be used in the 8085A and 8088 microprocessor syatems. The EPROM portion is organized ae 2048 worda by B bits. It has e maximum access time ol 450 ne to permit ule with no wan elaties in an BOBSA CPU
The $1 / 0$ portion conaists of 2 general purpose $1 / 0$ porta. Each I/ $O$ port has 8 porl lines. and each $1 / 0$ port line it individually programmabte as input or outpul.

- 2 General Purpose 8.Bit I/O Ports
- Each IIO Port Line Individually Programmable as Input or Output


## - Multiplexed Address and Data Bus

 - 40.Pin DIPMHz 8088.

Figure 1. Block Diagram


Figure 2. Pin Coniliguration


## intien

8755AN755A-2

## FUNCTIONAL DESCRIPTION

PAOM Section
The $8755 A$ contains an 8 -bil sadress latch which allowa 11 to intortace direcily 10 MCS.48. MCS. 85 and
Microcomputere without adotional harcumare
The PROM section of the chip is adaressea by ine 11 -bil adoress and $C E T$ The adcress $C E$, and $C E_{2}$ aie latched
 goes low the conients of the PROM localion agoresse goes tow the conients ol the PROM localion adoressed
by the latiched edaress are put out on the AD. 7 lines (Drovided that VOD is tied 10 VCC.)

## /O Secilion

The lio section of the chip is aodressed oy ine latchec in 8755 A determine the input output slatus of each pin in the corresponding ports $A$ o in a porticular bit poss in ine input mocoe $A^{-1} 1 T^{\prime}$ in a particulat bit position signi. lies that the corresponding $1 / O$ pon bit is in the outpul node in this manner the $1: O$ pors of ine 9755 sare bit-by Dil programmable ss inpuls or outpuls The labie
summanizes pori and DOR designation DDR: cannol be suma

| ${ }^{\text {AD }}$ | ADo | Selection |
| :---: | :---: | :---: |
| 0 | 0 | Port A |
| 0 | 1 | Port 8 |
| 1 | 0 | Pori a Data Direction Register |
| 1 | 1 | Port B Data Direction Regater |

When $\overline{10 W}$ goas low and ine Cmip Enables are active. ine data on ine AD is wrtiten into $\% O$ port setected by the of the selected por ate altected regaraless of ineir $1 /$ mode and ine state of $10 / \mathrm{M}$ The actual oulput level does not change untul IOW relurns nigh ighticn liee oulputi A port can be readout when the latched Chip Enabies are cilve and eimer Ra goes low winh ioim high. or iOR goes will sppear on lines ADo.?
Toctarity the Iunction of the $1 O$ P Ports and Data Direction Registers. the tollowing diagram shows the contiguration tone bil of PORT A and DDR A The same logic applies

inteJ
B755A8755A-2

## ERASURE CHARACTERISTICS

The erasure characleristics of the 8755A are such thel erassure begins to occur when exposed 10 light with mavelengthe shorter than approximately 4000 Angstroms tluorescent iamps have wavelenging in ine $3000-4000 \mathrm{~A}$ range Data show that constant exposure to room level Alluorescent lighting could erase the typical 8755 A in
sporoximataly 3 years while it apDroximataly 3 years while it would take approximately 1
week to cause erasure when exposed to direct sunlight. II the 8755A is to be exposed to these types of lighting conariong ior extended periods of lume. opsaque labels are avainble from intel which should be placeed over the
8755 window to prevent unintentional mis wincow to prevent unntentional erasure.
The recommended erasure procedure tor the 8755A is length of 2537 Angstroms it, The intigicated dose :i.e. UV intensity $X$ exposure timel for erasure should be a
minimum of $15 W$.eec/ $\mathrm{cm}^{2}$. The orasure minimum of $15 W$-egc/cm? The erasure lime with enis virlet lamp with a $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating uitra- The
B75A b755A should be olaced within one inch from the lamp lubes during erasure Some iamps nave a lititer on their

## PROGRAMMINC

sonirgs. and atter esch ersature, all bits of the EPROM sonions of the 8755A are in the "1" state information is introduced by selectively programming " 0 into the desyred bin locations A programmed "o" can only be "nged io a "1" by UV erasure
The 8755A can be programmed on the inteie Unversal DROMPT-48" deg (UPP), and ine PROMPT ${ }^{80 / 85}$ and *)

ine progem
ingle address mota time tit consists of programming a 're every asdress. Generality, it is coesirabia to have a is shown atier a program cycle for the same address
 0.0

Oining to the e755A programming operation are con -ned in Figure 7 .

## SYSTEM APPLICATION

## Aysom interface with 8085A and 8088

5A cen use either one of the two $1 / 0$

- sumara vo
- Memory Mappead l/O
ha arandard Iro technique is used, the ayetem can use the feature of both $\mathrm{CE}_{3}$ and $\overline{\mathrm{CE}}$, By using a combination of unuesd addreas lines $A, \ldots, n$ and the Chip Enable Inputs. the B085A aystem cen use up to 5 each 8755A'0 without roquiring a CE decoder. See Figure $2 a$ and $2 b$ selected by the combination of boith ine Chip Ensetes and $10 / \bar{M}$ using ine $A D_{s-15}$ aodress lines. Soe Figure 1.


Figure 3. $\left.\begin{array}{c}\text { s755A in } 8085 A \text { Syatem } \\ \text { (Memory-Mapped UO) }\end{array}\right)$


Figure 4. IAPX B8 Five Chip Syesem Contiguration
6-152


Figure 5. :75SA in bos5a System (Standard IIO)

inter

| A.C. CHARACTERISTICS $\quad T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} . \mathrm{V}_{C C}=5 \mathrm{~V}=5 \%$ : <br> $V_{C C}=V_{D D}-5 V=10 \%$ tor $\left.8755 A-2\right)$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbal | Parameter | 8755A |  | (Praliminary) |  | Units |
|  |  | Min. | Max. | Min. | Man. |  |
| eve | Clock Crcie Time | 320 |  | 200 |  | ns |
| $\mathrm{T}_{1}$ | CLK Pulse Wialn | 80 |  | 40 |  | ns |
| $\mathrm{T}_{2}$ | CLK Pulse Widin | 120 |  | 70 |  | ns |
| : 1 : | CLK Rise and Fall Time |  | 30 |  | 30 | ns |
| tal | Adaress to Laten Ser Up Time | 50 |  | 30 |  | $n 9$ |
| $t \cdot 1$ | Address Hold rime alter Laten | 80 |  | 45 |  | n3 |
| Le | Laicn io AEAD/WRITE Contiol | 100 |  | 40 |  | ns |
| tao | Vallo Oata Oul Delay trom REAO Conirol |  | $170^{\circ}$ |  | 1400 | $n$ |
| ta 0 | Adoress Siable 10 Data Out valid |  | 450 |  | 330 | ns |
| t | Laten Enabie Widin | 100 |  | 70 |  | $n 3$ |
| troor | Oala Bus Floal atier READ | 0 | 100 | 0 | 85 | ns |
| ${ }^{1+6}$ | READ/WRITE Control to Latch Enable | 20 |  | 10 |  | ns |
| - | READ/WRITE Control Wioth | 250 |  | 200 |  | ns |
| 10w | Oata in to Write Sel up Time | 150 |  | 150 |  | ns |
| two | Oata in Hold Time Atier WRITE | 30 |  | 10 |  | ns |
| Ins | WRITE io Porl Oulout |  | 400 |  | 300 | n9 |
| toa | Port ingut Set Up Time | 50 |  | 50 |  | ns |
| 190 | Port input Hold Time 10 Control | 50 |  | 50 |  | ns |
| trim | READY HOLO Time lo Control | 0 | 160 | 0 | 160 | ns |
| Latar | ADORESS CE TO REAOY |  | 160 |  | 160 | ns |
| tav | Aecovery Time Beiween Controls | 300 |  | 200 |  | $n 8$ |
| Troe | READ Control to Data lus Enable | 10 |  | 10 |  | ns |
| 1.0 | ALE to dala Out vallo |  | 350 |  | 270 | $n 3$ |
| Hote: <br>  |  |  |  |  |  |  |

A.C. CHARACTERISTICS—PROGRAMMING $\quad T_{A}=0^{\circ} C$ to $70 . V_{C C}=5 \mathrm{~V}=5 \% . V_{S S}=0 \mathrm{~V}, \mathrm{~V}_{D D}=25 \mathrm{~V}=\mathrm{IV}$.

| 3ymbot | Parameter | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| tos | Data Solup Time | 10 |  |  | ns |
| 190 | Data Hold Time | 0 |  |  | ns |
| is | Prog Puise Setup Time | 2 |  |  | 43 |
| 14 | Prog Puise Hold Time | 2 |  |  | $\mu 8$ |
| 1 Pa | Prog Pulse Rise Time | 0.01 | 2 |  | $\mu 8$ |
| Lef | Prog Pulse fall Tume | 0.01 | 2 |  | $\mu$ |
| IPana | Prog Pulae Width | 45 | 50 |  | meac |

## inted

8755A18755A. 2
A.C. TESTING INPUT, OUTPUT WAVEFORM

waveforms
CLOCK SPECIFICATION FOR 875SA

inter
8755A/8755A-2

WAVEFORMS (Continued)

## HO PORT


a. output mode

-...


## ANALOG <br> DEVICES

Integrated Circuit 10-Bit Analog-to-Digital Converter AD571*

## features

Complote A/D Converter with Ruforence and Clock
No Misting Codes Overs Tomporature
0 Ot $+70^{\circ} \mathrm{C}-A D 571 \mathrm{~K}$
$-65^{\circ} \mathrm{C} 10+125^{\circ} \mathrm{C}$ - AD571S
18. Pin Coremic DIP

Low Cort Monolithic Construction

## RODUCT DESCRIPTION

The ADS71 sa 10 -bir successive approximation A/D converter consusting of : DAC. voitage reference, clock, com
parstor, wucessive approximation register and output parator, wuccessive approximation register and output
buffers - all fabricaled on a single chip No external components are required to perform a full accuracy 1abit onverstion in 25 us.
The ADS 7 h incorporates the mose advanced integrated circurt design and processing tec hnol ogy avealable today. It is he firss complete convereer to employ $1^{2} L$ (integrated inLaser trimming of the high seability Sicr ihin film resistor adder network at the wafer stage (LWT) insures high accuracy. whith is mannained with a temperatute compenased, subsurface Zener reference
Opetating on tupplies of SV $10+1 S V$ and $-15 V$, the $A D S 71$ will aceept andios inputs of $U$ to +10 V . Unipolar or $\pm S V$ bupolar, exter enally selectable. As the BLANK and
CONVERT input is druen low, the three sate outpucs wall be open and a consersion will commence. Upon completion of the converson, the DATA READY line will go low and the DERET will appest at the output Pulling the BLANK and CON Eo the next conversion the A0s? orversion with no missing codes in approximately 25 us. The ADS71 is avaliable in two versions for the 0 to $+70^{\circ} \mathrm{C}$ temperanter ange. the ADS71) and $K$. The ADS71S guaran 20-bit accuracy and no missing codes from -55 $5^{\circ} \mathrm{C}$ or $+129^{\circ} \mathrm{C}$.
Covered by Puane Nowe 3,900.760, 4,21, ,206, 4,136,148.


18-PIN OIP

## Product hichlichts

1. The ADS71 is a complete 10 -bit AD converter. No external components are required to perform a con-
version. Full sale calibration accuracy of $\pm 0.36$ is achieved wichout external trims.
2. The ADS 71 is a single chip device employing the most advanced IC prosesuing techniques. Thus. the user has it his disposal a truly precision component with the reliaThe ADS71 cecpu cither unipler 10 er -10 V or The $\mathrm{AD}(-5 \mathrm{~V}$ eo SV ) ane or opening a single pin.
-The device offers tue
missang codes over its enurie accuracy and exhabies no range.
3. Operation is guaranteed with -15 V and -5 V to +15 V supples. The device will also operate with a -12 V supply.

10

absolute maximum ratings
$\uparrow+$ to Digital Common ratin
ADS71K. ................0toto 0 t7V 16.5 V

- to Digital Common . . . . . . . . . . . . . . . . . . . . . 0 to 0 to -16.0 V

Analog Common to Digital Common. . . . . . . . . . . . . . . . . . . . . 1 V Analog Input co Anslog Common. . . . . . . . . . . . . . . . . . . . Itsv Control Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to $\mathrm{V}+$
Digizel Outputs (Blank Mode). .................... 0 to $\mathrm{V}+$

ctrcuit description
The ADS 71 in a complete 10 -bit A/D converter which requires no excernal componens to provide the complete succesive diagesm of the ADS $A 11$ io shown in Fisure 1 . Upon receipt of the CONVERT command. the ineernal 10-bit current output OAC is sequenced by the $1^{2} L$ successuve approximation rgiter (SAR) from its mostrsignificant bre (MSB) co least. significane bie (LSB) ta provide an output surrent which cccurately balances the input signal current through the $5 k \Omega$ nput resistor. The compazatur decermines whether the ad. dition of each successively. weighted bit current causes the DAC curent sum to be greater or less than the inpur current, if the
oum is kess the but is left on, if more, the bit is rurned off After lesting all the bits, the SAR contanss a 10 bit binary code which acsurately represenis the input sugal to within $\mathbf{1 4}$ LSE (005\%).


Figure 1. AD57I Functione/ Block Digoran
Upon complection of the sequence, the SAR cends out a
DATA
$\operatorname{READY}$ sugna (active low), which also brings the ihreessate buffers out of their "open" state, making the bit ouput unes become sctive high or iow, depending on the code in the SAR. When the BLANK and CONVERT line is AR is prepared for another convenion cycle. De and the timing are given further.
The temperrature compensated buried Zener reference provides the primary voluge reference to the DAC and suarantecs excellent stability with both neme and eempers. he positive bipolar offsec current eexacly equal to the value of The MSB less 4 LSB) to be iniected in to the summing ( $\cdot$ ) node of the comparator to offset the DAC outpue. Thus the nominal

Q $10+10 \mathrm{~V}$ unipolat inpur range becomert -5 S to +5 S range The $s k \Omega$ thin film input resiscor is trimmed so that with a foll cele input agnal. an inpur current will be generated whith exacely matches the DAC outpur with all bics on (The inpur essious is trommed shighty tow to facilitate user trimming. al (OWER SUPLY SELECTION
ROWER SUPPLY SELECTION
The ADS71 is designed for optumum performance using : +SV and -15V supply, for which the ADS7I) and ADS715 re specefied. ADS7IK will alwo operate with up to a 15 V supply. Which allows direct interface to CMOS lugic. The input
logie threshold is a function of $V+$ as shown in Figure 2 . The supply current drawn by the device is a function of both $v *$ and the operating mode (BLANK or CONVERT). Thes apply current variations are shown in Fygure 3. The supply currents change only moderately over eemperature as shown in $F$ guare $?$


Figure 2. Logk Threshold (ADS7IK OnN)


## Applying the AD571

CONNECTING THE ADS71 FOR STANDARD OPERATION The ADS71 contans all the active components eequired to perform a complete AD conversion. Thus, for moss situaCons. all that is necessary is connection of the power supyart pulse. But. Chere are some features and special ro nections which should be considered for achieving opomum performance. The functional pin-out is shown in $F$ Figure 4.


Figure 4. AD571 Pin Connaction

## full scale calbration

The sk $\Omega$ thin film input resistor slaser trimmed to produce ${ }^{2}$ surfent which matches the fuil scale current of the internal DaC-plus about 0 3x-when a fuli scale analog input volage
of 9.990 voles ( 10 wolts -1 LSB is spplied at the inpur. The unput ressitor is trimmed in this way so that if a fine errmming polentiometet is inverted in ketus with the input signal. the anput curtent as the full scale input voltage can be trimmed down to match the DAC full scale current as precisely as esured However, fur many applisations the nominal 9.99 inkruing i $15 \Omega$ ressiot in series with the andiog input to pin 13. Typxal full xale calibravon error will then be abour :2158 or $10.2 \%$ If the more prectue calibration is desired. a $50 \Omega$ erimmer should be used insterad. Set the analog input 19.990 volas. and $x$ the trummer so that the output code Such at the cranstion berween 1111111110 and 1111111111 tull ceale of 10.24 volus as desited (which makes the LSB have weeqhi of exacty 10.00 mV ). a $100 \Omega$ resistor in series with a $100 \Omega$ ormmer for $200 \Omega$ inmmer with good resolution) hould be used. Oi course. larger full scale canges can be an anged by uang a larget input restitor. but line ariry and full external resiator becomes a sizesble percentage of $\mathbf{~ k ~} \Omega$.


Figure 6. Stendard AOS7t Connection
bipolar operation
The standard unipolar 0 to +10 V range is obrained by shortine the bipolar offset concrol pin to digital common. If the pin is left open, the bipolar offsel current will be switched into the comptrator summing node. giving a $-S V$ io $+5 V$ range with an
offser bnary ourput code. ( -5.00 volus in will give a 10 -bit offect binary ourput code. ( -5.00 volis in will give a $10-$ bi
code of 0000000000 an input of 0.00 vols resuls in an put code of 1000000000 and 4.99 voles at the input yeilds the 111111111 code). The bipolas offiset control input is not direcdy TTL companble, but a TTL inverface for logic control


Figure 6. Bipoler Offwe Controhed by Lopk Gate Gote Outpur = I Unipolar O-10V input Range Gate Output $=0$ Bipolar $\pm 5 \mathrm{~V}$ input Rango COMMON MODE RANGE
he ADS71 provides separate Analog and Digital Common Tonnections. The circuit will operate properly with as much thom of common mode range between the two common bussung and digited and analog refurne
in normal operation the Analog Common terminal may gene te transiene currencs of up to 2 mA during a conversion. In Common in the unipolar mode after a conversion is complete. An addivonad ImA will flow in during a blank interval wich ero andog input. The Anelog Common current will be modutited by the variations in input rignel

The absolute maximum voltage rating beeween the two com hons $11 \pm$ volt. We recommend the conneetion of a parallel if they ure not connected locally.


Ioun 7. AD57I Powar Supply Current ve. Tampervaurs
analog-to-mitital converteas vol.t.10-3S
zERO OFFSET
The apparent zero point of the ADS $71 \operatorname{can}$ be adjusted by inserting en offret voltage between the Analog Common of the
devier and the acrual signal retum or sygnal common. Figure \& devire and the acoual signel returm or sugnel common. Figure \& illuatrates two methods of providing this offset. Figure 8A hows how che convener recto may be offiser by up to 13 bits As shown, the circuir gives approximately symmetrical adjustment in unipolar mode in bupolar mode R2 should be omitted to obtain a symmettical rang.


Figure 8. (A)

weit zeno orfitit
Figure 8. (8)
igure 9 shows the nominal transfer curve near zero for an ADS71 in unipolar mode. The code transitions are at the edge of the nominal bit weighis in some applicazions it will be pre ierable to offset the code cransitions to that they fall between he nominal brit wesghts, as shown in we ofke characteristic As balance (fifter a conversion) approximatcly 2 mA fows into the Analog Common terminal. A $2.7 \Omega$ resistot in seties with chis teeminal will result in approximately the dessed 3 bit ofl. er of the uranser characteritics. The nomina $2 m a$ analog Common curtent is not closely contralled in manufacture. I theostat can be used as R1. Additional negative officet renge may be obrained by using larger vilues of R1. Of course, if the zero uransition poine is changed, the full scale reansition point mill also move. Thus, it an offset of 4 LSS is incroduce full $\boldsymbol{c}$ ale inmming as described on previous pagc should be conc with an znalog inpuc of 9.985 valts.

COTE: During a conversion transient currenss from the Analou Common terminal will disturb the offert voltage. Capacitive decoupling should not be used around the offert network. hese cranstenu will serike as appropriate during a conversio aperetive decoupling will "pump up" and fial to sectle rerecurms to ansiog signal common. should go to the signa aput tide of the resisive offset networt.

VOL L $10-36$ ANALOG-TO-DIGITAL CONVERTERS


Figure 9. A0571 Transfer Curv - Unipolar Operation Adproximate Bit Whights Shown for Illustration, Nomina Bit Whights $\sim 9.766 \mathrm{~m} \mathrm{~V}$ )

## polar connection

To obecin the bipolar -5V $10+5 V$ range with an offer binary ourput code the bipolar offset sontrol pin is lift open. A - 9.0 vole signal will give a 10 bit code of 0000000000 an inpur of 0.00 volts results in an ourput code of 1000000000 minal uanster curve is shown in Figure 10

figure 10. AD671 Tronster Curve - Bipolar Operasion

## Control and Timing of the AD571

CONTROL AND TIMING OF THE ADS71
There are several important timing and concol features on the ADS 7 whuch murt be understood precisely to allow rol syserms. All of these featuree are shown in the uming diagram in Fyure 11 .
The normel stand-by sinuation is shown at the left end of the ghing the output lines will be "open", and the DATA READ SN Lind will be high. This mode is the lowest power state rought low, the conversion eyele is initiated: but the $\overline{O R}$ and Dasa lines do not shange state When the conversion cycle complete (typically $25 \mu 3$ ). the $\overline{\text { DR }}$ line goes low. and with OOns, the Dira lines become active with the new dat. About $1.5 \mu s$ after the $\mathrm{B} \& \overline{\mathrm{C}}$ line is again brought $h$ igh, the Do line will go high and the Dasta lines will go open. When the \& $C$ hine is agan brought low, a new converion wul begin. The maumum pulse width for the B \& $\bar{C}$ line to blank preno dua and sart a new converion is $2 \mu \mathrm{~s}$. It the 8 \& $C$ line in the DR and Date linet will not change. If a $2 \mu \mathrm{~s}$ or longer pulse applied to che $\mathrm{B} \& \mathrm{C}$ line durng a converimon, the convere will clest and zsart a new converion cycle.


## Rgure II. AOSNI Timing and Control Sequances

## CONTROL MODES WITH BLANK AND CONVERT

The uming xequence of the ADS71 discused above allows the device to be easly operated in a variety of systems wath differ ing control modes. The two most common control moder, the here.
Consen Palse Mode - In this mode. date is present at the out put of the converter at all tumes except when conversion is aking plase Figure 12 illustrates the timing of this mode. The
BLANK and CONVERT Iune is normally low and conversions we trigered by a pounwe pulse. A typical application for this iming mode is shown in Fipure is in which $\mu \mathrm{P}$ bus interfacing a eanly accomplished with three satace buffers.
uwinphx Mode - in this mode che oupputs are blenked except When the devxe as kilected for converrion and readuut: this umng a shown in Fquie 13. A typical ADS71 multiplexing Ppictaron is shown in Figure 16
Thus opriong move allows multiple AD571 devices to drive
common dase lines. All 8 L.ANK and CONVERT lines are held hugh to keep the outputs blanked. A single ADS71 is selected. int BLANK and CONVERT line is diven low and as the end of
conversion, which is indicated by DATA READY going low the conversion result will be present at the outputa. When thit
data has been read from the 10-bit bus. BLANK and CONVERT is ressored to the blank mode to clest the data but for other converten. When several AD 371 's are multiplexed in squence, a new conversion may be sared in one ADS71 while dats being read rom ano ber. As 1515 , her the is read and the first ADS7 is cleared with econd ADS7, no data overlap will occur.


Flgure 13. Mutiplox Modo

SAMPLE HOLD AMPLIFIER CONNECTION TO THE ADS71 Many suruations in high-speed acquisition tystems or digitizing of rapidly changing signals require a semple-hold amplifier (SHA) in front of the A-D converter. The SHA can acquire and hold a signal faster than the converter can perform a conversion. A SHA can alse be used to sccurately define the exact point in time at which the sienal 18 sumpled. For the AR
a SHA can also serve as a high input impedence buffer.
firure 14 shows the ADS 71 connected to the ADS 82 monoli. thic SHA for high speed signal acquisition. in this configuration the AD 582 will acquire 10 volt hignal in less then $10 \mu \mathrm{~s}$ with a droop rate less than $100 \mu$ V/ms. The conctol signala are artanged so shat when the control line goes low, the ADss2 it put into the "hold" mode, and whe ADS77 will begin its converion


Figure 14. Sempiontrold intarifoce to the ADS71
firre comparator decision inside the ADS71) The DATA
READY lime in fed deck inpuz control gate wo that the ADS82 cannut come out of the "hold" mode during the conversion cycle. At the end of the conversion cycle, the DATA READY line gues low, automatcally placing the ADS82 back meo the sample mode. Ths feature allows smple cuntrul of both the SHA and the A.D converter with a single line. Obnerve carefiliy the ground, sup
ply, and bypass capacitor connections between the two dewies. This will minumize ground noise and interference durn the conversion cycle to give the most accurate measurements. INTERFACING THE ADS71 TO A MICROPROCESSOI The ADS7L can casily be arranged to be diven from sandard microprocessor conerol lines and to present date to any standard microprocessor bus (4., 8., 12.ur 16 -but) with a mini mum of ditional sontrol componenis. The coniguration and stendard soso control signals. ond sendard 80 is control agnals.
The input control circuitry shown is required to insure thas When $\$ 71$ receves a sulficiently long B \& $\bar{C}$ input pulse $B \& \bar{C}$ line is low, and $\overline{D R}$ is low. To command a conversions the rtert address decode line goes low, followed by $\overline{W R}$. The $\frac{B}{} \mathbb{C}$ line wll now go high, followed about 1 sus later by
$\overline{D R}$. This rexts the external fip-flop and brings $\& \mathbb{C}$ back to low, which initises the converson cycle. At the end of the conversion cycle, the $\overline{D R}$ hine goest low. the data outputs will become active with the new data and the conerol lones will recurn to the sand-by sate. The new data will remain active untila new conversion is commanded. The self.pulsing natur This new darcan now This new data can now be presented to the data bus by en ( 8 bit or 2 bit) is loaded onto the bus when its decoded od dress goess low and the RD line goes low. This artangement presents data to the bus "lef.f.justified." with highest bits in


Figure 15. Interfacing AD571 ro en 8.bic Buz
18080 Control Structurn)

VOL.1,10-38 ANALOG-TO.DIGITAL CONVERTER
up by a simple re-wirng. Polling the converter to determine Whonversion is complete can be done by eddressing the gate there is no need for additional buffer segister sorse since the data can be held indefinitely in the ADS71, since the $B \& \bar{C}$ line is continually held low. cikcut An improved rechnique for interiacing to a $\mu \mathrm{P}$ bus involves the use of special periphersl interficing circuits (or I/O devicss). Shown in Hegure 16 is a steri interface Adapter (PIA) to multiplex up 108 ADS 71 crcuits. The ADS 71 has 3 frate ourpuis, hence the dala bit outputs can be paralleled. provided that only one converter at a tume is permuted to be the active state. The DATA READY OULPUL of the ADSTI is an open coliector with ressisior pull. up. thur several DR lines can be device One of the 8 -bit porss of the PIA is combined with 2-bis from the other port and programmed as a 10. bit input port. The remaining 6 -bits of the second port are programmed as outputs and along with the 2 control bia When a control line is in the " 1 " or hish serce, ADS ADC be automatically blanked. That is, its oueputs will be in the inactive open state. If a single control line is smiched low, ita ADC mill convert and the outputs will automatically go activ when the conversion is complete. The result can be read from the wo peripheral ports, when the next conversion is desired.
idifferent control line can be iwitched to zero. blanking the previously active port at the same time. Subrequently, this second device can be read by the miscroprocessor, and soforth The status lines are wireored in 2 groups and connected to the two temaining control pins. This allows a conversion status
 effect of the interna! pull-up ressistors on the DATA buffers. See the Motorola MC6821 data sheet for more application detuil.






VOL 1, 14-24 SAMPLETRACK-HOLD AMPLIFIEAS

## APPLYING THE ADS82

Both the inverting end non-inverting inputa are brought out to alow op amp type versathty in connecting and using the AOS82. Figure 1 shows the basic non-inverung unity gun conmower requiring only an externas hold capacioor and the usual power supply bypass capasitors. An offee null por can be dided for more ctitical applications.


Figute I. Semple and Hold with $A=+1$
Fyure 2 shows a non-inverting configuration where volage gan. Ay, is see by a pair of external resistors. Frequency shap.
ing or non-linear nerworkz ean also be uxd for specal applict nonat


Figure 2. Sample and Hold with $4=\left(1+R_{f} / R_{j}\right)$

The hold capactior. $C_{H}$, should be a high quality polysyrene Cor temperatures below $88^{\circ} \mathrm{C}$ ) or Teflon type with low deelectric absorption. For high speed. limited accuracy applice-
cions. capacitors as small as 100 pF may be used. Larger values are required for accuracies of 12 bits and above in order to minumize feedthrough, sample to hold offere and droop erron (sse Figure o) Care thould be taken in the circuit layout to minimize coupling berween the hold capacitor and che digutal or signal inputs.
Th the hold mode, the outpur voltage will follow any chang in the -Vs supply. Consequently, this supply should be weil revinet and hitered.
Biasing the + Logic Inpue anywhere berween -6 V to +0.8 V with reppect to the -Logic will set the semplie mode. The hold mode
will refule from any bias between +2 OV sumple and hold modes will be conerolled differentially with the abwolute voltage at sither logic inpue ranging from $-V_{s}$ to within 3 V of $+V_{5}\left(V_{\mathbf{s}}-3 V\right.$ ). Figure 3 illustrater some exampley of the fiexibility of this feature.


Fioure 3A. Stundard Logic Connoction


Fibure 38. Invertod Lopic Sence Connection


Figurn 3C. High Threstold Logic Connection

DEFINITION OF TERMS
Figure 4 illuntates various dynamic characteristice of the ADS82.


Figure 4. Pictorial Showing Various S/H Cheracteristic:
Aperrure Time is the ume required atter the "hold" command uncil the switch is fully open and produres a delay in the effec live somple tuming. Figure $S$ is a ploa guving the maximum fre quency at which the ADS82 can sample an input with a given acsuracy (lower surve).
Aperture Jitter is the unsertainty in Aperture Time. If the Aperture Time is "tuned out" by advancing the sample-to-bold command 200ns with respect to the inpur sienat, the Aperture Jutcer now determin
curve of $F$ Figure $\$$ ).
Acquisition Tume is the ume requited by the device to reach in final value withir a given error band affer the sample command has been given. This includes switch delay ume, slewing cume and $k$ etling time for a given ourpur voltage change.
Droop is the change in the outpur vollage from the "held
be in either the positive or negative direction Droop rate mey
be calculated from droop current using the following formula:
$\frac{\Delta V}{\Delta T}\left(V_{\text {olt }} / / s c c\right)=\frac{l(P A)}{C_{H}(P F)}$
(See also Figure 6 )
Feedtborougb is that component of the output which follows the input signal after the owitch is open. Ais percentage of the through capacitance to the hold capacitance ( $\mathbf{C}_{p} / \mathbf{C}_{H}$ ).
cbarge Trenuer is the charge unsterred to tha holdind Cbagge franiser is the charge iransferred to the holding capa-
ctoor from the interelectrode capacitance of the switch when the unat is swiched to the hold mode. The charge eransifer genenates a sample: to hold offset where :
$S / H$ Offset $(V)=\frac{\text { Charge }(\rho C)}{C_{H}(\rho F)}$
(See also Figure 6.)
Sample-so. Hold Offset is that component of D.C. offses independent of $C_{H}$ (sce Figure 6). This offser may be nulled using null pot, however, the offset will then appers during the
empling mode.


Figure 5. Maximum Fraquency of input Signa for \$LSB
Sempling Accurcy


> Figure 6. Somple and.Hold Parformanct os ofunction of Hold Cepoctiance


Figure 1. Droap Current vz Temporsture

| (6) HARRIS <br> 4 Chan | $\begin{array}{r} \mathrm{HI}-508 / \mathrm{HI}-509 \\ \text { Single } / \text { /Differentital } \\ \text { I CMOS Analog Mutipipexer } \end{array}$ |
| :---: | :---: |
| fatuans | oscrapioton |
|  |  |
| Aspleatrows | 5 5 max |
| - precision insthuments - data acouisition systems - telemetay |  <br>  |
| Pmours |  |
|  | $\begin{gathered} \text { = } \\ =\alpha^{\infty} \end{gathered}$ |
|  |  |





|  | $4 A-1608$ <br> +10V Adjustable Voltage Reference |
| :---: | :---: |
| features | DESCRIPTION |
| - monolithic construction  <br> - initial accuracy $\bullet 10 \mathrm{~V} \pm 0.010 \mathrm{~V}$ <br> - output voltage error, total $\pm 1 / 4 \mathrm{lSE}$ <br> - lownoise $20 \mu \mathrm{~V}_{\text {d- }}$ <br> - wioe input ramge 12 V to 30 V <br> - low power oissipation 30 mw <br> - output shoht circuit protection  <br> - adustable output  <br> APPLICATIONS <br> - an economical external reference for: H1-5608: DAC O8: AD 1408. AD559 <br> - voltage regulator reference <br> - poatagle gattery operated equipment <br> - negative idv qeference | HA-1608 is a monolinhic + 10 V adunable voltoge roterence lesturing accurcicy and tamperature siobility specifications dataided oxeluswoly for 8 bit deto conversion syiremi. A stable +10 V output is provided by - relerence tenes and bufiter amplifies coupled with laser trimmed feedback and zenet biss resistons. Long term stablity is ansured through integration ol all reforence camponents into a monolithic design. Fioa. Bbilty of HA- 1608 is provided through an external tum control which allow the uner to adjust thi outpui voliege for binaty or BCD applicetions without alfecting ovirisl performance. <br> Thane devices provide a total dutput voltoge arror of $\pm 1 / 4$ LSB for 8 bit $\mathrm{D} / \mathrm{A}$ or $\mathrm{A} / \mathrm{D}$ convorters Low stondiby power $(03 \mathrm{~mW})$ makes HA . 1608 - natural misction for dornble bontery operited rquipmant. comparator isterences, ond riterence stecking circuirs Them donces con also be und on - 10 V relerentes. <br> HA-1608 is packeped in 8 din matul cens (T0-99) and the pinout is artanged tot convenient replacemami of other wes accurate regulation in applictitions demanding minimal change with tempertiure and ume. HA-1608-2 is specilied for $-550^{\circ} \mathrm{C}$ 10 +1260 C operation <br>  |
| PINOUT | FUNCTIONAL SCHEMATIC |
|  |  |




## ANALOG DEVICES



PRODUCT DESCRIPTION
The ADS90 is a two-terminal incegrated cusuit temperature transducer which produces an output current proportional io absolute remperature. For supply volitges berween +4 V and
+30 V the device acts as a high mped ance, constant current
 tesistors is used to calbrate the device to $298.2 \mu \mathrm{~A}$ output at $298.2 \mathrm{~K}\left(\cdot 25^{\circ} \mathrm{C}\right)$.
The ADS 90 should be used in any remperature sensing applicatuon below $150^{\circ} \mathrm{C}$ in which conventional electrical temperarure senson are currently employed. The inherent low cost of 2 monolithis integrated circuit combined with the ellmination of support cucurry makes the ADS 90 an attractive aleernative
for many temperature measurement situations. Linearization circuitry. prectision voluge amplifieri, resistance measuring circuiry and cold junetion compensation are not needed in applying the ADS90.
In addition to cemperature measurement. applacations include eemperature compensation or sorrection of discrete compor nenss. busing proportbonal to absolute temperature. fiow rate
messurement level detection of fluds and anemomery the AD $\$ 90$ is available in chip form making is suitable for hybrid circurs and fast temperature measurements in provectied en. uronmenes.
The AOS90 is particularly uxiful in remote sensing applica toons. The device is insensetive to voltage drops over long lines due to its hyh mpedance current output. Any well-masulated iwisted part is sutfictent for opectation hundreds of fect from
the recerving rircuicry. The output charactensucs also make the receving rireulify. The output characternsucs also mate - CMOS multipleser or the supply vole age can be smitched by logk gate output.
Counved by focent No. 4.12 1.09

## Two-Terminal IC

 Temperature Transducer
## AD590*

## adSgo functional block diagram


sotrom view
8

PRODUCT HICHLIGHTS
The ADS90 is a caibrated two terminal temperature censor requinng oniy a de voltage supply ( +4 V to +30 V ). Contly hosmitters, fitters, le ed wire compensotion and linearia. tion circuits are all unnecessary in applying the device.
2. Sute-of the ant lser urimming at the wafer level in conjunc-
tion with extensive final testing insures that ADS 90 unita are easily interchangeable
3. Superior interference refection results from the output being a curerene rather than a volcuge. In addition, powet requirements are low ( 1.5 mW 's $\operatorname{SV} \oplus+25^{\circ} \mathrm{C}$ ). These features make the ADs 90 casy to apply as a remote ensor.
4. The hagh output impedance ( $>10 \mathrm{M} \Omega$ ) provides excellent rejection of mupply voltage drift and ripple. For instance. changing the power supply from $5 V$ to 10V revelu in only
a ADS 9 is forward vol age up to 44 V and a reverice voluge of 20 V . Hence, supply urequatatues or pin reveral will nor demage the device.


##  


temperature scale conversion equations
${ }^{\circ} \mathrm{C}=\frac{5}{9} \cdot\left({ }^{\circ} \mathrm{F}-32\right) \quad \mathrm{K}={ }^{\circ} \mathrm{C}+273.1 \mathrm{~s}$
${ }^{\circ} \mathrm{F}=\frac{9}{5}{ }^{\circ} \mathrm{C}+32 \quad{ }^{\circ} \mathrm{R}={ }^{\circ} \mathrm{F}+459.7$


## explanation of temperature sensor

 SpECIFICATIONSThply in in which the ADS90 is apecified makes it eary to to undersund varery of different applictions. It is enporta che effects of supply voluge and thermal environations and surecy.
The ADS90 is baically a PTAT (proportional to abrolute cemperisure) ${ }^{2}$ current regulator. That is, the ourput current is degrees Kelvun. This scyle factor is inmmed to the fectory, by adjusting the indicsated eemperature (i.e. the outpus eurrent) to agree with the actual temperature. This is done with $V^{\circ}$ artoss the device at a semperature within a lew degrees of C (298.2K). The device is then packaged and tested for

## calibration error

At final factory test the difference berween the indicated remperanuer and the accrual cemperanere is called the calibration total error of the device is PTAT. For example. the effect of the $1^{\circ} \mathrm{C}$ apecified maximum error of the ADS 90 L varies from
 an exaggerated calbration error would vary from the ideal over eemperature.


Floure 3 Colibrotion Error va Temparaturs
The calibration error is a primary contributor to maximum fector error, it is is parivularly eary to trim. Figure 4 showz the most elementary way of accomplishing this. To trim this cir wit the temperature of the ADS 90 is measured by a reference emperature sensor and R is inmmed so that $\mathrm{V}_{\mathrm{T}}$. $1 \mathrm{mV} / \mathrm{K}$ at hat temperature. Note that when this error is urimmed out at one temperature, its effect is 2 ero over the enture cemperature version resistor (or, as with a current input ADC, a reference) that can be srimmed for seale fector adjusument.


Figure 4. One Temperature Trim

VOL 1, -18 TEMPERATURE MEASUREMENT COMPONENTS

ERROR VERSUS TEMPERATURE, WITH CALIBRATION ERROR TRIMMED OUT
Each ADS $\%$ is also tested for error over the temperature rang with the callbration error trimmed out Thas aperifcstion could also be called the "variance from PTAT" since it is the maxi; mum difference berween the accual current over temperiture srror consiss of a llope error and some curvature, mostly at the temperature extuemes. Figure $\$$ shows a rypical ADS90k cemperature curve before and after calbration error tramming.


Figure 5. Effect of Scele Factor Trim on Accuracy
ERROR VERSUS TEMPERATUREI NO USER TRIMS ang the ADS90 by sumply measuring the current, the tocal fifeet of "variance from PTAT" desxribed above plus the effert of the calibration ecror over tempecature. For xxampk $35^{\circ} \mathrm{C}$ t $102^{\circ} \mathrm{C}=150^{\circ} \mathrm{C}$ error vartes from $2.3{ }^{\circ} \mathrm{C}$ at

## nonlineakity

Nonline arity as it applies to che ADS90 is the maximum devieion of current over temperasure from a bestifit straight line. The nonlincanty of the ADS90 over the $-50^{\circ} \mathrm{C} 10+150^{\circ} \mathrm{C}$ censors such es thermocouples, RTD's and thermistorant Fig. ure 6 thows the nonlinesinty of the typical ADS90K from Figures.


Figure 7 A shown a circuit in which the nonlineartry is the maor cominbutor to ertor over semperamure. The circuit is trummed by adjusting $R_{1}$ for a 0 V ou put with the ADS90 $a 0^{\circ} \mathrm{C}$. $R_{2}$ is then adjusted for 10 V out with the x asor at $100^{\circ} \mathrm{C}$. Orher paiss of temperitures may be uesd with this pro-
cedure as long as they are measured accuruely by a refernce cedure as long as they are measured arccurtely by a reference
cnisor. Note that for $+15 V$ oupuc $150^{\circ} \mathrm{C}$ ) the $V+$ of the op ensor. Note that for tisV oupput ( 150 C ) the $V+$ of the op at least -V : if V - is ground there is no voluge applied across the device.

Understanding the AD590 Specifications


Figure 7A. Two Temperature Trim


Figure 78. Troical $T_{\text {wo. Trim Accurecy }}$
VOLTAGE AND THERMAL ENVIRONMENT EFFECTS The power supply refection spectications show the maximum erpected change in output surtent versus input valt age change
The ink nasivivy of the out iput io input voliage allows the ure of unregulated supplics. It also means that hundreds of ohms of ressance (wuch as a CMOS multiplexer) can be tolerated a cties with the devise.
11 a mportant to note that using a supply voleage other than SV does not change the PTAT nature of the AD 990 . In other words, this change e equivalent to a calibration error and ca te removed by the sale factor trim (see previous page). The ADS90 apecificationa are guaranteed for use in a low Large changes in the thermal reusiance of the iensor's envir ronmens will change the mount of self-heting and result in changes in the ouput which ate predictable but not neces untily desirable.
The thermal environment in which the ADS90 is used deter. mines two uporant characterstics: the effect of self heating and the response of the sensor with ume.


Figure 8. Therma Circuit Model
tyure 8 is a model of the ADS90 which demonstrates these the thermad reastance be ween the chip and the case, about
$26^{\circ} \mathrm{C}$ watt. $\theta_{\text {ca }}$ is the thermal resstance berween the cas and ite sur roundings and is determined by the chasctensiocs of the thermal connection. Power source $P$ represents the power
dissupated on the chip. The nx of the junction temperaure. dissipated on the chip. The nse of the iunction
$\mathrm{T}_{\mathrm{J}}$, boove the ambiene temperature $\mathrm{T}_{\mathrm{A}}$ is:

$$
T_{J}-T_{A}=P\left(\theta_{\mathrm{JC}}+\theta_{C A}\right)
$$

Eq. $:$
Table I gives the sum of $\theta_{\mathcal{C}}$ and $\theta_{\mathrm{CA}}$ for severtl common thermal medis for both the " $H$ " "and " $F$ " packages. The heat-
sink used wa a common clipon. Using Equation 1, the semper.
 when driven with a 5 V supply. will be $0.06^{\circ} \mathrm{C}$. However, for the same condrions in still air the temperature rixe is $0.72^{\circ} \mathrm{C}$. For 4 given supply voltage, the temperature rise varies with the current and as PTAT. Therefore. if an application circuit
is trimmed wish the sennor in the sume thermal environmen in which it will be used, the seale factor trim compenstes for this effect over the entire temperature range.

| MEDIUM | $\theta_{1}+\theta_{\text {cal }}{ }^{\circ} \mathrm{C} /$ watil $)$ |  | 2 (ras)(Note |  |
| :---: | :---: | :---: | :---: | :---: |
|  | H | E | H | I |
| Aluminum Block | 30 | 10 | 0.6 | 0.1 |
| Stired Oil ${ }^{\text {d }}$ | 42 | 60 | 1.4 | 0.6 |
| Moving $\mathrm{Au}^{2}$ |  |  |  |  |
| With Heat Sink | 43 | - | 5.0 |  |
| Without Heat Sink | 115 | 190 | 13.5 | 10.0 |
| Still Air |  |  |  |  |
| With Heat Sink | 191 | - | 108 | - |
| Without Heat Sink | 480 | 650 | 60 | 30 |


liuter cobove.
 Tin ingenentennoum temperature change.

Toble 1. Thermal Revirtancer
The ume response of the ADS 90 to a teep change in tempera:
ture is de demuned by the thermal ressisances and the thermal ure is de termuned by the thermin resice, co is therm Capaciteses of the chip. $\mathrm{C}_{\mathrm{CH}}$. and the case. $\mathrm{C}_{\mathrm{C}}$. $\mathrm{C}_{\mathrm{CH}}$ is about
0.04 watl sec $f^{\circ} \mathrm{C}$ for the $A D S 90$. $\mathrm{C}_{\mathrm{C}}$ varics with the me asored medum since it includes any thing that is in direct thermal contact with the cuse. In most ciseses, the single tume constant cx. ponential curve of figure 9 is wuffictent to describe the time mponse. $T(t)$ Ta feseral meda.


Figure 9. Time Reponse Curve

## general applications



Figure 10. Veriabia Scole Digplay

Figure 10 demonstrites the uxe of a low-sont Digital Panel Meter for the display of cemperature on either the Kelvin, Celsius or Fahrenhecit katies. For Kelvin temperature Ping 9 4 and 2 are groundeda and for Fahrenhert remperacure Pins 4 and 2 are left open.
The above configuration yields a 3 digit dusplay with $1^{\circ} \mathrm{C}$ of
$1^{\circ} \mathrm{F}$ resolution, in addition to an absolute accuracy of $+2.0^{\circ} \mathrm{C}$
 over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range if a one-temper
arure eslibration is periomed on an ADS90K. L . or M .


Eiguro 11. Sowies \& Perallel Connection

Connecting several ADS90 units in series ss thown in Figure 11 allows the minimum of all the sensed temperatures ro be indicated. In contrast, using the sentort in putallet yields the average of the sened temperanure.

The circuil of Figure 12 demonstrates one method by which differential temperature measurements can be made. $R_{1}$ and $\mathbf{R}_{2}$ can be ued to erim the output of the op amp to undicace


Fipure 12. Differential Mossuremente
-desired temperacure difference. For example, the inherent offert between the two devices can be rimmed in. If $V$ and
$V-a r e ~ r a d i c a l l y ~ d i f f e r e n e, ~ t h e n ~ t h e ~ d i f f e r e n c e ~ i n ~ i n t e r n a l ~ d u s t r ~$ $v-a v e$ radically different, then the difference in internal dassrpation will cause a differentist internal cemperature rise. This effect can be used to messure the ambient thermal resicuance seen by the kensors in
ors or anemametry.


Figure 13. Cold Junction Compensestion Circult for
Troe i Thermocouple

Figure 13 is an example of a cold junction compenmation circuit for a Type I Thermocouple using the ADS 90 to monitor the
reference junction temperature. This circuit replace anicebath reference junstion temperature. This circuit replaces an ice-bath between $+15^{\circ} \mathrm{C}$ and $+35^{\circ} \mathrm{C}$. The curcuit is calbrated by ed ing $R_{T}$ for a proper meter reading with the measuring juncetion at a known reierence temperature and the circuit neas $* 23^{\circ} \mathrm{C}$. Using components with the T. C. is aspecifiod in Fygure 13 . compensation accuracy will be within $10.5^{\circ} \mathrm{C}$ for circuit
temperavures berween $+15^{\circ} \mathrm{C}$ and $+35^{\circ} \mathrm{C}$ Other thermal typer can be accommodated with different resistor values. Note that the T.C.'s of the voltage reference and the resiston are the primary contributors to ertor.

Applying the AD590


Figure 14.45020 mA Curremt Trenemirter
Fiyure 14 is an example of a current transmitter designed to be ukd with 40 V . $1 \mathrm{k} \Omega$ tystems it uses its full current range of
4 mA to 20 mA for a nartow span of measured remperaures. ma to 20 mA for a narrow span of measured temperatures.
to chu example the $1 \mu N K$ output of the ADS 90 is amplified and
co $1 \mathrm{~mA} \wedge^{\circ} \mathrm{C}$ and offict so that 4 mA is equivalent to $17^{\circ} \mathrm{C}$ and
and 20 mA is equivalent to $33^{\circ} \mathrm{C}$. $\mathrm{R}_{\mathrm{T}}$ is rimmed for proper reading at an intermediate reference temperaure. With a witable choore of ressiorss, any temperature range within the operating
lumus of the ADS9 Wmats of the ADS 90 may be chosen.

figure 15. Simple Temperature Consrol Cirevit
Frure is is an example of a varable temperature conerol cir-
Nut (thermostati uang the AD S90. $R_{H}$ and $R_{L}$ are selected to We the high and low lumist for $R_{\text {SET }}$. $R_{\text {SET }}$ could be a umple Howerong the ADS 90 from the 10 V reference solates the ADsgo from supply varations while mannamning a resonable entrene (~7V) across it Capacitor $C_{1}$ is often needed to filter
 the lof the power tenstitot and the current requiremenss of
Prate
FWire 16 shows how the ADS 90 can be configured with an 8
hi DAC to produce a digitaly controlled kt point. Thi

parsicular circuit operates from 0 (all inputs high) $10+31^{\circ} \mathrm{C}$ (ell inpuss low) in $0.2^{\circ} \mathrm{C}$ sreps. The comparator is shown with $1^{\circ} \mathrm{C}$ hysteresin, which is usually necessary to guardband for extraneous noix: omitting the $\$ .1$ m $\begin{aligned} & \text { resistor results in } \\ & \text { no hysteresia. }\end{aligned}$ no hysteresis


The voltage compliance and the reverse blocking characteriastic of the ADS90 allows it to be powered directly from +5 V CMOS logic. This permits easy multuplexinge. amitching or pulsing for minumum incernal heas distipition. in Figure 17 any ADS90
connected to a logic high will connected to a logic high will pasa a signal current through the current measuring circuitry whale thow connected to a logx
zero milt pass inspnficant currenc. The outpurs used to derixe the ADS90's may be employed for other purposes. but the additional capucitance due to the ADS90 athould be taken
into account.


CMOS Analog Multiplexers can dio be used to swicch ADS90 curtent. Due so the ADS $90^{\prime}$ 's current mode. the reustance of uch switches is unimportant as long as 4 V is maintained across the crannducer. Figure 18 shows a eirecuit which combines the principal demonstrated in Figure 17 with an 8 channel
CMOS Muttiplexer. The resulting circuit can exlect eighty $x$ ensers over only 18 wres with a 7 bit bunary word. The
inhibit input on che mulciplexer inhibit input on the mulciplexer curns all ensors off for minimum dissipation white idling.


Flgure 19. 8.Channel Multiplexer
Fyure 19 demonstrates a method of multiplexing the AD 590 in the two trim mode (Figure 7) Additional ADS90's and their of $\pm 0.5^{\circ} \mathrm{C}$ absolute ancuracy over the temperanure range of $-55^{\circ} \mathrm{C} t 0-125^{\circ} \mathrm{C}$. The high temperature restraction of $+125^{\circ} \mathrm{C}$ is due to the output range of the op amps: oupput to $+150^{\circ} \mathrm{C}$
can be achieved by using e +20 V app can be achieved by using a +20 V supply for the op amp.
VOL 1, e-22 TEMPERATURE MEASUAEMENT COMPONENTS


[^0]:    * 1 = no fault, low true

