VLA Technical Report No 56

FOCUS/ROTATION CONTROL SYSTEM, MODEL E

D. WEBER, P. HARDEN, W. KOSKI DECEMBER 1984

TABLE OF CONTENTS

1.0	INTRODUCTION 1.1 PERFORMANCE SUMMARY 1.2 BACKGROUND 1.3 F/R CONTROL SYSTEM DESCRIPTION 1.4 F/R MOUNT DESCRIPTION 1.5 DRIVE DYNAMICS	1 1 4 9 14
2.0	M7, MODEL E F/R CONTROLLER DESCRIPTION 2.1 F/R CONTROLLER LOGIC DESCRIPTION 2.2 ROTATION AND RING CONTROL PROGRAM 2.3 FOCUS CONTROL PROGRAM	21 21 24 38
3.0	M11, MODEL B APEX INTERFACE LOGIC DESCRIPTION	41
4.0	M8, MODEL C, F/R POWER SUPPLY DESCRIPTION	45
5.0	M22, F/R SWITCHING MODULE DESCRIPTION	46
6.0	SYSTEM TROUBLE SHOOTING	48
7.0	TELESCOPE OPERATOR INFORMATION	51
8.0	CONTROL/DATA BIT FORMATS, ANALOG SIGNALS & RANGES	54
9.0	SYSTEM CABLE DRAWINGS & TRANSLATOR SCHEMATIC DIAGRAMS	60
10.0	SYSTEM FUNCTIONAL SPECIFICATIONS	61
11.0	APPENDIX ROTATION & RING CONTROL PROGRAM FOCUS CONTROL PROGRAM LIST OF RELATED DRAWINGS M7, M11, M8, M22 ASSEAMBLY DRAWINGS & IC LOCATION MAPS F/R CONTROL BIN WIRE LIST FUNCTIONAL MODULE DATA SHEETS	65

TABLE OF ILLUSTRATIONS

FIGURE 1,	F/R SYSTEM, MODEL E, FUNCTIONAL BLOCK DIAGRAM	6
FIGURE 2,	PEDASTAL ROOM F/R COMPONENTS	7
FIGURE 3,	APEX & PEDASTAL ROOM JUNCTION BOX LAYOUTS	8
FIGURE 4,	APEX F/R COMPONENTS	11
FIGURE 5,	APEX ASSEMBLY, EXPLODED ISOMETRIC VIEW	12
FIGURE 6,	F/R MOUNT - LOCATIONS OF MAJOR COMPONENTS	13
FIGURE 7,	STEPPER MOTOR TORQUE/SPEED CURVES	20
FIGURE 8,	APEX INTERFACE ANALOG ADJUSTMENT LOCATIONS	43

1.0 INTRODUCTION

This manual describes the new VLA Focus/Rotation Control system and was written to serve as a maintainance guide for the system and modules. The primary purpose of this manual is to provide a detailed functional description of the operation of the system, the modules and control programs. The emphasis is on practical data: module schematic diagrams, control programs, cable drawings, and bin wire lists are included to make this a comprehensive reference manual with all the data that are handy for use on the lab bench or at an Antenna.

A secondary purpose is to describe the functional operation of the mechanical components and the inter-relationships between these components and the control system hardware/software. The manual also has sections which briefly describe the F/R Control System operation, the F/R Mount, the control and F/R Mount specifications and telescope operator CRT overlay & diagnostic information. These sections may be read for information on these topics without bothering to plow through the detailed descriptions of the modules and programs.

1.1 PERFORMANCE SUMMARY

The following table summarizes the performance of the new F/R System.

Parameter	Focus	Rotation	
Command execution time	64 sec/12 inches	15 sec/180 deg	
Max drive rate	0.197 in/sec	16.7 deg/sec	
Readout resolution, (14 bit conversion)	0.000732 in/bit	1.318 arc-min/bit	
Command repeatability	0.5 bit,RMS	2 arc-min, RMS	
Physical stability	0.001 in	3.85 arc-min	

1.2 BACKGROUND

A previous manual (VLA Technical Report No 42, F/R System Manual, Jan 1980), described the first version of the F/R Control System and the F/R Mount. This control equipment was designed in 1974 and is installed in most of the VLA antennas. Specifications for the new system resulted from the need for better performance and experience with the earlier mechanism and electronics. The new control system provides more powerful control, extensive local fault analysis, higher position resolution, more reliable position readout devices, faster mechanism response time and easier maintainance. It is also capable of relatively easy alteration of the control algorithms by changing the firmware. The F/R Mount has undergone extensive mechanical redesign and the Controller design has been made sufficiently general so as to be able to adapt to these changes.

Several experimental versions of F/R Control systems have been used in recent years. A microprocessor controller with synchro position readouts was used in Antenna 27 in 1980. Although the controller operated satisfactorily, it was decided not to retrofit other antennas with this controller until some mechanical design changes were made to improve the the stability of the F/R Mount.

The stability and repeatability of the Subreflector Rotation position is a very critical parameter in that small Subreflector angular position errors

cause large antenna pointing errors. Focus position instability impacts the visibility data phase. Section 10 describes the effects of Subreflector positional errors on pointing and phase. Much of the mechanical and electrical redesign effort has been directed at reducing the Rotation position uncertainty. The unreliability of the position readout potentiometers has also been a persistant problem which has cost many dollars for replacement parts and many man-hours for maintainance and repair time.

An approach to solving the Rotation position uncertainty is an index locking pin mechanism in which a tapered pin is inserted into sockets at angular positions associated with receiver feed horns. An F/R Mount incorporating this feature was installed in Antenna 12 with a new F/R Controller and operated on a trial basis for a year. The idea behind this scheme was that a snug-fit pin/socket combination would provide a tight lock and eliminate the typical 30 to 60 arc-minutes of Rotation ring gear-brake lost motion. The Antenna 12 F/R Control System operated satisfactorily but there were reliability problems with the pin actuation motor so this approach was abandoned and the Antenna 12 F/R Mount was redesigned.

The essence of the final mechanical re-design is to reduce the brake-ring gear lost motion by relocating the Rotation brake to the traveling platform and coupling the brake to the ring gear with only one gear pass. This reduces the Rotation gear slack to about four arc-minutes. The Rotation position readout sensor is relocated so as to be closely coupled (ie one gear pass) to the Subreflector mounting drum. This change eliminates about 1.5 degrees (out of 3200 degrees) lost motion in the existing Rotation ring gear-to-readout potentiometer gear train.

To improve reliability, the Rotation position readout sensor was changed from a potentiometer to a synchro and a high resolution (14 bits) Synchro to Digital Converter. Military reliability analysis has shown that in a given environment, synchros are an order of magnitude more reliable than multi-turn, precision potentiometers. The higher resolution readout has provided a great improvement in the capability of the controller to precisely set and monitor the Rotation position. The Focus position readout potentiometer was also replaced with a synchro and 14 bit S/D Converter. The use of synchros and an integrating S/D Converter has made the position readout circuitry virtually invulnerable to noise perturbations on the long cable runs from the Apex to the Pedestal Room.

After the Antenna 12 prototype system operated for a year without failure or noticeable performance degradation, it was decided to retrofit the new mechanical and electrical designs into all antennas as a part of the periodic antenna refurbishment schedule. The new F/R Controller and reworked F/R Mount have been installed in Antenna 20. Antenna 20 also has a 327 MHz dipole/ring feed system installed in front of the subreflector; this has added several mechanical components to the F/R Mount and Apex structure. When the 327 MHz receiver is in use, the feed ring is extended to enclose the 327 MHz dipoles. When the other receiving bands are used, the ring is retracted back toward a quadrapod spar. Although the ring is not part of the F/R System, the F/R System controls the ring motion because of the proximity of the ring actuator to the Apex junction box and the flexibility of the F/R control electronics.

The existing stepper motors and Translators have been retained but the Translators have been relocated to provide more room in Rack C.

The Apex to Pedestal Room cable structure has not been changed other than signal reassignment of some wires. A 3-wire 110 VAC cable has been added to power the 327 MHz Ring actuator.

Beside the changes described above, a number of mechanical improvements have been incorporated in the F/R mount mechanical design. Notable examples are:

Renovation of the aluminum Rotation ring gear bearing surfaces by steel inserts.

The use of better weather-proof flexible boots over the lead screws and spline shaft.

The use of heaters on the gear box and traveling platform to warm the gear train lubricant to about 40 deg F in cold weather. This prevents cold weather lubricant stiffening which can cause drive sticking problems due to the marginal drive motor torques. 1.3 F/R CONTROL SYSTEM DESCRIPTION

See Figure 1, F/R Control System Block Diagram and Figures 2 & 3 which show the location of the F/R Control System Components.

The F/R Controller closes the position loops and activates all driving elements of the F/R Mount, senses positions and discretes, analyzes conditions in the mount and Pedestal Room to detect faults and reports on these states to Central Control via Data Set 3.

In CMP (Central Computer control) mode, the F/R Controller receives a position command from the Data Set which activates an interrupt in either the Focus or Rotation portion of the controller. The controller tests the Multiplex address and command argument (some Focus arguments are not accepted because of mechanical constraints), and it calculates motor ramping parameters. steering direction and activates the associated brake and stepper motor If brake voltage and current and translator power are above test translator. thresholds and there are no system faults, the controller begins to emit drive pulses to the Stepper Motor Translators so as to null the error. The pulse rate is ramped from 100 Hz to 1000 Hz (500 Hz in Focus) in 50 Hz steps. Drive continues at 1000 Hz until a calculated ramp down position is reached at which time the stepping rate is ramped down to 100 Hz for convergence to the commanded set point. When the set point is reached the controller turns off the Stepper Translator AC and activates the brake.

During ramp-up, main drive, ramp down and convergence, position changes are compared with what they should be to test for drive sticking or dragging. If this happens, the stepping rate is reduced to 100 Hz and the drive is ramped back up to 250 Hz (the peak torque speed of these motors) and the controller attempts to complete the command. In the event that the drive sticks again, the controller aborts the command. When drive sticking occurs, a "Drive Fault" bit is set in the controller status data readout and this bit flags this message on the Operator's Data Checker program and the Operator's F/R Overlay.

In the LOCAL mode (selected by the F/R Controller front panel switch), the F/R system is controlled by actuation of the manual control switches on the F/R Power Supply. These switches are: Focus Drive Up/Down; Rotation Drive CW/CCW; and the Focus and Rotation Ramp/100 Hz switches. LED displays on the Power Supply panel indicate actuation of the brakes, translators etc. In the LOCAL mode the computer commands are ignored and command inputs come from the switches mentioned above. The portion of the control program which implements LOCAL control is similar to the portion which implements CMP (central computer) control and calls the same drivers to perform basic functions such as turning on the brakes, ramping up/down, providing monitor data to the Data Set, etc.

The controller is not directly connected to any circuitry in the Apex; position and discrete readouts from the Apex are sensed by an Apex all Interface unit which transfers this data to the controller via an optically isolated serial link. The Apex Interface front panel displays the Focus and Rotation position in 14 bit octal code and the state of various discretes and activity sensors on an LED annunciator. Logic in the Apex Interface tests for malfunctions; in the event that any of these occur an inhibit (YOWP!) is sent to the F/R Controller to disable all drive outputs. When limit conditions are sensed by the Apex Interface, drive inhibits are sent to the F/R Controller to inhibit further drive into the limit (but not out of the limit). The Apex Interface is isolated from the controller as a lightning protection measure;

it is the sacrificial element in the event of strikes on the Apex structure restricting damage to this unit which has a minimum of parts.

A Switching Module contains the brake controllers (DC power supplies) and solid state relays to switch the AC for the brake controllers, translators and 327 MHz feed ring actuator. A 400 Hz synchro exciter in the Switching Module provides the 400 Hz required by the synchros and the S/D Converters.

A NAP mode has been incorporated to enable the controller to ignore position commands until reset by a RESET command. This permits reduced performance operation in the event of a drive failure.

A ZOT BOX capability has been incorporated into the sysetm to permmit manual control of the Subreflector position by a ZOT BOX which may be plugged into either the F/R control bin or the Apex Junction Box. Discrete and position readouts on the ZOT BOX display the state of the F/R Mount position.

FIG.2 - PEDESTAL ROOM F/R COMPONENTS

FIG. 3 APEX & PEDESTAL RM. JUNCTION BOX LAYOUTS

1.4 F/R MOUNT DESCRIPTION

The F/R Mount is almost inaccessible; most of the mechanism parts are enclosed by the gearbox or hidden by the barrel and support structure. This section was written to provide a brief description of the mechanism for electronics maintainance personnel who must understand how the mount operates in order to be able to maintain the electronics.

The F/R Mount is a two axis mechanism consisting of three rings, four guide shafts, four lead screws, two gear trains, two drive motors, two failsafe brakes and two position readout synchros. Figure 4 depicts the F/R Mount and Subreflector as they appear from the inside of the dish. Figure 5 depicts an exploded isometric view of the F/R Mount and the associated components. Figure 6 depicts the locations of the motors, brakes and Focus position readout synchro.

The top ring is a gear box for the two drive trains; the motors are mounted on the top of the gear box. The Focus motor and gears rotate lead screws which move the Traveling (middle ring) platform up and down the Guide Shafts to produce the Focus motion. The Focus brake is mounted on the top of the gear box and is coupled to the Focus gear train inside the box.

The Rotation motor and gear train drives a sliding spline gear which rotates a large ring gear mounted on the Traveling platform to produce the Rotation motion. The Rotation brake is mounted on the traveling platform and is coupled to the Rotation ring gear through a single gear pass.

A flange on the center of the ~42" diameter barrel is bolted to the Rotation ring gear. The Subreflector is bolted to the bottom of the barrel and counter-weights are bolted to the top of the barrel. The bottom ring is a supporting member for the guide rods and lead screws.

Rubber spring couplings between the drive motors and gear trains buffer the motors so that they are not subjected to large instantaneous inertial loads such as at initial drive motion. The spring deflection is proportional to the torsional loads imposed upon the motor by the drive.

The brakes are fail-safe; that is they are always engaged until energized.

The Rotation gear train reduction ratio is 108:1, that is, each 1.8 degree motor step rotates the Subreflector by 1.8/108 or 0.01666 degrees so that 21,600 motor steps are required to rotate the Subreflector 360 degrees. The Focus gear train reduction ratio to the lead screws is 2.54:1. The lead screw pitch is .200 so that five rotations of the lead screws are required to move the traveling platform one inch. The total Focus travel is 12 inches (ignoring that lost by limit switch inhibit action) so that the total number of motor steps required to traverse this Focus range is: 1.8 * 200 * 5 * 2.54 * 12 = 30480 motor steps.

Focus and Rotation positions are read out as 14 bit values (16384 counts range). The motor-step/readout-resolution ratios are: 21600/16384 = 1.318 steps/bit (also 1.318 arc-min/bit) in Rotation motion and 30480/16384 = 1.860 steps/bit (also 0.0003937 in/step and 0.000732 in/bit) in Focus motion.

Rotation position is read out by a synchro mounted on a tripod above the

barrel. The synchro shaft is coupled to the center of the drum through a sliding "Trombone" which takes out the Focus motion of the barrel; see Figure 5 for details on this mechanism. A tubular shaft attached to the top of the Trombone drives the Rotation position synchro through a flexible coupling and pick-off gear (1:1 ratio) which drives an anti-backlash gear on the synchro shaft.

Focus position is read out by a 10:1 anti-backlash reduction gear box and synchro coupled to the Focus gear train. The gear box is used because the synchro and gear box mimic the 10-turn helipot used with the older system.

Focus upper/lower limit switches sense the extremes of Focus motion and cause the F/R Controller to inhibit further drive into the limit. There are no Rotation limit switches as the Rotation drive is capable of continuous rotation; in executing a Rotation command, the F/R Controller rotates the Subreflector through the smallest angle to move to a new position. This permits faster band changes.

The 327 MHz feed dipoles travel up and down with the Subreflector Focus motion but do not rotate with the Subreflector Rotation motion. This nonrotation is accomplished by mounting the dipoles on a square shaft which is prevented from rotating by a square-holed collar attached to the top of the Rotation synchro gear box. The dipoles are caused to move with the Subreflector in Focus motion by a thrust bearing in the Subreflector which is attached to the square shaft. The square shaft passes through the Trombone. the Rotation synchro drive shaft and slides through the square-holed collar in Focus motion. Coaxial cables carry the RF signals from the feed and are routed through the square shaft. Since this square shaft penetrates the Rotation readout box, a seal ring under the square-holed collar prevents water entry. Details of this mechanism are depicted in Figure 4.

FIG. 4 - APEX F/R COMPONENTS

FIG. 6 - F/R MOUNT - LOCATIONS OF MAJOR COMPONENTS

1.5 DRIVE DYNAMICS

The purpose of all this mechanical and electronic hardware is to position the Subreflector; the control system design must deal with the dynamics of the drives which involve large work, inertial and frictional loads. This section describes aspects of these dynamics which are important to electronics maintenance personnel because the considerations outlined below determined the characteristics of the control programs. These considerations were the result of analysis by the writers and many years of experience with the F/R Mount.

The drive motors are stepper motors which are high torque, low shaft speed devices (compared to conventional DC or AC motors) which are frequently used to implement drive systems with minimal or no gear trains. The motors are caused to rotate by time-sequencing the four motor winding currents with high power transistor switches. The center-tapped motor windings are connected to the power supply; the switches sink these currents to ground in accordance to a sequence of states which determine the direction of rotation. Each state change is called a "step" which causes the shaft to rotate by a discrete angular increment (1.8 degrees in these motors). The motors are driven by an electronic package called a Translator which contains a set of four transistor switches, associated logic and power supplies. The Translator switches state changes are caused by applying a drive pulse to either of two inputs which cause the motor to rotate in the cw or ccw direction by one angular increment for each drive pulse.

An important characteristic of these motors is torque breakage which occurs when the imposed load exceeds the motor torque producing capabilities (particularly pronounced at higher speeds). These motors have two torque/speed curves which fall off with increasing speed; the lower curve is the maximum motor load (at a given speed) at which the motor will always start from a dead stop and the upper curve is the maximum load which the motor can drive if it is started at zero or low speed and gently ramped up in stepping rate. When torque breakage occurs, the motor stops and the only way to get it to drive again is to either reduce the load or reduce the stepping speed to a rate where the motor can resume stepping. Torque breakage does not gradually increase with the load; it is a threshold-like effect in which a slight increase in load at the critical torque causes the motor to intermittently fail to respond to translator drive signals. In this narrow torque-speed region the motor shaft motion is very erratic and jerky; another slight increase in load torque results in abrupt stoppage of the motor.

Figure 7 shows the HS1500 (Ant 1 - 20) & FD309 (Ant 21 - 28) Torque/Speed curves. These curves are the upper, (start at a low stepping rate & gently accelerate) curves and are based upon bench torque tests and Superior Electric data. The lower curve has not been determined for these motors because of the difficulty of making these measurements with the primitive equipment on site, but; it has been observed that the motors will not start in the F/R Mount if the initial drive rate is above 300 Hz.

This torque breakage phenomena has happened to the VLA F/R System many times due to unusually heavy loads (such as cold weather viscous friction drag) with the result that the drive is "stuck" and can only be (maybe) moved by repeated commands to move back and forth in a small region. Ice loading of the Subreflector and barrel can also cause sticking. One of the shortcomings of the old F/R Controller design is that it does not contain provisions to deal with the problem other than to abort the command after a time-out. Drive rates

14

in the old controller have been set to values which (usually) work in the worst case drive situation - winter.

Does torque breakage harm the translators? Yes; repeated attempts to move a stuck drive can cause driver board failure although Superior Electric (the manufacturer) says that it shouldn't happen. A stuck drive motor does not generate a back EMF so the driver boards must sink a great deal more current during the switching transient time.

The torque developed by these motors is very sensitive to the line resistance between the motors and translators; if the motors are connected directly to the translators they develop about 20% more torque than is shown on these curves. The cable resistance is about 1 ohm for the 125 foot run of #10 cable; it would take a lot of copper to significantly reduce the line resistance.

A second important property of these motors is motor resonance: literally a mechanical resonance in which the magnetic field acts as a torsional spring and the rotor moment of inertia acts as the mass. At the motor resonant frequency, the torque delivered by the motor is greatly reduced and the rotor vibrates (in shaft angle) at each step; the amplitude of the oscillation and decay are dependent upon damping resistors in the Translators. In the antenna 1 - 20 motors the resonance occurs at about 550 Hz and the available motor torque is reduced to about 450 oz-in, - about one-third of the available torque at 500 & 600 Hz. The Ant 21 - 28 motors and translators are a newer design with no pronounced resonances (at least we have not noticed any resonances in bench torque tests).

A third important property of these motors is the large holding torque which they exhibit when stopped with a steady state current in the windings. This condition exists with the older version of the F/R control system.

The primary task of the controller is to get the drives into motion and to gently ramp the motors up to the maximum speed so as to quickly get to the commanded set point. Near the set point the drives are to be quickly ramped down and driven to the set point at low speed; attempting to stop at the set point at high speed results in an overshoot of several tens of steps because of mount inertia. Because of the large work and cold weather vicous friction loads, the drive acceleration profiles have been made very gentle so that the inertial loads are never more than about 10% of the available motor torque.

Ideally one would like to start the drives at a very low initial rate, - say a few Hz, and proceed up from there. However; drive motion has been constrained to start at 100 Hz. Experience has shown that operating the drive trains at rates much lower than 100Hz causes excessive gear train rattle. Gear train rattle is a mechanical oscillation caused by the stepping motion of the motor shaft; the intermittent motion causes multiple impacts of the gear teeth which reduces their life. The low mechanical resonant frequency of the drives aggravate this effect; the resonant frequency is about 6 to 8 Hz and is determined by the spring rate of the rubber coupling (low) and the composite moment of inertia of the gears and drive.

The speed ramp-up profile is a sequence of 50 Hz step increases in stepping rate, starting at 100 HZ and going up to a maximum of 1000 Hz in Rotation and 500 Hz in Focus. The duration of these steps is 100 pulses so the drive acceleration increases with each step. The ramp-down profile is a sequence of 50 Hz steps to the convergence speed of 100 Hz with a step duration of 48 pulses; it is easier to decelerate than accelerate the drives.

The rubber spring coupling between the motor and drive plays a vital role; without it the motors would be unable to drive the heavy work and Stepper motor manufacturers recommend that the load inertia inertial loads. be less than three times the motor inertia for motors which are rigidly coupled to the drive; this ratio is 4:1 in the Rotation drive. The spring buffers the motor; it is deflected in proportion to the drive load. Consider the following: ---- for simplicity assume that the Rotation drive is only an inertial load; in accelerating the drive the motor sees the rotor moment of inertia and the drive moment of inertia on the other end of the spring. What happens when the motor speed is increased? The motor shaft follows the stepping rate change but the drive end of the spring lags behind the motor because the spring must first deflect (ie wind up) to apply torque accelerate the drive. The amount of wind-up depends upon the acceleration to be imparted Because of the large moment of inertia of the drive, the drive to the drive. position will lag behind the motor position as a function of the amount of motor acceleration, coupling spring rate and drive moment of inertia. If the speed change is a step change, the drive will eventually accelerate to the motor speed and unwind the spring to a zero deflection. When this happens the motor and drive will continue at the new motor speed with the spring undeflected (ie unwound). If the speed change is a constant acceleration, the spring winds up to a constant deflection and the drive position lags a constant amount behind the motor position as a function of the spring torque constant. To summarize: there is a transient deflection of the spring coupling which depends upon the nature of the acceleration (ie step, ramp etc), the moment of inertia of the drive and the spring constant. The result of this wind-up is that the drive position lags behind the motor position.

In the real world situation, the spring deflection is the sum of the transient deflection (described above) and the work (lifting), viscous and coulomb friction wind-ups.

When the stepping speed is changed, the motor rotor moment of inertia absorbs a portion of the motor torque; that is, not all of the torque shown on the curve above is available at the motor shaft. In the case of the Rotation drive the motor inertia is 0.055 oz-in-sec**2 and the drive inertia is 1.941 oz-in-sec**2, a ratio of about 4:1. Thus during acceleration, only 80% of the Rotation motor torque which goes into acceleration is available for drive acceleration. After the acceleration torque requirements are met, the remaining torque is available for the work, viscous and coulomb friction loads. This is the reason why the ramp-up profile has been made so gentle.

For a step change in stepping rate the transient wind-up torque is approximatly given by: Ttr = Twu*exp(-(Kv + Kc)*time/Id) where Twu is the spring wind-up torque, Id is the drive moment of inertia, and Kv and Kc are viscous and coulomb friction factors. This is similar to the voltage developed across an inductance in an RL circuit for a step voltage input. For the ramp up sequence of this new F/R Controller, the worst case transient torque occurs at the initial step to 100 Hz and is about 175 oz-in. The 50 Hz step transient torque is half this value. The transient decay time depends upon (mostly) viscous friction which varies with temperature; this has not been measured or calculated because of practical difficulties. The 100 pulse period of each step is more than adequate for this decay. These figures are based upon a difference equation model of the F/R Mount.

The spring torque constant is 103.7 oz-in/step. At the peak motor torque (1500 oz-in @ 250 Hz, Ant 1 - 20) the coupling could wind up to as many as 14 motor steps before motor torque breakage. Thus the Focus and Rotation motors could be ahead of the drive as much as 19 arc - min in Rotation and 0.006 inches in Focus. Why is it important to consider the wind-up? At the completion of a command, the brake is engaged and the translator power is turned off; this allows the spring wind-up to release. A second reason is that at the start of a command execution, there is a lag in drive motion because of spring wind-up. One of the shortcomings of the older controller is that the wind-up is not released (because of the large motor holding torque) and remains as a steady-state torque between the motor and brake. The magnitude of this wind-up is the sum of all the drive loads at the time that If there is a large wind-up, it may gradually relax due the brake is engaged. to antenna vibration-induced brake slippage, - with consequent drive position shifts.

The actual load on the motor (and spring) is the sum of the work, inertial, viscous friction and coulomb friction so the total spring deflection is determined by this sum.

Viscous friction is proportional to velocity; the higher the drive rate the greater the viscous friction. Viscous friction is also an inverse logarithmic function of temperature: Kv = K1+(K2/lnT). This temperature dependence causes great changes in the F/R Mount viscous friction. With a hydrocarbon-based grease, over the +100 to -20 deg F temperature range, Kv can be expected to change by a factor of about 650. An unobtrusive Kv load at summer temperatures becomes a huge load at freezing temperatures; at about +30 deg F, it's a toss-up as to whether the Focus drives will stick. This temperature sensitivity is the reason that the renovated F/R Mounts have heaters to warm the Focus and Rotation drive gears. Prior to the use of heaters, the Focus positions were made identical for all bands in antennas in which the Focus drive had a strong tendency to stick in cold weather; as a result, for these Antennas, Focus is never driven in the winter. The heater controller puts about 600 watts into the drives when the ambient temperature is below about 45 deg F. A temperature sensor on the bottom of the gear box monitors the temperature which is typically about 5 to 10 deg C above ambient when the heaters are in operation. Ky could be modeled for these drives but would be difficult because of the many complicated lubricant shearing surfaces. The actual viscous friction drag is not known for these drives because of the practical difficulties of instrumenting the requisite torque measurements. These measurements would have to be performed over a wide range of speeds and temperatures.

The choice of a F/R Mount lubricant is something of a dilemma: the gearboxes are not sealed, so that a lubricant which has a lower viscosity in the winter will leak out of the gearbox holes in the spring; this leaves the drives without lubricant. On the other hand a lubricant stiff enough to stay in place in the summer has too much viscous drag in the winter. It is impossible the change the lubricant without a dis-assembly of the F/R Mount.

Coulomb (rubbing) friction depends upon the force pressing the surfaces together, the roughness of the surfaces and a friction factor dependent upon properties of the two materials. Coulomb friction of the drives has been observed (by the writer) to be about 25 oz-in at the motor shaft inputs to the drives; the barrel & subreflector were not installed during these measurements so the actual values would have been higher because of the additional ~ 300 pound load.

Although the dynamics of the Focus and Rotation drives are very similar, the load parameters are quite different: Rotation has a small work load (about 100 oz-in of subreflector unbalance at the motor shaft) whereas Focus has a huge (drive up) work load (about 600 lb) consisting of the heavy moving platform, the drum, subreflector and 327 MHz feed hardware. Viscous friction is more of a problem in Focus because the Focus ring gear (where most of the viscous friction occurs) is only a gear ratio of 1:2.54 down from the motor in comparison to the Rotation ring gear which is down 1:8 from the motor. The ring gears and race clearances are of similar size so the viscous frictions (at the gears) are similar. Winter experience shows that the Focus drive is much more vulnerable to cold weather sticking than Rotation. Both drives have roughly comparable inertial loads. In summary, the Focus is in general much more heavily loaded than Rotation; for this reason the maximum drive speed for Focus has been restricted to 500 Hz to avoid the bad torque dip at 550 Hz.

The new controller utilizes a motion analysis algorithm which detects torque breakage and causes the drive rates to be reduced to 100 Hz and then ramped back up to 250 Hz, the peak torque for these motors. If the torque breaks again , the drive is shut down. This motion analysis is a very powerful feature as the Rotation drive can be ramped to 1000 Hz (versus 400 Hz in the old controller) for fast response to band changes and the relialability of the system under adverse conditions is greatly improved because the motion analysis fallback drive insures that the controller will re-attempt drive at the speed which produces the maximum motor torque. The failure rate of the Translators should decrease since the driver transistors do not have to attempt to drive stuck mechanisms.

Finally, in conclusion it should be pointed out that the torque requirements of the F/R Mount have never been fully characterized, either by mathematical modeling or by actual measurements. This should be done for the full range of operating temperature and drive speed. Some calculations have been done on simple aspects such as the work and inertial loads but the extremely variable viscous friction and coulomb frictional loads are unknown.

FIG.7 - TORQUE/SPEED CURVES

2.0 M7 MODEL E, F/R CONTROLLER DESCRIPTION

This section describes the F/R Controller digital logic and the control programs. The control programs are the control logic of the system; the digital logic of the controller is the vehicle which is manipulated by the programs to implement the control functions.

2.1 F/R CONTROLLER LOGIC DESCRIPTION

During the following discussion the reader should refer to the M7 logic schematics which follow this section. The reader is also referred to the data sheets in the Appendix which describe the 8085 microprocessor, support chips and instruction set; this background is vital to understanding the operation of the controller.

has been implemented with The F/R Controller two independent microprocessors (one for each axix) consisting of an 8085A microprocessor, an 8156A RAM/I/O port/Timer, two 8755A EPROM/I/O ports, address decode logic and two 2716 EPROMs for program expansion and antenna peculiar-control argument memory. The configuration of the processor(sheets 1,2 & 5,6), RAM and EPROMs is conventional and similar to that depicted in INTEL microprocessor data books to which the reader is referred for details on timing, memory and I/O Because the multiplexed ADDRESS/DATA BUS read/write and instruction usage. accesses many registers it is buffered by 74LS245 tri-state, bi-directional Both processors have identical architectures and are almost drivers. independent except for the power reset logic (sheet 10) and the 5 MHz processor clock which are common. Address decode logic (sheets 2&6) provide address enables for the RAM, EPROMs and serial Input/Output Registers. These decodes are also used as strobes to reset interrupt request flip-flops, single step drive motors and initiate data input from the Apex Interface.

The Timer logic in the RAM can be driven by any (or none) of 10 KHz, 1 KHz or 100 Hz clocks as selected by the RAM Port C and a 74LS153. The 0 - 2K EPROM I/O ports are configured to operate as output ports to output control discretes (eg Foc trans power cmd, etc) and clock control states to control the motor stepping rates. The 2 - 4K EPROM I/O ports are configured to operate as an input ports: PORT A reads response discrete states and PORT B reads manual control discretes.

74LS373 latches are clocked by ALE to store the 8 bit lsb of the address for the 2716 EPROMs.

The Data Set interface logic is shown on sheet 9; the reader is referred to the Data Set Manual for details on the serial operations of loading a command from or reading data to a Data Set. In operation, a command is serially loaded into a 24 bit command input shift register by CLKO shift pulses, the processor is then interrupted by the command strobe STRO which then enters the RST 7.5 interrupt routine to read the SMA address, command and data flags, and command argument by a series of byte reads from the command and SMA registers via the tri-state ADDRESS/DATA BUS. The four Data Set SMA bits are trapped and stored in a 74LS174 latch by the command or data strobes. The SMA bits are decoded by the program to identify the command address. The command strobes and clocks are qualified by the SMA 3 ("8") bit so that addresses 320 -327 (octal) activate the Focus processor and the addresses 330 - 337 activate the Rotation processor.

Monitor Data readout is address qualified and output in a similar manner; Data Set STRI pulse interrupts the addressed (ie Foc or Rot) processor the which enters the RST 7.5 interrupt routine to read the SMA bits and command and data flags to identify the specific data being requested and outputs the requested data by a sequence of three byte writes via the tri-state ADDRESS/DATA BUS to the data output registers. The Data Set then emits CLKI to serially read the Monitor Data. The data output operation is the pulses only time-constrained processor operation; the code must respond to the interrupt and output the requested data within 100 microseconds before the Data Set CLKI pulses unload the data. The SMA-3 bit qualifies the data readout logic in that mux addresses 220 - 227 activate the Focus processor and mux addresses 230 - 237 activate the Rotation processor.

An 8 channel, single-ended analog multiplexer selects power supply, translator power, bin temperature and the synchro excitation current for A/D conversion by the Data Set.

Data is serially input from the Apex Interface when the controller outputs a DATA REQUEST strobe pulse (address 38H) to the Apex Interface which activates the readout logic to cause a serial train of 6 bytes of data to be loaded into the Apex Focus and Rotation Data Registers, (sheets 3&7) by clocks provided by the Apex Interface. The data and clocks are isolated from the Apex Interface by optical isolators for lightning glitch protection. The registers are cleared during the initial stages of the data requesting operation by outputting zeros on the ADDRESS/DATA BUS which are then parallelloaded by the 38H strobe which sets the C1 & C2 bits to the parallel load mode. The processor then reads the Apex Interface data by a sequence of 6 byte read operations via the ADDRESS/DATA BUS.

A time base (sheet 10) provides processor and system clocks and a 5MHz clock for the Data Set. Processor Reset logic on this sheet causes the 8085 reset line to be activated to re-initialize the processor. The 9602 one-shot is fired as a result of a SYSTEM RESET command, (Mux 337, octal), actuation of the COMPUTER/LOCAL switch, a power reset circuit or processor halt resets generated by a decode of the SO & S1 8085 processor states. The latter logic is a protective measure that senses that the processor is halted (perhaps through power glitches) to trigger the processor back into operation. During the year that Ant 27 had an experimental controller (without this SO/S1 logic) there were two occasions where power glitches halted the controller.

A YOWP! input from the Apex Interface and connector interlock signals develop a DRIVE ENABLE term to halt drive when something bad is sensed by the Apex Interface or a cable is disconnecated.

Processor-to-processor communication is provided by four DM8551 tri-state latches which are loaded by one processor's ADDRESS/DATA BUS and readable by the other processor's ADDRESS/DATA BUS. This feature is not presently used.

The M7 module temperature is sensed by an LM3911 and op-amp circuit and read out as Bin Temperature. The scaling is 100 mv/deg C.

Sheets 4 & 8 contain the control interface logic to provide drive pulses to the Translators and turn on solid state relays (in the M22 Switching Module) to apply AC power to Translators, brakes and Ring actuator. The DRIVE ENABLE term (mentioned above) inhibits all outputs in the event that the Apex Interface sends over a YOWP! signal. Inhibit logic on the Ring EXTEND and Ring RETRACT lines sense the concurrent presence of these commands and inhibit the SSR drive when both are active.

The stepper motor clock rate is generated by two decade counters on sheets 4 & 8. Clock rate control terms from the 0 - 2K EPROMs determine the counter radix. The minimum stepping rate is 100 Hz and maximum is 1000 Hz with many intermediate rates selectable via program control. A divide by 4 counter driven by the stepper clock causes interrupt RST 6.5 to be set to enable the program to analyze drive motion. The RST 6.5 request flip flop is reset by a 3BH strobe.

One-shot activity sensors on the Translator drive pulse outputs (sheets 4 & 8) drive LEDs on the M8 panel to provide a monitor output and visual indication of the translator drive and polarity.

Limit switch inputs (sheets 4 & 8) provide direct inhibits to the UP/DOWN and CW/CCW Translator drive outputs.

A voltage clamping network on Dip Header A3 limits the 15 volt swing of the Translator drive pulses to a TTL high when the M7 is used in antennas 21 - 28 which use a newer version of Translator that requires TTL drive levels. When the controller is used in Antennas 1 - 20 this Dip Header should be removed.

A strobed one-shot generates a single stepper drive pulse for use in single-stepping the motors during convergence.

The Translator power is monitored by a divider circuit which reduces the voltage to a TTL level for monitoring by an EPROM I/O port bit. The M8 Translator LED displays are also driven by this circuit.

Front panel test points on the DB25 connector enable observation of important clock and control discretes. These signals and test points are:

Signal	Test Point	Signal	Test Point
Logic Common	1		
Apex Foc Data	2	Apex Rot Data	14
Apex Foc Load Clock	3	Apex Rot Load Clock	15
Foc SSR Brake Drive	4	Rot SSR Brake Drive	16
Foc SSR Transl Drive	5	Rot SSR Transl Drive	17
Foc Drive UP	6	Rot Drive CW	18
Foc Drive DOWN	7	Rot Drive CCW	19
Foc RST 6.5	8	Rot RST 6.5	20
Foc Data	9	Rot Data	21
spare	10	Ring EXTEND SSR Drive	22
spare	11	Ring RETRACT SSR Drive	e 23
Analog Data To Data	Set 12	spare	24
5 MHz Clock	13	Drive Enable	25

2.2 ROTATION AND RING CONTROL PROGRAM DESCRIPTION

INTRODUCTION

The following discussion assumes that the reader is familiar with 8085 assembly language; this is vital to understanding the program operations. The programs are straightforward, well commented and easy to follow but also require an understanding of the control task, F/R Mount mechanism, control system hardware and Data Set interactions. The preceding sections of this manual provide descriptions of these items.

The Focus and Rotation control programs are very similar and differ in only a few (but important) respects such as the fact that the Rotation drive can rotate continuously, therefore the Rotation program drives in either direction to null the error; the Focus drive cannot do so. Other differences are: Focus command limit tests, Ring commands (handled by the Rotation controller) and the maximum drive speeds, but; the number of similarities far outnumber the differences. Since these programs are so similar, the Rotation program is described since it is more complicated; this is followed by a description of aspects peculiar to the Focus program. Program listings are included in the Appendix. Memory and I/O Port maps follow this discussion.

The description is not instruction-by-instruction but rather a commentary outline of the logic of control flow and description of the hardware/software interactions. The reader should carefully study the associated portions of the programs during the commentary.

To minimize repititious in-line code, subroutines are used to perform functions that are used more than once: examples are device drivers to control the Translators, brakes, etc or to perform arithmetic comparisons of two 14 bit values.

There are two ways that the F/R Mount can be driven: COMPUTER mode (ie the central control computers via the Data Set) and LOCAL via the switches on the M8 panel. The section labeled LOCAL DRIVE HANDLER inputs and processes manual commands from these switches. This code and the COMPUTER mode code invoke the same subroutines and device drivers because of the similarities of the functions to be performed. The COMPUTER mode portion of the program will be discussed first followed by a discussion of the LOCAL mode.

There are 4 commands that are recognized and executed by the F/R Controller: POSITION, RESET, NAP AND RING. The RESET command terminates the execution of POSITION, NAP and RING commands. The NAP command inhibits execution of POSITION and RING commands. The asynchronous execution of these commands is interrupted by the higher priority 39.2 Hz monitor data requests from the Data Set.

The program has been organized into logical chunks which are delimited by As you scan the listing you will see the following sequence of asterisks. RESET & INTERRUPT, INIATIALIZATION, SYSTEM HANDLING. chunks: COMMAND LOCAL DRIVE HANDLER, CHECK RING STATUS, POSITION HANDLER. RAMP UP & DOWN. TRANSLATOR & BRAKE CONTROL, ERROR HANDLING ROUTINES, SUBROUTINES, APEX & INTERRUPT ROUTINES AND ANALOG AND CONTROLLER DATA GATHERING ROUTINES, RAMP TABLES. These titles indicate the functions performed by the associated code.

You will note that the listings start with a series of EQUATES to assign mnemonic names to the otherwise obscure numbers such as addresses and I/O Port control codes.

DATA SET TABLE is a set of Ram locations which are used to The store formatted data to be output to the Data Set Data Register in sets of three bytes/data word. Section 10 details the data and command formats. The format description is keyed to the table location by labels such as POSD which is the drive position. An important point is that the central computer outputs commands as 2's complement values while the processor operates on straight binary integer arithmetic. As a consequence, the processor must complement bit 13 (msb) of the command in order to use it in arithmetic operations. Correspondingly, monitor data values output to the Data Set must be transformed to 2's complement format from the integer format by complementing bit 13.

The states of all control discretes and the responses to these discretes are read out in the monitor data; this provides good visibility of the behavior of the F/R System.

The VALUES & ARGUMENTS tables are RAM locations in which program parameters are stored during program operation.

The FLAG table are RAM locations in which program status flags are stored during program operation.

INITIALIZATION --- The initialization code (INIT) is actuated by the processor RESET line as the result of a power reset or by a RESET command. In INIT the I/O port directions are set up, all control discrete outputs are cleared and the RAM tables are cleared.

INTERRUPT VECTORS -- The RESET & INTERRUPT code provides interrupt vectors to interrupt service code. TRAP interrupt has the highest priority, cannot be disabled and is used with the 8156 Timer logic function. RST 6.5 is used in motion analysis to signal that four drive pulses have been output and that it is time for the program to test the motion. RST 7.5 is used to signal that the Data Set has a new command or wants monitor data. RST 5.5 and INT interrupts are not used. When an interrupt has been sensed the Interrupt system is disabled by a DI (disable interrupts) instruction and the processor jumps to the appropriate interrupt-handling code.

SYSTEM CONTROL

BOSS is the control portion of the code which manages all tasks and is in continuous looping execution. BOSS begins by calling for fresh data from the Apex Interface (via DSTOR), tests for a branch to the LOCAL mode, tests the command status to see if service is required for: RESCMD (an active RESET command); CHKDRV (an active POSITION command); CHKRNG (an active RING command); NAPATV (an active NAP command); tests requests for POSITION, RESET and NAP command modes to be established and if so sets them active. Next, BOSS tests (via APAOK) an Apex Interface analog value against high and low limits on each pass-through (a fault flag bit is set in the output data area if out of limit results), clears the flag if the fault goes away and finally returns to repeat the scan. In these tests the ORA A instruction is used to set the flags for the following jump instruction. In testing the Apex analogs (in APAOK), a 16 bit comparison routine (RANGER) is called in which the 16 bit contents of registers DE are subtracted from the 16 bit contents of HL with the resultant difference in HL and the arithmetic sign of the difference in C, (0 = +). A table of high and low limits (ANATAB), and 8 Apex analog data values (APATAB) are accessed by an address index (APAPTR, 0 - 7). In the lower limit test, the lower limit is placed in DE and the analog value is loaded into HL for the RANGER comparison. In the upper limit test the analog data is placed in DE and the high limit is placed in HL for the RANGER comparison. The results of these comparisons either set or clear an Apex Interface fault bit in the FLTSFT code.

In executing a RESET command the timer is stopped (via TSTOP) and the drives are ramped to a stop via DRVSTOP.

COMPUTER COMMAND EXECUTION

CHKDRV -- CHKDRV manages the motion of the drives in CMP (central computer mode). At the start of CHKDRV, the mechanism is moving, executing a position command; the DRVREQ flag is tested to see if a new, over-riding POSITION command has been received, if so, the new command argument (in CMDTMP) is compared with the current active command (in ACTVCMD) to see if the new position is different than the command in process. This comparison is done by loading the new argument in DE and the current argument in HL and calling VECTOR which will return with the absolute value of the difference in HL. CLOSE is called next to see if the position difference is less than 4 counts. If so, the command request (CMDREQ) is cleared by CLRREQ and the program falls into DRVTST.

If the difference is greater than 3 counts, the drives are first slowed to a stop by calling DRVSTP, the timer is reset via TSTOP and the program falls into DRVINT which determines the drive direction, acceleration parameters, initializes the motion counter, makes the temporary command the active command etc. If the new commanded position differs by less than 4 counts (via CLOSE) from the present position, the new command is ignored and control reverts to BOSS. DSTOR is called which sets the correct direction to drive to null the error in DIR, the direction flag.

DRVIN1 is the entry point for the get-it-there-somehow code; control has been transferred to this point from ERDRV which has determined that over a 100 pulse period the realized drive motion is not consistent with what it should be and the controller is being conditioned to attempt drive at the peak torque drive rate. This entry point provides an orderly restart of drive motion with the constraint that the maximum drive rate is 250 Hz; the peak torque speed for the Ant 1-20 motors. EDRV has set a flag (GETIT) which is tested in determining the maximum drive rate step number. If GETIT is true, the maximum step number is 5 which is set in B. If GETIT is false, B is set to 18 (17 + 1 steps).

The number of velocity steps to execute is calculated by DIV, (the max is 17 steps if there is a long way to go) and stored in RMPTO. The DIV algorithm is that -114 (decimal) is set in DE, the absolute value of the position error is set in HL, FFH (or minus 1) is set in A. Minus 114 is successively added to HL (the error) and A is incremented until the carry flag is no longer set. If this happens, A contains the number of ramp-up steps to accelerate the drive through. Next, B is compared with A, if A is greater than or equal to B (either a large distance to travel or B has been set to 5, the result of a

motion analysis fault), A will be set to B-1. If A is less than B, A is left unchanged and control is transferred to AOK.

AOK saves the step count in RAMPTO. If A=0, the distance to travel is small and control is transferred to NORMP without setting the ACCEL flag true. This causes the drive rate to be 100 Hz (only) and bypasses the call to RAMPUP. If A is greater than 0, the distance to be traversed is large, the ACCEL and RMPUP flags are set and control falls into NORMP.

NORMP initializes the stepping rate clock to produce 100 Hz, the translator and brake power turn-on subroutines are called, the convergence flag (CONVRG) is cleared, the direction flag (DIR) is tested to determine the direction to drive, (if DIR = 1, drive CCW) and the program falls into MOVIT. The time-out error handling address is loaded into the TRAP location for use by BLAP, the timer is set to 15 seconds via a call to TIMER, the drive is set active (DRVATV) and control reverts to BOSS.

DRVTST is the next set of control code in the CHKDRV control sequence and is entered at the beginning of CHKDRV when a position command is being executed but there is no new, over-riding command to deal with. DRVTST manages the sequence of control states which determine the stepping rate through the command execution. DRVTST first tests the ACCEL flag to see if the drive is to be ramped up in speed (ACCEL is true if the commanded set point is over 114 counts from the present position), if not; control is transferred to PLOD which drives to null the error at 100 Hz. If the distance to be traversed is over 114 counts, the ACCEL flag will be set and the drive must be ramped up to a high speed to get to the set point rapidly.

In this high drive speed sequence, the first state is acceleration, in which the stepping rate is ramped up to the maximum speed from 100 Hz: the associated flag is ACCEL. The next state is main drive in which the drive runs at the maximum speed, (not necessarily 1000 Hz, it depends upon the highest step in the ramp sequence); the associated flag is MAIN. The next state is rampdown in which the drive rate is reduced to 100 Hz; the associated flag is The last state is convergence which nulls the remnant error; the RAMPDN. associated flag is CONVRG. System control resides in each of these states for up to several seconds (depending on the distance to be traversed), when the end of the state is reached, control reverts to BOSS which initiates the next Although control resides in these states, they are frequently state. interrupted by the Data Set interrupt (RST 7.5) and the motion count interrupt, RST 6.5.

DRVTST starts with a sequence of tests of these flags to determine which state of the sequence is operative. DRVTST begins with a call to DSTOR for fresh data and first checks that the brake is disengaged; if not, control is transferred to an error routine. ACCEL is tested next; if the drive should be accelerating, control is transferred to ZIPUP which puts the top step number of the ramping sequence in C and calls the RMPUP subroutinme which manages the process of ramping up the drive speed. When the ramp-up process has been completed, ZIPUP will clear the RAMPUP flag and set the MAIN flag which signals that the drive is at maximum speed and control returns to BOSS.

On the next pass through DRVTST control will be assumed by MAINCK in which the drives run at maximum speed and the position is tested to see if the drive has reached the ramp-down point. This point is determined by subtracting

276H from the present position using the RANGER subroutine. If the ramp-down point has been reached (or passed), the MAIN flag is cleared, the RAMPDN flag is set and control returns to BOSS.

On the next pass through DRVTST, control will be assumed by ZIPDN which calls the RMPDN subroutine which manages the ramp-down process. At the completion of the ramp-down, the RAMPDN flag is cleared, the CONVRG flag is set and control reverts to BOSS.

On the next pass through DRVTST, control will be assumed by MOVIN which The magnitude of the error is loaded in HL manages the convergence process. and CLOSE is called. If the Carry flag is set by CLOSE, the drive is at the commanded set point, the CONVGG flag is cleared and control reverts to BOSS. On the next pass through DRVTST, PLOD will stop the TIMER via TSTOP and shut If the drive has not quite reached or has down the drive via DRVSTOP. overshot the commanded set point, control is transferred to MOV1 which reverses the driving direction (if necessary), outputs the direction steering on PROM1 updates the output data states and control reverts to BOSS. More PORT A. than one pass through MOVIN may be required to finally stop the drive at the commanded set point.

A slight digression here: -- The convergence algorithm is based upon the assumptions that there is a one-to-one correspondance between the motor shaft position and the drive position (ie no gear backlash) and that the drive will not shift position during the ~ 300 milliseconds it takes for the brakes to engage. There is in fact, some gear train lost motion, (ie backlash) and a rubber spring motor coupling; therefore the Subreflector is not rigidly held when the motor is stopped and can move by the amount of the in position backlash (which is never zero) and the spring windup. This slackness can enable slight shifts in drive position during the brake occasionally A shift (if it occurs) is manifested as a change in engagement period. position of a few counts (at most) at the completion of a command. The driving force for these shifts are antenna vibrations or accelerations acting upon the most pronounced in mechanism or Subreflector unbalances. The effect is Rotation and barely discernable in Focus. A series of repeatability tests were performed on Antenna 12 after it had been in service for a year. 700 position commands were output (mostly Rotation) and the results were that the RMS error for Rotation was about 1.5 counts and the RMS Focus error was about probably possible to devise a better convergence algorithm which stubbornly insists (within a reasonable number of tries) upon achieving no more than 1 count error but there is presently no perceived need for it.

DRVSTP is the terminal phase of execution of a POSITION command and clears the DRVATV flag, updates the monitor data status, clears the control discretes in PROM1, PORTA and jumps to the BRKOFF subroutine, (not BOSS).

The RAMP UP & DOWN subroutines are called by both the CMP (central computer control) and LOCAL portions of the program.

RAMP UP -- RMPUP is a subroutine called by ZIPUP in DRVTST and executes the process of modulating the motor clock control states, keeping track of the number of drive pulses in each step and terminating the ramping process at the proper stepping rate. Upon initial entry, the RAMP flag is set which indicates that ramping is in process. The initial clock rate is set to 100 Hz from the RAMP TABLE, the step number counter is cleared, the clock rate is set

26

in the output data and PROM1, PORTB control lines. A count of 25 RST 6.5 interrupts is put in B and WT65 is called from RPUP2. WT65 calls DSTOR for data, loops & looks for the DRVPLS flag which indicates that 4 drive pulses have occurred, (DRVPLS is set by RST 6.5). 25 RST 6.5 interrupts are counted by decrementing B, (ie 100 motor pulses), then the next stepping rate is read from the RAMP TABLE, the step number is incremented and compared with C to see if the step number is equal to the top step number. If it is, control is returned to ZIPUP which clears the RAMP flag, sets the MAIN flag and returns control to BOSS.

RAMP DOWN -- RMPDN is a subroutine called by ZIPDN in DRVTST and executes the process of reducing the motor stepping rate to 100 Hz in steps of 48 drive The procedure is almost identical to the ramp-up procedure and pulses/step. differs only in that the number of motor drive pulses/step is fewer and the Upon entry the RAMP flag is tested to see if the clock rates are decreased. drive has been ramped up, (it may not have been), the flag is cleared, the number of steps to ramp down is added to the base address of the ramp clock control state table, (CK100) and set in HL. The number of steps +1 to execute is set in C, the motor pulse count (of 12 RST65) is set in B and the clock control state for next lower frequency is read from the table. The RPDN1 and RPDN2 loop reduce the clock rate to the base rate of 100 HZ and control reverts The reason that RMPDN has fewer motor clock pulses than RMPUP is to ZIPDN. that it is easier to decelerate the drives (because of friction) than to accelerate them.

ERROR HANDLERS

ETRN -- ETRN handles the problem of turning off the Translator power if it has not responded properly to the turn on control discrete. The control discrete is turned off, the TRANSLATOR fault bit is set in the output data area and the command is reset by a jump to RSCMD.

EBRK -- EBRK handles the problem of turning off the brake power if it has not responded to the turn on control discrete; the actions taken are very similar to those of ETRN above.

EDRV -- EDRV is discussed in the DRIVE PULSE INTERRUPT & MOTION ANALYSIS discussion.

RING DRIVE HANDLER

CHKRNG -- CHKRNG is entered from BOSS during the test of the RING ACTIVE bit (80H in ERRO+2) in the output data area and is analogous to the CHKDRV or LOCAL functions in POSITION commands in that it tests for the attainment of the commanded state within a specified actuation period. Since Rotation POSITION and RING commands may be executed concurrently there are two possible cases for the use of the timer: 1) If the Rotation command arrives first followed by a RING command, Rotation execution is started (which ties up the Timer), and the RING command execution is initiated, the appropriate Ring actuator At the completion of the execution of the Rotation lines are energized etc. command (a maximum of 16 seconds) control is transferred to CHKRNG from the BOSS scan and if either the EXT or RET switch bit is set (indicating that the commanded state has been attained), an additional 3 seconds of power on delay added to CHKRNG just to insure that the actuator motion is completed. 2) is If there is no Rotation command active, on the pass through BOSS, control is

immediately transferred to CHKRNG which sets the Timer for a 16 second period and the code is executed as described below.

The RING command is initiated from the Data Set command initiation code in response to a RST 7.5 interrupt which determines the direction to drive and energizes the appropriate motor lines. These operations are discussed in the Data Set Ring Command Initiation section.

Upon entry, the command direction flag EXTFLG is tested to see if the Ring is to be extended or retracted. If EXTFLG is true the command is extend. EXTFLG determines whether to test the EXTEND or if false it is retract. RETRACT flags (in ECHO+2) which indicate the state of the switches which are actuated by the drive mechanism at the completion of the motion. DSTOR updates the status of these two flags. If the designated switch is not actuated, a 16 second delay argument is loaded into DE and set in TIMER by RNGWIT which also sets the jump address of RNGWT1 in TRAP, (see the discussion of time-out errors in the TIMER INTERRUPT section), and the program loops in When the 16 seconds have elapsed program RNGWT1 until the time-out interrupt. control is transferred to RNGWT2. RNGWT2 first clears the RING FAULT flag (if set), determines the commanded direction from EXTFLG and tests the RING EXTEND bit in ECHO+2 to see if the Ring Extend switch has been actuated. If the command is RETRACT. the RETRACT bit is tested. If the appropriate bit has not been set, a RING FAULT bit is set in ECHO+2 and the RNGCMD flag is cleared in CHKRN2.

If the designated switches are actuated, indicating that the command has been completed, a 3 second delay (instead of 16) is set in TIMER and the code executes as described above.

If the command is successfully executed, the RING ACTIVE flag in ERRO+2 is cleared, the Ring motor power is turned off and the RNGCMD flag is tested to see if a new Ring command has just arrived. If not control is returned to BOSS. If so the new command is to be initiated, the RING ACTIVE flag is set, the registers are pushed and control is transferred to EXTRT1 (in the Data Set command initiation code) to reinitiate the command under the normal conditions of Ring command execution.

ARITHMETIC SUBROUTINES

RANGER -- RANGER is a general purpose 16 bit arithmetic comparison subroutine which determines the absolute value of the difference of two 16 bit arguments, the sign of the difference and whether or not the arguments are identical. In calling RANGER the contents of DE are subtracted from the contents of HL with the resultant difference in HL and the arithmetic sign of the difference in C, (0 = +). If HL = DE the Zero flag will be set.

The A register, (accumulator) is loaded with the contents of L (the least significant byte) and E is subtracted from A and the resultant difference is loaded into L. If the subtraction caused a borrow out of the high order bit, the Carry flag is set. The A register is loaded with the upper byte (in H); D and the borrow from the first subtraction are subtracted from A. The resultant difference is loaded into H and C is initialized to 0. If the result of the two-byte subtraction is positive, (ie HL greater than DE), the JP (positive) transfers control to RNGR1 which tests for H & L = 0 by orring H with L. If

the Zero flag is set HL = 0. These positive results return control to the location from which RANGER was called.

If the result of the subtraction was negative, control falls through the JP instruction, C is made 1's and CMPHL is called to complement HL. The complements are 1's complements so HL is incremented to complete the representation of the resultant difference if it is a negative value. Control is returned to the location from which RANGER was called.

VECTOR -- VECTOR is called from DSTOR to determine direction to drive to reach the commanded set point by the shortest physical path. VECTOR is called with HL = destination and DE = present position. RANGER is called upon entry. Upon return from RANGER, HL contains the absolute value of the difference between command and present position. If upon return from RANGER, HL = 0, the commanded set point is the present position; no direction decision can be made so control returns to DSTOR.

To determine the shortest direction, a value equal to half the total numeric range is subtracted from the difference and the state of the Carry flag determines the direction to drive. If you think of the positions as numbers wrapped around a circle, position 0000H is adjacent to 3FFFH; for example, if the drive were at position 3000H and it was commanded to position 100H, it is obvious that the best way to go is through 3FFFH and 0000H to 100H. You and I see that but the mathematics of a simple subtraction by the processor to determine direction would try to drive to 100H by driving the long way around through decreasing numbers. To implement this best direction algorithm, -2000H (in DE. half the numeric range) is added to the position difference (in If the Carry flag is not set, the best direction to drive is in the HL). direction of increasing numbers (ie CW). Control is transferred to VEC1 which adds back the 2000H subtracted above, L is set in A and orred with H which sets the Zero flag if HL = 0. Control is returned to the calling location (DSTOR) with the C =0 flag set which designates that the CW direction is the best direction to drive.

If the Carry flag is set (CCW direction), C is complemented in CMPHL and control is returned to the location from which VECTOR was called (ie DSTOR).

CLOSE -- CLOSE is a simple subroutine which determines whether a position error in HL is less than 3 counts. If H is not 0, control is returned immediately since the error is greater than 256. Next, L is compared with 3 and the Carry flag is set if the error is less than 3. The calling code will test the Carry flag upon return.

DEVICE DRIVERS

DSTOR -- DSTOR is an important subroutine which gathers data from the Apex Interface and pedestal room, formats and stores this data for use by the control programs and for output to the Data Set, drives the LED display on the M8 and senses fault conditions in the Apex Interface. Virtually all operations of the control programs are dependent upon data gathered by DSTOR; this single subroutine minimizes the data access function through the entire body of code.

DSTOR begins by pushing the contents of the registers onto the stack. The Apex Data Registers are cleared by the request, B is set to 10 and the processor enters a test loop which tests for the appearance of a 10 in the top two bits of the Apex Data Register. In the event that the Apex data does not show up within the alloted count, a fault bit is set in the output data area, Apex data storage operations are aborted and control is transferred to LP3-LP5 which does a lot of bit swapping.

If the data shows up within the alloted time, the Apex fault bit is cleared (if it was set), the position data is masked and stored (in both Data Set and internal formats), the difference between current and commanded position (ATVCMD) is calculated, (even if the command has been completed) and the absolute value of the difference is stored in the command error (ERRO) location in the Data Set data table. VECTOR is called which determines the direction to drive to null the error. Upon return from VECTOR the sign of the difference (in the C register) is placed in DIR. If C = 0, the direction is CW. When a new command is about to be initiated, this direction initialization in DSTOR establishes the direction to drive to null the error.

The 8-bit drive velocity data is formatted as 12 bit data and stored in the Data Set data table.

The Rotation Apex Discretes are next read & stored; these are the Rot lim switches (currently non-existent) and the brake V*I discrete. The data format for Mux 234 (Section 10) shows the four Lambda code signals; these are actually not not read (from M8) at present but if the index pin were ever to re-appear these bits would be assigned to these functions.

The Apex Analog/Discretes data is read next which consists of the Apex Analog data(10 bits), associated mux address (3 bits), Ring discretes (EXTEND, RETRACT), and CW,CCW limit switches, (not presently used). These are processed as follows:

The Ring discretes (EXTEND & RETRACT) are read and extracted by masking all other bits, shifted to the 1sb position and merged with the old echo word to retrieve the old RING FAULT bit (set by RNGCHK). The result is stored as the new command echo (ECHO + 2) in the Data Set data table.

The Apex anlog data and associated mux address bits are read again, this time masking the RING discretes. The 10 bit data is formatted to be read out as 12 bit data. The 3-bit mux address is divided by 4 and added to the base address of the Apex Data table (APATAB) and set into HL. The Apex Analog data (in DE) is stored in the table at this address.

The mux address of the Apex Analog data to be read out to the Data Set (ANAMX, not the mux address of the data stored above) is added to the table base address and this data is stored in the Data Set Apex Analog data table for subsequent readout.

The command status (DRVATV) is tested and if true is merged with the Ring Active, Nap Active, Timeout, cable interlock, Apex Interface fault, System fault and CMP/LOC mode switch bit.

After this reading and formatting, the registers are popped and control is returned to the location from which DSTOR was called.

TRNON -- TRNON is a subroutine called to turn on the Translator and test for

the detection of the Translator power supply voltage within 1 second from turnon. At entry, the address of the Translator error handling routine is set in location TRAP, the count for one second is set in TIMER, the command state is set in the monitor data table (DSCR+1), and the control discrete is set on the PROM1, PORT A line. TRNON loops and tests for the arrival of this discrete on PROM2, PORT A. If the discrete arrives before the 1 second period, TIMER is stopped and control reverts to NORMP or LOCAL via TSTOP which executes a return to the calling source.

TRNOF -- TRNOF is called by PLOD to turn off the translator and is almost identical to TRNON except that it turns off the Translator and returns control to via TSTOP as in TRNON.

BRKON -- BRKON is called to turn on the brake (ie release) and test for the detection of brake voltage and current within 1 second. The brake error hanling address is loaded into location TRAP, the TIMER is set to 1 second, the brake command bit is set in the output data area (DSCR+1) and the control discrete line is set high on PROM 1, PORT A. DSTOR is called and the brake V*I bit is tested in a loop. If it is true within 1 second (ie before the TIMER TRAP interrupt), TSTOP is called to stop the timer and return control to DRVINT (via NORMP) to complete the initialization before returning to BOSS.

BRKOF is called to turn off the brake and test for the attainment of the command within 1 second as in BRKON. The operations are almost identical with BRKON except for the turned off discrete line.

INTERRUPT DRIVEN SUBROUTINES

Some processor operations are Interrupt-driven because they are asynchronous with the command execution and are of a transcendent nature which requires immediate processor action. The interrupt service routines perform the following functions:

MOTION ANALYSIS -- This interrupt-driven subroutine performs the very important function of analyzing the drive motion to determine if the drive is dragging or sticking - a frequent problem with these motors & Translators which have marginal torques for this application. The drives frequently stick in the winter time during cold snaps; a bad Translator driver or logic board will also cause dragging or sticking.

TRPR is entered when the controller has output 4 drive pulses to the motor. Upon entry, the registers are saved on the stack and the DRVPLS flag is set (DRVPLS is tested by WT65 in the RAMP up/down code to determine when a drive step has ended), if the controller is in LOCAL mode, the MOTION counter is cleared by TRPR1, the registers are popped and control reverts to the location which was interrupted. If in CMP (central computer mode), the CW/CCW steering direction discretes are tested and if both are zero (implying that a POSITION execution is not in process), MOTION is cleared, the registers are popped and control reverts to the location where the interrupt occurred.

If a POSITION command is being executed, the change of drive position is compared with what it should be to determine drive sticking. The analysis is done by accumulating 25 drive pulse interrupts (RST 6.5) in MOTION; this corresponds to 100 motor drive pulses. If MOTION = 25, the last position (LSTPOS) is compared with the present position (POSTN) by calling VECTOR, if the difference is 0 the drive is stuck, if the difference is less than 60 counts (ie 45 motor pulses) the drive is dragging. The selection of the 60 count threshold is arbitrary and not very critical; at the torque breakage threshold the effect is very pronounced and the motors do not respond to most of the drive pulses. If either of these conditions occur control is shifted to EDRV (get it there if you can code) which attempts to complete the commanded motion at a lower drive rate.

EDRV sets the STACK pointer to the top RAM address, (the contents of the PSW,B,D,H registers pushed onto the STACK are forgotten in doing so), the DRIVE FAULT bit is set in the output data area and the ramp step number is tested. If the motor stepping rate is less than 300 Hz (peak torque is about 250 Hz) the command is aborted via RSCMD. If the drive rate is above 300 HZ, the motion analysis flag GETIT is set true, the timer is stopped by a call to TSTOP, the drive is stopped by a call to DRVSTP, and the acceleration flag (ACCEL) is set false. The command is initialized again by jumping to DRVIN1 which is the the command initialion entry point for the get-it-there-somehow function. There is a good chance that the command can be completed at the expense of execution speed which is much better than staying stuck.

Motion analysis is not performed during the first 100 pulses of drive motion; during this period the drive coupling spring is winding up (see F/R Dynamics) and there is a net deficiency in the amount of realized drive motion. The deferral action is controlled by the state of the step counter; motion analysis starts at the 150 Hz stepping rate.

DATA SET INTERRUPT -- This code services the Data Set interrupts which input the commands and access monitor data from the F/R System.

BURP is an RST 7.5 interrupt resulting from a Data Set command input or a request for monitor data. When the interrupt occurs, the Sub-Mux Address and a Command or Data Flag are stored In the SMAEV register. The flags enable the processor to identify the interrupt as a command or data request and the address identifies the command or data argument. In the case of a command, the Data Set has shifted the command into the command input shift register and the command strobe requests the processor to read the command, the Sub Mux Address and the Command flag. In the case of a monitor data request, the data strobe signals the processor that it is expected to read the Sub Mux Address and Monitor data flag, to identify the requested data and load it into the output registers for the Data Set to read via shift clocks.

On entering BURP the registers are pushed onto the stack, the Sub Mux event register (SMAEV) is read, the Sub-Mux address is saved and the command/data flags are decoded. In the case of commands, the command arguments are saved and the sign bit (bit 13) is complemented and saved in DE. The mux address is decoded to determine if it is a POSITION command (mux 0, ie 330 in Data Set format), a software RESET command (mux 1 - 331), a NAP command (mux 2 - 332), or a RING command (mux 6 - 336). Undefined commands are stored in a bit bucket. After identification of these types of commands, control is transferred to code which sets command request flags.

POSITION COMMAND INITIATION -- If the decoded command is a POSITION command, control is transferred to DRVCMD which stores the unaltered command argument (in HL) in ECHO, the output data table. The argument is saved in CMDTMP for

subsequent use in initiating the command, the request flag, DRVREQ is set (to 1), the registers are popped in SKIP, the interrupts are enabled and control returns to the place where the interrupt occurred.

RESET & NAP COMMAND INITIATION -- In a similar manner the RESET and NAP command flags are set, the registers popped via SKIP and control returns to the interrupted code.

The process of initiating the execution of these three commands is started in BOSS when the command request flags are tested. The reason that command initiation is handled by BOSS is that the initiation process may be complicated and require slowing the drives etc which is best handled in a controlled sequential manner.

RING COMMAND INITIATION -- In the event that the command is a RING command, the commanded action is initiated immediately in EXTRTC, (after testing for the NAP mode to see if the command should be ignored).

If the code is not in NAP and the Ring command is not active, the RING ACTIVE bit is set in the output data word ERRO+2 and the 1sb of the command argument is tested (from ERRO+2) to see if the command is active, if so the command argument is tested (in EXTRT2) against the EXTFLG (set as a result of initiating the EXTEND command) to see if the RING EXTEND command is already being executed from a previous command. If so, control returns to the place where the program was interrupted via SKIP. If not, the RNGCMD flag (which indicates an over-riding ring command to EXTEND the ring during the process of executing a RETRACT command) is set and control is returned as above via SKIP.

In EXTRT1 the argument is tested (lsb = 1 for EXTEND, 0 for RETRACT) to determine the commanded action. If EXTEND, the extend data flag bit is tested to see if the Ring is already there, if so, nothing more needs to be done and control returns to the place where the interrupt occurred via SKIP. If the Ring is not at the EXTEND position, the EXTEND flag is set, the EXTEND power bit is set in DSCR+1 and the Ring Extend control bit is turned on in PROM1, PORT A which turns on the Ring Extend relay. The RNGCMD flag is cleared and control returns to the interrupted code via SKIP.

If the Ring command is RETRACT, the same sequence occurs but the Retract flag and data bit are set and the Ring Retract control bit is set which turns on the Ring Retract relay. Control returns as above via SKIP.

MONITOR DATA REQUEST -- Now for the monitor data output path of BURP. If the request is for Apex Analog data (Mux 225), the most recently used Apex Data table address (ANAMUX) is incremented so that the next Apex Analog data readout will be the next value. The mux address is multiplied by three to form an index which is added to L. H is set to 1800H (the base address of the DATA SET TABLE) for the data output sequence. The Data Set output registers addresses are: DSDT1, DSDT2 and DSDT3. The data readout process must be expeditious as only 100 microseconds elapse between the STRI pulse and the unload clocks (CLKI).

TIMER INTERRUPT SERVICE -- BLAP is entered from the TRAP interrupt which cannot be disabled, has the highest priority and is used with the 8156 Timer for execution time-out functions which test for the attainment of important states within a specified time. If the tested state is not attained, the program logic presumes a malfunction.

In setting up the timer/TRAP interrupt, a device driver enters the address of the associated error handling code into the error handling address, (ie TRAP) so that in the event of a time-out TRAP interrupt, the TRAP interrupt handling code (BLAP) has an address vector to the this error handling code.

BLAP first sets the Stack Pointer to the top of the stack and loads the error handling address (TRAP) into HL which is then pushed onto the stack, the timer is stopped via the TSTOP subroutine, a TIME-OUT fault bit is merged into the output status data, the RST 6.5 interrupt flip flop is cleared, the RST 7.5 interrupt is cleared, interrupts are enabled and a the RET instruction pops the error handling address off the stack into the program counter.

LOCAL COMMAND EXECUTION

The LOCAL section manages the motion of the drives when the controller is in the LOCAL mode. The M8 front panel switches are read to determine the operator's commands. In LOCAL the Translator is turned on, the drive rate is initialized to 100 Hz, the drive position and Apex discretes are read via a call to DSTOR and if there are no faults, the M8 switches are read to determine direction and whether or not to ramp the drive. If the distance to be traversed is small the operator will (probably) not ask for ramping so the drive will be driven at 100 Hz as long as a switch is actuated. If both direction switches are actuated the drive will be driven in the CW direction.

LCW1 turns on the brake, sets the CW drive direction bit in the output data area and tests the ramp switch; if ramping is called for RMPUP is called with a top step number of 17 (ie 1000 Hz). Upon completion of the ramp-up LCW1 is entered. DSTOR is called to read the state of the CW switch and if it is still actuated the program continues to loop and drive the motor until the switch is released. When the switch is released the program jumps to LSTOP which calls RMPDN which slows the drive to 100 Hz, the brake is turned off, the drive status bits are updated in the output data area and the program jumps to LOCAL for continued looping.

LCCW and LCCW1 operate in an a similar manner in driving in the CCW direction.

While looping in the LOCAL mode, the BOSS scanning is inhibited.

2.3 FOCUS CONTROL PROGRAM

The FOCUS control program is almost identical to the ROTATION control program; the instructions compare 1:1 throughout most of the code. This section addresses the areas in which FOCUS differs from ROTATION.

The FOCUS program is not involved in RING control; this affects CHKDRV in that CHKRNG is not present. Correspondingly the Data SET command initiation is simpler in that EXTRTC and RETRCT are not present.

The output data formats are almost identical except that the RING ACTIVE bit is not present in mux 221, and RING FAULT, RING RETRACT & RING EXTEND bits in mux are not present in mux 222. These bits are set by DSTOR and the Ring

handling code.

Because the Focus drive motor is heavily loaded in driving UP, experience has shown that it is best to restrict the maximum Focus drive rate to 500 HZ because of the severe resonance hole in the motor torque curve at 550 HZ. Therefore; in calculating the number of steps to ramp the Focus drive in DIV, the maximum number is restricted to 7, the pointer to the 500 Hz rate in the RAMP TABLE.

VECTOR is not in the FOCUS program arithmetic subroutines as there is only one possible direction to drive to null a position error. These FOCUS subroutines have CMDCHK which tests the command arguments against hi and lo limits to prevent the subreflector from being driven into the limits in CMP control. It is possible to drive Focus into the limits in the LOCAL mode. The upper limit is tested first, if the command msb is less than 3A00H (35000 octal), the argument is next compared with 0500H (2400 octal). If the argument is greater than the high limit or is less than the lower limit, control is returned to DRVINT with the Carry flag set. This condition aborts the command initiation and sets the OPERATOR ERROR fault.

DSTOR does not read the RING EXTEND & RETRACT bits from the Apex Interface data.

The motion analysis code in TRPR tests for motion greater than 43 counts and is based upon the Focus drive motion of 1.318 steps/bit. This value is 60 in TRPR in the ROTATION code since the the Rotation drive moves 1.318 steps/bit.

Memory Map:

	18FFH	(top)
		STACK
	184CH	
	184BH	
8156 RAM, 256 bytes		FLAGS
	183CH]
	183BH	
	-	VALUES & ARGUMENTS
	1818H	
	1817H	
		DATA SET TABLE
	1800H	
		1
	17FFH	1
2716 EPROM #3, 2K bytes		PROGRAM MEMORY
	1000H	
	I	I
	OFFFH	
8755 EPROM #2, 2k bytes		PROGRAM MEMORY
	0800н	
	00000	I
	07FFH	
8755 EPROM #1, 2K bytes	~	PROGRAM MEMORY
Of J Ernon #1, En Oyues	0000н	
	000011	l

I/O Port Map:

8156 RAM I/O PORTS

TIMER MODE & MSB COUNT				
TIMER LSB COUNT				
PORT C				
PORT B				
PORT A				
COMMAND/STATUS				

PORT B DIR
PORT A DIR
PORT B
PORT A

OA

0B

8755 EPROM #2 I/O PORTS

08

03

02

01

00

09

8755 EPROM #1 I/O PORTS

PORT B DIR PORT A DIR PORT B PORT A

3.0 M11 APEX INTERFACE LOGIC

The Apex Interface contains the logic and conversion equipment to sense conditions in the Apex and serially transmit this data to the F/R Controller upon request. Except for the common time base, analog multiplexer-A/D logic and display logic, the logic is partitioned into two independant, asynchronous sections associated with the Focus and Rotation processors in the F/R Controller.

The Apex Interface logic schematics follow this text.

The Apex Interface is powered by a dedicated power supply in the M8 to isolate all Apex signal lines to the Apex Interface. The links between it and the F/R Controller are isolated by optical isolators to protect the balance of the system from disagreeable phenomena associated with lightning.

The Time base logic on Sheet 1 generates system clocks, scan clocks for the multiplexed front panel numeric display, Sample/Hold & A/D Blank/Convert terms and the multiplexer address terms for the analog multiplexer. The A/D conversion sequence operates continuously at a 10 KHz rate and is initiated by -10 (not 10) term which sets flip flop D17 which in turn sets the S/H to the Hold mode, 10 us later the trailing edge of -10 triggers the second half of D17 which initiates the A/D conversion. The A/D -DRDY (A/D EOC) term triggers a one-shot delay pair to provide a delay for the A/D bits to settle. The delay pair generates an A/D load strobe which parallel-loads the A/D data into static storage register D22 & D23 and advances the multiplex address counter D28. The leading edge of the 80 term clocks flip flop D17 off to cause the S/H to revert to the Sample mode so the multiplexer has 45 us of settling time before the next Hold command. When the A/D converter is converting Focus or Rotation velocity data, the converted value is strobed into storage register B18/B19 & C18/C19 for subsequent readout.

The Synchro/Digital Readout Control logic for the two axes are identical, so the following description applies to both sets of logic. This logic causes the position values, A/D data and discretes to be sequentially unloaded to the F/R Controller in response to a data request from the controller via the optical isolator B1. The request sets a control flip flop B30 to initiate the readout sequence and if the A/D is not in the process of conversion, the sequencer control flip flop B30 is triggered on by gate B23. If the A/D converter is busy, the trailing edge of -Sample/Hold turns on B30. This action insures that the data is never read out during the A/D conversion The sequencer control flip flop B30 inhibits process which takes about 35 us. the Rotation Synchro to Digital converter to keep it from converting during data readout and enables a train of ones to travel down shift register B29 which is clocked by a 5 MHZ clock. Four clock pulses later, gate B23 generates -Rot Data load strobe which parallel-loads registers B22 through B11 a the with the A/D data, analog mux address, Apex discretes. Rotation velocity and Rotation position data. On the fifth clock pulse, the shift register Q4 term enables the shift counter (B26&B27) to begin counting and also enables shift clocks to be output by gate B23. The shift clock train unloads the Rotation Data register and provides a load clock to the F/R Controller via differential driver B6. The shift counter shuts down the unload sequence at a count of 64 (it was preset to a count of 21) by clocking control flip flop B30. The four B24 inverters provide about 50 ns of delay in the shift clock to prevent a B30,B29 propagation delay glitch from being output with the clocks. One-shot

D12 is triggered by the -Rot S/D Inh term to provide a discrete front panel indication that the Rotation data readout/conversion process is active.

The data unload time is 9.8 microseconds and the unload logic may be delayed by as much as 35 microseconds due to A/D delay so the maximum readout delay after the data request is 45 us and the minimum is 10 us.

Sheets 2 & 3 are the data unload registers, Apex switch inputs and fault Apex discretes are shown at the top of the sheets and drive Schmidt logic. input inverters for enhanced level discrimination. All discretes are sensed via contact closures to ground and sink .5 ma of current during the nonactivated state of the switch. Fault logic senses illegal states such as the concurrent sensing of both Upper and Lower Focus limits or more than one Pin In the event that this sort of immoral (it has happened) behavior is switch. sensed, an alarm term - YOWP! is sent directly to the controller to inhibit all action. Focus and Rotation limits are also sent directly to the Rotation CW/CCW limits are wired in the module and bin inputs but controller. no longer exist in the mount or cabling between the Apex & bin.

Sheet 5 contains the front panel display logic which consists of a 3line, 10 channel multiplexer to drive the numeric display segment encoder on the display board. The inputs to the multiplexer are the Focus and Rotation position storage registers and the position data is multiplexed by the scan term as a sequence of 10 octal characters. A digit selector, driven by the four bit scan terms enables the cathode of each digit in succession while the anodes are driven by the 7-segment encoder. The Scan counter driven by the 10 KHz scan clock.

All the analog and conversion circuitry is contained on Sheet 4 and consists of an 8-channel single-ended multiplexer, Sample and Hold, A/D Converter and Integrating Synchro to Digital Converters. The operation of these devices is described in the Data Sheet section of this manual so they will not be described here. For an in-depth discussion of the Integrating Synchro to Digital converter see the DDC "Synchro Conversion Handbook" or the Analog Devices "Synchro & Resolver Conversion" book. The operation of these devices is quite simple and the logic to interact with them was described The alignment process for the analog components is quite simple and above. can be done by removing the front panel adjustment panel cover. The +10 volt reference is set first. A high quality DMM is plugged in to test connector pins 1 & 13 on the front panel connector and pot R2 is adjusted to produce +10 volts +/- 2 mv. Next, momentary switch S1 is actuated down to feed analog ground into the Sample & Hold input to set the A/D zero. Pot R2 is adjusted to produce a 0 volts reading on the Data Tap (set to Mux address 225 or 235, DS#3). Next the switch is actuated up to feed the +10 volt reference voltage into the Sample & Hold input and the A/D gain is adjusted by pot R3 for a +10.000 reading on the Data Tap (addresses 225 & 235). The 10 bit A/D Converter is scaled at 10 mv/bit and is a 10 volt span device so the Data Tap readout will change in steps of 20 mv.

There are no gain or zero adjustments for the S/D converters. Differential amplifiers E15 read out the synchro argument velocity; these should be set for zero output by offset pots E13 & E14 on the bench when synchros and the 400 Hz inputs are connected to the module.

The F/R Mount temperature is sensed by an AD590 temperature sensor

39

mounted in a metal box bolted to the underside of the F/R Mount gearbox. The temperature verifies the operation of the heaters and is scaled to produce 100 mv/deg C. The scaling and offset resistance values should be set up on the bench before installation in the antenna.

Figure 8 (below) depicts the location of these analog data adjustments and the display messages.

The numeric displays show positions as 4 digit octal values derived from the S/D converter 14 bit straight binary code output; the value may range between 0000 (full DOWN/CCW) and 3777 (full UP/CW). The associated values seen on the Data Tap octal display will be: 2000 and 1777 respectively since the msb is inverted to make the monitor data a 2's complement value.

The discretes display indicate the following when illuminated:

UL & LL - Focus Upper or Lower limit switch actuated CW & CCW - Rotation CW or CCW limit switch actuated RR & RE - Ring Retract or Ring Extend switch actuated M1,M2,M3 - Apex Interface analog mux address bits FA - Focus Data readout to controller active RA - Rotation Data readout to controller active AA - A/D Converter active P,L,C,U,K,X,Y,Z - Band Pin Switch Actuated (not presently used) The test point connector permits observation of the following functions:

PIN	FUNCTION	PIN	FUNCTION
1	A/D align switch output	14	analog spare
2	S/H output	15	analog spare
3	YOWP!	16	A/D blank/-conv
4	S/H state	17	A/D data ready
5	-A/D load strobe	18	-10 time base term
6	5 MHZ clock	19	80 time base term
7	Focus output data stream	20	Rotation output data
0	stream	~ ~	stream
8	Focus unload clocks	21	Rotation unload clocks
9	-Focus data load	22	-Rotation data load
10	Focus readout enable	23	Rotation readout enable
11	Focus readout start	24	Rotation readout start
12 13	Focus readout request Analog ground	25	Rotation readout request

4.0 M8 F/R POWER SUPPLY

The M8 F/R Power Supply contains the system logic +5, +/- 15 volt and Apex Interface +5 and +/- 15 power supplies. This unit also serves as a control/display panel for processor-driven display LEDs to indicate important discrete states such as Command Active, Translator power on, Brake V*I ok, Up drive line pulsing, etc. Figure 9 depicts the M8 panel and the associated Manual control switches enable manual slew control of the Focus and states. Rotation axes at either a 100 Hz stepping rate or by ramping to travel long Band select switches and associated LEDs enable future manual distances. an Index Locking Pin if the need should arise. control of To reduce wire count the 8 band switches are encoded into a 3 bit code by a 74LS148 encoder on the display board. The F/R Power Supply schematic diagrams follow this text.

The number of DC output lines on the module I/O connector exceeds the number of modules presently powered; the extra wire capacity has been installed for future expansion in the event that more modules are to be installed in the bins.

Monitor States & Controls:

UL/LL - Focus limits CW/CCW - Rotation limits UP/DWN -Focus drive dir CW/CCW - Rot drive dir BRK - Brake voltage*amps TRANS - Trans power on CMD - Command active MOT - not used EXT - Ring Extend RET - Ring Retract P.L.C.U.K Pin select switches & LEDs, not used Drive UP/DWN - slew Focus when depressed Ramp/100 Hz - ramp speed or drive @ 100 Hz Drive CW/CCW - slew Rot when depressed

Figure 9, M8 Displays & Controls

5.0 M22 F/R SWITCHING MODULE

The switching module contains solid state relays to power the Translators, brakes and Ring actuator, Brake controllers to power the F/R Mount brakes and a 400 Hz Synchro Exciter to power the position readout synchros. The relays are optically (internally) isolated and are driven by providing a current sink from an open collector power nand or open collector buffer gate in the F/R Controller logic. The Brake controller is the standard Warner Electric MCS 805 unit which has been removed from the wall of the Pedestal room and installed in the M22 to make them easier to change in the event of failure. During the installation in M22, the output voltage adjustment pot is removed from the Brake Controller PC board and installed on the M22 front panel with longer wires to enable the brake voltage to be adjusted on the front panel. A manual switch and test points on the panel enable manual actuation and adjustment.

The F/R Switching Module schematics follow this text.

BRAKE CONTROLLER ADJUSTMENT PROCEDURE

The following procedure has been abstracted from the Warner Electric MCS-805-1 Manual:

"Brake Release Adjustment: Prior to operating the Fail Safe Brake, the proper electrical release adjustment must be made as follows:

With the brake mounted and ready for operation, turn the potentiometer adjustment screw on the MCS-805-1 Power Supply counterclockwise as far as Turn on power to provide AC input to the power supply. possible. Next. slowly turn the adjustment screw clockwise until the Fail Safe Brake armature completely disengages from the magnet. Armature release and engagement must be checked by hand until the autogap adjustment is made. Using a DC voltmeter, note the voltage reading at this point, which is determined the instant the armature disengages. If this point is overshot by two volts or more, reset the potentiometer to its full counterclockwise position and repeat the adjustment Complete the set point adjustment by turning the adjustment screw procedure. to a setting six volts higher than the disengagement voltage. Lock the adjustment screw by tightening the locknut provided on the potentiometer. This adjustment must be made with the brake at room temperature for an expected operating range of -50 deg F to 250 deg F. The MCS-805-1 control output changes to track the brake release point as it varies over the -50 deg F to 250 deg F temperature range."

The bin cooling fans, brake, 400 Hz Synchro Exciter, Translator and Ring Actuator power are fused and distributed from the M22.

The Synchro Exciter is a 400 Hz power oscillator powered by a 12 volt. 8 amp transformer mounted on the Synchro Exciter Chassis. The exciter circuitry is contained on a removeable PC board mounted on the Synchro Exciter chassis. The exciter circuit consists of a bridge rectifier, 723 voltage regulator, 900 HZ oscillator, flip flop and a push pull, class B power amplifier which drives a 400 Hz, 30 VA, 24V CT (primary) to 26 volt secondary transformer. In operation a DC voltage of about +10 volts (set by a front panel 500 ohm pot) is produced by the 723 regulator; this is the power switching voltage. An LM 340T regulator generates +5 volt logic power for the logic on the board. Α 555 timer connected as an oscillator generates a 900 Hz (approximatly) clock which toggles a 7474 to generate a square wave 450 Hz signal which in turn drive 7406 open collector buffers. The 7406s drive 2N2219 transistors which in turn drive 2N3055 power transistors to produce the power switching signals.

A current transformer (the primary is 9 turns of #26 wire through a Magnetico 13960 current transformer) generate a voltage proportional to the synchro load current. This signal is fed to a rectifier/filter in the M7 where it is read as monitor data. The termination circuit in M7 scales the voltage at 1 volt/synchro load thus enabling a confirmation that currents are present in both synchro rotors.

The front panel synchro excitation level should be set to produce about 20 volts peak; it is not at all critical since the Synchro to Digital converters/synchro combination will operate with voltages as low as 5 volts. Bench tests have confirmed this. An adjustable 25 ohm power resistor is installed in the primary of the transformer to reduce the transformer output voltage so as to lower the dissipation in the regulator circuit. This resistor should set to about 10 ohms. Four 4.7 uf, ceramic capacitors across the transformer secondary (roughly) tune the output circuit to about 400 Hz.

A photograph of the 400 Hz waveform at the M22 front panel test points is shown below. The scales are: 10 volts/div and 500 us/div.

6.0 SYSTEM TROUBLE-SHOOTING

An important system design consideration is the ablity to monitor the conditions in the electronics and the F/R Mount to identify malfunctions and diagnose faults. There are two places in which this is done: locally within the F/R Controller and remotely at the control center via Data Checker and the Operator F/R Overlay. A great deal of diagnostic information is brought back in the Monitor data. This section describes some trouble-shooting guidelines for the system based upon remote observations via the monitor data and direct measurements at the antenna; section 9 describes the usage of the Operator F/R Overlay.

The maintainance technician's credo: THE ESSENCE OF TROUBLE-SHOOTING IS TO OBSERVE THE CONDITIONS OF THE SYSTEM AND RELATE THEM TO THE CONDITIONS WHICH SHOULD EXIST FOR THE MODE OF THE SYSTEM. THIS COMPARISON IS THE ONLY BASIS FOR EFFECTIVE TROUBLE SHOOTING.

A) CHECK COMMUNICATIONS WITH CONTROLLER This is the most basic aspect of fault isolation.

- a. Is analog data present? -- look at mux 0 7, power supply voltages, also see MW1.
- b. Is analog data within limits? -- check for bad power supplies.
- c. Is digital data present? --- examine DS #3, 220 227, Foc; 230 - 237, Rot. If missing or bad, send a RESET to restart the processor; does the data reappear? If not the controller is bad or is not hearing the Data Set.
- d. Is the digital data reasonable? --- evaluate as shown in D.
- B) CHECK FAULT & MODE FLAGS

Are there fault or mode flags coming back from the controller? These are major descriptors of the conditions seen by the F/R Controller.

OPERATOR -- the opertor has sent an out of range Foc command.

- CONTROLLER -- the controller has sensed an illegal condition during program execution.
- DRIVE -- the mechanism is not driving properly, probably a bad translator, cold sticking, mechanical drag or jam.

TRANSLATOR -- translator did not turn on or off within 1 sec.

- BRAKE -- brake voltage*current bad or did turn on or off within 1 sec.
- UPPER/LOWER LIMIT -- limit switch activated, should never happen under Computer control, result of some malfunction.

TIMEOUT -- commanded position has not been attained within

allotted time.

- APEX INTERFACE DEAD -- Apex Interface has not responded to a data request from F/R Controller.
- CABLE INTERLOCK -- a bin I/O cable is loose or disconnected.
- SYSTEM -- a system malfunction has been sensed by controller.
- RING -- 327 MHz ring is not moving.
- APEX ANALOG FAULT -- one of the Apex Interface signals is out of range.
- YOWP! -- Some serious fault has been sensed by Apex Interface, all brake, translator & Ring drive is inhibited.
- LOCAL mode -- the controller will not accept commands in the LOCAL mode, go set the M7 switch to CMP mode.
- APEX INTERFACE DEAD -- the Apex Interface is not responding to data requests from the F/R Controller
- CMD ACTIVE -- a position command is being executed
- NAP ACTIVE -- position and ring commands are being ignored, send a RESET command to clear NAP mode.

C) CHECK COMMAND-F/R RESPONSE

The analysis of the controller response to a command is a very important aspect of system trouble shooting. The digital monitor data should be examined in these tests as the command and response discretes provide detailed information about what is happening in the system.

- a. Send a position command, does ECHO = CMD ?
 - -- yes: command input logic is working, the controller responded to a CMD from the Data Set, interpreted as it properly & initialized the control program.
 - -- no: command not being heard, may be bad F/R Controller, Data Set, Ant Buffer, IF/LO problem.
- b. Does a position command cause any drive movement ?
 - -- yes: but slow & with a DRIVE, TRANS or BRAKE fault, check the digital data for conditions. The drive appears to be sticking, check the translator.
 - -- no: & with DRIVE, TRANS or BRAKE faults, indicates a drive problem, bad translator, stuck drive, check the digital data for conditions. Check the translator, wire a substitute motor into the pedastal room junction box. Will it run in the LOCAL mode? Climb up to F/R Mount & disengage motor from the mount, will it run in the LOCAL mode?

- c. Will controller accept a NAP command? Test by sending a POSITION command after a NAP command.
 - -- no: F/R Controller is not working properly, NAP command is a very simple command to execute.
- d. Will the controller accept a soft reset command? (mux 321 & 331). RESET causes Apex data to be all zeros until updated.
 - -- no: F/R Controller is not working properly, a soft RESET is the simplest command to execute.
- e. Will the controller respond to a hardware RESET command, MUX 337?

-- no: F/R Controller is really busted.

D) CHECK MONITOR DATA VALUES AND STATES

All discrete control states, all sensible response states and analog monitor data from the F/R Controller and Apex Interface are available for fault analysis. Section 5.0 details the data formats. In general any command will activate several of these control and response discretes; if there is a problem these states should be examined on a Data Tap. If a Position command is to be executed, the translator power, brake, steer up/down (cw/ccw) and clock enable control discretes should be 1's. The clock rate control discretes should sequence through a lot of states if the drive is to be ramped up in speed. The response discretes should show brake V*I,translator power on and drive up/down (cw/ccw) pulsing.

The following analog/digital data values should be examined:

a. Is synchro: = 2 V? -- yes: synchro excitor in M22 is ok = 1 V? -- yes: one synchro rotor lead open = 0 V? -- yes: synchro excitor in M22 bad or fuse blown

- b. Is the position readback stable?
 -- yes: synchro & S/D converter probably working, drive a little, does the position change?
 -- no: S/D converter bad, no synchro excitation or a synchro wiring problem.
- c. Is mount temp ~ 10 deg above ambient when ambient is <45
 F?
 -- yes: heaters & temp probe ok.
 -- no: mount heaters may not be working, is drive
 sticking?</pre>
- d. Is bin temp > 30 deg C? -- yes: damage can result, go check the fans.
- e. Are power supply voltages within tolerance? -- no: go fix the problem.

7.0 TELESCOPE OPERATOR CRT OVERLAY DESCRIPTION

A replica of the new F/R System Overlay is shown below; all fault flags are shown.

NEW FOCUS/ROTATION AND (22)

SYSTEM	FOCUS	ROTATION	APEX INTERFACE
LOCAL			MOUNT TEMP 16.900
TIMED OUT	NAP	NAP	-15 V -15.010
SYSTEM FAULT			+15 V 15.020
I/O CABLES	UP TRANSL	CW TRANSL	+5 V 5.005
YOWP!	DRIVE PULSES	DRIVE PULSES	+10 V 10.000
RING	LOWER LIMIT		FOC VEL 0.000
EXTENDED			ROT VEL 0.000
	BRAKE	BRAKE	GROUND 0.000
	DRIVE	DRIVE	ANALOGS NOT OK
	TRANSLATOR	TRANSLATOR	INACTIVE
	CONTROLLER	CONTROLLER	
			F/R CONTROLLER
POSITION	7469	-3471	+5 V 5.005
COMMAND	7469	-3471	+15 V 15.005
CMD ECHO	7469	-3471	-15 V -15.010
ERROR	0	0	FOC TRAN 2.600
		-	ROT TRAN 2.550
			SYNCHRO 2.010
			BIN TEMP 24.00
			GROUND 0.000
			3.100H2 0.000

F=FOCUS, R=ROTATION, (N=NAP), (RING CMDS) E=EXTEND, W=RETRACT S=STOP, ESC-M=MASTER CLEAR

Section 6.0 of this manual details a fault isolation procedure which may be referred to for an expansion of the the information discussed below.

- F/R FAULT MESSAGES
- SYSTEM FAULT The F/R Controller has detected a serious system fault.
- I/O CABLES Some bin I/O cable has been disconnected or is loose.
- RING FAULT The 327 MHz ring has not attained the commanded state within the allotted time.
- TIMED OUT The commanded position has not been attained within the allotted time.
- BRAKE The brake V*I has not reached the commanded state within 1 second.
- TRANSLATOR The translator has not reached the commanded state

within 1 second.

- LOCAL Although not a real malfunction the CMP/LOCAL switch was left in LOCAL. CMP should normally be displayed here.
- CONTROLLER CONTROLLER indicates that the controller has sensed a malfunction in its operation.
- ANALOGS NOT OK Indicates that an Apex Analog fault has been reported by the F/R Controller.
- INACTIVE Indicates that the Apex Interface is not responding to data requests from the F/R Controller. This is a major malfunction

F/R DISCRETES DISPLAY

- UP TRANSLATOR The Focus translator is being driven with UP pulses. Down is the complementary case.
- CW TRANSLATOR The Rotation translator is being driven with CW pulses. CCW is the complementary case.
- LOWER LIMIT The Focus drive has driven to a limit switch, this should never happen under central computer control, something is really wrong. UPPER LIMIT is the complementary case.
- RING EXTENDED The 327 MHz Ring has been extended into position and has actuated the position sensing switch. RING RETRACTED is the complementary case. When the Ring is traveling between the two positions neither switch should be actuated; there is no other readout of Ring position.
- NAP NAP indicates that the processor is ignoring position and ring commands. A RESET command clears this mode.

COMMAND/POSITION DATA

- POSITION POSITION is a decimal value which ranges between + 8191 to - 8192. Typical (Ant 20) Rotation command arguments are: L --xxxx; C --zzzz; K -- yyyy; U -vvvv; X -- tttt.
- COMMAND COMMAND is the decimal value of the position command set point.
- COMMAND ECHO COMMAND ECHO is the command argument heard by the F/R Controller and is returned as monitor data to verify command reception.

COMMAND ERROR - The controller calculates the difference between the commanded position and the present position; this is read out as monitor data.

APEX INTERFACE ANALOG DATA

MOUNT TEMPERATURE is the temperature sensed on the middle of the bottom of the gear-box and serves to verify that the gear-box and platform heaters are working in cold weather. The heater controller switches on when the ambient temperature is below about 45 deg F. The temperature readout is in degrees C and should be about 10 deg C above ambient when the ambient is below 45 F. When the F/R Mount temperature drops below 0 deg, the controller signals an Apex Analog fault.

APEX INTERFACE POWER SUPPLIES indicate the voltages which operate this interface. The +/- 15 volts should be within +/- .3 volts and the +5 volt tolerance is +/- .15 volts. The +10 volt tolerance is +/- 0.040 volts. This data has a granularity of .020 volts/bit. Ground is a measure of A/D zero drift and should be less than +/- 0.040 volts. Foc and Rot velocities are a measure of drive velocity and are scaled 13 volts/in/sec for Focus and 5.2 volts/deg/sec for Rotation.

F/R CONTROLLER ANALOG DATA

F/R POWER SUPPLIES indicate the voltages which operate the F/R Controller and associated logic. The +/- 15 volts should be within +/- .1 volt and the +5 should be within +/- .2 volts. The translator power should be +2.6 +/- .2 volts. These translator voltages are present only during command execution. The Synchro voltage should read +2 +/- .5 volts. Ground is a measure of the Data Set A/D zero drift and should be less than +/ .010 volts. Bin temperature reads out directly in deg C and should be less than 30 deg.

8.0 CONTROL/DATA FORMATS

Mux refers to the multiplex address in octal format. RAM loc denotes the byte symbolic address in RAM memory.

COMMAND FORMATS:

Mux add	r 320/Foc	330/Rot	336/Ring
Ram loc	rampas	rampas	none
Data	null	null	null
b23 80H	0	0	0
b22 40H	0	0	Õ
b21 20H	0	0	0
b20 10H	0	0	0
b19 08H	0	0	0
ъ18 О4Н	0	0	0
b17 02H	0	0	0
b16 01H	0	0	0
Ram loc	rampbs	rampbs	none
Data	Foc arg	Rot arg	null
			null
b15 80H	0	0	0
b14 40H	0	0	0
b13 20H		2**13,msb	0
b12 10H		2**12	0
b11 08H	2**11	2**11	0
b10 04H	2**10	2**10	0
b9 02H	2**9	2**9	0
b8 01H	2**8	2**8	0
Ram loc	rampes	rampcs	none
Data	Foc arg	Rotarg	Ring arg
b7 80н	2**7	2**7	0
b6 40H	2**6	2**6	õ
b5 20H	2**5	2**5	õ
b4 10H	2**4	2**4	õ
b3 08H	2**3	2**3	õ
b2 04H	2**2	2**2	0
b1 02H	2**1	2**1	Õ
b0 01H	2**0	2**0	ext/ret, 1=ext

A SYSTEM RESET command (Mux 337)causes abortion of active commands and re-initiallizes the two processors. A software RESET command (Mux 321 & 331) resets the addressed processor. The control argument is not used in RESET commands.

NAP commands (Mux 322/Foc & 332/Rot) cause all subsequent position commands to be ignored until cancelled by a RESET command. The command argument is not used.

DIGITAL MONITOR DATA

Digital monitor data formats are a composite of values and associated discrete or fault data. A 1 in a fault bit denotes a fault state.

Focus Digital Monitor Data:

Mux addr	220/Foc	221/Foc	222/Foc
Ram loc	posd+2	erro+2	echo+2
Data	faults	modes	null
	operator	0	0
	controller	cmd active	0
b21 20H		nap active	0
	translator	timeout	0
b19 08H	• •	Apex Int dead	0
ь18 О4Н		cable int'lk *	0
	upper lim	system *	0
b16 01H	lower lim	emp/loc, 0 = loc	0
Ram loc	posd+1	erro+1	echo+1
Data	Foc pos	Foc pos error	Foc cmd echo
b15 80H	0	0	Cmd bit echoed
Ь14 40Н	0	0	Cmd bit echoed
	2**13, msb	2**13, msb	2**13, msb
b12 10H		2**12	2**12
Ь11 О8Н		2**11	2**11
b10 O4H		2**10	2**10
b9 02H	-	2**9	2**9
ъ8 01Н	2**8	2**8	2**8
Ram loc	posd	erro	echo
Data	Foc pos	Foc pos error	Cmd echo
b7 80H	•	2**7	2**7
	2**6	2**6	2**6
b 5 20Н	-	2**5	2**5
b4 10H		2**4	2**4
	2**3	2**3	2**3
b2 04H		2**2	2**2
b1 02H	2**1	2**1	2**1
b0 01H	2**0	2**0	2**0

* 1 = no fault, low true

52

Mux	223/Foc	224/Foc	225/Foc
Ram loc		adcr+2	anad+2
Data	clock control	Apex Foc Discr	Apex Anlg Faults
b23 80H		0	gnd
b22 40H		0	0
b21 20H	_	0	foc vel
b20 10H b19 08H		0 0	+10 volts
b19 08H	-	Foc brk V*I	+5 volts
b17 02H		Foc upper lim	+15 volts -15 volts
b16 01H	2**0	Foc lower lim	
510 011	20	FOC IOWEI IIM	mount temp
Ram loc	dscr+1	ader+1	anad+1
Data	cmd sense	Foc vel	Apex analog data
b1 5 80Н	Foc trans pwr	0	0
b14 40H	Foc brake pwr	0	Mux addr 4
b13 20H	0	0	Mux addr 2
b12 10H	0	0	Mux addr 1
b11 08H		2**11,msb	2**11,msb
b10 O4H	Foc drv down	2**10	2**10
b9 02H	0	2**9	2**9
b8 01H	Foc clock en	2**8	2**8
Ram loc	dscr	ader	anad
Data	activity sense	Foc vel	Apex analog data
b7 80H	motor pulsing,=0	2**7	2**7
ъб 40н	down pulsing	2**6	2**6
b5 20H	up pulsing	2**5	2**5
b4 10H	trans pwr mon	2**4,lsb	2**4
b3 08H	0	0	2**3
b2 04H	cable intl'k	0	2**2,lsb
b1 02H	Yowp!	0	0
b0 01H	loc/comp	0	0

Rotation Digital Monitor Data:

Mux	230/Rot	231/Rot	232/Rot
Ram loc Data	posd+2 faults	erro+2 modes	echo+2 Ring mon
b23 80H b22 40H b21 20H b20 10H b19 08H b18 04H b17 02H b16 01H	controller drive translator synchro, =0	ring active cmd active nap active timeout Apex Int dead cable int'lk * system * cmp/loc, 0=loc	0 0 0 ring fault ring retract ring extend
Ram loc Data	posd+1 Rot pos	erro+1 Rot pos error	echo+1 Rot cmd echo
 b15 b14 40H b13 20H b12 10H b11 08H b10 04H b9 02H b8 01H 	2**12 2**11 2**10 2**9	0 2**13,msb 2**12 2**11 2**10 2**9 2**8	Cmd bit echoed Cmd bit echoed 2**13,msb 2**12 2**11 2**10 2**9 2**8
Ram loc Data	posd Rot pos	erro Rot pos error	echo Rot cmd echo
b6 40H b5 20H b4 10H	2**5 2**4 2**3 2**2	2**7 2**6 2**5 2**4 2**3 2**2 2**1 2**0	2**7 2**6 2**5 2**4 2**3 2**2 2**1 2**0

* 1 = no fault, low true

Mux	233/Rot	234/Rot	235/Rot	
Ram loc	dscr+2	ader+2	anad+2	
	clock control		apex an faults	
_				
	2**7, msb	sum pins, =0	gnd	
b22 40H		pc4, =0	rot vel	
b21 20H		pc2 "	0	
b20 10H		pc1 "	+10 volts	
b19 08H			+5 volts	
b18 04H		brake V*I	+15 volts	
b17 02H b16 01H	2**1		-15 volts	
	2**0	Rot ccw lim, =0	mount temp	
Ram loc	dscr+1	ader+1	anad+1	
Data	cmd sense	rot vel	apex analogs	
	Rot trns pwr	0	0	
	Rot brk pwr	0	ana mux 4	
	Ring ret pwr	0	ana mux 2	
612 10H	Ring ext pwr	0 2**12,msb	ana mux 1	
D11 08H	Rot drv cw	2**12,msb	2**12, msb	
	Rot drv cew	2**11	2**11	
b9 02H		2**10	2**10	
DO UTH	Rot clk en	2**9	2**9	
Ram loc	dscr	adcr	anad	
Data	activity sense	rot vel	apex analogs	
Ь7 80 4	mot pulsing	2**8	2440	
		2**8 2**7	2**8 2**7	
	cw pulsing	2**6	2**6	
b4 10H		2**0 2**5 leb	2**0 2**5	
b3 08H		0	2**5	
	cable intl'k	0	2**3	
b1 02H		0	2**2,1sb	
b0 01H	loc/comp	0	0	
ANALOG MONITOR DATA:				
M	Downanatan			
Mux 	Parameter	Nominal Value & T	olerance 	
ОН	5 logic pwr	+5 volts, +/2 v	olts.	
1H	analog gnd	0 volts +/- 10 mv.		
	+15 volts/2	+7.5 volts +/- 100 mv.		
	-15 volts/2	-7.5 volts +/- 100		
	Foc Trans pwr	+2.5 volts +/2		
	Rot Trans pwr	+2.5 volts +/2	volts	
	Bin Temp	.1 volt/deg C	• ·	
7H	Synchro current	+2.5 volts +/- 1 v	011	

SPECIAL PURPOSE MONITOR DATA

Fault monitor data is a selection of the data listed above which has been formatted to combine all fault data into one single word for convenience in examining fault bits. The F/RMount temperature data has been put into a dedicated monitor word for convenience in driving a strip chart recorder.

Focus and Rotation Special Purpose Monitor Data

Mux addr	226/Foc	236/Rot	227/Foc
Ram loc	faul+2	faul+2	temp+2
Data	faults	faults	F/R Mount Temp
b23 80H	lab test	lab test	0
b22 40H	lab test	lab test	0
b21 20H	lab test	lab test	0
b20 10H	timeout	timeout	0
b19 08H	Apex Int dead	Apex Int dead	0
b18 04H	cable Int'lk	cable Int'lk	0
b17 02H	system	system	0
b16 01H	Motion Analysis	Motion Analsis	0
Ram loc	faul+1	faul+1	temp+1
Data	Apex Analog	Apex Analog	F/R Mount Temp
b15 80H	gnd	gnd	0
b14 40H	0	0	0
b13 20H	Foc vel	Rot vel	0
b12 10H	+10 volts	+10 volts	0
b11 08H	+5 volts	+5 volts	2**11,msb
Ъ10 О4Н	+15 volts	+15 volts	2**10
b9 02H	-15 volts	-15 volts	2**9
b8 01H	mount temp	mount temp	2**8
Ram loc	faul	faul	temp
Data	faults	faults	F/R Mount Temp
b7 80H	operator	operator	2**7
ъб 40н	controller	controller	2**6
b5 20H	drive	drive	2**5
ъ4 10Н	translator	translator	2**4
b3 08H	synchro, = 0	synchro, = 0	2**3
b2 04H	brake	brake	2**2,1sb
b1 02H	upper lim	0	0
b0 01H	lower lim	0	0

56

9.0 SYSTEM CABLE DRAWINGS, TRANSLATOR SCHEMATICS & MOTOR DRIVE WAVEFORMS

INSTRUCTIONS for SLO-SYN® TRANSLATOR Type TM600

INSPECTION

When unpacking the SLO-SYN Translator, examine the unit carefully for any shipping damage. The "Damage and Shortage" instruction packed with the unit outlines the procedure to follow if any parts are missing or damaged. Check to see that the following items have been received.

- 1. SLO-SYN Translator Type TM600.
- 2. Eight terminals for #14 #16 wire, Superior Electric part number 8244-009.
- 3. One terminal for #14 #16 wire, Superior Electric part number 8244-002.
- 4. Base speed control potentiometer, 10K ohms, ½ watt, linear taper, Superior Electric part number 144664-004.
- 5. High speed control potentiometer, 500K ohms, ¹/₄ watt, CCW audio taper, 10 turn, Superior Electric part number 201893-001.

DESCRIPTION

The TM600 is an open chassis unit which incorporates a d-c power supply together with the sequencing and switching logic needed for bidirectional control of a SLO-SYN Stepping Motor. It will drive a SLO-SYN motor in either the half-step (0.9° increments) or the full-step (1.8° increments) mode and is intended for base mounting.

The TM600 receives pulses from a minicomputer, microprocessor or similar pulse source and converts the pulses into the switching sequence needed to drive a SLO-SYN motor in steps. The external pulse source controls the step rate, direction, acceleration, deceleration and the number of steps taken. An internal oscillator is also provided for manual or "off-line" positioning.

THE SUPERIOR ELECTRIC COMPANY Bristol, Connecticut 06010

SPECIFICATIONS

Dimensions (Maximum) Weight (Maximum) Power Input Requirement	width: 13¼°' (333mm) height: 10¼'' (260mm) 54 lbs. (24.5kg) 120/220/240 VAC +10% -15%
Temperature Range	50/60 hertz, 12 amperes maximum operating: 0°C to +55°C air temperature at fan intake port storage: -40°C to +85°C
Internal Oscillator	
Range	base speed: 0 to 1000 pulses per second (0 to 2000 pulses per second in half-step mode) high speed: 200 to 10,000 pulses per second (400 to 20,000 pulses per second in half-step mode) \pm 15% or \pm 50 pulses per second, whichever is greater, over stated temperature and voltage ranges
Acceleration and	
Deceleration Ranges	0.05 to 1.7 seconds, potentiometer adjustable
Base Speed Control	
High Speed Control	500k ohm, ten-turn, CCW audio taper potentiometer

TTL Compatible Input/Output Signals

_

Pulse Output	
High Level	open coilector, rated at 30 VDC
Low Level	0 to 0.7 VDC
Loading	
Fall Time	2 microseconds max.,
	1000 ohms to $+30$ VDC max.
Rise Time	2 microseconds max.,
	1000 ohms to $+30$ VDC max.
Pulse Width	10 to 25 microseconds
Pulse Input Terminals	
High Level	open circuit, 3 VDC to 6 VDC
Low Level	0 to 0.5 VDC
Loading	4mA sink max.
Pulse Input Requirements	
	2 microseconds maximum
Rise Time	2 microseconds maximum
Pulse Width	10 microseconds min.
Trigger Edge	0 to 1 level transition (Trailing
	edge) advances motor shaft
Direction Control	
High Level	open circuit, 3.2 VDC to 6 VDC
Low Level	0 to 0.5 VDC
Loading	4mA sink max.
Base Speed and High Speed O	n/Off Controls
High Level	open circuit, 3.2 VDC to 6 VDC
Low Level	
Loading	4mA sink max.
-	

•

TIONS	
Half-Step/Full-Step Mode Sele	ction
	open circuit, 3.2 VDC to 6 VDC
Low Level	
Loading	4mA sink max.
Low Voltage Sense	
High Level	open collector output rated at
-	30 VDC max.
Low Level	
Loading Fall Time	· · · · · · · · · · · · · · · · · · ·
Fall Time	ohms to 30 VDC max.
Rise Time	
	ohms to 30 VDC max.
Fault Condition	
	+12 VDC bias voltage
	below +9.5 VDC -12 VDC bias voltage
	above — 8.5 VDC
High Temperature Monitor	
High Level	open collector output rated at
	30 VDC max.
Low Level	00 4 1 1
Loading Fall Time	
	ohms to 30 VDC max.
Rise Time	2 microseconds max., 1000
	ohms to 30 VDC max.
Temperature Trigger	
Conditions	logic 1 to logic 0 transition when heat sink temperature
	rises to 195°F ±9°F
	(90°C ±5°C)
	logic 0 to logic 1 transition
	when heat sink temperature
	drops to 165°F ±9°F (74°C ±5°C)
DC2220 Compatib	
Rozozu unipatio Pulse Output	le Input/Output Signals
High Level	+8 VDC to $+12$ VDC
Low Level	
Loading	
Fall Time*	
Rise Time* Pulse Width	
	To microseconds min.
Pulse Input Terminals	1.2.VDC to 1.25.VDC
High Level	-3 VDC to -25 VDC
	3k ohm min.
Pulse Input Requirements	
Fall Time*	3 microseconds max. for
	25 VDC input
Rise Time*	
Pulse Width	25 VDC input
Trigger Edge	10 microseconds min. 0 to 1 transition (trailing edge)
	advances motor shaft
Direction Control	
High Level	+3 VDC to +25 VDC -3 VDC to -25 VDC
Low Level Loading	Oli share to 71 stars

Base Speed and High Speed O High Level Low Level Loading	+3 VDC to +25 VDC -3 VDC to -25 VDC
Half-Step/Full-Step Mode Sele High Level Low Level Loading	+3 VDC to +25 VDC -3 VDC to -25 VDC
Low Voltage Sense High Level Low Level Loading Rise Time Fall Time Fault Condition	-8 VDC to -12 VDC 3k ohms min. 1 microsecond max. 1 microsecond max.
High Temperature Monitor High Level Low Level Loading Rise Time Fall Time Temperature Trigger Conditions	
*The rise or fall time may be	calculated as follows:
T rise or T fall $=$ 90% of	high level — 90% of low level slope

for example, if the high level is +12 VDC, low level is -12 VDC and pulse width is 10 microseconds.

slope =
$$\frac{6}{.04 \times 10}$$
 = 15 volts/µsec.
Trise or T fall = $\frac{(12 \times 0.9) - (-12 \times 0.9)}{15}$ = 1.44 µsec. max.

MOUNTING

The TM600 is an open chassis unit designed for base mounting. Horizontal mounting on the floor of an enclosure is the preferred method due to weight and accessibility considerations. Mounting holes are provided in the flanges at the base of the unit.

When planning the installation, it is important to allow sufficient room for servicing the unit. Figure 1 shows the minimum clearances required to allow removal of the cover and printed circuit boards. In any case, a minimum clearance of 2 inches must be provided all around the unit to allow proper air circulation. Details on replacing the circuit boards are given in the Service section of this manual.

A kit to allow rack mounting of the TM600 is also available. The kit, part number 207800-001, includes a 19" (483mm) wide by $10\frac{1}{2}$ " (267mm) high panel, two mounting brackets and the necessary hardware.

MOUNTING DIMENSIONS FIGURE 1

.

ELECTRICAL INSTALLATION *

The electrical installation consists of three parts: Motor Connections; Control Interface; and AC Input Connections. Figure 2 shows a typical installation and identifies the Motor. Control and AC Input wiring.

MOTOR CONNECTIONS

this unit.

Six of the eight terminals for #14 --- #16 wire provided with the TM600 should be used for making the motor connections. As shown in the Connection Diagram, Figure 3, one phase of the motor should be connected to terminals 7, 8 and 9 of one motor drive circuit board and the other phase to terminals 7, 8 and 9 of the other motor drive board.

CAUTION: It is extremely important that the motor be connected correctly. Double check the wiring at the motor terminals and at the drive boards before energizing the translator.

The three leads for each motor phase must be twisted together their entire length to avoid stray inductance. For distances up to 15 feet, use #14 wire. For distances between 15 feet and 50 feet use #10 wire. If motor leads longer than 50 feet are necessary, consult the factory for recommendations.

The motor shell must be connected to earth ground by a separate lead or via the machine to which it is attached. The motor leads should be routed along an axis 90° to 180° with respect to the axis along which the power leads are routed

to provide maximum noise immunity and minimum emi (radiated or conducted noise).

INTERFACE

The TM600 uses two distinct interface methods. The first is called negative logic which means that the control will carry out the intended command when that input is at a low voltage level. The requirements of this low level are given in the specification for the respective input terminal. Each terminal is pulled up to +12 VDC. Any device which pulls the input to the specified low level, such as an open-collector TTL device, a transistor or a switch is capable of activating the input.

The three recommended interfacing techniques are shown in Figures 4, 5 and 6 using the CCW PULSE input as an example.

The second interface method is one which is compatible with applicable paragraphs of the Electronic Industries Association Standard RS232C. Basically RS232C defines voltage and load requirements for interface circuits. These requirements are reflected in the TM600 specifications for the RS232C 1/O terminals. The recommended interfacing technique uses integrated circuits specifically designed to meet RS232C requirements. Using the CCW PU (RS232C) input of the TM600 as an example, Figure 7 shows the recommended interface technique.

FIGURE 2

INTERFACE CONNECTIONS

All interface connections are made to the 36-terminal connector on the Oscillator/Translator board. It is recommended that these connections be made with shielded cable (Alpha Wire Corporation #5313 or #5303; Beldon Corporation #9541 or equivalent). #22 or #24 wire is suggested. The wire need only be stripped and tinned. Connect one end of the shield to signal common (pin 31 or 32 on the connector). Terminal numbers for RS232C connections are given in parentheses.

For the purposes of this discussion, the following terms are defined.

"low level" for negative logic interface	0 to 0.5 VDC
"high level" for negative logic interface	3.2 to 6 VDC
"low level" for RS232C	25 to -3 VDC
"high level" for RS232C	3 to 25 VDC

For the negative logic interface, the function is activated when the input is at a low level. For RS232C logic, the function is considered activated when the input is at a high level.

Base Speed Controls

The 10k ohm potentiometer for base speed control should be connected to terminals 6, 23 and 24 as shown in Figure 3. This control adjusts the internal oscillator base frequency within a range of 0 to 1000 full-steps or 0 to 2000 half-steps per second. The oscillator will run at the base frequency setting when the BASE SPEED input, terminal 7 (18) is activated. The translator will drive the motor at base speed whenever the PULSE OUTPUT terminal 22 (26) is connected to the CW PULSE input, terminal 8 (15) or to the CCW PULSE input, terminal 10 (13). The required sequence is to first connect the pulse output terminal to the desired pulse input terminal and then activate the base speed input.

Acceleration and deceleration are not provided in the base speed mode since the base speed, by definition, is a rate at which the motor will start and stop without error. The optimum base speed setting is dependent on motor frame size as well as external frictional and inertial loading.

High Speed Control

Connect the 500k ohm 10-turn potentiometer supplied to terminals 4 and 5 as shown in Figure 3. This control adjusts the high frequency of the oscillator within a range of 200 to 10,000 pulses per second in the full-step mode or 400 to 20,000 pulses per second in the half-step mode. Changing the setting of the base speed control will affect the high frequency to a small degree. The oscillator will run at the high frequency setting when the HIGH SPEED input, terminal 12 (14) is activated. The correct sequence is to first connect the pulse output terminal to the desired input pulse terminal and then to activate the high speed input. Since the base speed setting will affect the high speed frequency, recheck the high speed after adjusting the base speed.

Acceleration and deceleration are provided when operating in the high speed range. Activating the high speed input will cause the motor to ramp up from the preset base speed to the high frequency setting. When the high speed terminal is deactivated the motor will ramp down and stop.

Direction Control

As an alternative to supplying pulses to CCW PULSE input, terminal 10 (13), for counterclockwise rotation, the CCW DIRECTION input, terminal 9 (16) can be used to control direction with pulses being supplied only to CW PULSE input, terminal 8 (15). With pulses supplied to the CW PULSE input the motor will turn clockwise (as determined facing the nameplate end of the motor) when CCW DIRECTION is deactivated and counterclockwise when CCW DIRECTION is activated.

Step-Mode Selection

The translator is normally in the full-step mode. The half-step mode is selected by activating the HALF-STEP input, terminal 11 (17). In the full-step mode each input pulse results in a motor step increment of 1.8° . In the half-step mode, the step increment will be 0.9° .

In the full-step mode, the windings are energized in a fourstep sequence as shown in the following chart.

SWITCHING SEQUENCE FULL-STEP, TWO WINDINGS ON MODE

SWITCHING STEP †	MOTOR LEAD OR TERMINAL			
	RED (1)	WHITE/RED (3)	WHITE/GREEN (4)	GREEN (5)
1	ON	OFF	OFF	ON
2	ON	OFF	ON	OFF
3	OFF	ON	ON	OFF
4	OFF	ON	OFF	ON
1	ON	OFF	OFF	ON

† Provides clockwise shaft rotation as viewed from nameplate end of motor. For counterclockwise rotation, switching steps will be performed in the reverse order.

When the translator is operating in the half-step mode, the windings are energized in an eight-step sequence as shown in the switching sequence chart for half-stepping.

HALF	STEP	MODE

SWITCHING	MOTOR LEAD OR TERMINAL			
STEP †	RED (1)	WHITE/RED (3)	WHITE/GREEN (4)	GREEN (5)
1	OFF	OFF	OFF	ON
2	ON	OFF	OFF	ON
3	ON	OFF	OFF	OFF
4	ON	OFF	ON	OFF
5	OFF	OFF	ON	OFF
6	OFF	ON	ON	OFF
7	OFF	ON	OFF	OFF
8	OFF	ON	OFF	ON
1	OFF	OFF	OFF	ON

† Provides clockwise shaft rotation as viewed from nameplate end of motor. For counterclockwise rotation, switching steps will be performed in the reverse order.

Use of the half step operating mode provides greater positioning resolution together with a lessening of the effect of primary motor resonance.

Since mode selection must not be switched wi.ile the motor is stepping, it is suggested that this function be hard-wired. For half-step mode selection, connect the HALF-STEP input terminal 11 to Vo terminal 31. or connect the RS232C HALF-STEP input terminal (17) to \pm 12V, terminal 23.

External Pulse Inputs

As mentioned previously, pulses must be supplied to the CW PULSE input, terminal 8 (15), for clockwise rotation of the motor shaft and to CCW PULSE input, terminal 10 (13), for counterclockwise rotation. Input pulse requirements are given in the specifications section.

Pulse Output

Pulse output of the internal oscillator is available on PULSE OUT, terminal 22 (26).

Low Voltage Monitor

This function monitors the various internal voltage supplies and is activated when these voltages go below a safe operating level. The signal itself is labeled FAULT and is brought out on terminal 20 (27). Whenever a low voltage condition exists the Fault signal will latch even though the actual condition may be momentary.

High Temperature Monitor

This signal is activated by a thermostatic switch mounted on one of the drive board heat sinks. The HIGH TEMPERATURE output is on terminal 21 (25). The temperature switching levels are defined in the specifications.

INPUT VOLTAGE CONNECTION

WARNING: Voltages required for operation of this unit can cause injury. Therefore, only persons qualified to install and service electronic equipment should perform installation or servicing procedures on this unit.

The TM600 is wired at the factory for operation from a 120 volt $\frac{+10\%}{-15\%}$, 50/60 hertz, power source capable of providing up to 12 amperes. The unit can also be operated from 220 or 240 volt a-c, 50/60 hertz sources by making the proper wiring changes to the primary of the power transformer. These changes are made at terminal strip TB1 and are shown in the TM600 Schematic Diagram, Figure 13.

Once the transformer primary connections have been matched to the voltage of the power source, the input power connections can be made to terminal strip TB1 as shown in Figure 3.

Be sure to connect the chassis grounding stud to a suitable ground. Terminal lugs are provided for making these connections. Use two smaller lugs for the a-c input connections and the larger lug for connecting to the grounding stud. It is recommended that #14 wire be used for the power connections.

The a-c input leads should be routed along an axis 90° to 180° with respect to the path of the motor leads.

Check for proper a-c input and transformer primary connections before energizing the translator. Energize the unit and check to see that there is full supply voltage between the hot and common leads and between the hot lead and the chassis. There should be zero volts between the common lead and the chassis.

OPERATION

The functions of the controls for the TM600 are as follows:

Base Speed Control

This control adjusts the internal oscillator base speed within a 0 to 1000 pulse per second range in the full-step mode and

a 0 to 2000 pulse per second range in the half-step mode. Acceleration and deceleration are not provided since the base speed, by definition, is a rate at which the motor will start and stop without error. The optimum base speed setting is dependent on motor frame size as well as on external frictional and inertial loading.

Recommended maximum base speeds for each motor type are given in the table.

MOTOR TYPE	MAXIMUM BASE SPEED, NO LOAD (STEPS PER SECOND)
092-FD-310	550
)93-FD-301	475
112-FJ-326	350
172-FD-306	210
172-FD-308	175

RECOMMENDED MAXIMUM BASE SPEED

High Speed Control

This control adjusts the oscillator high frequency within a 200 to 10.000 step per second range in the full-step mode and within a 400 to 20,000 step per second range in the half-step mode. Since the base speed setting will affect the high speed frequency output, the high speed setting should be rechecked whenever the base speed is readjusted.

Base Speed/High Speed Switch

The translator will drive the motor in the base speed mode when the base speed terminal is activated and in the high speed mode when the high speed terminal is activated. A direction must be selected before actuating the base speed or the high speed.

Direction Switch

This function selects either the clockwise or the counterclockwise direction of motor shaft rotation (facing nameplate end of motor). When operating from the internal oscillator, the direction must be selected before activating the base speed or high speed.

Half-Step Control

This function determines whether the motor will be driven in the half-step or the full-step mode. The motor will take 0.9° steps in the half-step mode and 1.8° steps in the full-step mode. The stepping mode must not be changed while the motor is stepping. Therefore, it is recommended that this be a hard-wired function.

SEQUENCE OF OPERATION

Operating From The Internal Oscillator

The Connection Diagram, Figure 3, shows a recommended method of using toggle switches to operate the translator from the internal oscillator. Proceed as follows:

- a. Select the half-step or the full-step mode of operation. The mode selection should be hard-wired.
- b. Place the Direction switch in the CW or the CCW position.
- c. Place the Base Speed/High Speed switch in the Base Speed position. The Translator will drive the motor at the base speed. Start and stop the motor by moving the switch between Base Speed and Off.

SEQUENCE OF OPERATION (Cont'd.)

- d. Adjust the Base Speed control to select the fastest rate at which the translator will reliably start and stop the motor. Then decrease the base speed by 20 steps or 10%, whichever is greater, to provide a safety margin. It is recommended that a larger safety margin be provided if load variations are anticipated or if a very low base speed is used. The base speed should be adjusted above the range shown with a dotted line in the performance curve for the motor used. If it is necessary to operate the motor in the dotted area of the speed range, refer to the discussion of resonance control in the performance section.
- e. To operate in the high speed range place the Base Speed/High Speed switch in the High Speed position. The oscillator will accelerate the motor from base speed up to the selected high speed and will decelerate the motor when the switch is moved to the Off position.

Acceleration and deceleration are factory adjusted to their maximum settings. In many applications these ramps can be reduced, depending on the combination of motor and load. Refer to "Adjusting Acceleration and Deceleration" for instructions on changing the ramp times.

Operating From External Pulse Input

To operate the TM600 from an external pulse source, proceed as follows:

- a. Select the half-step or the full-step mode. This should be a hard-wired function since the stepping mode must not be changed while the translator is driving the motor.
- b. Apply pulses to terminal 8 (15) for CW rotation (facing nameplate end of motor) or to terminal 10 (13) for CCW rotation. Pulses must meet the Pulse Input Requirements given in the Specifications section. Since the motor cannot instantaneously follow a pulse train at a frequency higher than its maximum base speed, the pulse rate must be accelerated and decelerated at rates compatible with the specific motor frame size and the load characteristics.

Adjusting Acceleration and Deceleration

CAUTION: Voltages are present on this unit which can cause injury. Therefore, only persons qualified to service electronic equipment should perform adjustments or servicing procedures on this unit.

Note: The Base Speed adjustment must be completed before adjusting acceleration and deceleration.

To adjust the ramps, connect an oscilloscope probe to TP12 on the Oscillator/Translator circuit board (see Figure 11).Connect the scope probe common to TP7 and trigger the scope externally using the HIGH SPEED INPUT. TERMINAL 12. When the Base Speed/High Speed switch is placed in the High Speed position, the voltage on TP10 will rise from 4 volts to a nominal of 11 volts. The time required for this voltage rise to occur is the acceleration time. Conversely, the time required for the voltage to drop from 11 volts to 4 volts when the switch is moved from High Speed to Off is the deceleration time. The acceleration or deceleration time may be changed by adjusting the appropriate potentiometer on the Oscillator/Translator circuit board (Figure 11). Turn the potentiometers clockwise (facing screw end) to increase the ramp times or counterclockwise to reduce the times. Adjust R36 to change acceleration and R24 to change deceleration.

Recommended minimum acceleration times for each motor are listed in the chart.

RECOMMENDED MINIMUM	ACCELERATION	TIMES
----------------------------	--------------	-------

MOTOR TYPE	ROTOR INERTIA, LB-IN ² (kgcm ²)	INITIAL VELOCITY, (FULL STEPS PER SECOND)	FINAL VELOCITY, (FULL STEPS PER SECOND)	MINIMUM ACCELERATION TIME. (SECONDS)
M092-FD-310	0.42 (1.23)	550	10,000	0.164
M093-FD-301	0.64 (1.87)	475	10,000	0.252
M112-FJ-326	2.75 (8.05)	350	10,000	0.372
M172-FD-306	21 (61)	210	6,000	0.766
M172-FD-308	21 (61)	175	5,500	1.132

PERFORMANCE CHARACTERISTICS

Performance characteristics for motors compatible with the TM600 are given in the performance curves.

The part of each speed vs. torque curve represented with a dotted line is an area of possible resonance. Depending on the amount of friction and inertia in the system. The motor may not operate satisfactorily at the speeds shown in the dotted area. Operating in the half-step mode may provide satisfactory operation in this range, but again this is dependent on the load characteristics.

Pulse Position Control

An alternate method of controlling this motor characteristic is a feature of the TM600 called "Pulse Positioning". This technique utilizes a form of electronic damping to virtually eliminate motor resonance. The "One Winding On" mode is used as the braking mode for this technique, so there will be some loss of motor torque.

For example, the full-step torque shown in the performance curves is based on the fact that each winding (A, A', B, B') is on 50% of the time and off 50% of the time. This timing is commonly known as a 50/50 translator duty cycle. When pulse positioning is used the 50% on time will decrease, thus lowering motor torque when compared with the full-step mode. The curve in Figure 8 indicates approximate torque loss when the Pulse Position control is fully counterclockwise.

The following technique can be used to calculate torque loss at a given speed with any adjustment of the Pulse Position Control. Connect a scope probe to R83, R84, R85 or R35 on the Oscillator/Translator circuit board (Figure 11) and connect the scope probe ground to Vo (terminal 31 or 32). The translator waveform shown on the oscilloscope will allow calculation of the percentage of "on" time which is necessary in order to determine torque loss. Figure 9 represents a typical translator logic waveform. The "on time" is designated "t on" and the amount of "on time" lost because of the Pulse Position control adjustment is designated "t one on". The ratio of t one on/t on is the percentage of on time lost due to the Pulse Position control adjustment. Subtract this percentage from 100% and use the resulting number to determine actual torque loss from the curve in Figure 10.

In Figure 9, t one on is one division and t on is five divisions, therefore the ratio of t one on to t on is 20%. Subtracting 20% from 100% gives a Percentage Of Translator On Time value of 80%. Figure 10 shows that 75% of full-step torque is available at this setting of the Pulse Position control.

TIME

TRANSLATOR LOGIC WAVEFORM

TYPICAL TRANSLATOR LOGIC WAVEFORM FIGURE 9

PERFORMANCE CHARACTERISTICS (Cont'd.)

Mid-Range Stability Control

All stepping motors exhibit an instability in speeds ranging upward from 1000 steps per second which can result in "holes" in the speed-vs. torque curves due to loss of synchronization or rotor velocity modulation. The TM600 is equipped with a Stability Control which utilizes velocity information obtained from the electronics to compensate for rotor velocity modulation. Since each motor requires a different amount of stabilization, a 4-position DIP switch (SW1) is provided on the Oscillator/Translator board (Figure 11) to allow the circuit to be adjusted for each motor. The switch positions for each motor are listed in the chart.

CAUTION: Voltages are present on this unit which can cause injury. Therefore, only persons qualified to service electronic equipment should perform adjustments or servicing procedures on this unit.

MOTOR	POSITION 1	POSITION 2	POSITION 3	POSITION 4
M172-FD-306	OFF	OFF	OFF	OFF
M172-FD-308	OFF	OFF	OFF	ON
M112-FJ-326	OFF	OFF	OFF	ON
M093-FD-301	OFF	OFF	ON	OFF
M092-FD-310	OFF	ON	OFF	OFF

Due to their larger size, M112 and M172 motors must be run at a higher current level. A DIP switch on each motor drive board (Figure 12) provides this increase. The unit is adjusted for 4 amperes per phase. To change the level to 5 amperes per phase for M112 and M172 motors, set positions 1 and 2 of SW1 on the motor drive board to OFF. The power must be off when making this change.

Duty Cycle

It is difficult to specify a meaningful Duty cycle rating for each motor because of the variety of mounting configurations, speeds and loads encountered in each possible application. None of the motors specified for this drive will operate continuously under all speed and load conditions without adequate heat sinking. The limiting factor, in any case, is the maximum motor shell temperature which must not exceed 90°C.

INITIAL INSTALLATION CHECKOUT

If the Installation and Operation instructions have been followed carefully, the TM600 translator should operate properly with no further adjustments. Should the unit fail to step the motor properly, perform the following checks.

- CAUTION: Voltages are present on this unit which can cause injury. Therefore, only persons qualified to service electronic equipment should perform adjustments or servicing procedures on this unit.
- 1. Check all installation wiring carefully for wiring errors or poor connections.
- 2. Check to see that the correct a-c power level is being supplied to the translator and that the power transformer primary connections are correct for the input voltage.

- 3. Be sure that the SLO-SYN motor is a correct model for use with the TM600 translator.
- Be sure that the proper procedure is being used in operating the translator.
- Check to see that triggering pulses are being received at terminal 8 (15) for clockwise motion. For CW motion, pulses must be received at terminal 10 (13) or, alternately, a CCW Direction signal must be present on terminal 9 (16). Pulses must not be present on Terminals 8 (15) and 10 (13) simultaneously.
- 6. With an oscilloscope, check the collector to emitter waveform (Vce) of the power output transistors to see that the motor windings are being energized in the proper sequence. Connect the probe ground to terminal 5 of either Motor Drive circuit board. Connect the scope probe to terminals 8 and 9 on each Motor Drive Board one at a time and check the waveform. A typical waveform is shown in Figure 16. Each division on the vertical scale equals 50 volts.

TYPICAL WAVEFORM FIGURE 16

7. If the motor will not drive the load at the desired speed and the preceding checks indicate the translator is operating correctly, the combination of friction load and inertia may be too great for the motor to overcome. This situation can usually be overcome by reducing the operating speed. In severe cases, it may be necessary to use a motor having a higher torque rating or to drive the load through a speed reduction gear train.

SERVICE

If a problem develops with a circuit board, the board should be removed and returned to the factory for service. Consult the factory if a malfunction occurs that cannot be cured by the preceding checks. To remove the circuit boards proceed as follows:

- CAUTION: Voltages are present on this unit which can cause injury. Therefore, only persons qualified to service electronic equipment should perform adjustments or servicing procedures on this unit.
- 1. Turn off the a-c power to the translator and wait 30 seconds for the d-c power supply to discharge.
- 2. Remove four screws in the top cover and remove the cover.

MOTOR DRIVE CIRCUIT BOARD Figure 12

- 3. To remove either Motor Drive circuit board, proceed as follows:
 - a. Disconnect the flat cable connector at the top of the board.
 - b. Disconnect the motor and power supply leads from the terminal strip mounted at the rear of the board.
 - c. Remove the screw which fastens the "U" channel heat sink at the lower part of the board to the chassis.
 - d. Slide the board approximately ½ inch rearward to clear the mounting slot. Then either lift straight up or remove the board toward the rear of the unit.

- 4. To remove the Oscillator/Translator circuit board, proceed as follows:
 - a. Disconnect the flat cable connector at the top of the circuit board.
 - b. Remove the two screws holding the interface connector in place and remove the connector by sliding it to the right to clear the mounting bracket.
 - c. Grasp the board firmly and remove the 36-position connector from the board.
 - d. Remove the board toward the rear of the unit to clear the mounting spaces at the front of the board.

If any unusual problems are encountered in the installation or operation of the SLO-SYN Translator, contact the factory or the nearest Superior Electric sales office.

SCHEMATIC DIAGRAM TM600 TRANSLATOR FIGURE 13

SCHEMATIC DIAGRAM Motor Drive Circuit Board

FIGURE 14

SCHEMATIC DIAGRAM OSCILLATOR/TRANSLATOR CIRCUIT BOARD FIGURE 15

FIGURE 33a: TM-600 TRANSLATOR DRIVE WAVEFORMS IN PEDESTAL ROOM JUNCTION BOX, ANTENNA 21 THROUGH 28

at F/R Control TP-14 500 pps, 5 V/cm, 1 ms/cm TM-600 Drive Pulses at F/R Control TP-14 500 pps, 2 V/cm, 1 ms/cm

FIGURE 335: HTR-1008/1500 TRANSLATOR DRIVE WAVEFORMS, ANTENNA 1 THROUGH 20

10.0 SYSTEM FUNCTIONAL SPECIFICATIONS

SUBREFLECTOR POSITION EFFECTS ON ANTENNA POINTING ERROR

The following specifications were abstracted from a note by Peter Napier, 20/2/81 and are the design criteria for the F/R Controller and F/R Mount. These specifications are adequate for 22 GHz normal operation, or very high dynamic range observations at 1.5 and 5 GHz. The specifications result in some loss of performance if the VLA is used at 44 GHz.

Definitions:

- 0 = pointing error on sky
- X = movement of subreflector transverse to main reflector axis
- σ = tilt of subreflector orthogonal to main reflector axis
- 0 = rotation of subreflector around main reflector axis
- \overline{F} = focal length of main reflector
- M = cassegrain magnification
- R = feed circle radius

Subreflector Transverse Movement Sensitivity:

0 = X/F for 0 = 5 arc-sec, X = 0.009 in.

Subreflector Tilt Sensitivity:

 $_0 = 2*_0 / M$ for $_0 = 5$ arc-sec, $_0 = 20$ arc-sec.

Subreflector Rotation Sensitivity:

0 = 0*R/M*F for 0 = 5 arc-sec, 0 = 6.8 arc-min

Focus Position Sensitivity:

A 0.20 wavelength position error causes a 5% gain loss. At a wavelength of 1.2 cm, Z = 0.09 in, 2.25 mm. Barry Clark says Z should be less than 0.01 in, 0.25mm.

These last two parameters are associated with the two drive motions.

F/R CONTROL SYSTEM SPECIFICATIONS -- The F/R Control System design shall be sufficiently general so as to enable alteration of the control algorithms by changes to the control firmware and (if necessary), minor alteration of the hardware.

The controller shall be designed such that the F/R Mount hardware is given maximum protection from damaging conditions such as over-drive into the stops, sensing of dragging or stuck drives etc.

The controller shall be capable of concurrent, asynchronous control of two subreflector axes and ring position. There shall be two commands for each Subreflector axis: a 14 bit, 2's complement, right justified POSITION command (Mux 320/Focus, Mux 330/Rot) and a NAP command (Mux 322/Foc, 332/Rot) to cause position commands to be ignored until cleared by a RESET command. The SYSTEM RESET command (Mux 337) aborts active commands in both processors and reinitializes the programs. A software RESET command (Mux 321 & 331) performs the same functions in the addressed processor without affecting the other one. The Ring command (Mux 336/Rot) argument shall be a right justified (1sb) single bit arguement of 1 to EXTEND the ring and a 0 to RETRACT the Ring.

The controller shall be capable of accepting over-riding commands during command execution. If the over-riding command is to a different set point than the command in execution, the controller shall first slow the drive to a stop and then initiate execution of the new command.

The controller shall have both COMPUTER (ie central control computer) and LOCAL manual modes to permit manual slew of the drives from the local control panel. In the LOCAL mode, all components are driven under processor control to provide fault sensing and protection to the F/R Mount.

Zot-Box provisions shall be made to permit manual control of the drives from both the Apex and Pedestal Room.

Position Readout resolution shall be 14 bit. One lsb = 1.318 arc-min in Rotation and 0.0007324 inches (0.0188 mm) in Focus.

Position Readout repeatability of the synchro/converter combination shall be +/-1 count.

Linearity of the synchro/converter combination shall be 10 arc-min or less, rms, (principally determined by the synchro linearity)

Common-mode noise rejection of Synchro-to-Digital Converters shall be $\!\!\!\!>$ 80 db.

Position Readout transducers shall be size 15, 400 Hz, 26 VRMS, (rotor voltage) synchro transmitters.

The controller position servo control repeatability shall be +/-1 count (mechanism slop not included in this spec.)

The controller shall continuously sense all limit sensor states and hardware-inhibit further drive into the limit (but not out of the limit) in the event that these limits are reached.

The Apex Interface shall continuously sense obviously erroneous fault conditions (such as sensing concurrent limits, multiple pin switch actuation, etc). In the event that such conditions occur all drive outputs shall be inhibited.

The controller shall be protected from lightning effects by the use of an Apex Interface Unit which presents position and discrete data to the F/R Controller via optically-isolated lines. Lightning mitigating surge arrestors shall be used in all lines to the Apex.

Mechanism motion shall start at 100 Hz and the controller shall ramp the Rotation drive rate to 1000 Hz in 50 HZ steps. After ramp up, the drive shall move at 1000 Hz until a calculated ramp-down point is reached at which time the drives shall be ramped down to 100 Hz for convergence to the commanded set point. The ramp up duration is 5.1 seconds and the ramp down period is 2.5 seconds.

The Focus ramp up duration is 3.9 seconds and the ramp down period is 1.8 seconds.

The controller shall continuously analyze drive motion to sense motor torque breakage with a 50% motion analysis tolerance. In the event that torque breakage is detected, the controller shall reduce the drive rate to 100 Hz and attempt to complete the commanded motion by ramping drives up to 250 Hz (peak torque speed for these motors). In the event that the torque breaks again, the command shall be aborted. If torque breakage occurs, a fault flag shall be sent to the central control computers via Monitor Data.

In executing a position command, the controller shall determine that the Translator and brake are activated when commanded on and that the Translator voltage and Brake voltage and current are above test thresholds. In the event that these conditions are not met the controller shall set a fault flag for the central computers.

The controller shall continuously monitor analog voltages in the Apex Interface and shall set a fault flag in the event that any values are out of tolerance. Mechanism drive velocities shall be read out as Monitor Data.

The controller shall test the state of the Ring position discrete sensors when a Ring position command is in process. In the event that the sensors do not signal attainment of the commanded state within 16 seconds after command initiation, a fault flag shall be set. The state of the Ring position sensors shall be read out as monitor data.

The controller shall monitor the 400 Hz synchro excitor current load as an analog signal.

The controller shall have provisions to sense Antenna ID number to use as an address for antenna-peculiar control arguments.

The controller shall have up to 6k of control program memory EPROM sockets wired for each axis, (present usage is less than 2k).

The controller shall have provisions for each processor to pass arguments to the other. An example of a possible use is for the Rotation Controller to

pass position arguments to the Focus Controller to inhibit Focus drive when the Rotation drive is in a certain region.

The Apex Interface shall display the position of both axes in octal numeric displays and the state of Apex discretes on an LED array.

The M8 Power Supply shall have an LED display to indicate the state of processor functions such as Command Active, Translator power sensed, Brake voltage and current sensed, drive pulses present on the UP or Down etc lines to the Translators, etc.

The M8 Power Supply shall have hardware provisions to permit manual command of 8 wavelength Index Locking locations and display the PIN IN/OUT states and actuation of the 8 socket switches. These features shall also be capable of central computer control by modification of the Rotation Controller firmware, (not presently installed).

The Apex Interface shall sense and read out the temperature of the F/R Mount gear box to verify operation of the gear box heaters in cold weather.

When the controller receives a Focus command it shall test the argument against software limits and if found to be outside these limits the command shall be rejected. The purpose of this test is to prevent the Focus drive from being driven into the limits under computer control.

The controller shall contain a background timer to shut down the drives and abort the command in the event that a command is taking too long to execute. A time-out flag shall be set in the Monitor Data.

The controller shall have protective logic on multiple-line drive outputs in which there could be potentially damaging conditions resulting from more than one output being active at any given time. This is a protective feature to protect the mechanical hardware from the inadverdant effects of noise glitches etc. Examples of such devices are the Ring motor in which the Ring Extend And Ring Retract command outputs should not be concurrent.

A connector interlock line shall sense that any Bin I/O cable has been disconnected; in this event all drive outputs shall be inhibited.

11 APPENDIX Rotation and Ring Control Program Focus Control Program List of related drawings M7, M11, M8, M22 Assembly Drawings, IC location maps Bin Wire list Special Function Module Data Sheets: 8085, 8156, 8755, A/D, S/H, +10 reference, S/D Converter, temperature sensors, analog multiplexer

:	Ē∕Ř	NODLE-E CODE FOR FOCUS
:	HAY	30. 1985

;Equates

368 8 =	2127A: E4U	52H	:PRGN 1. PORT A
ded1 =	PIPT8: EQU	21#	:2808 1, AURT 8
2802 =	F10DA: Equ	02H	;PROM 1. PERT A DIR
3893 =	fiodb: Egu	əzh	;PROM 1, FORT B DIR
3698 -	222TA: EQU	38H	;PROH 2, PORT A
2239 =	P2PT8: E9U	ê9H	:PROM 2, PORT B
999A =	p20da: Equ	3 AH	;PROH 2. PORT A DIR
22 38 =	P2008: Equ	ē B H	;PROM 2, PORT B DIR
9915 -	ACKD: EQU	18K	;RAN CHO/STAT FEG ADDR
3319 = ⁻	rheta: Egu	198	;RAH PORT A
ððið =	RMPT8: EQU	1 AH	:RAK PORT B
39:5 =	Rhptc: Eeu	158	:RAH PORT C
2010 -	TIXLO: EQU		
3810 =		164	;TIHER H3B
3228 =	Pāsl: Equ	28 H	:203 LSB
9229 =	posh: Egu	29B	:P05 XS8
902A =	VEL: EQU	2 A H	;VELOCITY
3328 =	APDCR: EQU	256	;APEX DISCRETS
	ANAL: EQU		
2010 -	ANAN: Egu	20H	;APEX ANA HSB
::::::::::::::::::::::::::::::::::::::	dscol: Equ	3 <i>9</i> H	;DS CHD LSB
2011 =	DSCDH: EQU	31H	;DS CHD HSB
2032 =	DSDT1: EQU	32#	;DS BATA LSE
88 3 3 =	DSDT2: EAU	33H	:DS DATA
êê34 =	esdt 3: Equ	348	IDS DATA KSB
2035 =	Shaev: Equ	35#	;SHA EVENT
3933 =	AIPT: EQU	36H	;APEX DATA REG
3833 =	RES65: EeU	3 <i>8</i> H	;RST 6.5 RESET
204F =	RHODE: EQU	4 <i>F</i> H	:RAM MODE PORT: A,B,&C OUT
MEE =	PRGUT: EQU	ð FFH	PROH PORT CUTPUT
222# =	erin: Equ	9 8 H	;FRON PORT INPUT
9019 =	RSTEH: EQU	19H	;sih hask. disable 5.5
884 9 =	FALSE: EQU	e	
ððff =	TRUE: EQU	əf F H	

:DATA SET TABLE

1500) <i>R</i> 0	13001	;START OF RAH HEHORY
[8 99	<i>P030:</i>	ÐS	3	;HUX 220 - POSITION & STATUS BITS
1833	Erfet	Đũ	3	: 221 - /CHD-POS/ A STATUS
1346	ECH0:	83	3	; 222 - CHD ECHD
1595	0306 t	23		; 213 - RESPONES & CHD SENSE, CLK CONTROL
136	40 C A :	83	3	; 224 - APEX DISCRETS & VELOCITY
13.95		23	3	: 225 - ANALOG FAULTS & VOLTAGES
	FAUL:	5S	3	: 226
1315	hü2:	P\$	ž	: HUX 227

EVALUES & ARGUEHENTS

1318 FISTS: 33 2	;PUSITION, UNSIGNED
------------------	---------------------

131A	LSTPOS: DS	2	:LAST POSITION
1810	CHDTHP: DS	2	;TEHPARARY CHD
131E	ATVCHD: DS	2	:ACTIVE CHD
1820	PIPAST: DS	i	FEPRON PORT INAGE
1821	PIPBST: DS	1	4 G 9
1822	RHPAS: DS	1	
			;RAN PORT IHAGE
1823	RHPBS: DS	1	. <i>U E 0</i> 1
1824	RHPCS: DS	İ	4 ₩ 3
1825	HOTION: DS	1	;NOTION ANALYSIS COUNTER
1826	RAPTO: DS	1	RAMP TO THIS STEP
1927	STEP: DS	1	CURRENT RANP STEP
1828	TRAP: DS	2	;ADDRESS OF ERRO CODE
182A	AMANX: DS	1	; APEX HUX CHTR
			•
1828	APAPTR: DS	1	;APEX HUX POINTER
182C	APATAB: DS	16	;APEX ANALOG STORAGE TABLE
	FLAGS:		
153C	RESCHD: DS	1	:RESET REQUEST
1830	DRVATV: DS	1	DRIVE ACTIVE
153E	HAPATV: DS	1	:HAP ACTIVE
183F	DRVREQ: DS		;DRIVE REQUEST
		1	
1840	FAPREQ: DS		;HAP REQUEST
1341	ACCEL: DS	1	;0K TO ACCELERATE
1842	RAHPUP: DS		;RAHP UP STAGE
1343	HAIN: OS	1	:MAIN DRIVE STAGE
1844	RAKPDN: DS	1	;RAHP DOWN STAGE
1845	CONVRG: DS	1	:CONVERGANCE STAGE
1846	DRVPLS: DS	1	;4TH DRIVE PULSE OCCURED
1847	DIR: DS	1	CURRENT DIRECTION
1848	LUIR: DS	1	LAST DIRECTION
1849	RANP: DS	1	:RANPED UP OR NOT
184A	GETIT: DS	1	
			GET IT THERE SOMEHOW
184B = -	ENDFLG: EQU	*	;END OF FLAGS
	ACAST & INTE	600 T	
	;RESET & INTE	KUPI	
2044	***		
3 333	ORG	9	
3000 F3	DI		
0001 c34000	JHP	1 HI T	;GET THINGS ORGANIZED
dd24	ORG	24H	;TRAP SERVICE
8824 F3	D1		
0025 C30206	JHP	BLAP	:STOP, NHAT'S WRONG
002C	ÛRG	2CH	:RST 5.5
802C F8	EI		,
JJ2D C9	<u>eet</u>		;KOT USED
	1. E 1		,
2334	ÛRG	34H	RST 6.5 SEVICE
		346	INST OUT SEFICE
3334 F3	DI		
3035 C32306	JHP	TRPR	;ACK CLKS
• • • •			
2938	0RG	38H	;OUT-OF-BOUNDS
9038 F3	Ð1		
00 3 9 034000	JHP	1817	
993C	ORG	3CH	;RST 7.5 SERVICE
0#3C F3	ÐI		
₽030 C37706	3#P	<i>Burp</i>	;SERVICE D.S. REQ

;1HITIALIZATION

3048	ORG	40H
1817	' :	
8848 318019	EX I	SP.1990H:SET STACK
0043 3E4F	HVI	A.RHODE
2045 D318	eut	RCHD ;SET RAM PORTS FOR DUTPUT
∂047 3EFF	₩¥I	A, PROUT
8049 D302	OUT	PIDDA ;SET FROM PORTS FOR OUTPUT
904B D303	QUT	PIDDB
904D 3E 90	₫¥1	A,PRIN
004F 036A	GUT	P2DDA :SET FROM PORTS FOR INPUT
0051 D30B	0UT	2200B
8853 AF	a ƙ.A	A
2054 D319	697	RHPTA ;ZERO PORTS
0056 0 31A	QÜT	RHPTB
0050 DJ18	0 U T	RHPTC
305A D300	0 ü t	P1PTA
6856 0381	ÜÜT	P1PTB
005E 2:0018	LXI	H,1800H
2051 47	ñûV	8,A
LOOP	:	;CLEAR HEHORY
əə62 77	KOV	б,А
0063 23	INX	H
8 964 95	DCR	â
8865 C25288	JHZ	LOOP
2968 D33B	ðut	RES65 ;SETUP INTERRUPTS
P06A 3E19	HVI	A,RSTEN
êêoC 3ê	DB	30H :S1K
0760 FB	Ei	

;********************************** ; SYSTEM HANDLING

	8055:		
806E CDF904	CALL	DSTOR	;GATHER DATA
0071 3A0518	LDA	ERRO+2	
8074 El08	AN I	68 h	;CHECK IF APEX DK
0076 C21D01	JHZ	RSCHD	RESET SYSTEM IF NOT
30 79 D548	IH		
0078 E601	ANI	ø1H	;CHECK FOR LOCAL HODE
0070 CAC202	JZ	LƏCAL	
2000 3A3C19	LDA	RESCHD	
øø83 37	ORA	A	;CHECK FOR SOFT RESET
2084 c26301	JHZ	CHDRS	
2087 3A3D18	LDA	DRVATV	
908A 87	<u>era</u>	A	;CHECK FOR DRIVE ACTIVE
0088 C23801	JHZ	CHKDRV	
339E 3A3E18	LGA	WAPATV	
0091 B7	ŨŔĂ	.4	;CHECK FOR HAP ACTIVE
2092 C2AE00	JHZ	AP ÀOK	:IF YES, IGNOR REQUESTS
8095 3A3F18	L D A	URVREQ	
8 8 98 67	<u>ora</u>	A	;DRIVE REQUEST
0099 C25501	JHZ	DRVINT	
399C 3A4018	LEA	KAPREQ	
929F 87	GRA	A	;HAP REQUEST
giðað caaeðð	JZ		
20AJ 323E18	STA	HAPATV	SET ACTIVE

7/3 8/	714510		/n.*	F	
	3A0518			ERRO+2	ANAN 1371//F
	F620		ÛRI OT I	20H	SHOW ACTIVE
26 A B	320518		ST A	ERRO+2	
		AP AOX :			;CHECK APEX VOLTAGES
	342818		LDA		;GET NUX POINTER
9981			INR	Â	:NEXT AHALOG TO LOOK AT
ØØ32	E607		ANI	@7H	; HOD 8
0084	322818		STA	AP AP T R	;SAVE HER VALUE FOR NEXT PASS
0057	£5		PUSH	psw	;SAVE FOR FURTHER USE
8698	<i>3</i> 7		RLC		;SHIFT LEFT FOR WORD INDEXING
00E9	4F		hov	C,A	SAVE IN C
eeba	ð7		RLC		SHIFT AGAIN FOR 2 WORD INDEXING
6368	5F		HQV	E,A	;SAVE IN E
00BC	21FF96		LXI		BAVOLTAGE RANGES
008F	1600		HVI		;SET DE FOR INDEXING
9 6 01			D AD	,	POINT TO & GET LOW LINIT IN DE
90C2			HOV	E,H	
JØC3	•		IHX	H	
00C4			HOV	 D.H	
6005			1HX	H H	
94C6			PUSH	 H	ISAVE POINTER
	212018		LXI		STAPEX ANALDO STORAGE
øøct Øøca				B.ACHIAL B.A	
0900 0900			HV I DAD		SET AC
			DAD		FORM INDEX
89CD 6005			H)V 19v		;GET ADJUSTED VALUE INTO HL
ê ê û ce			INX	H	
ØØCF			HOV	A.K	
9909			ANI		HASK URSED BITS
90D2			XRI		;FLIP SIGN BIT
3004			HOV	H,A	
00 05			HOV	L ,C	
26D6			Püsh		; SAVE ANALOG
ê007	CD98 94		CALL	RANGER	;CHECK LON LINIT
əəda	D1		POP	D	;GET ANALOG
<i>6408</i>	E1		POP	H	;GET POINTER
000g	79		HOV	A.C	
94DD	67		ORA	A	;IF OUT-OF-RANGE, SET FAULT
8øde	C2E8ØØ		JHZ	AH AF LT	
JƏEI	7E		Hav	А,Н	;GET HIGH LINIT
ege2	23		IHX	H	
20E3	66		HOV	H,H	
ôøe4	6F		KOV	L.A	·
	CD9804		CALL		;CHECK HIGH LINIT
		ANAFLT:			
23E8	FI		POP	PSH	;GET HUX POINTER BACK
ØØE9			HOV	B,A	
ƏƏEA	<u>94</u>		INR	8	
₽₽EB			HVI	-	;EIT NASK
		FLTSFT:			,
JJED	97		315		ROTATE BIT TO POSITION
ØØEE			9CR	5	· · · · · · · · · · · · · · · · · · ·
	02E2AØ		34Z	FLTSET	
əəf 2			HOV	0.A	;JR HASK
927 I			CIA		And the second
0013 00F4			ean Hùir	E.A	; AND MASK
20F5			HOV	A.C	The cost
₹ØF6			02A	A.U.	;HAVE A FAULT
	3A1118		LDA	AHAD+2	,
	C20101		JNZ	SETFLT	
					AFAFT DIT
20FD	A3		ABA	Ε	;RESET BIT

00FE C30201	JHP	STRFLT
	SETFLT:	
ð101 B2	ORA	D ;SET BIT
	STRFLT:	
0102 321118	STA	ANAD+2
<i>219</i> 5 321318	STA	FAUL+1 ;*ADDED FOR HUX 226
0108 C36E00	JHP	EOSS
	CHDR3:	
ƏIƏB AF	XRA	A
9190 329218	STA	FOSD+2
J10F 321218	STA	FAUL ;*ADDED FOR HUX 226
ðii2 32 8 518		ERRO+2
3115 3A1418	LDA	FAUL+2 ;*ADDED FOR HUX 226
9118 E6EØ	AN I	
0:1A 321418	STA	FAUL+2
	RSCHD:	
911D 3100 19	LXI	SP,1900H ;RESET STACK POINTER
0120 CDE404	CALL	TSTOP
9123 CDAE02	CALL	DRVSTP
0126 CDD203	CALL	TRNOF
<i>3129 213</i> C13	£X1	H,FLAGS
012C 060F	HVI	B,(ENDFLG-FLAGS) AND 255
Ø12E AF	XRA	Â
	CLRLF:	
012F 77	ädv	К, А
0130 23	INX	H
ð131 ös	DCR	8
0132 C22F01	JHZ	CLRLP
8135 C36E88	JÄP	EUSS

;***************

; CONNAND POSITION HANDLER

	CHKDRV:		
0138 3A3F18	LDA	DRVREQ	
<i>∂138 8</i> 7	ORA	A	;DO NE HAVE A NEW CHD?
013C CA1002	JZ	DRVTST	; IF HOT, WORK OH OLD CHD
013F 2A1C18	LHLD	CHDTHP	TEHPARAY CHD
<i>8142 EB</i>	XCHG		
#143 2A1E18	LHLD	ATVCHD	:GET ACTIVE CHD
0146 CD9804	CALL	RANGER	;CHECK IF /HEH-DLD/ (3
0149 CDB504	CALL	CLOSE	
814C DA8C02	JC	CLRREQ	;IF YES, CLEAR REQUEST
314F CDE404			STOP TIMER & DRIVE
0152 CDAE02	CALL	DRVSTP	
	DRVINT:		
0155 AF	XRA	A	;CLEAR REQUESTS, FLAGS, & FAULTS
0155 AF 7156 324A18		A GETIT	;CLEAR REQUESTS, FLAGS, & FAULTS
#156 324A18		GETIT	;CLEAR REQUESTS, FLAGS, & FAULTS
0156 324A10 0159 320218	STA STA	GETIT Füsd+2	;CLEAR REQUESTS, FLAGS, & FAULTS ;*ADDED FOR HUX 226
#156 324A18 #159 32#218 #150 321218	STA STA	GETIT FOSD+2 FAUL	
#156 324A18 #159 32#218 #150 321218	STA STA STA DRVINI: STA	GETIT FOSD+2 FAUL	
0156 324418 0159 320218 0150 321218 0150 321218 0155 322718	STA STA STA DRVINI: STA	GETIT FOSD+2 FAUL STEP DRVREQ	
#156 324A18 #157 324218 #15C 321218 #15F 322718 #15F 323718	STA STA STA DRVIHI: STA STA	GETIT FOSD+2 FAUL STEP DRVREQ ACCEL	
#156 324A18 #157 324218 #150 324218 #150 321218 #157 322718 #152 323F18 #165 324118	STA STA STA DRVINI: STA STA STA STA	GETIT FOSD+2 FAUL STEP DRVREQ ACCEL ERR0+2	
#156 324418 #159 324218 #150 321218 #155 32218 #155 32218 #155 322718 #152 323518 #165 324118 #168 329518 #168 322518	STA STA STA DRVINI: STA STA STA STA STA	GETIT FOSD+2 FAUL STEP DRVREQ ACCEL ERRO+2 AOTION	;*ADDED FOR HUX 226
#156 324418 #159 324218 #150 321218 #155 32218 #155 32218 #155 322718 #152 323518 #165 324118 #168 329518 #168 322518	STA STA STA DRVINI: STA STA STA STA STA	GETIT FOSD+2 FAUL STEP DRVREQ ACCEL ERR0+2 HOTIOH FAUL+2	;*ADDED FOR HUX 226 ;1H1T HOTIOH COUNTER
#156 324418 #159 324218 #150 321218 #155 322718 #152 323518 #165 324118 #168 32#518 #168 32#518 #168 32#518 #168 32#518 #168 32#518 #168 32#518 #168 32#518 #168 32#518 #168 32#518 #168 32#518 #168 32#518 #168 32#518 #168 32#518 #168 32#518 #168 32#518 #168 32#518 #167 321418	STA STA STA DRVINI: STA STA STA STA LDA	GETIT FOSD+2 FAUL STEP DRVREQ ACCEL ERRO+2 MOTIOH FAUL+2 DEDH FAUL+2	;*ADDED FOR HUX 226 ;1H1T HOTIOH COUNTER

@179 CDBCØ4		ĈALL	CHDCHK	CHECK CONNAND FOR OUT-OF-BOUNDS
317C D28D01		jhc	CHDOK	
017F 3A0218		LDA	POSD+2	
0192 F680		ÛRI	80H	;IF HOT, SET OPERATOR FAULT
0184 320218		STA	20SD+2	
0187 321218		STA	FAUL	:*ADDED FOR HUUX 225
018A C36E00		JHP	BOSS	
	CHDOK:			
018D 221E18		SHLD	ATVCHD	HAKE TEHP CHD THE ACTIVE CHD
0190 CDF904		CALL	DSTOR	
0193 3A4718		LDA	DIR	
0196 324818		STA	LDIR	SETUP LAST DIRECTION
0179 2A1818			POSTN	
619C 221A18				SETUP LAST POSITION
019F 2A0318			ERRO	SELON ENOT INSTITUT
01A2 CD8504				;ERRO (3
Ø1A5 DA6EØØ			EUSS	
Ø1A3 LIADFF			D83	
9145 2668			8.8 8.8	STINU SIEF IU RAAF IUU
31AD 3A4A18			GETIT	ACT IT THERE COMPAGNS
2130 B7		UKA UKA	A A	;GET IT THERE SOMEHOW?
0130 C7 0181 C48601			∂I¥	.15 401
8134 8685		HVI	8.5	;15 HOT
0104 100V	DIV:	(i F 1	8 . J	
9136 3EFF	U 1 V 1	avi	A + 41	
1135 3277	DIV1:	<i>□₹1</i>	M, TI AN	ID 255 ; A WILL CONTIAN STEP TO RAMP TOO
9188 JC	01017	120		
9180 SC 9189 19		IÄR	Å	
0187 17 0188 D48801		DAD JC	D 5141	
JIBD BS			DIV1	
		CHP	ć	
012E 040301			Að K	
3101 85		0CR	3	
9:C2 73		89¥	A.3	:IF A>B THEN A=B-1
2452 2007-0	AGK:			
3103 322618		STA		;SAVE RESULT
01C6 67		GRA	A	;lf A=0 DON'T RAHP
0107 CAD201		JZ	NORHP	
ØICA JEFF		HVI	A,TRUE	
₽1CC 324118		STA		;SETUP FOR RAMP
JICF 324218		STA	RAHPUP	
	NORMP:			
0102 2F		CHA		
9103 324518		STA	CÚHVRG	
0106 CDF503		CALL	BRKON	;DISENGAGE BRAKE & ACTIVATE TRANSLATOR
0109 CDAF03		CALL	TRNOK	
91DC AF		XRA	A	
J1DD 323818		STA		;UPDATE CLK IHAGE
31E9 0301		û4JT	PIPTB	;SET 100HZ
<i>3122 3A</i> 4718		LDA	DIR	
Ø1E5 87		da A	A	; HHICH DIRECTION?
ə126 JAƏA18		LÛÂ		;GET CONTROL IHAGE
01E9 C2F101		JHZ	DOWN	
\$1EC 1089		061 	0=H	; DRIVE UP
01EE C3F301		JHP	HOVIT	
1954 F 65	donn:			
01F1 Fo05	20217-	gri	25H	;drive down
01FJ 320A18	HOVIT:	sta	822014	ANODATE 14466
0185 520M10 0186 D300		ola UUT		;UPDATE IMAGE
01F8 216804		uui LXI	PIPTA H,EDRV	;SEND IT
110397		L#1	a, CURF	

∂1FB 222818	eui n	TRAP	SETUP ERROR HANDLER
Ø1FE 21983A			:150 SECS
0201 CDC204			,150 5205
0201 COCED4 0204 JEFF	CALL HVI	A,TRÜE	
0204 3277			
2200 525238 2209 C36E00	JHP		SET DRIVE ACTIVE
2207 LJOEVU	var	5033	
	CLRREQ:		
ð2ðC AF	78A	A	
0200 323F18			CLEAR CHD REQUEST
	DRVTST:		· · · · · · · · · · · · · · · · · · ·
8219 CDF984		ÐSTÐR	;GET LATEST DATA
3213 5828		APDCR	
0215 E604			CHECK FOR BRAKE DISENGAGED
9217 CA5304	JZ	EBRK	;BRAKE ERROR HANDLING
921A 3A4118	LDA	ACCEL	
<i>€210</i> 87	ORA	Á	;CHECK FOR ACCELERATION
921E CA3602	JZ	5TGD	;IF HOT. PLOD ALONG
0221 3A4218	LŨA	RAMPUP	
ø224 B7	024	A	:IN RANP UP
0225 C24902	JHZ	ZIPUP	;IF YES, RANP UP
J228 JA4318	LDA	HAIN	
∂ 223 87	ŌRA	A	;IN HAIN DRIVE
922C C25802	JHZ	HAINCK	:IF YES, CHECK WHEN TO RAMP DOWN
@22F 3A4418	LDA	RAHPDH	
2232 B7	ORA	A	;IN RANP DOWN
0233 C27402	JHZ	ZIPDH	; IF YES, RAHP DOWN
	PLOD:		
0236 3A4518	LDA	CONVRG	
ð239 B7	ORA	A	;CONVERGING?
023A C28202	JHZ	HQVIN	;1F YES, HOVE IN
0230 CDE404	CALL	TSTOP	STOP TIMER
0240 CDAE02	CALL	DR¥STP	STOP DRIVE
0243 COD203	CALL	TRHOF	;TURN OFF TRANSLATOR
0246 C36E00	ЈНР	BOSS	;SEE NHAT'S NEXT
	7.0.0		
20/2 210/-2	ZIPUP:		
3249 3A2613	LDA		;GET STEP TO RAMP TO
∂240 4F	HOV	C , A	
0240 CD4003	CALL		RANP TO IT
0250 AF 0251 324210	XRA		;RANPUP TO KAIN
9251 324218 9254 2F	ST A Cha	RAHPUP	
9254 2P 9255 324318	STA	HAIN	
9255 524518 9258 C36E94	JKP	60SS	
9200 CJOCVP	Var	0033	
	HAINCK:		
#258 2A#318	LHLD	ERRO	
025E 118700		D.0037H	
0261 CD9804			AT THE RAHP DOWN POINT?
2264 79	HOV	A,C	
2265 B7	ORA	A	
0266 CA6E0 0	JZ	80SS	;HOT YET
#269 AF	XRA	Å	IF YES, HAIN TO RAMPON
226A 324318	STA	HAIN	
#26D 2F	CHA		
326E 324418	STA	RAKPON	
0271 C36E00	JHP	8088	

2274	CD76#3		CALL	RHPDN	RAMP DOWN FROM CURRENT STEP
	AF		XRA		SET RAHPON TO CONVERGE
	2F		CKA		
	324518			CONVRG	
	C36EØØ		JXP		
	030204			5355	
		HOV1H:			
∂ 282	2AJJ18		Läld	ERRO	
ø285	CU6584		CALL	CLOSE	;HITHIN 3 COUNTS
2288	029202		JNC	Hev1	
ø238	AF		XRA	A	;IF YES, SET FOR SHUTDOWN
6280	324518		STA	CONVRG	
#28F	C36EØØ		JHP	BOSS	
		H0V1:			
ø292	3A4718		LDA	DIR	;CURRENT DIRECTION
2295	4F		H GV	C.A	
3 296	1 A4818		LDA	LDIR	;LAST DIRECTION
0299	89		CHP	C	;THE SAHE?
229A	CA6E09		JΖ	BJSS	
Ø29D	77		HOV	A,C	:IF NOT, CHANGE DIRECTIONS
<i>₿</i> 29E	324818		STA	LDIR	;LAST DIR = CURRENT DIR
92A1	3AðA18		LDA	DSCR+1	
∂ 2A4	EE#C		XRI	эсн	FLIP DIRECTION BITS
#2A6	320A18		STA	DSCR+1	
02A9	D360		û₿Ţ	PIPTA	;CHANGE DIRECTION
02AB	C36E€₽		Jhp	BUSS	
		DRVSTP:			

	UKV3(P:		
02AE C07603	CALL	RHPDN	HAKE SURE RAMPED DOWN
0281 AF	XRA	A	;CLEAR DRIVE ACTIVE
9282 323918	STA	DRVATV	
0285 3A0A19	LDA	DSCR+1	
02 88 E6F2	AN1	ØF2H	;SHUT DOWN CLKS & DIR
928A 320A18	STA	DSCR+1	
0280 03 <i>00</i>	DUT	PIPTA	
02BF C31804	JHP	BRKOF	;ENGAGE BRAKE

LOCAL: 0202 CDAF03 CALL TRNON FRANSLATOR ON WHILE IN LOCAL ∂2C5 AF XRA A 9206 32**6818** STA DSCR+2 8209 0301 ₿₿Ţ PIPTB ;SET FOR 100HZ DRIVE LCL1: 02C8 CDF904 CALL DSTOR ;GET DATA 22CE 340518 LDA ERR0+2 3201 E668 **SNI** 38H ;APEX FAULT 3203 C21D01 JHZ RSCHD ; IF YES, RESET SYSTEM 2206 0809 14 22PTB ;GET DIRECTION 2208 E600 A41 5 22DA FEG4 OPI4 0200 CAF102 J2 LÜP :XOVE UP 020F FE02 CPI 2 02E1 CA1703 LDHH JZ. ;KOVE DOWN 62E4 DB08 18 P2PTA 3286 Eo\$1 AH I ð1# STILL IN LOCAL? *∂2E8 CACB@2* LCLI JZ

02EB CDD203		CALL	TRNOF	; IF NOT, TRANSLATOR OFF
02EE C31D01				RESET SYSTEM
				,
	Lüp:			
<i>€</i> 2F1 CDF5Ø3		CALL	BRKON	;DISENGAGE BRAKE
02F4 3A0A18		LDA	BRKON DSCR+1	
02F7 F609		ORI	9	;SETUP UP DIR
02F9 320A18		STA	DSCR+1	
02FC 0300		GUT	f19ta	
Ø2FE 0309			P2PTB	
0300 E601		AHI	1	\$RAHP?
0302 CADA03			Lüpi	
0305 0E07				;IF YES, RAMP TO 400HZ
0307 CD4D03		CALL	RHPUP	
	LUP1:			
<i>830A</i> CDF964				:GET DATA
0300 D309			f2PTB	
939F E682				;STILL KOVING UP
0311 CÂ0A03				
∂314 C33A03		JHP	LSTOP	;1F HOT, SHUT DOWN
	LDNH:			
9317 CDF503				;DISERGAGE BRAKE
331A 3A0A18			DSCR+1	
2310 F505				;SETUP DOWN DRIVE
031F 320A18				
3322 P300			PIPTA	
3324 DB09			P2PTB	
0326 E6Ø1			1	;RAHP?
0323 CA3003			LDNN1	
0328 0E 0 7		NVI NVI	C,7	;IF YES, RANP TO 400HZ
0320 CD4003			RHAUP	
1774 005044	LDWH1:			
0330 CDF904			DSTOR	
0333 D609			P2PTB	ATT / JANTUA AANU
0335 E604			4 Ldhh1	STILL HOVING DOWN
0337 CA3003		JΖ		
4734 007/37	LSTOP:			, SHUT DOWN
033A CD7603		CALL		;RANP DOWN
0330-3A0A18 0340-E6F2		LDA Alti	DSCR+1 Af ou	THOU ALE FING & BID
		AHI STA	øf zh DSCR+1	;TURH OFF CLKS & DIR
0342 320A18 0345 D300		STR DUT		
				:ENGAGE BRAKE
0347 CD1804 034a C3C202		UALL JHP		IEMUNUE DANKE
834A 636282		vnr	LUGAL	

;***********************************

; RANP UP & DOWN ;ENTER WITH C=STEP TO AT, 1=100HZ >> 7=400HZ

	RKPUP:		
J340 344718	£D7	i RAHP	
J355 87	0R:	4 <i>A</i>	:RAHPED UP?
JIS1 CO	8N2	!	RETURN IF RAMPED UP
#352 2F	CH	4	
3353 324918	STA	A RAHP	:SET TRUE
0356 211F97	ĹX.	i H,CK1øð	START RAMP TABLE
2359 AF	X.R.	i A	;CLEAR RAHP STEP
	RPUP1:		
035A 322718	STA	a step	;SAVE LATEST STEP

Ø350	Ø619		NVI -	8,25	;HAIT 100 DRIVE PULSES
035F	7E		HOV	A.H	:GET STEP FREQUENCY
0360	320818			DSCR+2	
£363	D3#1		GUT	PIPTB	:EXECUTE IT
		RPUP2:			
J365	CDA003		CALL	WT65	:WAIT FOR INTERUPT
#368	<i>85</i>		DCR	3	
£369	026503		JNZ	RPUP2	
Ø36C	23				;NEXT FREQUENCY
836D	3A2718		LDA	STEP	,
0370	30		INR		:NEXT STEP
ə371	<u>89</u>		CHP	C	HAVE DONE HUHBER OF STEPS?
	C25AØ3		JHZ		
₽375	69		RET		;IF YES
• • • •					VI I LU
		RHPDN:			
9376	3,4918		LDA	<u>ƙ</u> àn P	
0379	•				RANPED DOWN?
937A			RZ	"	RETURN IF RAHPED DOWN
	AF		XRA	Æ	ACTORN IT RANTLE DUNK
	324718 .				;SET RAMP FALSE
	111707				POINT TO RANA TABLE
	JA2718				GET STEP COUNT
#385 #385			HOV		JOET SIEP COART
	or 2699				
#388 #388			HV I a an		
#338 #339			D AD		;FORH POINTER
			IHR	A	1114350 AF 37500 70 1444 1444
238A	47	000H1.	HOV	С,А	; NUMBER OF STEPS TO RAMP DOWN
4705	a. eo	RPDH1;	141/T		11111 IA AMARA
038B 4700			ä¥I		;HAIT 43 PULSES
038D	. –				;GET FREQUENCY
	328818		STA	DSCR+2	
\$371	D3Ø1		OUT	PlPTB	;SET IT
		RPDH2:			
	CDA003		CALL		;WAIT FOR INERUPT
2376			DCR	8	
	C293 0 3		JHZ	RPDH2	
3 39A			DCX	H	;NEXT FREQUENCY
∂ 39B			DCR	Ĉ	;DONE STEPPING?
	C28BØJ		JHZ	RPDH1	
039F	69		RET		;IF YES
		#T65:			
	CDF904		CALL		;GET DATA
	3.44618		LDA	DRVPLS	
9346			ORA	A	;INTERUPT?
	CAA903		JZ	WT65	
93HA			XRA		;1F YES. CLEAR FLAG & RETURN
	324618		STA	DRVPLS	
e 3 AE	69		RET		

: TRANSLATOR & ERAKE CONTROL

ŦŔ	KJN:		
Ø3AF 213804	LXI	H,ETRH	
9332 222318	SHLD	TRAP	
0335 21c400	LXI	H.100	:ONE SEC
0388 (DCB04	CALL	TIHER	
0388 3 40418	lda	DSCR+1	

033E F680		DR 1	30H	
03C0 320A18		STA	DSCR+1	
83C3 9388		0UT	PIPTA	
	TRON:			
83C5 CDF904		CALL	DSTOR	
03C8 D808		IR	P2PTA	
03CA E610		AHI	1 <i>0</i> H	
Ø3CC CAC5Ø3			TRON	
#3CF_C3E4#4			TSTOP	
		••		
	TENDE:			
63D2 213E04			H,ETRN	
@3D5 222818			TRAP	
03D8 216400		LXI		:ONE SEC
A3DB CDC804			TIHER	JONE DED
ØGDE JAØA18			DSCR+1	
₽3E1 E67F		AHI		
#3E3 32#A18			DSCR+1	
03E6 0300			PIPTA	
2010 6360	TROFF:	VU?	14177	
03E8 CDF904	18011.	C 84 1	DSTOR	
0328 0809 0328 0809		IN	P2PTA	
03ED E610		ANI	е де і ж 1911	
Ø3EF C2E8Ø3		nai JNZ		
Ø3EF C120Ø3 Ø3F2 C3E404			TROFF	
8372 L32484		JHP	TSTOP	
	BRKON:			
ATER CHETAN	DANUNI	7 V T		
03F5 215304		SHLD	H,EBRK TRAP	
93F8 222818		LXI		.our err
03FB 215400				;ONE SEC
Ø3FE CDC804			TIMER	
0401 3A0A18		LDA	DSCR+1	
0404 F640 0406 320A18		ORI Sta	4 <i>0</i>	
			DSCR+1	
0469 D360	BOFOI.	OUT	PIPTA	
0408 CDF904	BRK01:	A 41 1	ретла	
		CALL	DSTOR	
040E DB28		IN	APDCR	
0410 E604		AHI	4	
0412 CA0804 0415 C3E404		JZ	BRKO1	
0413 C32404		JHP	TSTOP	
	DOKAC			
2110 115721	BRKOF:	(V?	U TROP	
0418 215304		LXI	H,EBRK	
9419 222818		SHLD	TRAP	ANT OF
041E 216400		LXI	H,100	;OHE SEC
0421 CDC804		CALL	TIMER	
0424 3A0A18 0427 E68F		LDA AN 1	DSCR+1 arcu	
0427 200F 0429 320A18		ANI STA	ØBFH DSCR+1	
0429 320418 0420 D300		STR DÜT	DSCRFI PIPTA	
2426 V32V	2.2KF1;	agt	CLEIN	
342E CDF904	CANFII	CALL	DSTOR	
8431 8828		unee In	APDCR	
8431 8320 8433 8584				
8433 2084 8435 022884		481 197	4 80853	
2433 022204 3438 C3E4 3 4		JHZ JKP	BRKFI TSTOP	
3738 636484		*#7	13195	

	ETRN:			
0438 3 <i>A0A1</i> 9		LDA	DSCR+1	
043E E67F			7EH	
0440 320A18		STA	DSCR+1	
0443 D300		OUT	PIPTA	
0445 JA0218		LDA	POSD+2	
0448 F610			19R	
044a 320219		STA	POSD+2	
0440 321218		STA	FAUL	:*ADDED FOR HUX 226
0450 C31D01		JHP	RSCND	
	EBRK:			
0453 3A0A18			DSCR+1	
0456 E68F			ØBFX	
0458 329A18		STA		
0458 D300			PIPTA	
0450 1 <i>4021</i> 8			P0SD+2	
2468 F694			94H 8888.48	
0462 320218		STA		
2465 321218				;*ADDED FOR NUX 225
₽ 468 C31D91		JHP	RSCHD	
	EDRV:			
046B 210019		LXI	H.1900H	;RESET STACK
045E 3A1419				**ADDED FOR HUX 226
9471 Föðl		981	i	
8473 321418		sta	FAUL≠2	
8476 3A2718		LDA	STEP	
0479 FE∂4		CPI	4	
0476 DA8004		JC		
3 47E 3EFF		H¥ I	A,TRUE	
0480 324A18		STA	GETIT	SET GET IT THERE SOMEHOW
0483 CDE404		CALL	tstap	STOP TIMER AND DRIVE
\$486 CDAE \$ 2		CALL	DRVSTP	
2489 AF		XRA	A	;CLEAR ACC FOR ENTRY
048a C35F01		JHP	DRVIN1	;INTO DRVINT
	EDRV1:			
048D 3A0218			POSD+2	;SET DRIVE FAULT
0490 F520			2 0 H	
0492 320218			POSD+2	
3 495 321218				;*ADDED FOR HUX 226
0498 C31001		jap	RSCHD	;SYSTEN RESET

;******

	RANGER:		;KL=/HL-DE/
e49e 7 0	HOV	A,L	
8490 93	SJ3	Ε	
3490 6F	KOV	L.A	
949E 7C	HOV	A, 8	
849E 9A	38 8	E	
24A0 67	KÛV	H.A	
04A1 0E 00	HV I	0.0	;8 => +
04A3 F2AA04	Je	Phor1	
84A6 ØD	DCR	ī	
∂4A7 CDAD ∂ 4	CALL	Chphl	
	PhGR1:		
84AA 7D	YCK	A.L	
J4AB B4	ORA	H	;ZERO FLAG SET IF HL=∂
04AC C9	RET		;C=0 => +D1R

	CKPHL:		
04AD 7C	HOV	A.H	
Ø4AE 2F	CHA	,	
24AF 67	HOV	H,A	
048 0 70	HOV	A,L	
Ø481 2F	CHA		
0482 6F	HOV	L.A	
9483 23	INX	Ħ	
94B4 C7	RET		
	CLOSE:		;HL (3 ?
9485 7C	HOV	A,H	
348 6 87	ORA	Å	
0487 C0	RHZ		
0488 7D 3489 6533	HOV COT	A.L	
0489 FE02 0488 č 9	CPI RET	2	
0408 67	#L1		
	CADCHK:		
048C 7C	KOV	A,K	
04BD FE3A	CPI	3AH	
943F DAC494	JC	HIOK	
04C2 37	STC		
94C3 C9	RET		
	HIOK:		
04C4 FE05	CPI	25H	
04C6 D8	RC .		
9407 JF	0Kú		
24C8 C8	₹Z		
9409 3F	CHC		
84CA C9	RET		
	TINER:		
Ø4CB JECF	HV 1	A.ØĈFH	;ENABLE TINER AFTER COUNT LOADED
∂4CD D318	OUT	RCHD	
#4CF 7D	NOV	A.L	;HL CONTAIN TIMER PERIOD
04D0 D31C	OUT	TINLO	
0402 7C	HDV	A,H	
34D3 E63F	AHI	3FH	
@4D5 F68 @	0RI		;STOP ON TERMINAL COUNT
04D7 D31D	OUT	71 8 81	
34D9 3A2418	LDA	RHPCS	
04DC F610	OR I		;SET FOR 100HZ CLK
04DE 322418	STA	RHPCS	
94E1 D318 04E3 C9	OUT	RHPIC	START IT
8423 C7	RET		
	TSTOP:		
ē4E4 372418	LDA	RHPCS	
24E7 E6CF	ANI	øcfh	;TURN CLK OFF
J469 322418	STA	RHPCS	
₽4EC D318	GUT	RHPTC	
24EE 3E4F	<i>₩</i> ¥1		STOP COUNTER
04F0 D319	OUT	RCHD	
34F2 214000	£X1	H,INIT	
94F5 222818 04F3 C9	SHLD RET	i kap	;SAGULD TRAP HAPPEN
etto U/	π21		

	DSTOR:			
Ø4E9 E5		PUSH	PSW	
04FA C5		PUSH	5	
04F8 D5		PüSH	9	
J4FC E5		PUSH	H	
Ø4FD AF		XRA	A	
34FE 0338		08T	AIPT	
9500 060A		HVI	3,10	
	LP1:			
0502 DB29		1#	POSH	
0504 E6C0		ANI	scəh	
8586 FE89		CPI	səh	
8588 CA2485		JZ	LP2	
95 98 85		DCR	8	
850C C20205		JHZ	LP1	
əsəf qəəsi8		LDA	ERRO+2	
0512 F608		ÛRI	63H	
8 514 328518		STA	ERRO+2	
Ø517 E61E		ANI	1EH	;*ADDED FOR HUX 226
0519 47		KOV	B, A	
051A 3A1418		LDA	FAUL+2	
351D BØ		ùRA	8	
051E 321418			FAUL+2	
ə521 c3c3ø5		JHP	LP3	
	LP2:			
0524 3A0518		LDA	ERRO+2	
9527 E6F7		AHI	ØF7H	
9529 320518		37 A	ERRO+2	
Ø52C 3A1418		LDA		;*ADDED FOR HUX 226
J52F EoF7		AHI	€F7H	
8531 321418		STA	FAUL+2	
8534 D828		18	POSL	
9516 6F		KOV	L.A	
0537 D829		I#	POSH	
0539 E63F 1570 /7		ANI	3F# 22 4	
0538 67 0530 221818		XOV Shld	H,A Postn	
853E 221818 853F EE28		SHLU XRI	20H	
#53? 2220 #541 67		HOV	29A H,A	
0542 228018		SHLD	POSD	
0545 EE20		XRI	2 9 H	
2547 57		HOV	D,A	
3548 5D		HOV	E.L	
0549 2A1E18		LHLD	ATVCKD	
∂54C CD9804		CALL	RANGER	
954F 220318		SHLD	ERRO	
Ø552 79		HOV	A,Ĉ	
ə553 324718		STA	ƏIR	
8556 DB2A		IH	VEL	
9558 EE80		XRI	80H	
355A 6F		KOV	L.A	
8558 2000		HVI -	H, 9	
#550 29		ð AÐ	Ħ	
855E 29		DAÐ	H	
855F 29 8560 29		0AD DAD	H U	
95 69 19 9561 22 8 C18		DAD Shld	H Adcr	
0561 220013 0564 082B		shed Ik	AUUR APDER	
.vet vord			11 V V I	

0566 E6 0 7	AH I	07H	
0568 320E18	STA	ADCR+2	
Ø56B E693	AKI	03H	
₹56D 47	HOV	B.A	
Ø56E 3A0218	LDA	POSD+2	
0571 E6FC	AHI	øf ch	
# 573 E #	ORA	E	
Ø574 J20218	STA	P03D+2	
Ø577 DB28	IH	APDCR	
2579 E684	AHI	04H	;BRAKE I*E
0578 ØF	RRC		
9 57C 47	HOV	B,A	
0570 3A2318	LDA	RHPBS	
8588 E6FD	AHI	ØFDH	
0382 B0	GRA	B	
ə593 322318	STA	KHPBS	
3586 Q31A	ÛÜT	RKPTB	
\$588 D32C	IH	AH AL	
958A 6F	HOV	L,A	
958B DB2D	IN	AN AH	
458D EE02	XRI	2	
358F 47	HOV	8,A	
3596 E61E	ANI	1EH	
3592 37	add	4	
ə393 67	HQV	H.A	
9594 78	#0¥	A,B	
8595 E683	AHI	3	
J597 84	0 R A	a	
Ø598 67	HOV	H.A	
£579 29	DAD	H	
859A EB	XCHG		SAVE IN DE
0398 E638	AH I	33H	
;			
∂59D B7	0R A	Â	
059E C2A605	JHZ	AROUND	
05A1 EB	XCHG		
65A2 221518	SHLD	NU2	
0 5A5 EB	XCHG		
AROUND:	;		
;			
85A6 ØF	RRC		; /4
ðsat ðf	RRC		
95A8 6F			;SETUP HL
05A9 2600	HVI	₩,₩	
95 88 812018	LXI		GET APEX ANALOG TABLE ADDR
95AE 89	DAD		FORH INDEX
05AF 73		-	;SAVE APEX ANALOG IN IT
0580 23 1581 70	18X 187	H H D	
3581 72 2582 7:2440	ä0¥ ∙D∙	H.D	
8582 3A2A18	LDA	AN AN X	468.4
8585 E607	ANI	e7#	; HOD 3
Ø587 Ø7 1990 Jr	RLC How	1 - 2	: * 2 .25749 m
9588 6F 8570 1/24	HOV		:SETUP HL
8589 2800 asing aa	BVI DAD	₩.₽	
0583 09 0580 7E	DAD Hov		:FORM INDEX .oft Vitue 1970 01
0580 72 0580 23	HOV IHX	A.H H	;GET VALUE INTO HL
#58E 66		а Н.Й	
#58F 6F	HOV	L.A	

LP3: #5C3 JA3D18 LDA DRVATV 05C6 B7 ORA A #5C7 JA2318 LDA RHPBS #5C7 JA2318 LDA RHPBS #5C7 JA2318 LDA RHPBS #5C7 JA245 JZ LP4 #5C7 JE4# MVI C.4#H #5D1 C308#5 JHP LP5 LP4: #5D4 E6FE ANI #FEH #5D9 J22318 STA RMPES #5D9 J22318 STA RMPES #5D9 J22318 STA RMPES #5D9 J22318 STA DSCR #5D9 J22318 STA DSCR #5D9 J22318 STA DSCR #500 J26918 STA DSCR #512 G+7 HOV B,A #512 G+7 HOV B,A #512 G+7 HOV B,A #514 <th>05C0 220F18</th> <th></th> <th>SHLD</th> <th>AH AD</th> <th>;STORE</th> <th>IT F</th> <th>OR DATA SET</th>	05C0 220F18		SHLD	AH AD	;STORE	IT F	OR DATA SET
05C6 B7 0RA A 95C7 3A2313 LDA RHPBS 95CA CA0405 JZ LP4 95CD F601 0RI 91H 95CF 8E40 HVI C.40H 95D1 C3D805 JHP LP5 LP4; # *5D4 E6FE AHI #FEH 95D6 322318 STA RMPES 95D9 322318 STA RMPES 95D9 322318 STA RMPES 95D9 322318 STA RMPES 95D9 31A OUT RMPTB 95D0 5808 IN P2PTA 95D7 326918 STA DSCR 95E2 8607 AHI #7H 95E4 EE87 XRI 97H 85E6 47 HOV B,A 95E7 3A9518 LDA ERR0+2 85E8 2688 AHI #98H 85E9 BI RA 85E7 347 HOV B,A 95F1 L61E AHI 1EH **A0DED FOR HUX 226 95F3 47 HOV B,A 95F4 3A1418		LP3:					
9507 342318 LDA RHPBS 9507 342318 LDA RHPBS 9507 342318 DZ LP4 9507 3644 ORI 91H 9507 32805 JHP LP5 2507 2244 HVI C.40H 9507 32905 JHP LP5 2504 E6FE AHI ØFEH 9507 322318 STA RMPES 9509 322318 STA DSCR 9509 322918 STA DSCR 9507 320918 STA DSCR 9514 26918 STA DSCR 9515 320918 LDA ERR0+2 9516 2688 AHI 909H 9511	35C3 3A3D18		LDA	DRV AT V			
#5CA CAD4#5 JZ LP4 #5CD F6#1 ORI #1H #5CF #E4# HVI C.4#H #5D1 C3D8#5 JHP LP5 LP4: #FEH #5D6 #E4# HVI C.4#H #5D1 C3D8#5 JHP LP5 LP4: #FEH #5D6 #E4# HVI C.# LP5: C.# #5D8 #22318 STA RMPES #5D9 #31A OUT RMPT# #550 #32#918 STA DSCR #551 #2#918 STA DSCR #552 #6#7 AHI #TH #556 #32#918 STA DSCR #552 #6#7 AHI #TH #556 #7 AHI #TH #557 #3#518 LDA ERR0+2 #556 #1 ORA B #3518 LDA ERR0+2 #557 #47 HOV B,A #3557 #161E AHI 1EH :*ADDED FOR HUX 226 #557 #47 HOV B,A #557 #47 </td <td>0506 87</td> <td></td> <td>ŨRA</td> <td>A</td> <td></td> <td></td> <td></td>	050 6 87		ŨRA	A			
35CD F601 0RI 91H 45CF 6E40 MVI C.40H 45D1 C3D805 JHP LP5 LP4: 25D4 E6FE ANI 45D0 52318 STA RMPES 25D9 322318 STA DSCR 25D1 5266 IN P2FTA 25E6 47 AHI 07H 25E6 47 HOV B,A 25E7 3A0518 LDA ERR0+2 25E6 80 OKA B 25E2 80 OKA B 25E2 818 STA ERR0+2 25F1 161E AHI 1EH :*ADDED FOR HUX 226 25F3 47 HOV B,A 25F4 3A1418 LDA FAUL+2	05C7 3A2318		LDA	RHPBS			
05CF 0E40 HVI C.40H 05D1 C3D805 JHP LP5 LP4: 05D4 E6FE AHI ØFEH 05D6 0E00 HVI C.0 LP5: 05D8 322318 STA RMPES 05D9 322318 STA POT 05D9 322318 STA DSCR 05D9 32001050 IN P2PTA 05D9 320918 STA DSCR 05E6 47 MVU B,A 05E7 3A0518 LDA ERR0+2 05E6 518 STA ERR0+2 05E7 161E AN1 1EH :*ADDED FOR HUX 226 05F7 43 STA ERQ+2 05F7 659 <td>ð5CA CAÐ495</td> <td></td> <td>JZ</td> <td>LP4</td> <td></td> <td></td> <td></td>	ð5CA CAÐ495		JZ	LP4			
JSD1 C30805 JHP LP5 LP4: SD4 E6FE AHI ØFEH JSD6 JEJD HV1 C.Ø LP5: JSD8 J22318 STA RMPES JSD9 J1A OUT RMPTB JSD9 J1A OUT RMPTB JSD9 JJA STA DSCR JSD9 JJA JSTA JSCR JSD9 JJA STA DSCR JSE6 LEØ7 AHI ØTH JSE6 LEØ7 AKA B JSE6 JJA ARA C JSEF	05CD F601		ORI	∂1H			
JSD1 C30805 JHP LP5 LP4: SD4 E6FE AHI ØFEH JSD6 JEJD HV1 C.Ø LP5: JSD8 J22318 STA RMPES JSD9 J1A OUT RMPTB JSD9 J1A OUT RMPTB JSD9 JJA STA DSCR JSD9 JJA JSTA JSCR JSD9 JJA STA DSCR JSE6 LEØ7 AHI ØTH JSE6 LEØ7 AKA B JSE6 JJA ARA C JSEF	∂5CF ∂E4 ∂		HVI	C.40H			
#SD4 E6FE ANI #FEH #SD6 BEBB HVI C.# LP5: LP5: DSD8 322318 STA RMPES #SD9 031A DUT RMPTB #SD0 D5#8 IN P2PTA #SD1 328918 STA DSCR #SD5 328918 STA DSCR #S52 E6#7 AHI #7H #SE4 EE#7 KRI #7H #SE5 348518 LDA ERR0+2 #SE6 47 HOV B,A #SE7 3A#518 LDA ERR0+2 #SE6 88 AHI #B8H #SE7 3A#518 LDA ERR0+2 #SE7 3A#518 LDA ERR0+2 #SE6 89 ØKA B #SE7 518 STA ERR0+2 #SF7 618 STA ERR0+2 #SF7 659 AHI 1EH :*ADDED FOR HUX 226 #SF7 659 AHI 1EH :*ADDED FOR HUX 226 #SF7 659 AHI #B9H :STRIP INFO #SF7 80 ORA B :AND UPDATE INFO <t< td=""><td>∂501 C30805</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	∂ 501 C30805						
3506 322318 NV1 C.0 LP5:		LP4:					
LP5: 9508 322318 STA RMPES 9508 931A OUT RMPTB 9500 9506 1N P2PTA 9507 9507 AHI Ø7H 9518 STA DSCR 9519 852 2607 AHI Ø7H 9514 EE07 XRI Ø7H 9517 3A0518 LDA ERR0+2 9517 3A0518 LDA ERR0+2 9516 8268 AHI Ø80H 9517 3A0518 LDA ERR0+2 9517 3A0518 LDA ERR0+2 9517 E688 AHI Ø80H 9518 STA ERR0+2 9511 ORA B 9512 326518 STA ERR0+2 9513 47 HOV B,A 9514 3A1418 LDA FAUL+2 9517 E659 AHI 989H ;STRIP INFO 9517 E659 AHI 989H ;STRIP INFO	25D4 ESFE		AHI	ØFEH			
9509 322318 STA RMPES 9500 931A OUT RMPT8 9500 9506 IN P2PTA 9507 320918 STA DSCR 9517 320918 STA DSCR 9517 320918 STA DSCR 9517 320918 STA DSCR 9512 2607 AH1 07H 9517 340518 LDA ERR0+2 9516 320518 LDA ERR0+2 9517 340518 LDA ERR0+2 9511 L01E AH1 98H 2510 B1 DRA D 9511 L61E AH1 1EH :*ADDED FOR HUX 226 9513 47 HOV B, A 354 9514 3A1418 LDA FAUL+2 3557 9517 E659 AHI 989H :STRIP INFO 3517 F659 DA DRA B :AND UPDATE INFO 9517 E659 AHI 989H :STRIP	0506 0E90		K¥ 1	6.6			
#50B 031A 0UT RNPTB #50D D500 1N P2PTA #50F 320918 STA DSCR #5E7 320918 STA DSCR #5E2 £607 AHI #7H #5E4 EE07 XRI #7H #5E4 EE07 XRI #7H #5E5 3A#518 LDA ERR0+2 #5E6 47 HOV B,A #5E7 3A#518 LDA ERR0+2 #5E6 868 AHI #B8H #5E7 3A#518 LDA ERR0+2 #5E6 B1 ORA B #5E7 3A#518 STA ERR0+2 #5F1 L61E AHI 1EH :*ADDED FOR HUX 226 #5F3 47 HOV B,A #5F4 JA1418 LDA FAUL+2 #5F7 E69 AHI #B9H :STRIP INFO #5F7 F0# ORA B :AND UPDATE INFO #5F7 F0#		LP5:					
253D D508 IN P2PTA 95DF 320918 STA DSCR 85E2 E607 AHI 07H 95E4 EE07 XRI 07H 95E5 547 HOV B,A 95E7 JA0518 LDA ERR0+2 95E7 JA0518 LDA ERR0+2 95E7 JA0518 LDA ERR0+2 95E7 BA0 DRA B 95E7 BA0 DRA B 95E7 BA0 DRA B 95E7 BA1 DRA C 95E7 BA1 DRA C 95E7 BA1 DRA C 95E7 BA1 DRA C 95F1 E61E ANI 1EH :*ADDED FOR HUX 226 95F3 47 HOV B,A B 95F4 JA1418 LDA FAUL+2 95F7 E659 ANI 989H :STRIP INFO 95F4 J21418 STA FAUL+2 ERO	05 08 322318		STA	RMPES			
95DF 320918 STA DSCR 95E2 E607 AHI 07H 95E4 EE07 XRI 07H 95E5 3A0518 LDA ERR0+2 95E7 3A0518 LDA ERR0+2 95E7 5A0518 LDA ERR0+2 95E7 5A0518 LDA ERR0+2 95E7 5A0518 LDA ERR0+2 95E7 80 ORA B 95E7 81 STA ERR0+2 95E7 80 ORA C 95E7 1601E ANI 1EH :*ADDED FOR HUX 226 95F1 601E ANI 1EH :*ADDED FOR HUX 226 95F7 80 ORA B :AND UPDATE INFO 95F7 80 ORA B :AND UPDATE INFO </td <td>2508 031A</td> <td></td> <td>OUT</td> <td>RHPTB</td> <td></td> <td></td> <td></td>	2508 031A		OUT	RHPTB			
#5E2 E6#7 AHI #7H #5E4 EE#7 XRI #7H #5E4 EE#7 XRI #7H #5E4 EE#7 XRI #7H #5E6 47 HOV B,A #5E7 3A#518 LDA ERR0+2 #5E7 BAB518 LDA ERR0+2 #5E7 B6#8 AHI #B8H #5E6 B0 ORA B #5E7 B1 ORA C #5E7 E6458 STA ERR0+2 #551 E61E AHI 1EH :*ADDED FOR HUX 226 #557 E649 ORA B	8500 D508		I H	P2PTA			
#35E4 EE#7 XRI #7H #35E6 +7 HOV B, A #35E7 3A#318 LDA ERR0+2 #35E7 3A#518 LDA ERR0+2 #35E7 3A#518 LDA ERR0+2 #35E7 BA#1 #B#8H #B#8H #35E8 AHI #B#8H #35E9 BI ORA B #35E1 LOA ERR0+2 #35E7 3E4518 STA ERR0+2 #35E7 B1 ORA B #35E4 JOA FAUL+2 #35F4 JA1418 LDA FAUL+2 #35F7 E659 AHI #B#9H ;STRIP INFO #35F7 E659 AHI #B#9H ;STRIP INFO #35F7 E659 AHI #B#9H ;STRIP INFO #35F7 E659 ORA B ;AHD UPDATE INFO #35F8 DI POP H #AHI #35F8 DI POP H #AHI #35F8 DI POP	ð5DF 320918		STA	DSCR			
25E6 47 HOV B,A \$\$F7 3A\$\$518 LDA ERR0+2 \$\$F7 3A\$\$518 LDA ERR0+2 \$\$F6 E688 AHI \$\$B\$H \$\$5E7 BA ORA B \$\$5E7 B1 ORA C \$\$5E7 B1 ORA C \$\$5E7 26518 STA ERR0+2 \$\$5F1 L61E AHI 1EH :*ADDED FOR HUX 226 \$\$5F3 47 HOV B,A \$\$ \$\$5F4 3A1418 LDA FAUL+2 \$\$5F7 E659 AHI \$\$B\$PH :STRIP INFO \$\$5F8 DO ORA B :AND UPDATE INFO \$\$5F9 E0 ORA B :AND UPDATE INFO \$\$5F7 E0 ORA B :AND UPDATE INFO \$\$5F8 D1 POP H POP \$\$5F9 E1 POP D POP \$\$5F6 C1 POP B #6600 \$\$660 F1	05E2 E607		AHI	0 7H			
#5E7 3A#518 LDA ERR0+2 #5EA E688 ANI #B8H #5EC B4 DRA B #5ED B1 DRA C #5EF 32#518 STA ERR0+2 #5EF B1 DRA C #5EF 32#518 STA ERR0+2 #5F1 L61E ANI 1EH :*ADDED FOR HUX 226 #5F3 47 HOV B, A #5F4 JA1418 LDA FAUL+2 #5F7 E659 ANI #B9H ;STRIP INFO #5F5 E4 ORA B :AND UPDATE INFO #5F7 E659 ORA B :AND UPDATE INFO #5F7 E4 ORA B :AND UPDATE INFO #5F7 E4 POP H POP #5F7 E1 POP H POP #5FF D1 POP B #6600 F1 POP #6600 F1 POP PSH POP PSH	ð5E4 EEØ7		XRI	07 H			
#35EA E688 ANI #B8H #35EC B0 ORA B #35ED B1 ORA C #35E5 32#518 STA ERR0+2 #35F1 E61E ANI 1EH :*ADDED FOR HUX 226 #35F3 47 HOV B,A #35F4 3A1418 LDA FAUL+2 #35F7 E659 ANI #B9H :STRIP INFO #35F8 321418 STA FAUL+2 #35F9 B0 ORA B :AND UPDATE INFO #35F8 121418 STA FAUL+2 #35F9 E01 POP H #35F6 D1 POP B #35FF C1 POP B #3660 F1 POP PSH	35E6 47		KOV	B,A			
25EC 89 0KA B 25ED 81 0RA C 25EE 328518 STA ERR0+2 25F1 E61E ANI 1EH :*ADDED FOR HUX 226 35F3 47 HOV B,A 35F4 3A1418 LDA FAUL+2 35F7 E659 ANI 9B9H :STRIP INFO 35F7 5659 ORA B :AND UPDATE INFO 35F7 5659 ORA B :AND UPDATE INFO 35F5 E0 ORA B :AND UPDATE INFO 35F5 E0 DPP H DSFF C1 POP 95FF C1 POP B 8660 F1 POP	Ø5E7 3AØ518		LDA	ERR0+2			
83ED B1 0RA C 83EE 328518 STA ERR0+2 95F1 L61E ANI 1EH :*ADDED FOR HUX 226 95F3 47 HOV B,A 95F4 3A1418 LDA FAUL+2 95F7 E659 ANI 9B9H :STRIP INFO 95F7 B0 ORA B :AND UPDATE INFO 95F7 321418 STA FAUL+2 95F0 E1 POP H 93FE D1 POP D 95FF C1 POP B 8660 F1 POP PSH	45EA E688		AHI	088H			
#SEE 32#518 STA ERR0+2 #SF1 L61E ANI 1EH :*ADDED FOR HUX 226 #SF3 47 HOV B, A #SF4 3A1418 LDA FAUL+2 #SF7 E659 ANI #B9H :STRIP INFO #SF7 5659 ORA B :AND UPDATE INFO #SF7 321418 STA FAUL+2 #SFF 61 POP H #SFF 61 POP B #SFF 61 POP PSH	85EC 88		ORA	5			
#SEE 32#518 STA ERR0+2 #SF1 L61E ANI 1EH :*ADDED FOR HUX 226 #SF3 47 HOV B, A #SF4 3A1418 LDA FAUL+2 #SF7 E659 ANI #B9H :STRIP INFO #SF7 5659 ORA B :AND UPDATE INFO #SF7 321418 STA FAUL+2 #SFF 61 POP H #SFF 61 POP B #SFF 61 POP PSH	85ED 81		ORA	ĉ			
35F3 47 HOV B,A 35F4 3A1418 LDA FAUL+2 35F7 E659 AHI 9B9H ;STRIP 35F7 E659 ORA B ;AND UPDATE INFO 35F7 321418 STA FAUL+2 SFFD E1 POP H 35FE D1 POP D JSFFF C1 POP B 8660 F1 POP PSH SH SH SH	85EE 328518			ERRO+2			
35F3 47 HOV B,A 35F4 3A1418 LDA FAUL+2 35F7 E659 AHI 9B9H ;STRIP 35F7 E659 ORA B ;AND UPDATE INFO 35F7 321418 STA FAUL+2 SFFD E1 POP H 35FE D1 POP D JSFFF C1 POP B 8660 F1 POP PSH SH SH SH	95F1 E61E		ANI	1E#	:*ADDED	FOR	HUX 225
35F4 3A1418 LDA FAUL+2 35F7 E659 ANI 9B9H ;STRIP_INFO 35F7 E659 ORA B ;AND_UPDATE_INFO 35F7 B0 ORA B ;AND_UPDATE_INFO 35F7 321418 STA FAUL+2 35F0 E1 POP H 35FF D1 POP D 35FF C1 POP B 8600 F1 POP PSH	35F3 47						
35F9DØDRAB: AND UPDATE INFO\$5FA321418STAFAUL+2\$5FDE1POPH\$5FED1POPD\$5FEC1POPB\$660F1POPPSH	35F4 3A1418						
35F9BØDRAB; AND UPDATE INFO35FA321418STAFAUL+235FDE1POPH35FED1POPD35FFC1POPB8660F1POPPSH	95F7 E6B9		AHI	989H	:STRIP	INFO	
#5FA 321418 STA FAUL+2 #5FD E1 POP H #5FE D1 POP D #5FF C1 POP B #660 F1 POP PSH	35F9 BØ						
ØSFD E1 POP H ØSFE D1 POP D ØSFF C1 POP B Ø600 F1 POP PSH	95FA 321418						
JSFF CI POP B B660 FI POP PSN	05FD E1						
JSFF CI POP B B660 FI POP PSN	23FE 01		PûP	D			
8668 F1 POP PSH				-			
	8608 F1		-	-			
EDEL L/ REI	6691 69		RET				

	BLAP:	
0602 310019	LX1	Sp.1900H
0605 2A2818	LHLD	TRAP
0608 ES	PUSH	H
0609 CDE404	CALL	TSTOP
260C 140518	LD A	ERRO+2
850F F610	DRI	1 <i>0</i> H
ə611 320518	STA	ERRO+2
0514 3A1418	LOA	FAUL+2 ;*ADDED FOR MUX 226
3617 F610	081	104
9519 321418	STA	FAUL+2
2610 D338	<i>üüt</i>	RES65
\$61E 3E19	NV I	A.RSTEN ;RESET 7.5, DISABLE 5.5
2620 33	DS	30H :SIH
0o21 FB	EI	
8622 69	RET	;GOTO ERROR HANDLER
	TRPR:	
₽623 D333	QUT	RES65 ;RESET 6.5
0625 FB	EI	
9026 F5	PUSH	₽S#

₽627 C5		PUSH	5	
0628 D5		push	Ð	
3629 E5		PÜSH	#	
Ø62A JEFF		HVI		
262C 324618		STA	· ·	
			DRVPLS	
062F D808		IH	P2PTA	;IH LOCAL?
2631 E601		AHI	øih	
0633 CA6E06		JZ	TRPR1	
0636 3A0A18		LDA	DSCR+1	
2639 E60C		AHI	∌CH	
₫638 CA6EØ6		JZ	TRPRI	
\$63E 3A2518			KOTION	
2641 3C		IHR	A	
Ø642 FE19		CPI	25	
0644 C26F06		JHZ	TRPR2	
9647 2A1A18		ĹĦĽÐ	LSTPOS	
₹64A E8		XCHG		
0648 ŽA1818		LHLD	PASTN	
864E 221A18			LSTPOS	
3651 JA4A18				
		LDA	GETIT	;IN GET IT THERE?
0654 B7		GRA	A	
3655 C26006		JNZ	TRPRØ	;IF IH GET IT THERE
0658 3A2718		LDA	STEP	IGET STEP
9658 FE92		CPI	2	
065D DA6E06		JC	TRP21	
	T&PRØ:			
J66Ø €D98Ø4		CALL	RANGER	
2663 70		HOV	A.H	
9664 B7		û P A	Á	
8665 C26384				-E0000 10 NOTION
		JNZ	EDRV	;ERROR IN MOTION
9008 7D		áQ¥	A,L	
2669 FE28		CP1	4.3	
3668 DA6894		30	EDRV	;ERROR IN HOTION
	TRPR1:			
066E AF		XRA	A	
	TRPR2:			
066F 322518		STA	KOTION	
₫672 E1		POP	H	
8 573 01		POP	D.	
0674 C1		POP	8	
			-	
0675 F1		POP	PSW	
2676 C9		RET		
1.77	surp:			
∂677 F5		PUSH	PSW	
#678 25		PUSH	5	
0679 DS		PUSH	D	
867A E5		PUSH	H	
3678 0335		Z₩		;READ SHA-EVENT REG
8070 47		HOY	5.A	
207E E507		ANI	27H	
768 0 4 F		HOV	е/н С.А	
2681 78		50¥	A.8	
2682 E63S		AHI	3 <i>8</i> H	
2684 FE2 3		CPI	2 9 h	
8±86 CA9C 0 6		JZ	CHDRQ	
0689 FE10		(21	1 <i>3</i> H	
8688 CADF 8 6		22	DTARQ	
êceê 3A9218		EÐA	POSD+2	
3691 F640		∂RI -	4#H	SET CONTROLLER FAULT

9693	320218			f03D+2		
Ø696	321218		STA	FAUL	:+ADDED	FOR HUX 226
£699	C3F9ø6) M P	SKIP		
		CHORG:				
Ø09C	DRTJ		1.8	DSCDL		
267E				LA		
2076 869F			-			
			IN	DSCDH		
86Ai				H,A		
2642			AHI -	JFH		
25.44	EEZØ		XRI	29H		
26 A6	57		HOV	D,A		
36A7	50		Hav	E,L		
26 AS	ð6FF		₩¥1	B .TRUE		
06AA	79		Hav	A,C		
ê6 AB			ORA	Â		
	CAC306			ERVCHD		
26AF			021	• · · · • • • •		
	-			1		
	SADIGE			CHDRST		
2584			CPI	2		
	CAD806			HAPSET		
9689	221518		SHLD	NU2		
26EC	79		HOV	A,Ĉ		
265D	321718		STA	HU2+2		
26C#	C3F986		JHP	SKIP		
		DRVCKD:				
3-27	220518		SHLD	<i>crun</i>		
- 7505 - 8606 -			XCHG	LCNG		
				6.75 7.9 6		
	221018			CHDTHP		
26CA				A, B		
36CB	323F18		STA	DRVREQ		
860E (637996		JHP	skip		
86€£ (037906	CHDRST:		sk1p		
860E (CHDRST;	JHP	skip A.B		
86D1 -		CHDRST:	JHP Hov			
06D1 06D2	76 323 018	CHDRST:	JHP Hov Sta	A,B Reschd		
06D1 06D2	76		JHP Hov	Á,Ŝ		
8691 8602 8605 (75 323018 C3F9ø6	CMDRST: Hapset:	JHP Hov Sta JHP	A,B Reschd Skip		
0601 0602 0605 0608	76 323018 C3F906 78		JHP HOV STA JHP HOV	A,B RESCHD SK1P A,B		
0601 0602 0605 0608 0608	76 323018 C3F906 78 324918		JHP HOV STA JHP HOV STA	A,B RESCHD SKIP A,B NAPREQ		
0601 0602 0605 0608 0608	76 323018 C3F906 78	HAPSET:	JHP HOV STA JHP HOV	A,B RESCHD SK1P A,B		
0601 0602 0605 0608 0608 0609 0600	76 323018 03F906 78 324018 03F906		JHP HOV STA JHP HOV STA JHP	A,B RESCHD SKIP A,B NAPREQ SKIP		
3601 3602 8603 8608 8609 3600 9605	75 323018 03F906 78 324018 03F906 79	HAPSET:	JHP HOV STA JHP HOV STA JHP	A,B RESCHD SKIP A,B NAPREQ		
0601 0602 0605 0608 0608 0609 0600	75 323018 03F906 78 324018 03F906 79	HAPSET:	JHP HOV STA JHP HOV STA JHP	A,B RESCHD SKIP A,B NAPREQ SKIP		
0601 0602 0605 0608 0609 0609 0605 0605 0605	75 323018 03F906 78 324018 03F906 79	HAPSET:	JHP HOV STA JHP HOV STA JHP HOV	A,B RESCHD SKIP A,B HAPREQ SKIP A,C		
0601 0602 0605 0608 0609 0609 0600 0600 0605 0605 0600 0600	76 323018 03F906 78 324018 03F906 79 FE05	HAPSET:	JHP STA JHP HOV STA JHP HOV CPI	A,B RESCHD SKIP A,B NAPREQ SKIP A,C 5 DRQ1	;POINT T	O COUNTER
0601 0602 0605 0608 0609 0609 0600 0600 0605 0605 0600 0600	76 323018 03f906 78 324018 03f906 79 FE05 02e906 212A18	HAPSET:	JHP HOV STA JHP HOV STA JHP XOV CPI JHZ LXI	A,B RESCHD SKIP A,B NAPREQ SKIP A,C 5 DRQ1	•	O COUNTER NT PDINTER
0601 0602 0608 0608 0609 0605 0609 0605 0005 0005	76 323018 03f906 78 324018 03f906 79 FE05 02e906 212A18	HAPSET:	JHP HOV STA JHP HOV STA JHP HOV CPI JHZ	A,B RESCHD SKIP A,B NAPREQ SKIP A,C 5 DRQ1 H,ANAHX	•	
0601 0602 0605 0608 0609 0609 0609 0609 0609 0609 0609	76 323018 03F906 78 324018 03F906 79 FE05 02E906 212A18 34	NAPSET: DIARQ:	JHP HOV STA JHP HOV STA JHP HOV CPI JHZ LXI INR	A,B RESCHD SKIP A,B NAPREQ SKIP A,C 5 DRQ1 H,ANAHX	•	
0601 1602 0605 0608 0609 2605 0605 0605 0622 0625 2628 0625 2628	75 323018 03F906 78 324018 03F906 79 FE05 02E906 212A18 34 87	NAPSET: DIARQ:	JHP HOV STA JHP HOV STA JHP HOV CPI JHZ LXI IHR RLC	A,B RESCHD SKIP A,B NAPREQ SKIP A,C 5 DRQ1 H,ANAHX H	•	
0601 0602 0605 0608 0609 0607 00000 0000 0000 00000 0000000000	75 323018 03F906 78 324018 03F906 79 FE05 02E906 212A18 34 47 31	NAPSET: DIARQ:	JHP HOV STA JHP HOV STA JHP HOV CPI JHZ LXI IHR RLC ADD	A,B RESCHD SKIP A,B NAPREQ SKIP A,C 5 DRQI H,ANAHX H	•	
0601 0602 0605 0608 0609 0609 0609 0609 0605 0605 0625 0625 0625 0628 0628 0628 0628 0628 0628 0628 0628 0628 0628 0628 0605 0005 0005 0005 0005 0005	76 323018 03F906 78 324018 03F906 79 FE05 02E906 212A18 34 E7 81	NAPSET: DIARQ:	JHP HOV STA JHP HOV STA JHP HOV CPI JHZ LXI INR RLC ADD HOV	A,B RESCHD SKIP A,B NAPREQ SKIP A,C 5 DRQ1 H,ANAHX H C L.A	•	
0601 0602 0605 0608 0609 0607 0000 00000 0000 0000000000	76 323018 03F906 78 324018 03F906 03F906 79 FE05 02E906 212A18 34 27 31 6F 2018	NAPSET: DIARQ:	JHP HOV STA JHP HOV STA JHP XOV CPI JHZ LXI IHR RLC ADD HOV HVI	A,B RESCHD SKIP A,B HAPREQ SKIP A,C 5 DRQ1 H,ANAHX H C L,A H,18H	•	
3601 3602 3603 3608 3609 3607	76 323018 03F906 78 324018 03F906 79 FE05 02E906 212A18 34 87 81 6F 2618 7E	NAPSET: DIARQ:	JHP HOV STA JHP HOV STA JHP XOV CPI JHZ LXI IHR RLC ADD HOV HVI SOV	A,B RESCHD SKIP A,B NAPREQ SKIP A,C 5 DRQ1 H,ANAMX H C L,A H,18H A,M	•	
3601 3602 8603 8603 8609 8609 8609 8607	76 323018 03F906 78 324018 03F906 79 FE05 02E906 212A18 34 87 91 6F 2618 7E 2618 7E 2618	NAPSET: DIARQ:	JHP HOV STA JHP HOV STA JHP XOV CPI JHZ LXI IHR RLC ADD HOV HVI HVI HOV OUT	A,B RESCHD SKIP A,B NAPREQ SKIP A,C 5 DRQ1 H,ANAHX H C L,A H,18H A,R DSDT1	•	
3601 3602 3602 3608 3609 3607	76 323018 03F906 78 324018 03F906 79 FE05 02E906 212418 34 E7 91 6F 2618 7E 2618 7E 2332	NAPSET: DIARQ:	JHP HOV STA JHP HOV STA JHP HOV CPI JHZ LXI INR RLC ADD HOV HVI SOV OUT 1NY	A,B RESCHD SKIP A,B NAPREQ SKIP A,C 5 DRQ1 H,ANAHX H C L,A H,18H A,H D3DT1 H	•	
0601 1602 0605 0608 0609 0609 0609 0609 0609 0622 0625 0625 0625 0625 0625 0625 0625 0625 0625 0625 0625 0625 0625 0625 0625 0625 0625 0625 0605 0005 0005 0005 0005 0005 0005	75 323018 03F906 78 324018 03F906 79 FE05 02E906 212A18 34 67 81 6F 2618 7E 0332 23 7E	NAPSET: DIARQ:	JHP HOV STA JHP HOV STA JHP HOV CPI JHZ LXI IHR RLC ADD HOV HVI HOV OUT 1HY HOV	A,B RESCHD SKIP A,B NAPREQ SKIP A,C 5 DRQ1 H,ANAHX H C L,A H,18H A,H D3DT1 H H J,M	•	
0601 1602 0605 0608 0609 0609 0607 00000 0000 0000000000	75 323018 03F906 78 324018 03F906 79 FE05 02E906 212A18 34 67 81 67 81 67 9332 23 75 0332 23 75 0333	NAPSET: DIARQ:	JHP HOV STA JHP HOV STA JHP HOV CPI JHZ LXI INR RLC ADD HOV HVI SOV OUT 1NY	A,B RESCHD SKIP A,B NAPREQ SKIP A,C 5 DRQ1 H,ANAHX H C L,A H,18H A,H D3DT1 H	•	
0601 1602 0005 0608 0609 0609 0607 00000 0000 0000000000	76 323018 03F906 78 324018 03F906 79 FE05 02E906 212A18 34 87 81 6F 2618 7E 0332 23 7E 0333 23	NAPSET: DIARQ:	JHP HOV STA JHP HOV STA JHP HOV CPI JHZ LXI IHR RLC ADD HOV HVI HOV OUT 1HY HOV	A,B RESCHD SKIP A,B HAPREQ SKIP A,C 5 DRQI H,AHAHX H C L,A H,IBH A,M DSDT1 H Z,M DSDT2 H	•	
0601 1602 0605 0608 0609 0609 0609 0609 0609 0605 0665 0655	76 323018 03F906 78 324018 03F906 79 FE05 02E906 212A18 34 87 81 6F 2618 7E 0332 23 7E 0333 23 7E	NAPSET: DIARQ:	JHP HOV STA JHP HOV STA JHP HOV CPI JHZ LXI IHR RLC ADD HOV HVI HOV OUT IHY HOV OUT IHY HOV	A,B RESCHD SKIP A,B HAPREQ SKIP A,C 5 DRQI H,AHAHX H C L,A H,IBH A,M DSDT1 H A,M DSDT2 H A,M	•	
0601 1602 0005 0608 0609 0609 0607 00000 0000 0000000000	76 323018 03F906 78 324018 03F906 79 FE05 02E906 212A18 34 87 81 6F 2618 7E 0332 23 7E 0333 23 7E	HAPSET: DTARQ: DRQ1:	JHP HOV STA JHP HOV STA JHP HOV CPI JHZ LXI IHR RLC ADD HOV HVI HOV OUT IHY	A,B RESCHD SKIP A,B HAPREQ SKIP A,C 5 DRQI H,AHAHX H C L,A H,IBH A,M DSDT1 H Z,M DSDT2 H	•	
0601 0602 0605 0608 0609 0607 0607 0607 0622 0625 0625 0628 0628 0628 0628 0628 0628 0628 0628 0628 0628 0629 0625 0655	76 323018 03F906 78 324018 03F906 79 FE05 02E906 212A18 34 27 91 6F 2618 7E 9332 23 7E 9333 23 7E 9334	NAPSET: DIARQ:	JHP HOV STA JHP HOV STA JHP HOV CPI JHZ LXI IHR RLC ADD HOV HVI HOV OUT IHY HOV OUT IHY HOV	A,B RESCHD SKIP A,B HAPREQ SKIP A,C 5 DRQI H,AHAHX H C L,A H,IBH A,M DSDT1 H A,M DSDT2 H A,M	•	
0601 1602 0605 0608 0609 0609 0609 0609 0609 0605 0665 0655	76 323018 03F906 78 324018 03F906 79 FE05 02E906 212A18 34 27 91 6F 2618 7E 9332 23 7E 9333 23 7E 9334	HAPSET: DTARQ: DRQ1:	JHP HOV STA JHP HOV STA JHP HOV CPI JHZ LXI IHR RLC ADD HOV HVI HOV OUT IHY HOV OUT IHY HOV	A,B RESCHD SKIP A,B HAPREQ SKIP A,C 5 DRQI H,AHAHX H C L,A H,IBH A,M DSDT1 H A,M DSDT2 H A,M	•	

96FA D1	pop	D
₽6FB C1	P0P	5
26FC F1	909	PSW
06FD F3	EI	
96FE C9	RET	

	:AHALOG TABLE	LG HI	
	ANATAB:		
Ø6FF EAJ7FE5B	DH	∂7EAH.ØBFEH	HOUNT TEMP
37 83 FC 04 2805	DW	04FCH,0528H	;-15/4
0797 D36A0408	DH	JAD8H.JBJ4H	;+15/4
370B 8508FE08	0 #	∂BB6H,ØBFEH	:≠ 5
070F E40EEC0B	Dä	øBE4H,∂BECH	;+10/2
0713 0000 FF ØF	DW	80edh.øfffh	:FOC VEL
3717 <i>3</i> 000ffðf	DH	joodh,sfffh	;ROT VEL
9718 FC070408	DH	07FCH,9804H	;0#D

;RAHP TABLE

£716 Ø	ə CK149:	D2	Cəh
0720 3·	e CK150:	DB	34H
#721 5	ş	DB	52H
Ø722 66	}	58	6 <i>0</i> H
\$723 6	7	DB	67H
<i>3</i> 724 71	Í	DB	718
9725 7	5 CX 400:	Ū8	75H
9726 78	3	$p_{\mathcal{B}}$	78H
\$727 8i	a	D B	834
9728 82	2	DB	82H
Ø729 8	3	D 8	83H
₹72A 8	;	₽B	85 H
3728 Se	5	D 8	86H
9720 87	,	DB	87 H
872D 81	}	DB	888
₽72E 89)	ÛB	89 <i>H</i>
#72F 94) CK1000:	DB	9 8 H

9739

EHD

J

÷.	F/R HODLE	-e code i	0R R	ƏTATION -
;	HAY 39, 1	985		

;EQUATES

0030	;	P1PTA:	Eàü	00H	;PROH 1, FORT A
əə91	:	P1PT5:	Eáli	ð í á	;PROH 1. PORT B
ê9 9 2	=	PIDDA:	EQU	∂ 28	;PROH 1, PORT A DIR
8663	-	P1DD8:	Eêü	ê 3 H	;PROK 1, PORT B DIR
r008	-	P2PTA:	Egu	88 H	;PRDH 2. PORT A
3889	-	P2PTB:	Eau	89H	;PROH 2, PORT B
รีย์ ฮ่ ส	-	P2DDA:	EQU	₽ AH	;PROH 2. PORT A DIR
808B		P2DDB:	Eqü	281	;PROM 2, PORT B DIR
29 18	÷	RCHD:	EQU	188	;RAN CHD/STAT REG ADDR
9019	-=	RHPTA:	EQÜ	198	;RAN PORT A
001A	=	RHPTB:	Equ	1 AH	:RAN PORT B
201B	=	KMPTC:	Eêü	13#	;KAN PORT C
201C	=	TIHLQ:		i CH	;TIHER LSB
991D	=	Tikkl:	Eêu	1DH	;TIHER HSB
<i>3</i> ₿28		P995 L:			;POS LSB
2ø29		POSH:			
002A					;VELOCITY
9028		APDCR:			
902C		AHAL:			;APEX AHA LSB
əə2d			Eau	2DH	;APEX ANA HSB
60]8		DSCDL:			;DS CHD LSB
		dscen:			;DS CHD HSB
		DSDT1:			;DS DATA LSB
	:				
9934		∂SDT3;			;DS DATA HSB
2435		SHAEV:		35H	
3 9 38		Alet:			
	-				
	=				
		PROUT:			PRON PORT OUTPUT
6699		PRIX:			;PROM PORT INPUT
2019		RSTE#:			\$SIH WASK, DISABLE 5.5 ONLY
2000		FALSE:		9	
əəf f	2	TRUE:	Equ	ØFFH	

;DATA SET TABLE

:300		ûkû	18 30 h	START OF RAN HENORY
1339	P03D:	ə s	3	:HUX 230 - POSITION & STATUS BITS
1393	ERBÛ:	55	3	: 231 - CHD-POS & STATUS BITS
1926	ECH0:	Ð 3	3	; 232 - CHD ECHO
1599	036R:	ē3	J	; 233 - RESPONES & CHD SENSE, CLK CONTROL
1520	ADCR:	ÐS	š	; 234 - APEX DISCRETS & VELOCITY
1921	HA AU :	98	3	: 235 - ANALDO FAJETS & VOLTAGES
1512	EAUL:	<i>6</i> 8	3	: 236
1815	882:	D3	3	shux 237

SALUES & ARGUEHENTS

181 A	LSTPOS:	ÐS	2	;LAST POSITION
1810	CADTHP:	ÐS	2	TEHPARARY CHD
181E	ATVCHD:	DS	2	ACTIVE CHD
1820	PIPAST:	ÐS	i	;EPRON INAGE
1821	PIPEST:	DS	1	;EPRON INAGE
1822	RHPAS:	ÐS	i	RAH INAGE
1823	RKPBS:	0S	i	:RAH IHAGE
1824	RHPES:	ÐS	1	RAN INAGE
1825	HOTION:	ÐS	1	HOTION ANALYSIS COUNTER
1826	STEP:	ÐS	1	FREQUENCY STEP FOR RANP
1327	RMPTO:	DS	:	RANP TO THIS SPEED
1828	TRAP:	ÐS	2	ADDRESS OF ERRO CODE
132 A	ANANX:	DS	1	:APEX HUX CHTR
1828	APAPTR:	DS	i	;APEX HUX POINTER
1820	AP AT AB :	ÐS	10	APEX ANALOG STORAGE
	FLAOS:			
1330	RESCHD:	ØS	i	RESET CHD
183D	DRVATV:	DS	1	:DRIVE ACTIVE
183E	HAPATY:	DS	1	:HAP ACTIVE
183F	DRYREQ:	ÐS	1	DRIVE REQUEST
1849	HAPREG:	ŪS.	1	:NAP REQUEST
1841	ACCEL:	25	1	OK TO ACCELERATE
1842	RAHPUP:	ÐS	1	RANP UP STAGE
1843	ääin:	DS.	2	HAIH DRIVE STAGE
1844	RAHPDN;	ÐS	i	RANP DOWN STAGE
1845	CONVRG:	DS	2	:CONVERGANCE STAGE
1346	DRVPLS:	ÐS	1	ATH DRIVE PULSE OCCURED
1847	DIR:	DS	1	CURRENT DIRECTION
1343	LDIR:	ÐS	1	LAST DIRECTION
1849	RAXP:	0S	1	;RAMPED UP OR NOT
184A	GETIT:	ðS	1	GET IT THERE SOMEHOW
184B	RHGCKD:	ÐS	i	HAITING RING COMMAND
184C	EXTFLG:	ØS	1	RING EXTEND FLAG
1840 =	ERDF16:	Eau	\$;END OF FLAGS
	+8596T .	A INTERU	6T	
	146961			
0030		ûRG	ÿ	
8008 F3		DI		
0001 C34009		JHP	INIT	;GET THINGS ORGANIZEÐ
9924 		ORG	24H	;TRAP SERVICE
0024 F3		DI	21.10	37.30
2025 031307		JHP	BLAP	;STƏP, WHAT'S WRONG
B02C		0RG	20#	;AST 5.5
002C FB		EI		
2020 C3		κET		;WƏT USED
9934		<i>4</i> 26	34H	RST 6.5 SEVICE
2034 f3		9 1		
2035 633407		∛#₽	TRPR	ACKNOLEDGE DRIVE PULSES
9438		ŨRG	3 <i>8</i> H	; JUT-OF-BJUNDS
2218 F3		<i>B1</i>	•	
3039 C343 80		JHP	IHIT	
JØ3C		ÛÂG	3CH	:RST 7.5 SERVICE

003C	F3	<i>ð</i> I		
ðø30	C388#7	Jäp	BURP	;SERVICE D.S. REQ

;INITIALIZATION

ð ð 40	<u> J</u> RG	4 <i>6</i> H
1417:		
8940 J10919	LXI	SP,1900H:SET STACK
0043 3E4F	avi	A.RHODE
2645 D318	<u> </u> UT	RCHD ;SET RAH PORTS FOR OUTPUT
0047 3EFF	H¥I	A,PROUT
0649 D302	OUT	PIDDA SET PROM PORTS FOR OUTPUT
8048 D393	∂üT	PIDDB
ð@4D 3EðØ	HV I	A,PRIH
804F D30A	JUT	P2DDA ;SET PROH PORTS FOR INPUT
2651 D328	0UT	P2008
8053 A F	XRA	.4
0254 0319	687	RHFTA ;ZERO PORTS
E856 D31A	0 U T	RHPTB
8858 D316	0UT	RHPTC
005A D300	0üT	PIPTA
8650 8381	0UT	P1PTB
205E 212018	LXI	H,1904H
2201 47	10V	6, A
100P:		;CLEAR MEHORY
0062 77	HOV	H.A.
əd63 23	INX	H
3864 B5	DER	8
0065 C26200	JHZ	LOOP
	00T	RES65 ;SETUP INTERRUPTS
	HV I	A, RSTEH
	DB	30R ;\$1K
096D FB	13	

BOSS:

ØØ6E CDFEØ5	CALL	DSTOR	;GATHER DATA
0071 3A0518	LDA	ERRû+2	
2074 E608	AHI	#8H	;CHECK APEX INTERFACE OK
			RESET SYSTEM IF NOT
2079 DB08	18	P2PTA	
2078 E601	ANI	∌1H	CHECK FOR LOCAL HODE
007D CAB6J2	J2	LUCAL	
6680 3A3C18	LDA	RESCHD	
908 3 67	ŰŔĂ	A	CHECK FOR SOFT RESET
2084 C21301	JHZ	CRDRS	
2097 3A3D18	LDA	DRVATV	
308A 87	ORA	Å	CHECK DRIVE ACTIVE
8988 C24001	J#2	CHKDRV	
008E 3A0518	LDA	ERRJ+2	
2091 E680	<i>381</i>	89H	CHECK KING ACTIVE
8893 C28303	v#Z	CHKRNG	
9096 3A3E19	LDA	H AP AT V	
3099 67	ORA	A	CHECK WAP ACTIVE
209A C2B600	JHZ	apaok	;IGNUR REQUESTS
9090 343F19	LEA	DRVREQ	
ððað b7	úRA	4	;DRIVE REQUEST

JØA1 C25DØ1	J#7	DRVINT	
JJA 4 3A4018		RAPREQ	
90A7 67	ORA		;NAP REQUEST
88A8 CAB688	JZ	APAOK	jan neucloi
POAB 323E18	STA	NAPATV	;SET ACTIVE
30AE 3A0518		ERRO+2	
2081 F620	ORI		;SHOH ACTIVE
2083 323518		ER80+2	
	AP AOK :		CHECK APEY VALTAGES
30B6 3A2818	LDA	APAPTR	GET HUX POINTER
308 9 30	188	A	NEXT ANALOG TO LOOK AT
003A E607	AN I	Ø7H	: XOD 8
00BC 322B18	STA	AP APT R	SAVE HEN VALUE FOR NEXT PASS
ðøbf f5	PUSH	PSW	SAVE FOR FURTHER USE
30C 9 07	RLC		;SHIFT LEFT FOR WORD INDEXING
00C1 4F	HOV	Ċ.A	;SAVE IN C
00C2 07	RLC		;SHIFT AGAIN FOR 2 WORD INDEXING
00C3 ŠF	HOV	Ē,A	ISAVE IN E
ðøc4 218368	£ΧΙ	H, ANAT)	AB;VOLTAGE RANGES
80C7 160 0	AV I	D,9	SET DE FOR INDEXING
38C9 17	DAD	Ð	:POINT TO & GET LON LIMIT IN DE
eeca se	HOV		
39CB 23	IHX	H	
2900 58	HOV	D,H	
88CD 23	IHX	H	
SACE ES	FUSH	ĥ	SAVE POINTER
30CF 212018			NB:APEX ANALOG STORAGE
3002 3699 1704 20			SET BC
3304 89 1805 15	ŪAO Hov		FORM INDEX
0PD5 4E 3006 23	nur Inx		GET ADJUSTED VALUE INTO HL
8000 23 8887 7E	ink Hov	H 1 2	
9909 72 3908 E69F		n, n ØFH	
3004 EE08	XRI		
3004 2200 300C 57		эсн Н.А	
8900 69	КОК	L,C	
JODE ES	PUSH	H	;SAVE AHALOG
ØØDE CDAFØS	CALL		CHECK LOW LINIT
00E2 D1	POP		;GET ANALOG
90E3 E1	POP	H	GET POINTER
9 0E4 79	Hev	A.C	
00E5 B7	ORA		;IF OUT-OF-RANGE, GO SET FAULT
89E6 C2F888	JHZ		
əøe9 7e	HOV	A,M	;GET HIGH LINIT
30EA 23	IHX	H	
99E8 66	HOV		
abec 6f	HQV	•	
gged CDAF05	CALL	RANGER	;CHECK HIGH LIMIT
	ANAFET:		
JAFA FI			;GET HUX POINTER BACK
∂∂F1 47	KOV	•	
00F2 04 00F3 3E80	IAR	8 1. 0.74	
TVF3 3238	aVI FLTSFT:	4,500	;BIT HASK
3 8F5 87	rlisri: RLC		:ROTATE BIT TO POSITIGH
00r0 07 Adf6 05	DCR	e	şkutmiz oli iv fusiliyh
30F7 02E528	JH2	ELTSET	
ØðFA 57	adv	0.A	;OR HASK
Bøfb 2f	CHA		
JØFC 5F	HOV	E,A	;AND HASK

30FD 79	HOV	A, C
00FE 87	ORA	A ;HAVE A FAULT
90FF 3A1113	LDA	AHAD+2
0102 c23901	JHZ	SETFLI
2105 43	AHA	E ;RESET BIT
0106 C30A01	JXP	STRFLT
	SETFLT:	
8109 B2	ÛRA	0 :SET BIT
	STRFLT:	
ələa 321118	STA	AN AD+2
2100 321319	STA	FAUL+1 :*ADDED FOR NUX 236
0110 C36E00	JHP	BUSS
	CHDRS:	
0113 AF	XRA	A ;CLEAR FAULTS
8114 320218	STA	POSD+2
3 117 321218	ST A	FAUL :*ADDED FOR HUX 236
011A 320518	STA	ERRO+2
811D 3A1418	LDA	FAUL+2 :*ADDED FOR MUX 236
0120 E6E0	AHI	JE OH
0122 321418	STA	FAUL+2
	RSCHD:	
0125 310019	LXI	SP,1900H;RESET STACK
0128 CDE905	CALL	TSTOP ;STOP TIHER & DRIVE
0128 CDA202		DRVSTP
012E CDCE04		TRHOF ;TURN OFF TRANSLATOR
0131 213C18	LXI	H.FLAGS
₹134 0611	HVI	B.(ENDFLG-FLAGS) AND 255
0136 AF	XRA	A
	CLRLP:	;CLEAR FLAG TABLE
<i>8137 77</i>	HOV	K. A
0138 23	INX	H
0139 05	DCR	Ē
013A C23701	JHZ	CLRLP
3130 C36E00	JHP	BOSS

; CONNAND POSITION HANDLER

CHKDRV:

0140 3A3F18	LDA	DRVREQ	
<i>ð</i> 143 87	GRA	A	;DO WE HAVE A NEW CND
e144 CA0402	JZ	DRVTSI	IF NO WORK OH OLD CHD
§147 2A1C18	LHLD	CHDTHP	
<i>€14A EB</i>	XCHG		
Ø148 2A1E18	LHLD	ATVCHD	
014E CD9705	CALL	VECTOR	;CHECK IF THEN-OLDT (4
€151 CBC905	CALL	CLOSE	
0154 DA0002	эc	CLRREQ	; IF YES CLEAR REQUEST
₹157 CDE9 0 5	CALL	TSTOP	STOP TIMER AND DRIVE
015A CDA202	CALL	DRVSTP	
	DRVINT:		
015D AF	λRA	નં	CLEAR REQUESTS, FLAGS, AND FAULTS
315E 324A18	37 A	GET IT	
ē161 320218	STA	POSD+2	
ð 164 321218	STA	FAUL	;*ADDED FOR MUX 236
	DRVIHI: STA	STEP	
\$16A 323818	STA	ərveeq	
31eD 324118	STA		
ð 17ø 32ð51ð	57 A	ERRO+2	

8 173 322518		STA	HOTION	;INITIALIZE HOTION COUNTER
₹176 3A1418		LDA	FAUL+2	;*ADDED FOR HUX 236
8179 E6E8		AH I	əe əh	
#17B 321418		STA	FAUL+2	
Ø17E 2A1C18		LHLD	CHDTHP	
				WINE TENS AND THE ANTINE AND
Ø181 221E19		SRED	AIVGRU	;NAKE TEHP CHD THE ACTIVE CHD
0184 CDFE05		CALL		
₽187 3A4718		LDA		
918A 324818		sta	LDIR	;SETUP LAST DIRECTION
018D 2A1818		LHLD	POSTN	
0190 221A18			LSTPOS	;SETUP LAST POSTION
0193 2A6318			ERRO	,
J196 CDC905				:ERRO (4
9199 0A6E99		1.7	00000	JE OLOOF BORT DO JUNTRIDO
		26 724	0000	; IF CLOSE DON'T DO ANYTHING
0190 118EFF		LAI	0,-114	;FIHD STEP TO RAHP TO
ð195 ð612		₩¥I	8.19	
əlal 1,44418		EDA	GE717	;GET, IT THERE SOMEHOM?
3144 BT		ORA	A	
ði as caaaði		JZ	DIV	;1F NOT
31A3 86 8 5		HV I	8.5	
	DIV:		•	
ƏTAA BEFF		WV T	1 - 1 48	D 255 :A HILL CONTAIN STEP TO RAMP TO
2.44 9611	DIV1:		9 1 1 00	o 100 și ale contată diel lo kan iç
<i>₽1AC</i> 30		190	,	
			A	
01AD 19		DAD	Û	
ðlae daacði		0 A 0 30 CHP 12	DIVI	
0181 B9		CHP	5	
<i>3182 DA</i> 87 <i>01</i>		<i></i>	AUA	
J185 Ø5		DCR		
ði86 73		HOV	A.8	;IF A>B THEN A=B-1
	AGK:			
0:87 322710		STA	RHPTO	;SAVE RESULT
JIBA 87				;IF A=0 DON'T RAHP
9188 CAC6 91		17	ногир	jli A-D DUR F RAM
			AURAF A,TRUE	
JIBE JEFF		RV 1	A, I KUE	
9109 324118		STA	ACCEL	;SETUP FOR RAHP
Ø1C3 324218		STA	RANPUP	
	HORMP:			
₫106 2F		CHA		
J1C7 324518		STA	CONVRG	
01CA CDF104		CALL	BRKOH	ACTIVATE BRAKE & TRANSLATOR
JICD CDAB04		CALL	TRNOH	
<i>₽100 AF</i>		XRA	A	
0101 320818		STA	-	:UPDATE INAGE
0104 0301		QUT		
2106 JA4718		LDA	DIR	2361 7VA 1998
0109 87		ORA	A	;NHICH DIRECTON
JIDA JAGA18		LÛA	DSCR+1	;GET IHAGE
010D C2E501		JHZ	ĈC₩	
ə1 Eə F6ə9		ori	29H	;DRIVE CH
01E2 C3E701		JHP	HOVIT	
	20#±			
01E5 F645		9RI	ð5H	;DRIVE CCH
	HOVIT:			
01E7 320A18		STA	∂scr+1	;UPDATE IHAGE
31EA 0338		0UT		SEND IT
91EC 216705		EXI	H,EDRV	
Ø1EF 222818				;SETUP ERROR HANDLER
∂ 1F2 21983A		2.8.2		:15 SECS TO GET THERE
01F5 CD0005		CALL		••••
· · · · · · · · · · · · · · ·				

Ø1F8 3EFF				
		HVI	A,TRUE	
#1FA 323D18				:SET DRIVE ACTIVE
01FD C36E00				
		• ***	2000	
	CLRREq:			
9200 AF				
		XRA		
0201 323F18		∋:A	UNYKEB	;CLEAR REQUEST
	DRVTST:			
0204 CDFE05		CALL	DSTOR .	;GET LATEST DATA
0207 DB28			APDCR	
0209 E6 0 4				;CHECK FOR BRAKE DISENGAGED
020B CA4F05		JZ	EBRK	:1F NOT, JUHP TO ERROR ROUTINE
020E 3A4118		LDA	ACCEL	
∂211 B7		GRA	A	CHECK FOR ACCELERATION
3212 CA2A 32		JZ	PLOD	;1F HOT, FLOD ALONG
∂ 215 344218				
9218 B7				:IN RAHP UP
				IF YES, RAHP UP
6210 JÄ4313				The response of
0216 57 0216 57				:IN HAIN DRIVE
				;IF YES, CHECK WHEN TO RAMP DOWN
0223 3A4418				
ð226 8 7				;RAKP DONN?
9227 C26392		JHZ	ZIPDH	;IF YES, DO IT
	PLOD:			
022A 3A4510		LDA	COHVRG	
2220 B7		ÛRA	Å	;CONVERGING?
@22E C276 ∂2				; IF YES, CONVERGE
0231 CDE905				
#234 CDA2#2				STOP DRIVE
				;TURH OFF TRANSLATOR
823A C35E88				;SEE HHAT'S NEXT
PIGA COULUU		VIII	2022	JUL KANI S HERI
	21500.			
4178 241740	21808:			057 0750 TO 0440 TO
0230 3A2718				;GET STEP TO RAHP TO
∂24∂ 4F		HOV		
0241 CD4904		CALL		;RANP TO IT
8244 AF		XRA	A	
0245 324218				;RAHPUP TO HAIN
		STA	RAHPUP	jkanfof ið halm
0248 2F		CKA		;KMAFOF IU AALA
0248 2F 0249 324318	;	CHA Sta	RAHPUP Hain	jKMAFOF IU AALA
0248 2F	;	CHA Sta		jKARFOF IU HALA
0248 2F 0249 324318		CHA Sta	HAIN	;KARFOF TU HALM
0248 2F 0249 324318 024C C36E00	;	CHA Sta	HAIN	;KARFOF TU HALM
0248 2F 0249 324318	HAINCK:	CHA Sta	HAIN BUSS	;KARFOF TU HALM
0248 2F 0249 324318 024C C36E00	dainck:	CKA STA JHP LHLD	HAIN BUSS	
0248 2F 0249 324318 024C C36E00 024F 2A0319	HAINCK:	CHA STA JHP LHLD LX1	HAIN BJSS ERRO D,6276H	
0248 2F 0249 324318 024C C36E00 024F 2A0319 0252 117602	dainck:	CHA STA JHP LHLD LX1	HAIN BJSS ERRO D,G276H RANGER	
0248 2F 0249 324318 0240 C36E00 0247 2A0318 0252 117602 0255 CDAF05	dainck:	CKA STA JNP LHLD LX1 CALL	HAIN BJSS ERRO D,6276H	
0248 2F 0249 324318 024C C36E00 024F 2A0319 0252 117602 0255 CDAF05 0258 79	dainck:	CHA STA JHP LHLD LXI CALL HOV JRA	HAIH BJSS ERRO D,6276H RANGER A,C A	
0248 2F 0249 324318 0240 C36E00 0252 117602 0255 CDAF05 0258 79 0259 67 0254 CA6E00	dainck:	CHA STA JHP LHLD LX1 CALL HOV GRA JZ	HAIH BJSS ERRO D,6276H RANGER A,C A BOSS	;AT THE RAMP DOWN POINT?
0248 2F 0249 324318 0240 324318 0240 326800 0252 117602 0255 CDAF05 0258 79 0259 57 0259 57 0259 AF	dainck:	CHA STA JHP LHLD LX1 CALL HOV ORA JZ XRA	HAIH BOSS ERRO D, Ø276H RANGER A, C A EOSS A	
0248 2F 0249 324318 0240 C36E00 0252 117602 0255 CDAF05 0258 79 0259 67 0259 67 0254 CA6E00 0255 AF 0255 324318	¢Alkck:	CHA STA JHP LHLD LX1 CALL HOV ORA JZ XRA STA	HAIH BJSS ERRO D,6276H RANGER A,C A BOSS	;AT THE RAMP DOWN POINT?
0248 2F 0249 324318 024C C36E00 0252 117602 0255 CDAF05 0258 79 0259 B7 0259 B7 0259 AF 0250 AF 025E 324318 0251 2F	dainck:	CHA STA JHP LHLD LX1 CALL HOV ORA JZ XRA STA CHA	HAIN BJSS ERRO D,0276H RANGER A,C A BOSS A HAIN	;AT THE RAMP DOWN POINT?
0248 2F 0249 324318 0247 324318 0247 324318 0252 117602 0252 117602 0255 CDAF05 0258 79 0259 57 0259 57 0259 57 0254 CA6E00 0255 324318 0255 324318 0251 2F 0252 324418	dainck:	CHA STA JHP LHLD LX1 CALL HOV ORA JZ XRA STA STA	HAIH BJSS ERRO D,0276H RANGER A,C A BJSS A HAIH RANPDH	;AT THE RAMP DOWN POINT?
0248 2F 0249 324318 024C C36E00 0252 117602 0255 CDAF05 0258 79 0259 B7 0259 B7 0259 AF 0250 AF 025E 324318 0251 2F	dainck:	CHA STA JHP LHLD LX1 CALL HOV ORA JZ XRA STA STA	HAIH BJSS ERRO D,0276H RANGER A,C A BJSS A HAIH RANPDH	;AT THE RAMP DOWN POINT?
0248 2F 0249 324318 0247 324318 0247 324318 0252 117602 0252 117602 0255 CDAF05 0258 79 0259 57 0259 57 0259 57 0254 CA6E00 0255 324318 0255 324318 0251 2F 0252 324418	dainck:	CHA STA JHP LHLD LX1 CALL HOV ORA JZ XRA STA STA	HAIH BJSS ERRO D,0276H RANGER A,C A BJSS A HAIH RANPDH	;AT THE RAMP DOWN POINT?
0248 2F 0249 324318 0249 324318 0240 C36E00 0252 117602 0255 CDAF05 0258 79 0259 B7 0259 B7 0259 B7 0259 B7 0259 B7 0259 AF 0250 AF 0251 2F 0251 2F 0251 2F 0252 324418 0265 C36E00	HAINCK: ZIPEH:	CHA STA JHP LHLD LX1 CALL HOV ORA JZ XRA STA STA CHA STA JHP	HAIH BOSS ERRO D,6276H RANGER A,C A BOSS A HAIH RAMPDH BOSS	;AT THE RAMP DOWN POINT? :IF YES, HAIN TO RAMPDN
0248 2F 0249 324318 0240 324318 0240 324318 0252 117602 0255 CDAF05 0258 79 0259 57 0259 57 0259 57 0259 57 0250 AF 0252 324318 0251 2F 0262 324418 0265 336500 0258 CD7204	HAINCK: ZIPEH:	CHA STA JHP LHLD LX1 CALL HOV ORA JZ XRA STA STA STA STA STA CHA STA CHA STA CHA	HAIH BOSS ERRO D,6276H RANGER A,C A BOSS A HAIH RAMPDH BOSS RHPDH	;AT THE RAMP DOWN POINT? ;IF YES, HAIN TO RAMPDN ;RAMP DOWN FROM CURRENT STEP
0248 2F 0249 324318 0249 324318 0240 C36E00 0252 117602 0255 CDAF05 0258 79 0259 B7 0259 B7 0259 B7 0259 B7 0259 B7 0259 AF 0250 AF 0251 2F 0251 2F 0251 2F 0252 324418 0265 C36E00	dainck: Zipen:	CHA STA JHP LHLD LX1 CALL CALL STA JHP CALL KRA	HAIH BOSS ERRO D,6276H RANGER A,C A BOSS A HAIH RAMPDH BOSS RHPDH	;AT THE RAMP DOWN POINT? :IF YES, HAIN TO RAMPDN

926F 2F		CHA		
8270 324518			CONVRG	
0273 C36E00		JHP		
000000		• 111	0000	
	HOVIN:			
#276 2A#318		LHLD	5000	
0279 C0C905				;HITHIH 4 COUNTS
0277 000,00 0270 078602		JNC		,MIININ + GOCATS
227E SF				.IF VEC 20 OVERANN BOTHE
				;IF YES, GO SHUTDOWH DRIVE
0280 324518			CONVRG	
0283 C36E09	HOV1:	JHP	5033	
200/ 74/740		1.5.4	570	
0286 3A4718 3000 47				CURRENT DIRECTION
8289 4F		HOV		
023A JA4018				;LAST DIRECTION
8280 B9				:THE SAHE?
028E CA6E00		JZ		
2291 79				: IF NO, CHANGE DIRECTIONS
ə292 324818				HAKE LAST DIR THE CURPENT DIR
3295 3A0A18			DSCR+1	
9298 EE9C				FLIP DIRECTON BITS
029A 320A18		57 A	ōscr+1	
929D B380		<i>001</i>	PIPTA	
∂29F C36E ∂ Ø		JHP	88SS -	
	DRVSTP:			
02A2 CD7204		CALL	Rapdh	;HAKE SURE RAMPED DOWN
0245 AF		XRA	A	CLEAR DRIVE ACTIVE
01A6 323D18		STA	DRVATV	
82A9 3A8A18		LDA	DSCR+1	
02AC E6F2		AH1	∂F2H	SHUT DOWN CLKS & DIRECTION
02AE 320A13		STA	DSCR+1	
8281 0300		ÛUT	PIPTA	
9283 C31405		JAP	BRKOF	

	; LOCAL	DRIVE H	IANDLER	
	10041.			
2286 CDA804	LOCAL:	C 8 ()	TOUNK	;TRANSLATOR ON WHILE IN LOCAL
9289 AF		XRA		FRANDLAIDA DA MAILE IN LUCAL
9287 AF 9288 329818			n DSCR+2	
0280 D301				;SET FOR 100HZ
	LCL1:	001	<i>E1ELD</i>	;321 FOR 10082
028F CDFE05		C AL I	nc750	:GET DATA
#2C5 E6#8				;APEX FAULT
3207 C22501				
92CA 0809				; IF YES, RESET SYSTEM
92CA 0807 92CC E606				;GET DIRECTION
		AHI Tot		
0208 FE04		001 17	4	. 4045 - 24
3290 CA2703				;HOVE CN
9203 FE02		CP1		4045 264
9285 CA4083		92	LECN	HOVE CCH
0208 D509 3001 C/CA		111	FZFIB AFAV	JOLI BANU SK Letoid Extosues
320A E8FØ 2200-47		AHI HOV	Ør ØH	:GET BAND SN :STRIP EXTRANEDUS
9100 47 9100 E610		107 361	0-A 132	;SWITCH HIT?
02DF CA9003				;IF NOT
		¥	LVLT	

L.1

ΨZ

HV I

LCL4 ;IF NOT

ASSUNE EXTEND

∂2DF CA9DØ3 ∂2E2 2E∂1

∂2E4 78		Hav	A,B	
∂2E5 FE1Ø		CP1	19H	
02E7 CAF002		JZ	LCL2	;IF EXTEND
@2EA 2D		DCR	L	\$SET RETRACT
02E8 FE30		CPI	3 <i>3H</i>	
82ED C28083		JHZ	LCL4	; IF SOME OTHER SWITCH
	LCL2:			
32F0 CDF507		CALL	FY798A	
02F3 7D				:GET FLAG
02F4 57		8RA		9961 (6AV
02F5 3E80				:SET EXTEND LIGHT
82F7 8E8F				;SET LIGHT BLINK
02F9 C2FF02				;IF NOT EXTEND
02FC 3E40				SET RETRACT LIGHT
02FE 00				SET HEN LIGHT BLINK
02FE 00 02FF 0319				
8277 8313 8381 342418	10233			:Lion: Un
0301 <u>1</u> 82418 0304 <u>3</u> 1		LDA		
L		ORA		
0305 322418		STA		
2388 D318				START IT BLINKING
53 8 4 C38393		JHP	CHERNO	
	LC14:		_	
330D AF		XPA		
43JE D319				;CLEAR LIGHT
0310 3A2410		LDA		
2313 E532				;STRIP ELINK
#315 322418		STA		
0318 D318		007		
Ø31A 8808		IX		
2310 E601		AHI	\$1H	STILL IN LOCAL?
031E CABF02		JΖ		
3321 CDCE84		CALL	TRHOF	;1F HOT, TRANSLATOR OFF
3324 832501		JHP	RSCHD	;RESET SYSTEM
	LCW:			
2327 CDF1 04		CALL	BRKON	:DISENGAGE BRAKE
032A 3A0A18		LDA	DSCR+1	
2320 F609		ORI	9	;SETUP CH DIR
032F 320A10		STA	DSCR+1	
0332 0300		GüT	PIPTA	
2334 DB89		IN	P2PTB	
9336 E691		4n I	1	;RAHP?
9338 CA4#03		JZ	LCWI	
2338 6E11		HV I	C,17	; IF YES, RAHP TO 1000H2
3330 CD49 9 4		CALL	RHPUP	
	LCH1:			
0340 CDFE05		CALL	DSTOR	;GET DATA
2343 2899		13	EZP18	
3345 E5#2		4n I	2	STILL MOVING CH?
8347 CA4883		ΰŻ	1001	
934A (37003		JHP	LSTOP	;IF NOT, SHUT DOWN
	Lõõ n:			
0340 CDF104		CALL	BRKÛN	;DIENDAGE BRAKE
0350 3A0A18			DSCR+1	
2353 2685			5	SETUP CON DIR
0335 322A18		3TA	DSCR+1	
0358 E300		00T		
3354 3869			P2PT8	
0350 E501		AHÎ	1	tradp?

#35E CA6583		JZ	LCCHI	
0361 9E11		<i>ti</i> ¥1	C,17	IF YES, RAHP TO 1000HZ
0363 CD4904		CALL	RHPUP	
	lock1:			
0366 CDFE05		CALL	DSTOR	:GET DATA
2369 1889		14	P2PTB	
2368 E604		AHI	4	STILL ADVING CCH
2360 CA6683		JZ	lecht	
	lstap:			;1F NOT, SHUT DOWN
0370 CD7204		CALL	RHPDN	
0373 3A0A18		LDA	DSCR+1	
0376 E6F2		481 -	ðF 2H	:TURH OFF CLKS & DIR
3378 320A18		STA	DSCR+1	
2378 D302		ÛÜT	PIPTA	
0370 CD1405		CALL	BRKOF	;ENGAGE BRAKE
0330 C3B602		142	LÙCAL	

;*********

; RING CHECK STATUS

1			

0383 3A4C)	8 CHKANG:	LDA	EXTELG	:IN RING EXTEND?
3386 87		38A	A	
-2387 CA414	14	JZ -	Chkret	
039A (3A08)	18	LJA	ECHD+2	;GET RING STATUS
0330 E601		AHI	1	:THERE VET?
ð38F 114ði	6 CHKRN1:		0.1544	:16 SEC WAIT
3392 CA9FE	5	JΖ	KNGHIT	
- 3 395 11204	71	LXI	9,300	:3 SEC WAIT
0398 BB08		18	PIPTA	
039A E601		AHI	őlü	STILL IN LOCAL?
- JJ9C-CAAFI		JZ	RHGH12	
039F 21AF4	F3 RHGHIT:	LXI	H,RHGHI	2
- 83A2-22281	8	SHLD	T R A P	SET TRAP POINT
03A5 EB		XCHG		
əsab codəl			TIHER	
	5 RHGHII:			
03AC C3A90	3	Jäp	RHGHI1	;HAIT UNTIL TINEOUT
03AF 3A051				;RESET TIMEOUT FAULT
₹382 E6EF			ØEFH	
4384 32651			ERRO+2	
0387 3A141		lda	FAUL+2	;*ADDED FOR MUX 236
038A E6EF		ANI	ØEFH	
@38C 32141		sta	FAUL+2	
338F 3A4C1		LDA	EXTELG	;GET EXTEND FLAG
9302-97		ÛRA		
9303 3A981			ECHO+2	
				;1F NOT EXTEND
0309 ESD3		ANI	3	
0308 FE83		CPI	J	
9300 CAFFE		JZ	rhghi4	
0300 E001		A#1	1	
0302 CAFF0		J2	rngh14	
3305 32631			ECH0+2	
- 3308 - 34141				;*ADDED FOR HUX 236
-0308 E6DF -0300 32141		AH1 ATT	ədfh 1 Mil 4 D	
- 8300-32141 - 8389-03180		STA JHP	FAUL+2 Chkrn2	
	T RHGHIJ;			
9325 EC03 9325 FE03		îPI		
			v	

03E7 CAFF03		JZ	RNGNI4	
83EA E602		AHI	2	
Ø3EC CAFFØ3		32	RHGWI4	
ø3ef 3eø2		HVI	A,2	
03F1 520818		STA	ECH0+2	
Ø3F4 3A1418		LDA	FAJL+2	;*ADDED FOR MUX 236
Ø3F7 E6DF		AHI	9DFH	
@3F9_321418		STA	FAUL+2	
33FC C31004			CHKRN2	
93FF F694	RKGWI4:	381	4	
9491 329818		STA	ECHQ+2	
3404 3A1418		LDA	FAUL+2	;*ADDED FOR HUX 236
04 0 7 F62 0			20H	•
2407 321418		ST 4	FAUL+2	
34 0 C AF		XRA	A	
040D 324818		STA	RROCHD	
2410 AF	CHKRN2:	XRA	4	
9411 <i>\$</i> 24018		STA	EXTFLO	;CLEAR FLAGS
2414 320518		LDA	ERR0+2	·
3417 E67F		au1	7F#	
0419 320518		374	ESR0+2	CLEAR ACTIVE
2410 3A8A18			D3CR+1	, ,
041F ESCF		ANI	<i>ëcfh</i>	
0421 320A18		STA	DSCR+1	;TURN OFF
6424 D360			PIPTA	
3426 3A4818		LDA	RHGCHD	PENDING RING CONWHAND?
3429 87		ORA	A	
342A CA6E00				:IF NOT
0420 3A0518		LDA	ERRØ+2	
3439 F680		ORI		
ə432 32 9 518		STA	EPR0+2	RESTORE ACTIVE
2435 3A4818			RHGCHD	
2138 Est1		ANI	1	
243A ES		PUSH	PS#	
3438 C5		PUSH		
943C D5		PUSH	D	
#430 E5		FUSH	H	SET STACK UP
943E C31198		JHP	EXTRT1	
0 441 3A0818	CHKRET:			GET RING STATUS
8444 E682				;THERE YET?
9446 C38FØ3			CHKRN1	

; RANP UP & DOWN ;Exter N1th C=step to stop at, 1=100H2 to 17=1000H2

	RXPUP;		
2449 3 8 4918	LDA	RAHP	
2440 57	ORA	A	;RANPED UP?
3440 CB	<i>RHZ</i>		;RETURN IF RAMPED UP
344E 2F	CKA		
344F 324913	STA	RAKP	\$SET TRUE
0452 21A 10 8	LKI	H,CK130	START OF RAHP TABLE
2455 AF	XRA	A	;CLR RAMP STEP
	2fupi:		
2450 322518	STA	STEP	SAVE LATEST STEP
0459 0519	4V I	5,23	:WALT 100 FULSES
3458 7E	30V	A.K	STEP SPEED
2450 322818	STA	OSCR+2	

045F	D301			PIPTB	;EXECUTE IT
		RPEP2:			
	CD9C B4				;WAIT FOR INTERUPT
	Ø5		DCR	8	
	026194			<i>RРИР2</i>	
	23				;NEXT FREQUENCY
	3A2618			STEP	
	30				;NEXT STEP
	89				;DONE THE HUNBER OF STEPS TO DO?
	0256 84			<u>rpupi</u>	
24/1	69		RET		;IF YES
		RNPDN:			
J 472	344918		LDA	RAKP	
3475	57		<u>ora</u>	Å	;RAHPED DOWN?
d476	68		RZ		;RETURN IF RAMPED DONN
94 77	45		XRA	A	
€473	24918		STA	RAHP	;SET RANP FALSE
2478	11A308		LXI	D,CK144	;POINT TO RANP TABLE
347 E	3A2613		LJA	STEP	;GET STEP COUNT
2431	ēΕ		XOV	L.A	
3482	2080		HVI	H. D	
<i>8</i> 484	I^{q}		DAD	9	;FORH POINTER
3435	30		IHR	A	
1405	4F		HJ¥	€,A	HUHBER OF STEPS TO RAHP DOWN
		RFDN1:			
	9060		HVI	8,12	:HAIT 48 PULSES
3489	7E				;GET FREQUENCY
-	329818		STA	D5CR+2	
2480	D301		08T	Plptb	;START II
		RPDN2:			
	009004				;WAIT FOR INERUPT
	Ø5		DCR		
5493	028FØ4			RPDN2	
	28				;HEXT FREQUENCY
ê497					;DONE STEPP1HG?
	€287 94		JHZ	RPDN1	
949 8	69		RET		;1F YES
		WT65:			
049C	CDFE 0 5		CALL	DSTOR	;GET DATA
047F	3A4618			DRVPLS	
14A2	87		ORA	A	;INTERUPT?
#4 A 3	CA9C04		JZ	HT65	
24 A6	AF		XRA	A	;IF YES, CLR FLAG & RETURN
94A7	324618		STA	DRVPLS	
84 AA	69		RET		
		;*****	******	*******	********
		, TOASC.	1 47 00 1	DOASE 201	17821

; TRANSLATOR & BRAKE CONTROL

	TENDH:		
04AB 213785	281	H.ETRN	TRANSLATOR ERROR HANDLING
344 E 222818	SHLD	TRAP	
9481 21649 9	EXI	H.100	:ONE SEC
3484 CDC405	CALL	TIMER	;START TIHER
2487 JA@A18	LDA	9scr+1	
348A F38 0	0RI	8 <i>3</i> H	;SET TRANS ON BIT
J48C 320A18	STA	DSCR+1	;UPDATE IHAGE
046F 0300	OUT	PIPTA	;D0 IT

	7.0.0.1				
04C1 CDFE05	T 20H :	5 8 1 1	DSTOR		
04C1 CDFEBJ 04C4 DB08			P2PTA		
0404 0000 0406 E517				IS IT ON YET	
2408 CAC134		JZ		,15 1: <i>GN</i> 727	
04C8 C3E905				;IF YES, STOP TIHER & RETURN	
VT60 032790		9.01	10/01	yn 720, orde finek e kerdan	
	TRHOF:				
04CE 213705		LXI	H,ETRN		
9401 222818		SHLD	TRAP		
3434 216409		£ΧΙ	H,100	;ONE SEC	
0407 COD005		CALL	TIMER		
04DA 340A18			D3CR+1		
&4DD E67F		4H I	7 F H	RESET TRANS POWER BIT	
₹4DF 320A18			DSCR+1		
04E2 D300			PIPTA	;TURN OFF	
	TROFF:				
94E4 CDFE#5			əstər		
34E7 0808			P2PTA		
34E9 E618				;IS IT OFF YET	
04EB C2E404			TROFF	. 12 922 - 2122 11923 4 251988	
04EE 03E905		JAP	15108	; IF YES, STOP TIMER & RETURN	
	BRKON:				
04F1 214F05	unnun ,	/ ¥ T	H.EBRK	;BRAKE ERROR HANDLING ADDR	
94F4 222818			TRAP	JUNNEL CARDA HANELING HODA	
04F7 216400				:OHE SEC	
∂4FA CDD∂@5			TIHER		
@4FD JA@A18			DSCR+1		
0500 F640				;SET BRAKE DISENGAGE BIT	
0502 320A18		STA	DSCR+1		
8505 D300		04T	PIPTA	;DISENGAGE	
	BRK01:				
0307 COFE05		CALL	DSTOR		
050A D828			APDCR		
252C E6 8 4			4		
050E CA0705		JZ			
0511 C3E905		JHP	TSTOP	;YES, STOP TIMER & RET	
	P4505.				
Ø514 214FØ5	BRKOF:	: ¥ T	U EDOF	;ERROR ADDR	
9517 222818			TRAP	ERROR NOUR	
9517 216400				;ONE SEC	
asid Codaas			TIMER	June oco	
8528 3A8A18			DSCR+1		
₽\$23 E68F				;RESET BIT	
3525 32041 8			DSCR+1		
3528 D300				;ENGAGE BRAKE	
	BRKF1:				
ø524 CDFEØ5		ĈALL	DSTOR		
0520 D828			APDCR		
252F E6 24		ANI		;ENGAGED YET	
0531 C22A05			BRKF1		
9534 632795		JHP	isiur		
	•			**************************************	
; ERROR HANDLING ROUTINES					

		ETRN:			;TRAHSLATOR
ə537	JAZA18		LDA	DSCR+1	

953A E67F		AHI	7 <i>F</i> #	;RESET POWER BIT
9530 320A18		\$7 .A	DSCR+1	
053F D300		GÜT	PIPTA	;TURN OFF
ə541 3.1ə218		LDA	POSD+2	
3544 F610		0RI	10H	;SET FAULT BIT
3546 320218		STA	POSD+2	
Ø549 321218		STA	FAUL	s*Added for NUX 236
0540 C32501		JHP	R3CHD	:RESET SYSTEN
	EBRK:			; BRAKE
054F 3A0A18			DSCR+1	
3552 E6BF		AHI	ØBFH	:RESET BIT
0554 320A18		STA	DSCR+1	
0557 D300		0UT	PIPTA	;ENGAGE BRAKE
0559 3A0218		LDA	₽0Sb+2	
055C F604		ORI	ē4H	;SET FAULT BIT
055E 120218		STA	PJSD+2	
3561 321218		STA	FAUL	:*ADDED FOR HUX 236
9564 C32591		Jäp	RSCHD	;RESET SYSTEN
	EDR¥:			:JRIVE H ;RESET STACK
ə567 310 0 19		ĹΧΊ	SP,1900	H ;RESET STACK
956A 3A1418		LŨA	FAUL+2	;*ADDED FOR HUX 236 ;Set drive fault bit
956D F601		C P I	18	;SET DRIVE FAULT BIT
256F 321418		STA	FAUL+2	
ə572 3A2o18		LŪĀ	STEP	
3575 FE04		€₽I –	4	;CHECK RANP STEP
2577 DA8925		Ji.	EDRV1	;STEP (JOOHZ, SYSTEH RESET
JJTA BEFF		HV I	A.TRUE	: OTHERNISE TRY RAMPING TO 250HZ
057C 324A18		ST A	GET 17	;3ET GET IT THERE SOMEHOW ;STOP TIHER AND DRIVE
357F CDE935		CALL	tstap	STOP TIHER AND DRIVE
9582 C0A282		CALL	Devistp	
3585 AF		A R A	A	CLEAR ACC FOR ENTRY
2536 236701		JHP	DRV1W1	;1HTO DRVINT
	EDRV1:			
J539 3AJ218		LDA	PûSD+2	SET DRIVE FAULT
958C F62 0		ORI	2 0 H	
ə58E 329218		STA	POSD+2	
∂ 591 321218		STA	PAUL	;*ADDED FOR HUX 236
0594 C32501		JHP	RSCHD	

	VECTOR:		:HL=DESTINATION
3597 CDAF 8 5	CALL	RANGER	;DE=POSITION
059A 08	RZ		;1F HL=0
3598 1100ED	LXI	02500	H
959E 19	DAD	D	
959F 02A805	JHC	VEC1	
JSA2 79	KOV	A,C	
25A3 DE	CHA		CHANGE DIRECTION
35.44 4F	HOF	C.A	
35A5 CƏC105	CALL	CAPHL	
	VEC1:		
35A8 112020	LXI	D.2000H	
ê5AB 19	D A D	D	
25AC 70	HOV	A,L	:HL=HIHIHUH HAGHITUDE
05AD B4	ORA	H	C=DIRECTION, & IS POSITIVE
∂5AE C9	RET		:ZERO FLAG SET FOR HL=#

	RANGER.			:dl=/8L-0E/
85AF 7D	KANUEK.	KQV	A.L	;nL-/nL-02/
0580 73		SüB	E	
0580 /3 0581 6F		HOV	L L,A	
9582 7C		HOV	с,н А,Н	
8583 9A			л,п D	
2584 67		588 805	-	
ejet 8) 2585 Seba		HOV HHT	H.A o a	:C => +
		HVI 10		36 = 7 +
2587 F28E95 358A 9D		JP DCR	RHGR1	
2583 COC145		CALL	C 28077	
2983 696149	RHGP1:	LALL	Chphl	
358E 70		HƏV	A.L	
958F 24		ORA	ä	;ZERO FLAG SET IF HL=0
8508 C9		RET	.,	:C=9 => +D1R
•••••				ye 5 7 fern
-	CHPHL:			;THO'S CONPLINENT HL
85C1 7C		HOV	A,H	
05C2 2F		CHA		
ē5C3 67		hov	Н . А	
95 C4 7D		HGV	A,L	
3505 2F		CHA .		
0006 6F		XOV	L _F A	
ē507 23		ZHX	H	
85C8 C9		RET		
	CLOSE:			;HL (4
250 9 70		HOV	A,H	
95CA B7		ORA	Ă.	
95C3 C4		RHZ	л	
25CC 7D		HOV	A.L	
25CD FE03		CPI	3	
95CF C9		RET	J	CARRY SET IF LESS THAN 4
	TIHER:			
ð5dð 3ecf		HV I	A,ØCFH	;ENABLE TINER AFTER COUNT LOADED
\$5D2 D318		OUT	RCHD	
Ø504 7D		HOV	A,L	;HL CONTAIN TINER PERIOD
ø505 031C		OUT	TIHLO	
₫507 7C		NOV	А,Н	
₿5D8 E63F		ARI	3FH	
əsda f680		DR1	80H	;STOP ON TERMINAL COUNT
85DC D31D		ÛÜT	TINHI	
35DE 372418		LDA	RHPCS	
05E1 F610		<u>ORI</u>	1 0 H	;SET FOR 100HZ CLK
Ø5E3 322418		STA	RHPCS	
05E6 D31B			RHPTC	;START_IT
∂5 E8 C9		RET		
	TSTOP:			
05E9 3A2418		LÐA	RHPCS	
JSEC E6CF		AHI		TURN CLK OFF
9520 200. 9528 322418		STA	RHPCS	A THE REAL AND A THE
Ø5F1 D318			RHPTC	
25F3 3E4F		331 871		STOP COUNTER
Ø5F5 D318			echd	
05F7 214000			· · · · ·	
		LXI	8,1811	
05FA 222818		LXI Shld	H,1HIT FRAP	;SHOULD TRAP HAPPEN
05FA 222818 05FD C9				;SHOULD TRAP HAPPEN

	56730.			
Ø5FE F5	dstar:	6 <i>464</i>	0 <i>6</i> N	-0.44F 0F010TF60
ØSFE CS		rusa PUSH	PSW B	;SAVE REGISTERS
2638 DS		PUSH PUSH	в Э	
2601 ES		2038 2038	-	
0602 AF		100n ARA		
0603 D338				REQUEST APEX DATA & CLEAR SHIFT REGISTERS
2685 269A				DATA SHOULD SHOH UP IN TEN LOOPS
LOBA DOBY	LP1:		0,IV	JONIA SHUGLU SHUR UP IN ILN LUUPS
3697 D829	-1 - 1 - 1	IH	Fush	
8099 EDC8			ecgh	: HASK
3648 FE80				LOOK FOR THIS PATTERN
9090 CA2906			L.P.2	
3610 \$ 5		DCR		
9611 CŽ#796		JHZ	LP1	
2614 3AJ518			ERRO+2	
8617 F688		ĜRI	@8H	;SET APEX FAULT BIT
£619 32 651 8		STA	ERRO+2	
8610 E61E		AN1	1EH	;*ADUED FOR KUX 236
₽61E 47		HOV	6, A	
861F 3A1419		LƏA	FAUL+2	
9522 B9		ORA	8	
8023 321418		STA	FAUL+2	
2626 C3D406		JHP	LP3	:SKIP APEX DATA GATHERING
	LP2:			
3629 3A3518		LƏA	ERRO+2	
3620 E6F7		AHI	ēF7H	;RESET FAULT BIT
862E 328518		STA	ERRO+2	
2631 3A1418		LDA	FAUL+2	;*ADDED FOR HUX 236
9634 E6F7			₽F7H	
2635 321418		STA	FAUL+2	
₫639 D328		IN	caei	
2637 0323 2638 6F			POSL L.A	;POSITION LOW BYTE
2030 5F			E,A	
0630 D829		пу у 1#	с,н PûSH	;POSITION HIGH BYTE
363F E63F		AHI		:HASK FOR 14 BIT
2641 67		HOV	H,A	JAASK FOR 14 BIT
8642 57		HQV		
2643 221818		SHLD	•	STORE UNSIGNED POSITION
9646 EE28		XRI	2#H	:FLIP SIGN BIT
2648 67		HOV	н, А	
0649 220018		SHLD	POSD	STORE SIGNED POSTION
0e40 2A1E18			ATVCHD	
864F CD9705			VECTOR	*
3652 229318		SHLD	ERRO	SHOW DISTANCE
Ø655-79		<i>t</i> OV	A.C	
3656 324718		STA	DIR	;STORE NEW DIRECTION
9359 B224			VEL	:GET VELOCITY DATA
2638 E280		XRI	69H	FLIP SIGH BIT
8650 6F 2658 1000		80¥ 471	L.A u a	:MOVE INTO HL
2096 2000 2860 29		HV I DAD	н , е Н	:SHIFT 4* TO FORM 12 BIT ANALOG
2008 27 2001 29		DAD	n ri	YEALST TO TORN IL DIT MANLOU
3062 29		DAD	a F	
			-	

2663 29	DAD	H	
9664 22 6 018	SHLD	ADCR	;SHOW RESULT
0667 D828	1 N	APDCR	;GET APEX DISCRETES
8669 E697	AHI	97 H	;HASK UNUSED BITS
9668 320E18	STA	adcr+2	;SHOW THEN
166E E693	ÁĤ I	43H	HASK LIHITS
8678 47	HOV	5.A	
#671 3A3218	LDA		:GET INAGE
8674 ESFC			RESET LINITS
2676 89			;FORM NEW INAGE
	STA		
067A 0828	IN		
967C E694			;BRAKE I*E
067E ØF			
			;SHIFT FOR DISPLAY
867E 47	HOV		
	LDA		
dedj Eofi			RESET BIT
3685 8 1			;FORH NEW INAGE
2686 47	Kov	8,A	
0637 DB2D	IS	ANAN	;GET RING INFO
2689 EECÐ	XRI	øcøn	;FLIP BITS
4688 ESCØ	AH I	BCBH	;STRIP
\$63D J7	RLC		
358E 07	RLC		
268F 4F	KOV	C.A	
6690 3A6818	LDA		
3693 E694	AH I		
2695 Bl			;HERGE POS AND FAULT
£696 320818	STA		•
3699 79	HOV		
069A 07	RLC	n, c	
3698 4 7	RLC		
8690 BØ	ORA		
069D 322318	STA		
36A0 D31A			;DISPLAY ON X8
J6A2 DB2C			;APEX ANALOG LON BYTE
86A4 6F	Kov	,	
06A5 0820			;APEX ANALOG HIGH BYTE
86A7 EE82	XRI		
Ø5A9 47	HQV	8,A	;SAVE RESULT IN B
86AA E61E	AH I	1 E H	;NASK HUX & SIGH BIT
#6AC 97	-ADD	Å	;SHIFT LEFT OHCE
06AD 67	HOV		;SAVE IN H
05AE 73	HOV		;GET E BACK
Je 41 E 503	AHI	J	HASK DUT NUX
3681 84		8	FORN NEW HIGH BYTE WITH EXTENDED SIGH
2682 67	KOV	H.A	;PUT IT IN H
3683 29	DAD	H	SHIFT ONCE HORE TO FORM 12 BIT ANALOG
9684 EB	XCHG		SAVE IN DE
3655 E638	ANI	3 <i>8</i> #	RASK THE HUX
Fod7 ØF	RRC	900	: / 4
2037 87 2038 8F	380		• 7 +
9689 6F		í 1	JEETHO DI
			;SETVP HL
368A 2600	BV I	H.#	N. APT 43PV 80400 T30/P 3PM
2680 312018 2785 40	£X1		B;GET APEX ANALOG TABLE ADDR
368F 09 8474 77	DAD Kov		FORN INDEX
06C0 73 3401 37	20¥ 1#¥		;SAVE APEX ANALOG IN IT
96C1 23 96C2 72	INX Həv	H H.D	
9062 / <u>2</u>	aur	11 y U	

86C3 3A2A18		i D A	анану	;get nux counter
86C6 E607				; HOD 8
06C8 Ø7		211	270	, nos 0 , s 9
0600 6F		KOV	1 3	; * 2 ;Setup HL
06CA 2600		8VT	2.7	Jergi ne
26CC J 9		HV I DAD		;FORN INDEX
96CD 7E		unu Nov	5 3 2	FORM INDEX FRET VALUE TUTO UL
86CE 23		1997 1997	878 2	;FURM INDEX :GET VALUE INTO HL
26CF 66		HOV	а 11 14	
45D0 6F		HOV	п., с : л	
96D1 220F18		euin	12.7M 32.2M	STORE IT FOR DATA SET
20 <i>01 220</i> 710	LP3:	SALU	Алар	STORE IT FUR DATA SET
2604 3A3018	LFJ;	! B.A	DRVATV	
2607 B7				IS DRIVE ACTIVE
9607 27 9608 3A2319		0KA / 04	2808C	;GET AB DISPLAY IHAGE
9000 0A2315 Sedb CAE596		J2	tax tax	JUET NO DISPENY INNUE
eode chevod Gode Eddi				; IF YES, SET BITS
2002 2001 2628 8 248		HV1		jir 123,321 BII3
8628 8 248 8622 (38986		avı JNP		
9022 LGC700	L24:	VAF	LFJ	
ØGES EGFE	6643	AU 7	45 E 2	;1F HOT, RESET BITS
2623 2672 2627 <i>8204</i>		HVI	erta ca	jir Hui, Resei Biis
FOZ7 VZ89	L25:	n f 1	6,8	
06E9 322318	LFJ;	STA	RHPRS	;SAVE INAGE
ØDEC DITA				;DISPLAY ON NO
F6EE D308				GET PEDESTAL RODH DISCRETES
36F9 320918				SHON'EN
06FJ E607				;HASK COMP,YOMP, & CABLE INTERLINK
96F5 EE97		7012 701	07N	FLIP THE BITS
26F7 47				SAVE IN B
96F8 3A0518				
26F5 E658				RESET THESE BITS
36FD BØ				BRING IN THESE BITS
26FE 31				BRING IN DRIVE ACTIVE
96FF 320518		01A	C 520042	, UKING IN DRIVE MOTIFE • CHAN DECRIT
4702 E61E			ien	
9784 47		HOV		•*************************************
0705 3A1418		LDA	FAUL+2	
9788 ESE9		ANI	089H	STRIP OLD INFO
170a bə		UR A	8 8	;UPDATE INFO
ə7əb 321418		STA	5 FAUL+2	jurenie latv
976E E1		POP	H	BRING BACK REGISTERS
0702 D1		-P0P	D	yenine anon neeloitho
0710 C1		POP	8	
0710 CI 0711 F1		POP	8 PSW	
2712 69		RET	1.94	
1141 67				

	Blap:		;TRAP_INTERUPT
9713 310019	LXI	SP.1900	H;RESET STACK
2716 zA2818	LKLD	TRAP	;GET ERROR HANDLING ADDR
3719 ES	PUSH	H	;ON STACK FOR RET
J71A CDE905	CALL	TSTOP	;STOP TIWER
0710 340518	LDA	ERRO+2	
8720 F610	ÛRI	19H	;SET TIHE-QUT FAULT BIT
ə722 32 ə 518	STA	EERO+2	;\$80W IT
9725 3A1418	LDA	FAUL+2	;*ADDED FOR HUX 236
2728 E613	ANI	1 0 H	

570 F 301 410			e 101 - 6	
972A 321419		STA	t AUL+Z	
0720 D33B		0 4 T	RE200	;RESET 6.5
		XV1	A.RSIEN	RESET 7.5. DISABLE 5.5
0731 30			3#H	SIN, SETUP INTERUPTS
£732 FB		EI		
0733 C9		RET		;GOTO ERROR HANDLER
	TRPR:			;6.5 INTERUPT
Ø734 D338		out	RES65	;RESET 6.5
0736 FB		EI		;EHABLE INTERUPTS FOR INTR 7.5
#737 E5		push	PS₩	;ENABLE INTERUPTS FOR INTR 7.5 ;SAVE REGISTERS
2738 CS		2USH		
# 739 05		püsh	Ð	
@73A E5		füsh		
Ø738 3EFF		HV I		
073D 324618				SHOW INTERUPT OCCURED
0745 DB08		IS		
0742 É691		ANI		
0744 CA7F07				;SKIP IF IN LOCAL
				JART IN IN LUCKE
ð747 3AðA18 Ø74A E60C				LOOK AT DIRECTION BITS
0740 CA7F07				STATE OF NO DIRECTION
374F 342518				;GET MOTION COUNTER
2752 3C		188		
0753 FE19				;13 IT 25
9755 C28007				; IF HOT, SKIP HOTIOH ANALYSIS
			LSTPOS	;GET LAST POSITION
0758 EB		XCHG		
075C 2A1818		LHLD	POSTN	GET CURRENT POSITION
ð75F 221A18		Shld	LSTPOS	;UPDATE LAST POSITION
0762 3A4A19		LDA	GETIT	;IN GET IT THERE?
0765 B7		DRA	A	
8766 C27187		JHZ	TRPRØ	;1F IN GETIT
0769 3A2618			STEP	;INITIAL STEP?
∂ 76C FE∂2		CPI	2	
276E DA7FØ7		JC	TRPR1	;IF BELOW STEP 2
	TRPR#:			
0771 CD9705		CALL	VECTOR	;GET THE DELTA
Ø774 7C			А,Н	,
9 775 87		DRA	A	:IS IT 0
₽776 C26705		JHZ	EDRV	;1F NOT, ERROR IN DRIVE
0779 7D		KOV	A,L	
Ø77A FE3C		CPI	68	:LESS THAN 60
077C DA6705		JC	EDRV	; IF YES, ERROR IN DRIVE
2110 UNO/80	TRPR1:		LUAF	gan reag banda in daife
077E AF	145411	XRA	4	
VIII ME	TRPR2:	8.6.A	n	
ø780 322518	182823	STA	201100	;UPDATE HOTION COUNTER
0788 322518 0783 E1		57A P0P	RUTION H	;UPDATE NUTTON COUNTER :RESTORE REGISTERS
		-	n D	IREDIGRE REDIGIERS
0784 D1 1785 01		POP POP	₽ 3	
0785 C1			-	
2736 F1		FEP	F3W	
J787 C9		RET		
1700 17	BUK P:	80.5V	6.34	;7.5 IHERUPT
Ø788 F5			₽\$₩ 2	;SAVE REGISTERS
8789 CS		285H	8	
078A 05			Ū	
0786 E5 0786 0835		2USH IN	H Chaev	;READ SHA-EVENT REG
9706 803J		14	JANCE	AVENA ANU FACULTURE

078E 47				
		KUV	5,A	;SAVE IN B
078F E607		AHI	ð7H	;HASK SHA
0791 4F	I	KOV	C,A	SAVE IN C
₽ 792 78	1	HOV An I	A, B	;GET B BACK
9793 E638		ANI	38#	;HASK TYPE OF REQUEST
2795 FE28	i	CPI	28H	
0797 CAAD07		JZ	CHDRQ	;A COMHAND REQUEST
Ø79A FE18		CP I	188	
2790 CA6308		JZ	DT ARQ	; A DATA REQUEST
079F 340218		LDA	POSD+2	
₽7A2 F640		ÛRI	404	SET CONTROLLER FAULT
Ø7A4 320218		STA	205042	
Ø7.47 321218		07.A 07.A	FAHI	;*ADDED FOR MUX 236
07AA C37D08	۰	2171 1940	SKIP	, ~ NOVED TOK NOK 230
TINA COLUBO	CHDRQ:	our	ən Ir	, CRRVR
3745 5874		u 7	50050	CONHAND LOW BYTE
37AD 0830				ILUNAARU LUA DIIL
97.AF 6F		H0V • •	L,A	
ə78 ə 0 831		1N 100	25008	CONNAND HIGH BYTE
0782 67	4		H,A	
#783 E63F	1	AHI	3FH	;HASK FOR 14 BIT
0785 EE20		XRI	20H	FLIP SIGN BIT FSE CONTAIN UNSIGNED COMMAND
9787 57				; DE CONTAIN UNSIGNED COKHAND
2768 5D	i	NGV	E,L	
2789 Ø6FF	i	HV I	B,TRUE	
078B 79	i	HOV	A,C	:GET HUX
#73C 87	ć	07A	Å	
4780 CAD947		JZ	DRVCHD	:HEW POSITION CONNAND
<i>27C0 FE01</i>	(CPI	1	
07C2 CAE707				;SYSTEN RESET
Ø7C5 FEØ2		CPI	2	,
∂7C7 CAEE∌7				;NAP REQUEST
97CA FE96			6	ynn (Laster
27CC CAE907				:RIHG EXTEND/RETRACT
	(cuin	882	STADE UNICER COMMANN IN DIT DUCKET -
27CF 221518				STORE UNUSED COMMAND IN BIT BUCKET
Ø702 79	i	HOV	A.C	;STORE UHUSED COMMAND IN BIT BUCKET
0702 79 0703 321718	l	HOV Sta	A.C HU2+2	
Ø702 79	i S	HOV Sta	A.C HU2+2	;STORE UNUSED COMMAND IN BIT BUCKET ;AND LEAVE
0702 79 0703 321718 0706 C37008	DRVCHD:	HOV STA JHP	A.C HU2+2 SKIP	; AND LEAVE
0702 79 0703 321718 0706 C37008 0709 220618	DRVCHD:	HOV STA JHP SHLD	A.C HU2+2	
9702 79 9703 321718 9706 C37088 9709 229618 9709 E8	DRVCHD:	HOV STA JHP SHLD XCHG	A.C HU2+2 SKIP ECHO	;AHD LEAVE ;SHOH RECEIVED COMMAND
9702 79 9703 321718 9706 C37088 9709 229618 9700 E8 9700 221018	DRVCHD:	HOV STA JHP SHLD XCHG SHLD	A.C HU2+2 SKIP ECHO CHDTHP	; AND LEAVE
9702 79 9703 321718 9706 C37089 9709 229618 9700 221018 9700 221018 9760 78	DRVCHD;	HOV STA JHP SHLD XCHG SHLD HGV	A.C HU2+2 SKIP ECHO CHDTHP A,B	;AND LEAVE ;SHOH RECEIVED COHHAND ;UPDATE TEXPARARY COHMAND
9702 79 9703 321718 9706 C37089 9709 229618 9700 221018 9700 221018 9760 78 9761 323518	DRVCHD:	HOV STA JNP SHLD XCHG SHLD HOV STA	A.C HU2+2 SKIP ECHO CHDTHP A,B DRVREQ	;AHD LEAVE ;SHOH RECEIVED COMMAND
9702 79 9703 321718 9706 C37089 9709 229618 9700 221018 9700 221018 9760 78	DRVCHD:	HOV STA JHP SHLD XCHG SHLD HGV	A.C HU2+2 SKIP ECHO CHDTHP A,B	;AND LEAVE ;SHOH RECEIVED COHHAND ;UPDATE TEXPARARY COHMAND
0702 79 0703 321718 0706 C37000 0709 220618 0700 E8 0700 221018 0760 78 0761 323618 0764 C37000	DRVCHD: S CHDRST:	HOV STA JHP SHLD XCKG SHLD KGV SHLD KGV STA JHP	A.C HU2+2 SKIP ECHO CHDTHP A,B DRVREQ SKIP	;AND LEAVE ;SHOH RECEIVED COHHAND ;UPDATE TEXPARARY COHMAND
9702 79 9703 321718 9706 C37089 9709 229618 9700 E8 9700 221018 9760 78 9761 323618 9764 C37088 9767 78	DRVCHD: S CHDRST:	HOV STA JHP SHLD XCHG SHLD HOV STA JHP HOV	A.C HU2+2 SKIP ECHO CHDTHP A,B DRVREQ SKIP A.B	;AHD LEAVE ;SHOH RECEIVED COHHAHD ;UPDATE TEXPARARY COHHAND ;POSITIOH REQUEST ACTIVE
9702 79 9703 321718 9706 C37099 9709 229618 9700 221018 9700 221018 9760 78 9761 323618 9764 C37009 9767 79 9768 323018	DRVCHD: S CHDRST:	HOV STA JHP SHLD SHLD KOV STA JHP HOV STA	A.C HU2+2 SKIP ECHO CHDTHP A,B DRVREQ SKIP A.B RESCHD	;AND LEAVE ;SHOH RECEIVED COHHAND ;UPDATE TEXPARARY COHMAND
9702 79 9703 321718 9706 C37089 9709 229618 9700 E8 9700 221018 9760 78 9761 323618 9764 C37088 9767 78	DRVCHD:	HOV STA JHP SHLD XCHG SHLD HOV STA JHP HOV	A.C HU2+2 SKIP ECHO CHDTHP A,B DRVREQ SKIP A.B	;AHD LEAVE ;SHOH RECEIVED COHHAHD ;UPDATE TEXPARARY COHHAND ;POSITIOH REQUEST ACTIVE
9702 79 9703 321718 9706 C37099 9709 229618 9700 221018 9700 221018 9760 78 9761 323618 9764 C37009 9767 79 9768 323018	DRVCHD: S CHDRST:	HOV STA JHP SHLD SHLD KOV STA JHP HOV STA	A.C HU2+2 SKIP ECHO CHDTHP A,B DRVREG SKIP A.B RESCHD SKIP	;AHD LEAVE ;SHOH RECEIVED COHHAHD ;UPDATE TEXPARARY COHHAND ;POSITIOH REQUEST ACTIVE
9702 79 9703 321718 9706 C37089 9709 229618 9700 221018 9700 221018 9760 78 9761 323518 9761 323518 9764 C37088 9765 C37088 9765 C37088 9765 79	DRVCHD:	HOV STA JHP SHLD XCHG SHLD SHLD STA JHP STA JHP HOV	A.C HU2+2 SKIP ECHO CHDTHP A,B DRVREQ SKIP A.B RESCHD SKIP A.B	;AHD LEAVE ;SHOH RECEIVED COHHAHD ;UPDATE TEXPARARY COHHAHD ;POSITION REQUEST ACTIVE :RESET SYSTEM REQUEST
9702 79 9703 321718 9706 C37089 9709 229618 9700 221018 9700 221018 9760 78 9761 323618 9764 C37088 9767 79 8768 323018 9768 C37088	DRVCHD:	HOV STA JHP SHLD XCHG SHLD SHLD STA JHP STA JHP HOV	A.C HU2+2 SKIP ECHO CHDTHP A,B DRVREQ SKIP A.B RESCHD SKIP A.B	;AHD LEAVE ;SHOH RECEIVED COHHAHD ;UPDATE TEXPARARY COHHAND ;POSITIOH REQUEST ACTIVE
9702 79 9703 321718 9706 C37089 9709 229618 9700 221018 9700 221018 9760 78 9761 323518 9761 323518 9764 C37088 9765 C37088 9765 C37088 9765 79	DRVCHD:	HOV STA JHP SHLD XCHG SHLD SHLD STA JHP STA JHP HOV	A.C HU2+2 SKIP ECHO CHDTHP A,B DRVREQ SKIP A.B RESCHD SKIP A.B	;AHD LEAVE ;SHOH RECEIVED COHHAHD ;UPDATE TEXPARARY COHHAHD ;POSITION REQUEST ACTIVE :RESET SYSTEM REQUEST
9702 79 9703 321718 9706 C37089 9709 229618 9700 221018 9700 221018 9760 78 9761 323518 9761 323518 9764 C37088 9767 78 9768 323018 9765 C37088 9765 79 9765 324618	DRVCHD:	HOV STA JHP SHLD XCHG SHLD SHLD SHD STA JHP HOV STA	A.C HU2+2 SKIP ECHO CHDTHP A,B DRVREQ SKIP A.B RESCHD SKIP A.B HAFREQ	;AHD LEAVE ;SHOH RECEIVED COHHAHD ;UPDATE TEXPARARY COHHAHD ;POSITION REQUEST ACTIVE :RESET SYSTEM REQUEST
9702 79 9703 321718 9706 C37089 9709 229618 9700 221018 9700 221018 9760 78 9761 323518 9761 323518 9764 C37088 9767 78 9768 323018 9765 C37088 9765 79 9765 324618	DRVCHD: S CHDRST: HAPSET: EXTROØ:	HOV STA JHP SHLD XCHG SHLD HOV STA JHP HOV STA JHP STA JHP	A.C HU2+2 SKIP ECHO CHDTHP A,B DRVREQ SKIP A.B RESCHD SKIP A.B HAFREQ	;AHD LEAVE ;SHOH RECEIVED COHHAHD ;UPDATE TEXPARARY COHHAHD ;POSITION REQUEST ACTIVE :RESET SYSTEM REQUEST
9702 79 9703 321718 9706 C37089 9709 229618 9700 221018 9700 221018 9760 78 9761 323618 9764 C37088 9767 78 9768 323018 9768 C37088 9765 78 9765 78 9765 324918 9765 324918 9767 2 C37088	DRVCHD: S CHDRST: HAPSET: EXTROØ:	HOV STA JHP SHLD SHLD XCKG SHLD HOV STA JHP STA JHP PUSH	A.C HU2+2 SKIP ECHO CHDTHP A,B DRVREQ SKIP A.B RESCHD SKIP A.B HAFKEQ SKIP	;AHD LEAVE ;SHOH RECEIVED COHHAHD ;UPDATE TEXPARARY COHHAHD ;POSITION REQUEST ACTIVE :RESET SYSTEM REQUEST
9702 79 9703 321718 9706 C37089 9709 229618 9700 221018 9700 221018 9760 78 9761 323618 9764 C37088 9765 C37088 9765 79 9765 75 9766 C5 9776 C5 9776 C5 9777 D5	DRVCHD: S CHDRST: HAPSET: EXTROØ:	HOV STA JHP SHLD XCRG SHLD HOV STA JHP HOV STA JHP PUSH PUSH PUSH PUSH	A.C HU2+2 SKIP ECHO CHDTHP A,B DRVREG SKIP A.B RESCHD SKIP A.B HAFREG SKIP PSH B D	;AHD LEAVE ;SHOH RECEIVED COHHAHD ;UPDATE TEXPARARY COHHAHD ;POSITION REQUEST ACTIVE :RESET SYSTEM REQUEST
9702 79 9703 321718 9706 C37068 9709 229618 9700 221018 9700 221018 9700 221018 9767 78 9761 323518 9764 C37088 9765 79 9765 79 9765 75 9765 75 9766 C5	DRVCHD: S CHDRST: HAPSET: EXTROØ:	HOV STA JHP SHLD XCRG SHLD HOV STA JHP HOV STA JHP PUSH PUSH PUSH PUSH	A.C HU2+2 SKIP ECHO CHDTHP A,B DRVREQ SKIP A.B RESCHD SKIP A.B HAPKEQ SKIP PSW 3	;AHD LEAVE ;SHOH RECEIVED COHHAHD ;UPDATE TEXPARARY COHHAHD ;POSITION REQUEST ACTIVE :RESET SYSTEM REQUEST
9702 79 9703 321718 9706 C37089 9709 229618 9700 221018 9700 221018 9760 78 9761 323718 9761 323718 9764 C37088 9765 73 9765 73 9765 75 9765 75 9766 25 9776 55 9768 55	DRVCHD: DRVCHD: CHDRST: HAPSET: EXTROØ:	HOV STA JHP SHLD SHLD SHLD SHLD SHD STA JHP HOV STA JHP PUSH PUSH PUSH PUSH PUSH PUSH	A.C HU2+2 SKIP ECHO CHDTHP A.B DRVREQ SKIP A.B RESCHD SKIP A.B HAFREQ SKIP PSW B D H	;AHD LEAVE ;SHOH RECEIVED COHNAHD ;UPDATE TEMPARARY COHNAND ;POSITION REQUEST ACTIVE :RESET SYSTEM REQUEST ;KAP REQUEST
9702 79 9703 321718 9706 C37089 9709 229618 9700 221018 9700 221018 9760 78 9761 323518 9761 323518 9761 323518 9762 C37088 9765 C37088 9765 F5 9766 C5 9776 C5 9776 55 9768 55 9768 55 9778 55 9768 55	DRVCHD: DRVCHD: CHDRST: HAPSET: EXTROØ:	HOV STA JHP SHLD SHLD SHLD SHLD SHLD STA JHP STA JHP PUSH PUSH PUSH PUSH PUSH PUSH	A.C HU2+2 SKIP ECHO CHDTHP A.B DRVREQ SKIP A.B RESCHD SKIP A.B HAFREQ SKIP PSW 3 D H HAFREQ	;AHD LEAVE ;SHOH RECEIVED COHHAHD ;UPDATE TEXPARARY COHHAHD ;POSITION REQUEST ACTIVE :RESET SYSTEM REQUEST
9702 79 9703 321718 9706 C37089 9709 229618 9700 221018 9700 221018 9760 78 9761 323718 9761 323718 9764 C37088 9765 73 9765 73 9765 75 9765 75 9766 25 9776 55 9768 55	DRVCHD: DRVCHD: CHDRST: HAPSET: EXTROØ:	HOV STA JHP SHLD SHLD SHLD SHLD SHD STA JHP HOV STA JHP PUSH PUSH PUSH PUSH PUSH PUSH	A.C HU2+2 SKIP ECHO CHDTHP A.B DRVREQ SKIP A.B RESCHD SKIP A.B HAFREQ SKIP PSW B D H	;AHD LEAVE ;SHOH RECEIVED COHNAHD ;UPDATE TEMPARARY COHNAND ;POSITION REQUEST ACTIVE :RESET SYSTEM REQUEST ;KAP REQUEST

∂ 7FD C27D Ø 8	387	SKIP	;1F IN NAPTINE
0600 3A0519	i D 4	5820+2	PTNG FORMAND AFTIVES
8883 47	KOV	8.A	:RING CONHAND ACTIVE? ;SAVE IN B
0804 E680		5.5 M	
0806 C24F08	382	EXTRT2	:IF ACTIVE
6869 78	HOV	4.B	;1F ACTIVE ;FESTORE A ;SET RING ACTIVE
080A F680	081	Səh	SET RING ACTIVE
080C 320518	STA	ERRG+2	
888F 70	HOV	A.L	:GET L3B
<i>∛310</i> 87	9.8 A	4	±FXTFHD?
2811 CA3238	EVT271+ 37	RETROT	FIE BOT SETRACT
2814 340819	LDA ANI	ECH0+2	:GET POSITION
8817 E601	AHI	1	:THERE?
0019 3EFF	HVI	A.ØFFH	;SET EXTEND FLAG
0815 324C18	ST A	EXTELO	,
381E C27008	JHZ	SKIP	
6821]Aðai8	LDA	D3CR+1	;GET DISCRETES
0824 F 610	0.01	130	
6826 328A18	STA	DSCR+1	;UPDATE DISCRETES ;START HOTOR AGAIN ;CLEAR SECOND CONMAND FLAG
3829 33 88	OUT	PIPTA	START HOTOR AGAIN
J 828 AF	XEA	A	CLEAR SECOND CONNAND FLAG
082C 324818			
1000 077000	120	0110	
9832 3A0818	RETRCT: LDA	ECH0+2	:GET POSITION
\$835 E602	AN I	2	:GET POSITION ;SET RETRACT FLAG
0837 3ED0	AVI	A. Ø	:SET RETRACT FLAG
2639 324C18	STA	EXTELG	
\$83C C27D89	JHZ	SKIP	
883F 324818	STA	RNGCHD	;CLEAR SECOND CONMAND FLAG
3842 3A0A18	LDA	DSCR+1	;GET DISCRETES
8845 F628	ORI	2 <i>3</i> H	,
0847 320A18	STA	DSCR+1	:UPDATE DISCRETES
884A D3 88	OUT	PIPTA	;START HOTOR AGAIN
084C C37D98	JHP	SKIP	
284F JA4C18	EXTRT2: LDA	EXTELG	
∂ 352 E6 01	AHI	1	
0854 BD	CHP	L	
₽855 CA7DØ8	JZ	SKIP	
#858 7D	HOV	A,L	;GET LSB
2359 F602	ORI	2	;SET FLAG
£85B E6#3	ANI	3	
∂ 35D 324818	STA	RHGCHD	;SET SECOND CONNAND FLAG
0850 C37008	JHP	SKIP	
	DT ARQ:		
8863 79	HOV	A.C	;GET HUX ADDR
8864 FEØ5	CPI	5	
0366 C26008	JNZ		;1F HOT, SKIP THE FOLLOWING
0369 212A18	LXI		;POINT TO HUX COUNTER
2360 34	Ink	ă	;INCREMENT COUNTER
	DRQ1:		
3865 3 7	RLC		;SETUP FOR INDEXING, 3 * A
936E 81	ADD Hong	ĉ .	
386F 6F	HGV	L. A	HL POINTS TO VALUE
0370 2618	5¥1	H,18H	
9972 7E	HÖV	A, ă	SET UP THE THREE BYTES FOR OUTPUT
8873 8332 8875 23	0üT Tav	OSDT 1	
2813 23 8976 7E	lax Hov	4 A.A	
0976 7E 0877 D333	auv Dut	A,M DSDT2	
	707	00014	

£879 23	INX	H		
087A 7E	HOV	A,H		
087B D334	<i>out</i>	DSDT3		
	SKIP:			
#870 E1	POP	E	;RESTORE REGISTERS	
#37E D1	POP	Ð		
087F CI	P0P	В		
088 9 F1	POP	PSW		
ê881 FB	EI			
5882 C9	RET			

;************************************

	;ANALOG TABLE ; -5.12 (= V (= ; 2048 + TRUHC(5.11, 400H =>	BFEH
<u>.</u>	AHATAB:		
2883 ÈA97FE0B	DH	97EAH.ØBFEH	;KQUNT TERP, 30 => 124 F
8887 FC342885	DH	04FCH.0528H	:-15/4
3888 D3 3A348 8	D#	øadsh.øsø4h	;+15/4
038F 8608FE08	0 W	0886H.08FEH	;÷ 5
<i>0873 E408EC08</i>	ÐŴ	ØBE4H,ØBECH	;+10/2
0897 0 000 ff0f	0 N	død gh, øfffh	FOC VEL
)898 Jød gef g f	57	2000 h.o fffh	:ROT VEL
389F FC070408	DW	97FCH,08 0 4H	; GND

RAHP TABLE

98A3 <i>q</i> 4	CK109:	DB	88H	:100HZ
<i>88.</i> 84 34	CK150:	DB	34#	:150
28A5 50		DB	59H	:200
93A6 68		DS	6 <i>0</i> H	:250
#8A7 67		98	67H	;] ##
88A8 71		D8	719	:350
08A9 75		D8	75H	:400
38AA 7 8		DB	78H	:450
J8AB 8J		DB	8 9 H	;50 0
98AC 89		DB	8 9 h	;500
98AD 83		DB	83H	;600
38.4E 85		D3	85 H	:050
ð 8AF 86		D8	86H	;700
ðsbø 67		DB	87H	:750
øsbi 83		D8	88H	;850
#882-89		D8	39 H	:900
998 3 9 9	CK1000:	D 3	7 0 H	;1900HZ

3884 END 3

LIST OF RELATED DRAWINGS

M7, Model E F/R Controller

```
A13740Z08 Top Bill of Materiels
   D13740P16 Top Assembly Drawing
   D13740S07
             Logic Schematic
   A13740W06 Master Wire List
   A13740W07
             Hand Wire List
   A13740W08 Machine Wire List
   A13740W09 Connector Wire List
   A13740P12 IC Module Ass'y (IC location matrix)
   C13740M07 Front Panel
   C13740AA09 Front Panel Silk Screen Artwork
   C13740M21 Rear Panel
   C13720M53
             16 Pin Logic Connector Board
   C13720M54 Universal Logic Connector Board
   B13050M03 Support Bar, Top & Bottom
   B13720M15-1,-2 Rail Modification, Top & Bottom
   C13720M17 Insulated Spacer
   B13720M49 Side Panel Insulation
   C13720M50 Modified Side Panel
   C13050M22-1 Perforated Cover
   B13050M04 Guide Block
MO8 Model C, F/R Power Supply
  A13740Z11
              Top Bill of Materiels
  D13740P18
              Top Assembly Drawing
  A13740W11
              Wire List
  D13740S11
              Schematic Diagram
  C13740M35
              Front Panel
  C13740M36
              Rear Panel
  C13740M37
              Mounting Bars, Top & Bottom
              Front Panel PCB Assembly Dwg
  B13740P19
              Front Panel PCB Bill of Materiels
  A13740Z12
  B13740AB02 Front Panel Display PCB Artwork
  C13740M26
              Front Panel PCB Drill Dwg
              PS2 Mounting Bracket, Version 1
  B13740M38
  B13740M39
              PS2 Mounting Bracket, Version 2, for LND-Z-152
  C13740AA02
              Front Panel Silkscreen Artwork
  C13740AA03
              Rear Panel Silkscreen Artwork
  B13050M04
              Guide Block
```

M11 Model B, Apex Interface Unit

A13740209	Top Bill Of Materiels
D13740P15	Top Assembly Drawing
A13740W02	Master Wire List
A13740W03	Hand Wire List
A13740W04	Machine Wire List
A13740W05	Connector Wire List
D13740S08	Logic Schematic
C13740M23	Logic Connector Board Modification
C13720M53	Logic Connector Board

```
IC Module Ass'y (IC Location Matrix)
    A13740P11
               Front Panel PCB Assembly
    C13740P13
    A13740206
                Front Panel PCB Bill of Materiels
    B13740AB01 Front Panel Display PCB Artwork
                Front Panel PCB Drill Drawing
    A13740M24
    D13740M06
                Front Panel
    C13740AA07 Front Panel Silk Screen Artwork
    C13740M40
               Rear Panel
    C13740P17
                S/D Converter PCB Assembly
    C13740AB04 S/D Converter Artwork
    C13740M31
                S/D Converter Drill Drawing
    C13740M17
                Insulated Spacer
    C13050M03
                Support Bar, Top & Bottom
    B13720M15-1,2 Rail Modification, Top & Bottom
    C13050M22-1 Perforated Cover
               Side Cover
    C13720M50
    C13720M49
                Side Cover Insulation
                Display Filter & Polarized Screen
    B13722M05
    A13740AD03
                Front Panel Display Legend
    B13050M04
                Guide Block
M22 Model B, F/R Switching Module
                Top Bill Of Materiels
    A13740Z13
    D13740P20
                Top Assembly Drawing
                F/R Switching Module Schematic Diagram
    C13740S10
    A13740W12
                F/R Switching Wire List
    C13740M41
                Support Bar, Top & Bottom
    C13740M32
                Front Panel
    C13740AA04 Front Panel Silkscreen Artwork
    C13740M29
                Rear Panel
    C13740M33
                Synchro Excitor Chassis
    C13740M34
                Brake Controller Mounting Bracket
    D1 3740AB06
                Synchro Excitor PCB Artwork
    D13740M43
                Synchro Excitor PCB Drill Drill Drawing
    D13740P21
                Synchro Excitor PCB Assembly Drawing
Bin Assembly
                F/R System E, Bin Assembly & Wire List
    A13740W10
    A13740Z15
                F/R System E, Bin Assembly Top Bill of Materiels
    D1 3050M08
                Bin Assembly
                42/34 Bin Rear Panel
    B13050M59
    B1 3050M26
                42 (single conn only) Bin Rear Panel
    C13740M04
                Fan Mounting Bracket
    D13740D01
                F/R Bin Wiring Geometry
    C13740M16
                Bin W I/O Panel Mtg Brkt, Left
    C13740M15
                Bin W I/O Panel Mtg Brkt, Right
    C13740M17
                Bin W Rear Protective Shield
    C13740M14
                Bin W Top Protective Shield
                Bin W I/O Panel
    C13740M11
    B13740M28
                Cable Clamp. Cmd/Data I/O Conn
               Bin Rear Filler Panel
    C13050M54
    B13050M47
                Bin Front Filler Panel, 2 - 4 Wide
               Connector Lock Plate
    B13740M1Z
```

F/R System Cabling

B13740W10	F/R System Model E, Cabling Structure
B13740P22	F/R Mount Temp Probe Assembly
B13740P42	F/R Mount Temp Probe Base Plate
D13740S16	Wiring Diagram Prime Focus Box, Ant 12 Only
D13740S17	Wiring Diagram Prime Focus Bos, Ant 20-Up
B13740W10	Simplified Wiring Diagram Prime Focus Box, Ant 20 - Up
D9890062	Anemometer System

Translator Drawings

B13740S01	Superior Electric HTR1008 & HTR 1500 Translator Schematic
206031	Superior Electric HTR1008 Schematic & Connection
Diagram	
EM185201	Superior Electric HTR1500 Schematic & Connection
	Diagram
D13740P02	TM600 Translator Slide Assembly
A13740Z01	TM600 Translator Slide Ass'y Bill of Materiels
D13740M02	TM600 Mounting Frame
D13740M03	TM600 Front Panel

 $\ensuremath{\mathsf{F/R}}$ Mount Mechanical Drawings

C13740M93	Weber's Funny Bracket, Focus Synchro Gearbox
SD4601	Sterling-Detroit Focusing Feed Mount Mech Drawings

REV	-					DECEDIOTION	
	DATE	DRAWN BY	APPRV'D	BY	·····	DESCRIPTION	
l	1	1	1	J			
WN BY		DATE					
		DATE					
SIGNED	BY						
AWN BY SIGNED PROVED	BY	DATE				NEXT ASSY	USED ON
SIGNED	BY	DATE				NEXT ASSY	USED ON
IGNED	BY	DATE				NEXT ASSY	USED ON
IGNED	BY	DATE				NEXT ASSY	USED ON
IGNED	BY	DATE					USED ON
PROVED	BY	DATE	STRONO	MY	PROJECT	M7-E	
IGNED	BY OBY ONAL OE	DATE)RY	MY	V L PROJECT		

LOC_E

0				0
73 % DM8456 % 74LSI65 % 74LS367 % 74LSI60 6 74LSI53 %	73 % DM8456 % 74LS165 6 74LS138 7 74LS160 % 74LSØ4 4	R. & DM8456 & 74LS165 & 74LS138 & 74LS161 & 74LS32 W	67 2 DM8456 2 DM8456 2 74LSI38 7 74LS74 2 74LS08 N	M8456 % DM8456 ~ DM8456 ~ 74LSI38 = 74LSZI @ SEE NOTE3
74LSI73 & DM8456 0	74LSI73 % DMB456 %	DIP HDR. 8 DM8456 2	74LS367 2 DM8456 2	DM8456 % DM8456 2
0	T_:0V	06	NDO	-

<u>ITEM</u> <u>BOM #</u> <u>DWG #</u>

NOTES:

ν

L

Α

PULL UP RESISTOR DIP NETWORK, BOURNS #4114R-002-470,470

NATIONAL RADIO ASTRONOMY OBSERVATORY SOCORRO, NEW MEXICO B7801

PROJECT
TITLE
DWG AI3740 PIZ

SPECIAL SUB ASSY'S

NATIONAL RAIDIO ASTRONOMY OBSERVATORY Socorro, New Mexico 87801

L A

V

NO.A13740PIZ. Dwa.

roc C O \mathbf{O} • 3 2 SEE NOTE I -5 4 0 ŝ 791508 74LS32 74LS04 ່ທ 0 74LSI ē . 9 8 7 6 10 0 0 741521 74 LSI60 7425160 74LS74 74LS161 • ٠ . • 14 13 12 11 15 74LS367 74LS138 0 7415138 74LS138 7415138 . . P . 17 16 Ð 20 19 18 DM8546 74LS165 DM8546 74 L5165 74LSI65 8 0 . • 23 22 24 21 25 DM8546 DM8546 DM8546 DM8546 DM8546 ~2773w * * * * * ø 28 415367N 9 26 7425/736 0 HDR. **JMB546** ۵. ក TION O GND O О \mathbf{O}

ITEM	BOM #	DWG #
	<u></u>	• <u> </u>
		<u> </u>

		<u> </u>

NOTE

1. PULL UP RESISTOR_DIP NETWORK BOURNS #4114R-002-470, 470 1

SPECIAL SUB ASSY'S

1 - 0	

B

SPECIAL SUB ASSY'S

0)							(0
KIOOA-OSCM	•	a 7404 a	· · · · · ·	DIP HDR."	• • • •	TOIP HURN DIP HDR.N	• • • • • • •	0 555 15227	
174160 5 K1004-08CM	• + + + + + + + + + + + + + + + + + + +			E SEE ANDE DIP HOR."	• • • • •	DIP HURN	0 0 0 0 0 0 0 0	6	
15 0914L 0		74151387	•	13			A A A	1602 =	1144
5 74160 N		74LSI74 6		24LS08 8		DIP HDR1	• • • • • •	N DIP HDR. 9602	
25 74160 25		0 74LSO2 % 74LSI74 6 74LSI38 5 7474	•	DR. 8 7408 8	· • • • • • • • • • • • • • • • • • • •	2 9602 N DIP HDR7 9602		2 2096 60 2	• • • • • • • • • • • • • • • • • • • •
74160 W		7404 w	00000	DIP HDR. 8		27 901/2	•••••	74LSIZ 0	· · · ·
0		ب	07	0_	GI	ND (0	- (5

ITEM	BOM #	DWG #
	<u> </u>	
<u></u>	<u> </u>	
	<u> </u>	<u> </u>
<u> </u>	<u></u>	

NOTEI 1. PULL UP RESISTOR BOURNIS #4119R-002-970-2

NATIONAL RADIO ASTRONOMY OBSERVATORY SOCORRO, NEW MEXICO 67801

PROJECT					
TITLE		-			

ν

L

Α

DWG AIRTAR. PIT

NO TE, 1. PULL UP RESISTOR BOURNS # 9114R-002 470 1

NATIONAL RADIO ASTRONOMY OBSERVATORY SOCORRO, NEW MEXICO 67801

	PROJECT	
V	TITLE	
	I III CE	
A		
	DWG A13740 P12	CHEET 7/7 OF

SPECIAL SUB ASSY'S

ESIGNED BY DATE		REV	DATE	DRAWN BY	APPRV'D BY	 DESCRIPTION	
SIGNED BY DATE	SIGNED BY DATE						
ESIGNED BY DATE	ESIGNED BY DATE						

0					С
14/4 Ú	SEN: L PUSA HILIDER BOODEE	FILTER 6	Δ. 21.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	480000	6.10.6.15 - 27.6025 31 300000
7423/38 5	7423174 6	6 1463174 8 FN. TER	2 742 S'05 2 742 SIDE 2 742 SIDE 7 742 S'05 2 742 S'05 2 11 0 010 0		20 74L5/55 2 74L5/65 5 74L5/65 = 74L5/65 = 74L5/65 9 24R741
742 <i>8133</i> 5 बेड्रे 	eecoe X		12 2010 20 20 20 20 20 20 20 20 20 20 20 20 20		74LS/65 =
1	74.2.774 6 7.	8 1425174 8 7428174 8 742514	17 59/5762 22 29		16 Sch 212
5 71 75 0 25 74 35 5 74 25 0 77 / FZ 0	7425/74 8 72	23 72/5771	22 20,572	0	00 7425/25 0 742
74/5/ 0	74/5/ 6 74	5/LTER 5	27		26 25/3/
·	TLOY	Ο	GND (ΣГ	

ITEM BOM # DWG # _ - -------_ __ _ . . . _ ----- -- ------_ ----____ ____ _ _ ___

- --

NATIONAL RADIO ASTRONOMY OBSERVATORY SOCORRO, NEW MEXICO B7801	THE FIR ADEX INTERFACE
	NO. ALTICOPIL SHEET Z OF

SPECIAL SUB ASSY'S

____ - --

LOC C- DIGITAL

SPECIAL SUB ASSY'S

_ _ -

0)								0
10 MHE i		7404 \$	<u>କ</u> କାଳ୍ପ ଜ	F16 TER 4		N Col/ 1/		- 091 <i>5</i> 2	
74367 0	144 SO SO SO SU	a 2477	리 2 역 1 원 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	7420 0 8 /		Coll 47 2001 47		6 0°1/7/	
= Sdf+Tdh2 0		<u>4</u> 00122	\square	13		74157 2		- 451274 <u>6</u> 2096	
2002 N		7474 NONE SUIJE -		C%) 74 160		UNE-SUJT		9602 BI	
25 t.L t.L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24 2474		74 JU S		137 2 7416.0 2 2		72 00 74/60 2	
0 2 5 1 3 7 4 7 2 M		7404 00		FILTER 8		2 72/VJ		OPTU VEVDER 9	ଅଧିକାର କ୍ରି ଥିବା ସ୍ଥା
6		·:-:		0]	GN	DC	2	-	

ITEM	BOM #	DWG #
	<u> </u>	
	<u> </u>	
		.
		<u></u>
	<u>_</u>	
		•

NATIONAL RADIO ASTRONOMY OBSERVATORY SOCORRO, NEW MEXICO 67801	THE FIR APEX WITERFACE TO MODULE LOCATION
	 NO. A13740P11 SHEET 2 OF

LOC	D-ANA	L0G
2000		

SPECIAL SUB ASSY'S

ITEM	BOM #	DWG #
		_
<u> </u>		

NATIONAL RADIO ASTRONOMY OBSERVATORY SOCORRO, NEW MEXICO 87801	V L A	TITLE FIR SDEX INTERFACE TO MODULE LOCATION
		NO. AIE760.21 SHEET & OF

					REVISIONS
REV	DATE	DRAWN BY	APPRVD	BY	DESCRIPTION
	6-83				NEW F/R SYSTEM MODEL-E DESIGN. SEE SHT "A-1" TO "A-5" FOR PICTORAL REPRESENTATION OF THIS CONFIGURATION
A	7 / 5/84				MANY WIRING CHANGES AS REQ'S TO MAKE SYSTEM WORK,
В	8/14/84				CURRISCTIED APIER TEMP PRUBE WIRING ERRORS ON PAGES 48, 44 2 3
C	8/27/84				ADDED BOT RING RETEART SSR DEIVE, MOVED ROT BRAKIE SSR DEIVE TO W3JI-3_ FROM W3JI-1 PAGES AFFECTED: 7, 42,46, 14, 26,28;
D	10/01/84				CHANGED PART NO.'S FOR 1/0 CONN. PANEL SHEET A-5
E	1'20/85				ADDED ANEMOMETER SEFERING Srem I/O-JS TO JI of DATA SET VIVE BINTO BIN JUMPER PARE 12,20,21,24 HADEL PRESS 31A + 51 Plock Dig. + WICE List
۶	1/28/85				DE FRAME Gud wire from M8 82:16 moved ALGE-3 - A:GI-\$ Po:20,21,27,15,7
G	2/5/25				Fire Led's on ma P=: 6,8,18
#	5/22/85				ELIMINATED APEX SSR DENCE FOR RING EXTEND & RATRACT & CORRECTED REDUCS SER SHAFT 52
DRAWN B		DATE ,			
DESIGNED) BY	B/II/B3 DATE	-		
APPROVE	D BY	DATE 8/11/82	1		NEXT ASSY USED ON
NAT	OB	RADIO AS SERVATOI	RY	MY	L A AND THE "C" RACK LAYOUT A AND WIRE LIST
					NO. AIS/40WID SHEET OF 30

		_				
	API INTE FAC	ER-	F/R CONTROL	υάτα ταρ	F/R Power Supply	
	(2 'w	10E)	(2W)	(4w)	(4w)	
	M	IB	M7E	M2B	MBC	
		CMD/ MON INTER- FACE		BLANK	F/R Switching	2
0	(1W) M1	(1W)			(4W) M22 A	

F/R ELECTRONIC BING (FRONT VIEW)

MODULE LOCATIONS & GENERAL ARRANGEMENT

F/R ELECTRONIC BINS

1/0 CONNECTOR PANEL

BIN VENTILATION FANS

WIRE LIST

LIST BY: UNICE BY: CONNECTOR TYPE: $2a = 277 - 4'$ CONNECTOR PAGE: I PIN FUNCTION TYPE FROM TO A APEX TWF + 15° U Bas, $\frac{4}{2} \ge 0$ W - 4J1 - A B APAX TWF + 15° U Bas, $\frac{4}{2} \ge 0$ W - 4J1 - F C APAX TWF 5° Comm BLORE, $\frac{4}{7}$ (2 W - 4J1 - F C APAX TWF 5° Comm BLORE, $\frac{4}{7}$ (2 W - 4J1 - F C APAX TWF - 15° U Vertex, $\frac{4}{7}$ (2 W - 4J1 - F C APAX TWF - 15° U Vertex, $\frac{4}{7}$ (2 W - 4J1 - F C APAX TWF - 15° U Vertex, $\frac{4}{7}$ (2 W - 4J1 - F C APAX TWF - 15° U Vertex, $\frac{4}{7}$ (2 W - 4J1 - F F Foc S1 Tro - 31 - BP J Foc S2 Tro - 31 - BP J Foc S2 Tro - 31 - BN K Por S2 Tro - 31 - BN K Por S2 Tro - 31 - BN M Cor S3 Tro - 31 - BW N SYNCHAO EXC R1 Wh $\frac{4}{2}$ (7 π^{4} (2 W - 6 J2 - 5) P R SYNCHAO EXC R1 Wh $\frac{4}{2}$ (7 π^{4} (2 W - 6 J2 - 5) P R SYNCHAO EXC R1 Wh $\frac{4}{2}$ (7 π^{4} (2 W - 6 J2 - 5) P N SYNCHAO EXC R1 Wh $\frac{4}{2}$ (7 π^{4} (2 W - 6 J2 - 5) P U Dot CW Lim Sense T Foc UPPE & Lim Sense T/0 - 31 - AA W Dor CCW Lim Sense S Tro - 31 - AA W Dor Sense S Tro - 31 - AA W PW TW Sense S Tro - 31 - AA W Dor Sense S Tro - 31 - AA M C Sense S Tro - 31 - AA M Sense S Tro - 31 - AA S Tro - 31 - 32 S Tro - 3	RACK:	C BIN: W SLOT: 1-JI	MODULE F	ALL ADEN TIE	TYPE SO P
PINFUNCTIONTYPEFROMTOAApex Twr + 15"U $Pax_1^{2} 20$ $w-9J1 - A$ TOBApex Twr + 15"U $Pax_1^{2} 20$ $w-9J1 - A$ TOBApex Twr + 5"VObernage" 16 $w-9J1 - B$ TODSpaceImage: 10 - 11 - 10Image: 10 - 11 - 10Image: 10 - 11 - 10EApex Twr - 15"UYallow, # 20 $w-9J1 - B$ Image: 10 - 11 - 10FFoc S1Image: 10 - 11 - 10Image: 10 - 11 - 10Image: 10 - 11 - 10HPort S2Image: 10 - 11 - 10Image: 10 - 11 - 10Image: 10 - 11 - 10JFoc S2Image: 10 - 11 - 10Image: 10 - 11 - 10Image: 10 - 11 - 10MPort S2Image: 10 - 11 - 10Image: 10 - 11 - 10Image: 10 - 11 - 10MPort S2Image: 10 - 11 - 10Image: 10 - 11 - 10Image: 10 - 11 - 10MPort S2Image: 10 - 11 - 10Image: 10 - 11 - 10Image: 10 - 11 - 10NStructureExc R2Image: 10 - 11 - 10Image: 10 - 11 - 10NStructureExc R2Image: 10 - 11 - 10Image: 10 - 11 - 10SImage: 10 - 10 - 10Image: 10 - 10 - 10Image: 10 - 11 - 10VPort Cow Lim SewseImage: 10 - 11 - 10Image: 10 - 11 - 10VPort Cow Lim SewseImage: 10 - 11 - 10Image: 10 - 11 - 10YPin Dut SewseImage: 10 - 11 - 10Image: 10 - 11 - 10YPin Out SewseImage: 10 - 11 - 10Image: 10 - 11 - 10Image: 1				<u>111 /////</u>	<u>111 C. 30 7,2</u>
A Apex Twr + 15" Res $\frac{4}{20}$ $W - 9JI - A$ B Apex Twr 5"U Comm BLPes $\frac{4}{7}IL$ $W - 9JI - F$ C Apix Twr 5"U Comm BLPes $\frac{4}{7}IL$ $W - 9JI - F$ D Space Twr 5"U Oeawee $\frac{4}{7}IL$ $W - 9JI - F$ D Space Twr -15"V Oeawee $\frac{4}{7}IL$ $W - 9JI - F$ E Apix Twr -15"V Yellow $\frac{4}{7}IL$ $W - 9JI - E$ F Fee SI Tron - 15"V Yellow $\frac{4}{7}IL$ $W - 9JI - E$ J For Si Tron - 15"V Yellow $\frac{4}{7}IL$ $W - 9JI - E$ J For Si Tron - 16W With $\frac{1}{7}IL$ $W - 8JI - 5$ M Port SI With $\frac{1}{7}IL$ $W - 8JI - 5$ $W - 8JI - 5$ N Structure Exc R2 Bit $\frac{1}{7}IL$ $W - 8JI - 5$ N Structure Exc R2 Bit $\frac{1}{7}IL$ $W - 8JI - 5$ N Structure Exc R2 Bit $\frac{1}{7}IL$ $W - 8JI - 5$ N Structure Exc R2 Bit $\frac{1}{7}IL$ $W - 8JI - 5$ V </td <td>CONNE</td> <td>CTOR TYPE: 200 277-4</td> <td></td> <td>E:_/</td> <td></td>	CONNE	CTOR TYPE: 200 277-4		E:_/	
BA pexTur 50 CounBLACS $H = 15$ $W = 931 - F$ CA pixTur + 5 VOCRAUGE $W = 931 - F$ DSpace $W = 931 - F$ $W = 931 - F$ EA pexTur - 15 VYellow $W = 931 - F$ FFocS1 $Yellow$ $W = 931 - F$ HRorS1 $Yellow$ $W = 931 - F$ JFocS2 $Yo = 31 - BP$ JFocS2 $Yo = 31 - BN$ KPorS2 $Yo = 31 - BN$ MPorS2 $Yo = 31 - BN$ MPorS2 $Yo = 31 - BN$ MPorS2 $Yo = 31 - BN$ NSyucineoExc $Yo = 31 - AN$ VFocLimSense $Yo = 31 - A$ YSense $Yo = 31 - A$ $Yo = 31 - A$ YSense $Yo = 31 - A$ $Yo = 31 - A$ <td< td=""><td>PIN</td><td></td><td>· · ·</td><td></td><td>то</td></td<>	PIN		· · ·		то
CApisx Tur +5VOerweet, isW -9JI-BDSpeareIsonomic - 15VYellow, #20W-9JI-EEAprx Tur - 15VYellow, #20W-9JI-EFFoc SiIo-JI-BPJFoc SiIo-JI-BPJFoc SiI/o-JI-BMKRor SiI/o-JI-BWMBor SiI/o-JI-BWNSyncheo Exc RiWh, #26, TP#12W-8J2-SPIFoc UPPER Lim SenseI/o-JI-2VEor CW Lim SenseI/o-JI-ACVFoc Loware Lim SenseI/o-JI-ARVFoc Loware Lim SenseI/o-JI-AKYIIo-JI-AKYIIo-JI-AKYIIo-JI-AKYIIo-JI-AKYIIo-JI-AKYIIo-JI-AKYIIo-JI-AKYIIo-JI-AKYIIo-JI-AKYIIo-JI-AKYIIo-JI-AKYIIo-JI-AKYIo-JI-AKYIo-JI-AKYIo-JI-AKYIo-JI-AKYIo-JI-AKYIo-JI-AKYIo-JI-AKYIo-JI-AKYIo-JI-AKYIo-JI-AKYIo-JI-AKYIo-JI-AKYIo-JI-AKYIo-JI-AKYIo-JI-AKYIo-JI-AKYIo-JI-AKY <td< td=""><td>A</td><td></td><td></td><td></td><td></td></td<>	A				
DSpringImage: SpringEApex Ibr - 150Yellow, # 20 $w-951 - E$ FFoc S1Io-J1-BLHRot S1I/0-J1-BPJFoc S2I/0-J1-BMKRot S2I/0-J1-BMMBot S2I/0-J1-BMMBot S2I/0-J1-BMNStructure Exc R1wh, #26, TP#12WStructure Exc R2BLE #26, TP#12WStructure Exc R2BLE #26, TP#12WStructure Exc R2BLE #26, TP#12WStructure Exc R2BLE #26, TP#12WStructure Exc R2I/0-J1-ZVFoc UPPER Lim SenseI/0-J1-AVFoc Lower Lim SenseI/0-J1-AVFoc Lower Lim SenseI/0-J1-AYImage: SenseImage: Sense2Pin Out SenseImage: Sense4Pin Out SenseImage: Sense5Image: SenseImage: Sense4C N SenseImage: Sense4C N SenseImage: Sense4Y N SenseImage: Sense5Yo-J1-AH12KN SenseImage: Sense14XN SenseImage: Sense15SenseImage: Sense16JN SenseImage: Sense17Fo-J1-AH17KN SenseImage: Sense17SenseImage: Sense17SenseImage: Sense17SenseImage: Sense17SenseImage: Sense <td>B</td> <td></td> <td></td> <td>W - 9JI - F</td> <td></td>	B			W - 9JI - F	
E Apex Inr - 150 Yellow, # 20 $w - 971 - E$ F Foc S1 IV0-51 - 34 H Ror S1 IV0-51 - 34 J Foc S2 IV0-51 - 34 K Ror S2 IV0-51 - 34 L Foc S2 IV0-51 - 34 M Eor S2 Wh, #20, TP#12 W Eor CW C N STWERED EXC 2 BLE, #20, TP#12 W - 852-0 V For UPPER Line Sense I/0 - 51 - 40 V For COW Line Sense I/0 - 51 - 40 V For COW Line Sense IV0 - 51 - A1 Y I IV0 - 51 - A1 Y IV0 - 5 - 51 - A4 IV0 - 51 - A1 Y IV0 - 5 - 51 - A1 IV0 - 51 - A1 Y IV0 - 5	С	APIEX INT +5V	OEANGE , 16	W-9J1-B	
F Feed S1 I/o - J1 - 8L H Roth S1 I/o - J1 - 8P J Feed S2 I/o - J1 - 8P J Feed S2 I/o - J1 - 8P K Roth S2 I/o - J1 - 8V L Fod S2 I/o - J1 - 8V M Both S2 I/o - J1 - 8V N Structure Exc R1 W1, ¹² 20, TP [±] 12 W - 8J2-5 P Image: Structure Exc R2 BLK [±] 20, TP [±] 12 W - 8J2-7 V For Outple Line Sense I/o - J1 - 4 U Both Countum Sense I/o - J1 - A V For Countum Sense I/o - J1 - A Y Image: Sense Image: Sense Image: Sense Y Image: Sense Image: Sense Image: Sense Y Image: Sense Image: Sense Image: Sense Y Sense Imag	D	Spa ice			
H R_{OT} SI $I/O - JI - BP$ JFocSz $I/O - JI - BM$ KRorSZ $I/O - JI - BM$ LFocSZ $I/O - JI - BM$ MPorSZ $I/O - JI - BM$ NSYNCHROEXCRIWI, *zc, TP*12W - BJZ - SPImage: Structure for the s	E	APEX INT -15V	YELLOW # 20	W-951-E	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F	For SI		110-J1-BL	
KPorSZ $I/O - JI - BV$ LForSZ $I/O - JI - BV$ MPorSZ $I/O - JI - BW$ NSynchrone Exc P1 $Wh, ^{#}26, TP^{#}12$ $W - BJZ - S$ PImage: Structure Exc P2 $BLk^{\#}2c, TP^{\#}12$ $W - BJZ - S$ RSynchrone Exc P2 $BLk^{\#}2c, TP^{\#}12$ $W - BJZ - S$ VFor UPPER Lim Sense $I/O - JI - A$ VFor Cow Lim Sense $I/O - JI - A$ VFor Cow Lim Sense $I/O - JI - AA$ XPin Ju Sense $I/O - JI - AL$ YImage: Sense $I/O - JI - AL$ MC N SenseImage: Sen	н	Rot SI		I10-J1-BP	
LFocSZ $I/o - JI - BJI$ MRor SZ $J/o - JI - BW$ NStructure EXC R1 $WL, WZC, TP^{W}IZ$ $W - BJZ - S$ P	J	For SZ		I10-J1-BM	
MPor Si $I/o - Ji - BW$ NSymphon Exc Ri $Wh, \#zc, TP\#i2$ $W - BJ2 - S$ PImage: Symphon Exc Ri $Wh, \#zc, TP\#i2$ $W - BJ2 - U$ RSymphon Exc Ri $BLe \# 2c, TP\#i2$ $W - BJ2 - U$ SImage: Symphon Exc Ri $I/o - Ji - 2$ UPor C W Lim Sense $I/o - Ji - AC$ VFor Lowber Lim Sense $I/o - Ji - AC$ VFor C C W Lim Sense $I/o - Ji - AA$ WPor C C W Lim Sense $I/o - Ji - AA$ YPin Ju Sense $I/o - Ji - AL$ YImage: Sense $I/o - Ji - AJ$ ZPin Our Sense $I/o - Ji - AJ$ \subseteq L X Sense $I/o - Ji - AJ$ \subseteq L X Sense $I/o - Ji - AJ$ $\stackrel{d}{=}$ C X Sense $I/o - Ji - AV$ $\stackrel{d}{=}$ K X Sense $I/o - Ji - AJ$ $\stackrel{d}{=}$ K X Sense $I/o - Ji - AJ$ $\stackrel{d}{=}$ Y X Sense $I/o - Ji - AJ$ $\stackrel{d}{=}$ Y X Sense $I/o - Ji - AV$ $\stackrel{d}{=}$ K X Sense $I/o - Ji - Be$ $\stackrel{d}{=}$ Y X Sense $I/o - Ji - BE$ $\stackrel{d}{=}$ Y X Sense $I/o - Ji - BE$ $\stackrel{d}{=}$ Y X Sense $I/o - Ji - BE$ $\stackrel{d}{=}$ Y X Sense $I/o - Ji - BE$ $\stackrel{d}{=}$ Y X Sense $I/o - Ji - BE$ $\stackrel{d}{=}$ Y X Sense $I/o - Ji - BE$ $\stackrel{d}{=}$ Y X Sense $I/o - Ji - BE$ $\stackrel{d}{=}$ Y X Sense $I/o - Ji - BE$ $\stackrel{d}{=}$ Y X Sense $I/o - Ji - BE$	к	· · · · · · · · · · · · · · · · · · ·		IIO-JI-BV	
NSymplete ExcRiWh, $\pm 2c$, $TF^{\pm}12$ W-BJ2-SPIIIICNAL RADIO ASTRONOMY OBSERVATORYPIOLIIIIENSymplete Exc $Revise$ IIII E: F/R SystemNSymplete Exc $Revise$ IIII E: F/R SystemNSymplete Exc $Revise$ IIII E: JUN 83NSymplete ExcIIII E: F/R SystemIIII E: JUN 83	L	For SZ		1/0 - JI - BA	
P K STNEHRO EXC R2 $BLE_{2}^{\pm}2L_{1}TP^{\pm}12$ $W = BJZ = U$ STFoc UPPER Lim Sense $I/0 = JI = 2$ URot CW Lim Sense $F/0 = JI = AC$ VFoc Lower Lim Sense $F/0 = JI = AC$ WRot CCW Lim Sense $F/0 = JI = AA$ WRot CCW Lim Sense $F/0 = JI = AA$ WRot CCW Lim Sense $F/0 = JI = AA$ YPin Ju Sense $F/0 = JI = AL$ YIIZPin Out Sense $F/0 = JI = AL$ Δ II Δ I IIIIIIIIIIIIIIIIIIIIIIIIII	м	Rot SZ		I/0-J1-BW	· · · · · · · · · · · · · · · · · · ·
RSTNCHROEXC 22 $BLE_{1}^{\pm}2C_{1}, TP^{\pm}i2$ $W = 9JZ = U$ STFOCUPPER LIM SENSE $I/O = JI = AC$ URotCWLIMSENSE $I/O = JI = AC$ VFOCLOWRRLIMSENSE $I/O = JI = AA$ WRotCCWLIMSENSE $I/O = JI = AA$ WRotCCWLIMSENSE $I/O = JI = AA$ YPINTUSENSE $I/O = JI = AL$ YIIIIIIIIIZPINOUTSENSE $I/O = JI = AL$ $\frac{1}{2}$ PINOUTSENSE $I/O = JI = AL$ $\frac{1}{2}$ PINSENSE $I/O = JI = AJ$ $\frac{1}{2}$ PINSENSE $I/O = JI = AJ$ $\frac{1}{2}$ CINSENSE $I/O = JI = AJ$ $\frac{1}{2}$ RUIN SENSE $I/O = JI = AU$ $\frac{1}{2}$ KUIN SENSE $I/O = JI = AU$ $\frac{1}{2}$ KINSENSE $I/O = JI = AU$ $\frac{1}{2}$ KINSE $I/O = JI = AU$ $\frac{1}{2}$ KINSENSE $I/O = JI = AU$ $\frac{1}{2}$	N	SYNCHRO EXC RI	wh, #20, TP#12		w-852-5
SI/O - JI - 2TFOR UPPER LIM SENSE $I/O - JI - 2$ UROT CW LIM SENSE $I/O - JI - AC$ VFUR LOWER LIM SENSE $I/O - JI - AC$ WROT CCW LIM SENSE $I/O - JI - AA$ XPIN JU SENSE $I/O - JI - AL$ YImage: Sense $I/O - JI - AL$ Image: SenseImage: Sense $I/O - JI - AJ$ Image: SenseImage:	P				
TFOC UPPER LIM SENSE $I/0 - JI - Z$ UROT CW LIM SENSE $F/0 - JI - AC$ VFOC LOWRER LIM SENSE $F/0 - JI - AR$ WROT CCW LIM SENSE $F/0 - JI - AR$ XPIN JU SENSE $F/0 - JI - AK$ YIIZPIN OUT SENSE $F/0 - JI - AK$ Δ II Δ I I Δ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII <t< td=""><td>R</td><td>STNCHRO Exc R2</td><td>BLE # 26., TP#12</td><td></td><td>W-8JZ-U</td></t<>	R	STNCHRO Exc R2	BLE # 26., TP#12		W-8JZ-U
URot CW Lim Sruse $F/0 - JI - AC$ VFue Lowrer Lim Sruse $T/0 - JI - AA$ WRot CCW Lim Sruse $T/0 - JI - AM$ XPin Ju Sruse $F/0 - JI - AL$ YImage: Sruse $T/0 - JI - AL$ Image: SruseImage: Srus	S				
VFue Lower Lim Sense $F_0 - JI - AA$ WPor CCW Lim Sense $F_0 - JI - AM$ XPin JU SENSE $F_0 - JI - AL$ YImage: Sense $F_0 - JI - AL$ ZPin Out Sense $J_0 - JI - AL$ a Image: Sense $I_0 - JI - AL$ b P λ Sense $I_0 - JI - AL$ c L λ Sense $I_0 - JI - AL$ d C λ Sense $F_0 - JI - AV$ d C λ Sense $F_0 - JI - AV$ f K λ Sense $F_0 - JI - AV$ f K λ Sense $F_0 - JI - AV$ f X Sense $F_0 - JI - BE$ f Y Sense	т	FOC UPPER Lim SENSE			110-51-3
WPor CCW Lim SENSE $I/o - JI - AM$ XPin JJ SENSE $I/o - JI - AL$ YImage: Sense $I/o - JI - AL$ ZPin OUT Sense $I/o - JI - AL$ a Image: Sense $I/o - JI - AL$ b P λ SENSE $I/o - JI - AL$ c L λ SENSE $I/o - JI - AJ$ c L λ SENSE $I/o - JI - AV$ d C λ SENSE $I/o - JI - AV$ d C λ SENSE $I/o - JI - AV$ f K λ SENSE $I/o - JI - AV$ f K λ SENSE $I/o - JI - AV$ f X λ SENSE $I/o - JI - BE$ f Y λ SENSE $I/o - JI - BE$ f Y λ SENSE $I/o - JI - BE$ f Y λ SENSE $I/o - JI - BE$ f Y λ SENSE $I/o - JI - BE$ f Y λ SENSE $I/o - JI - BE$ f Y λ SENSE $I/o - JI - BE$ f Y λ SENSE $I/o - JI - BE$ f Y λ SENSE $I/o - JI - BE$ f Y λ SENSE $I/o - JI - BE$ f Y λ SENSE $I/o - JI - BE$ f Y λ SENSE $I/o - JI - BE$ f Y λ SENSE $I/o - JI - BE$ f Y λ SENSE $I/o - JI - BE$ f Y λ SENSE $I/o - JI - BE$ f Y λ SENSE $I/o - JI - BE$ f Y λ SENSE $I/o - JI - BE$ f Y λ SENSE $I/o - JI - BE$ f $I/o - JI - BE$ $I/o - JI - BE$ f	υ	ROT CW Lin SENSE			10-JI-AC
XPINJUSENSE $F/O-JI-AL$ YIIZPINOUT a I/ $O-JI-AK$ a I b P λ c $L\lambda$ f $F_{O-JI-AJ$ c $L\lambda$ f $F_{O-JI-AV$ f $F_{O-JI-BC$ f $F_{O-JI-BC}$ f $F_{O-JI-BC$ f $F_{O-JI-BC}$ f $F_{O-JI-BC}$ f $F_{O-JI-BC}$ f F_{O-J	V	Fue Lower Lin Sense			1/0 - JI - AA
YImage: Series and	\mathbb{W}	ROT COW LIM SIENSIE			10-JI- AM
Z P_{iN} O_{iT} $Sense$ $I/o-JI-Ak$ a a $I/o-JI-AJ$ b $P\lambda$ $Sense$ $I/o-JI-AJ$ c $L\lambda$ $Sense$ $I/o-JI-AJ$ d $C\lambda$ $Sense$ $F/o-JI-AW$ d $C\lambda$ $Sense$ $F/o-JI-AW$ d $C\lambda$ $Sense$ $I/o-JI-AW$ f $k\lambda$ $Sense$ $I/o-JI-AU$ f $k\lambda$ $Sense$ $I/o-JI-AU$ f $X\lambda$ $Sense$ $I/o-JI-BE$ λ $Y \in Sense$ $I/o-JI-BD$ NATIONAL RADIO ASTRONOMY CBSERVATORYPROJ:DATE: JUN 83TITLE: F/R SYSTEM \mathcal{D} REV:	×	PIN IN SENSE			7/0-J1- AL
a $I/0 - J I - AJ$ b $P\lambda$ Sense $I/0 - J I - AJ$ c $L\lambda$ Sense $I/0 - J I - AW$ d $C\lambda$ Sense $J/0 - J I - AV$ e $k \cup \lambda$ Sense $J/0 - J I - AU$ I $k \lambda$ Sense $I/0 - J I - AU$ I $k \lambda$ Sense $I/0 - J I - AT$ L $X \lambda$ Sense $I/0 - J I - BE$ $V \lambda$ Sense $I/0 - J I - BE$ $V \lambda$ Sense $I/0 - J I - BD$ NATIONAL RADIO ASTRONOMY OBSERVATORYPROJ:TITLE: F/R SYSTEM D	Y				
bPXSENDEI/O-JI-AJcLXSENDEI/O-JI-AWdCXSENDEI/O-JI-AWeKUXSENDEI/O-JI-AVfKXSENDEI/O-JI-AUfKXSENDEI/O-JI-AThXXSENDEI/O-JI-BEjYXSENDEI/O-JI-BEjYXSENDEI/O-JI-BEiNATIONAL RADIO ASTRONOMY COBSERVATORYPROJ:DATE: JUN 83TITLE:F/R SYSTEM DREV:	Z	Pin Out Sense			1/0-51-AK
E LX SENSE I/O JI-AW d CX SENSE F/O - JI - AV E KUX SENSE F/O - JI - AU Î KX SENSE F/O - JI - AU Î KX SENSE F/O - JI - AU Î KX SENSE F/O - JI - AU Î YX SENSE F/O - JI - BE Î REV: REV:	a_				
d C \ Sense F/0 - II - AV E KUX Sense F/0 - JI - AU I KX Sense F/0 - JI - AT H XX Sense F/0 - JI - BE I YX Sense F/0 - JI - BE	ē	· · · · · · · · · · · · · · · · · · ·			I/0 - J 1- AJ
EKUX SENSEF/0-JI-AUIKX SENSEF/0-JI-ATLXX SENSEF/0-JI-BEZYX SENSEF/0-JI-BDNATIONAL RADIO ASTRONOMY OBSERVATORYPROJ:DATE: JUN 83TITLE: F/R SYSTEM DREV:	<u> </u>	LX SENSE			I10-J1-AW
IKX SENSEI/0-JI-AThXX SENSEI/0-JI-BEiYX SENSEI/0-JI-BEiYX SENSEI/0-JI-BDNATIONAL RADIO ASTRONOMY OBSERVATORYPROJ:DATE: JUN 83TITLE: F/R SYSTEM DREV:	<u>d</u>	C X Sense			5/0-II - AV
LX \ Sense1/0 - JI - BE2Y \ SENSE5/0 - JI - BDNATIONAL RADIO ASTRONOMY OBSERVATORYPROJ:DATE: JUN 83TITLE: F/R SYSTEM DREV:	<u>e</u>	KUX Sewse			5/0-JI-AU
ZY \SENSEF/0-JI-BDNATIONAL RADIO ASTRONOMY OBSERVATORYPROJ:DATE: JUN 83TITLE: F/R SYSTEM DREV:	ŕ	K& SENSE			10-JI-AT
NATIONAL RADIO ASTRONOMY OBSERVATORY PROJ: DATE: JUN 83 TITLE: F/R SYSTEM D REV:	<u>h</u>	XX Sense			40-J1 -BE
TITLE: F/R SYSTEM D REV:					
			ERVATORY	PROJ:	
DWG NO AI3740WID SHEET 2 OF 50		: F/K 3131EM V	DWG NO A	13740010	SHEET 2 OF 50

WIRE LIST

IST E			35. 2	
PIN I		CONNECTOR PAC TYPE	FROM	ТО
k	ZX SENSE			1-10 - JI - BC
m	APEX SENSE SW END			1-10-JI-BB
	FOR BRAKE VOLTS +	· · · · · · · · · · · · · · · · · · ·	1/0-J1-CK	
<u>~</u> P	ROT BEFER Volts +			The local division of
			1/0-J1-CL	
<u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	For BRAIRE Amps			W-851- J
2	Rot BRAKE AMPS		-	W-851-2
<u>t</u>	FOC BRAKE PET -			W-851- K
<u>~</u>	ROT BRAKE RET -	······································	110-JI-CR	w-851-3
~			· · · · · · · · · · · · · · · · · · ·	
m	F/R MOUNT TEMP SIG+	<u> </u>		5/0 - JI - BX
ž				
X	F/R MOUNT TEMP Rat -			30-JI-BY
3				
AA				
RE				
cc				
٥٥				
EE				
FF				
нн	APEX INT ANA Comm	BLACK, # 16	W-951-C	
		· · · · · · · · · · · · · · · · · · ·		
-				
		·		
NATIC	NAL RADIO ASTRONOMY CBS	ERVATORY	PROJ:	IDATE: Jun 83
the second s	E: FIR SYSTEM D			IREV:

WIRE LIST

ACK: C[BIN. W]SLOT. I-J ZIMODULE: MI, Apac Stort ITYPE: 34 Pro- INTEL StringIST BY:WIRE BY:Image: Stort ITYPE: 200839-3CONNECTOR PAGE: IPINFUNCTIONTYPEFROMTOAFue Date Reg - SiaWA, 22 TP*1W-3J1 - dt' BBut Date Reg - SiaWA, 22 TP*2W-3J1 - dt' CFue Date Reg - SiaWA, 22 TP*2W-3J1 - dt' DRest Date Reg - RestBLE 420 , TP*1W-3J1 - dt' CFue Date Reg - RestBLE 420 , TP*2W-3J1 - dt' CFue Date Reg - RestBLE 420 , TP*2W-3J1 - dt' CFue Date Reg - RestBLE 420 , TP*3W-3J1 - dt' CFue Date Reg - RestBLE 420 , TP*4W-3J1 - dt' CFue Date Reg - RestBLE 420 , TP*4W-3J1 - dt' CFue AI CLK - RestBLE 420 , TP*3W-3J1 - dt' JRest AI CLK - RestBLE 420 , TP*6W-3J1 - dt' KFoe AI Date SigWA to TP*6W-3J1 - dt' KFoe AI Date SigWA to TP*6W-3J1 - dt' NPut AI Date RestBLE 420 , TP*6W-3J1 - dt' NPut AI DATA RESTBLE 420 , TP*6W-3J1 - dt' NPut AI DATA RESTBLE 400 , TP*6W-3J1 - dt' NPut AI DATA RESTWA to TP*6W-3J1 - dt' VPac Upfee Lim ToutW-3J1 - dt' W-3J1 - dt' VPac Usine Lim ToutW-3J1 - dt' W-3J1 - dt' YYow P	DACK	C ITIN WI ISLOT L.T.	Z IMODULE.	ULL DOGY THE	TYPE 24 A
CONNECTOR TYPE: 200838-3 CONNECTOR PAGE: I PIN FUNCTION TYPE FROM TO A Fue Data Req - Sig Wh, $\frac{1}{2}$ TP [±] W-3J1 - M TO B Ext Data Req - Sig Wh, $\frac{1}{2}$ TP [±] W-3J1 - M TO C Fac Data Req - Set BLE, $\frac{1}{2}$, TP [±] W-3J1 - M TO C Fac Data Req - Set BLE, $\frac{1}{2}$, TP [±] W-3J1 - M TO C Fac Data Req - Set BLE K2, TP [±] W-3J1 - M TO C Fac Data Req - Set BLE K2, TP [±] W-3J1 - M TE C Fac AT CLE - Sig Wh the Set TP [±] W-3J1 - M TE F Port AT CLE - Ret BLE to, TP [±] W-3J1 - M TE J Ret AT CLE - Ret BLE to, TP [±] W-3J1 - M TE J Ret AT CLE - Ret BLE to, TP [±] W-3J1 - M TE J Ret AT Data - Sig Wh the Set TP [±] W-3J1 - M M K Foc AT Data - Ret BLE to, TP [±] W-3J1 - M W-3J1 - M V Fac Upfet Lim ToH <td></td> <td></td> <td></td> <td>1</td> <td>11FE: 34 P.D</td>				1	11FE: 34 P.D
PIN FUNCTION TYPE FROM TO A For Dara Req - Sig $Wh_3^{k}2c$ Tr ^k 1 $W - 3J1 - M$ B Bor Dara Reg - Sig $Wh_3^{k}2c$ Tr ^k 1 $W - 3J1 - M$ C For Dara Reg - Sig $Wh_3^{k}2c$ Tr ^k 2 $W - 3J1 - M$ D Ran Dara Reg - Rer BLk_{2c} Tr ^k 1 $W - 3J1 - M$ C For Dara Reg - Rer BLk_{2c} Tr ^k 1 $W - 3J1 - M$ C Far Dara Reg - Rer BLk_{2c} Tr ^k 1 $W - 3J1 - M$ C For AT Cle - Sig $Wh_2^{k}2c$ Tr ^k 3 $W - 3J1 - M$ F Por AT Cle - Rer BLk_{2c} Tr ^k 4 $W - 3J1 - M$ K For AT Cle - Rer BLk_{2c} Tr ^k 5 $W - 3J1 - M$ K For AT Dara - Sig Wh_{2c} Tr ^k 5 $W - 3J1 - M$ K For AT Dara - Rer BLk_{2c} Tr ^k 5 $W - 3J1 - M$ M Far AT Dara - Rer BLk_{2c} Tr ^k 5 $W - 3J1 - M$ N Por AT Dara - Rer BLk_{2c} Tr ^k 6 $W - 3J1 - M$ V For Upfer Lim Tann $W - 3J1 - M$				E: 1	
B Ear Data Reginers Weight Type Weight Type Weight Type C For Data Reginers Ref 2 Ref Ble $\frac{1}{2}z_{1}$, $TP^{2}z_{1}$ Weight Type D Ref 2 Ref 2 Ref Ble $\frac{1}{2}z_{1}$, $TP^{2}z_{1}$ Weight Type Weight Type D Ref 2 Ref 2 Ref Ble $\frac{1}{2}z_{1}$, $TP^{2}z_{1}$ Weight Type Weight Type E For AI Cle = Signature Weight Type Weight Type Weight Type H For AI Cle = Ref 2 Ref Bud $\frac{1}{2}z_{1}$, $TP^{2}z_{1}$ Weight Type Weight Type J Ref AI Cle = Ref 2 Ref Bud $\frac{1}{2}z_{1}$, $TP^{2}z_{1}$ Weight Type Weight Type J Ref AI Data = Signature Weight Type Weight Type Weight Type M Fac AI Data = Ref 1 Data =	PIN I	FUNCTION	TYPE	FROM	TO
C For Data $Pri = Pri$ $Pri = Pri $	A			÷	
D $R_{er} - D_{err} A = Rer = R$	в	and the second			
E For AT CLE - SIG $WL * z_{C}$ TP*3 $W - 3JI - f_{-}^{2}$ F Rot AT CLE - SIG $WL * z_{C}$ TP*3 $W - 3JI - f_{-}^{2}$ H For AT CLE - Ret $Ret * z_{C}$ TP*3 $W - 3JI - f_{-}^{2}$ J Rot AT CLE - Ret $Ret * z_{C}$ TP*3 $W - 3JI - f_{-}^{2}$ L Rot AT CLE - Ret $Ret * z_{C}$ TP*3 $W - 3JI - f_{-}^{2}$ L Rot AT Data - Sig $WL * z_{C}$ TP*3 $W - 3JI - f_{-}^{2}$ M For AT Data - Sig $WL * z_{C}$ TP*3 $W - 3JI - f_{-}^{2}$ M For AT Data - Ret $BL * z_{C}$ TP*3 $W - 3JI - f_{-}^{2}$ N Der AT Data - Ret $BL * z_{C}$ TP*3 $W - 3JI - f_{-}^{2}$ P Image: Signal	С				
F Zor AI CLK - SIG $Wh^{\pm} zc_{1} TP^{\pm} w$ $w - 3Ji - f_{2}$ H Foc AI CLK - ReT $ZLe^{\pm} zc_{1} TP^{\pm} w$ $w - 3Ji - f_{2}$ J Ror AI CLK - ReT $ZLe^{\pm} zc_{1} TP^{\pm} w$ $w - 3Ji - f_{2}$ K Foc AI DATA - SIG $WL^{\pm} zc_{1} TP^{\pm} s$ $w - 3Ji - f_{2}$ L Ror AI DATA - SIG $WL^{\pm} zc_{1} TP^{\pm} s$ $w - 3Ji - f_{2}$ M Foc AI DATA - ReT $BLe^{\pm} 2c_{1} TP^{\pm} s$ $w - 3Ji - f_{2}$ N Per AI DATA - ReT $BLe^{\pm} 2c_{1} TP^{\pm} s$ $w - 3Ji - f_{2}$ P I I I I N Per AI DATA - ReT $BLe^{\pm} 2c_{1} TP^{\pm} s$ $w - 3Ji - f_{2}$ P I I I I N Per AI DATA - ReT $BLe^{\pm} 2c_{1} TP^{\pm} s$ $w - 3Ji - f_{2}$ R I I II IIII DATA - ReT $W - 3Ji - f_{2}$ V Por CW Lim Twith Weight DATA - ReT $W - 3Ji - f_{2}$ IIIII DATA - ReT V Por CW Lim Twith Weight DATA - ReT $W - 3Ji - f_{2}$ IIIII DATA - ReT $W - 3Ji - f_{2}$ <	Ð				
H Foc AI CLE - RET $BLe^{\pm}zc_{1}TP^{\pm}3$ $w-3JI - m$ J Ret AI CLE - RET $BLe^{\pm}zc_{1}TP^{\pm}3$ $w-3JI - 4$ K Foc AI DATA - Sig $wL^{\pm}zc_{1}TP^{\pm}3$ $w-3JI - 4$ L Ret AI DATA - Sig $wL^{\pm}zc_{1}TP^{\pm}3$ $w-3JI - 4$ M Foc AI DATA - RET $BLe^{\pm}2c_{1}TP^{\pm}3$ $w-3JI - 4$ M Foc AI DATA - RET $BLe^{\pm}2c_{1}TP^{\pm}6$ $w-3JI - 4$ N Pert AI DATA - RET $BLe^{\pm}2c_{1}TP^{\pm}6$ $w-3JI - 4$ N Pert AI DATA - RET $BLe^{\pm}2c_{1}TP^{\pm}6$ $w-3JI - 4$ N Pert AI DATA - RET $BLe^{\pm}2c_{1}TP^{\pm}6$ $w-3JI - 4$ N Pert AI DATA - RET $BLe^{\pm}2c_{1}TP^{\pm}6$ $w-3JI - 4$ N Pert AI DATA - RET $BLe^{\pm}2c_{1}TP^{\pm}6$ $w-3JI - 4$ V For Uppere Lim Twite $w-3JI - 6$ $w-3JI - 6$ V Por Cw Lim Twite $w-3JI - 6$ $w-3JI - 6$ X Por Ccw Lim Twite $w-3JI - 6$ $w-3JI - 6$ Y ow Pl Twite - Sig $w-3JI - 6$ $w-3JI - 6$ BE $w-3JI - 6$ $w-3JI - 6$ <td>Е</td> <td></td> <td>a second se</td> <td></td> <td></td>	Е		a second se		
J Rot AI $CLK - 2CT$ $B_{LK} \pm 2c_1 TP^4 Y$ $W - 3J1 - 4$ K Foc AI DATA - Sig $WL \pm 2c_1 TP^4 S$ $W - 3J1 - 4$ L Rot AI DATA - Sig $WL \pm 2c_1 TP^4 S$ $W - 3J1 - 4$ M Foc AI DATA - Ref $BLE^{\pm} 2c_1 TP^4 S$ $W - 3J1 - 4$ M Foc AI DATA - Ref $BLE^{\pm} 2c_1 TP^4 S$ $W - 3J1 - 4$ N Per AI DATA - Ref $BLE^{\pm} 2c_1 TP^4 S$ $W - 3J1 - 4$ N Per AI DATA - Ref $BLE^{\pm} 2c_1 TP^4 S$ $W - 3J1 - 4$ P Image: Constraint for the state in the st	F	ROT AI CLK - SIG		<u> </u>	
K Foc AI DATA - Sig $WL \pm 2L, TP^{\pm}S'$ $W-3JI - h$ L Ror AI DATA - Sig $WL \pm 2L, TP^{\pm}S'$ $W-3JI - m$ M Foc AI DATA - RET $BLE \pm 2L, TP^{\pm}S'$ $W-3JI - m$ N Por AI DATA - RET $BLE \pm 2L, TP^{\pm}S'$ $W-3JI - m$ P Image: Signature of the state of the stat	H			1	
L Rot AI DATA - SIG $UA \# 2a, TP^{\#}C$ $W = 3JI - M$ M Foc AI DATA - RET $BLE^{\#} 26, TP^{\#}C$ $W = 3JI - M$ N Pot AI DATA - RET $BLE^{\#} 26, TP^{\#}C$ $W = 3JI - M$ P Image: Signature of the signate signate signature of the signature of the signatur	7	······································		·	
M Foc. AT DATA - RET BLE* 26, $TP*5$ $W - 3J1 - K$ N PUT AI DATA - RET TSLK *26, $TP*6$ $W - 3J1 - K$ P Image: Second sec	K	فتقتا والبري والمتباطرين والمستعدين والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمحد والمحد			
N Port AI DATA - Ret BLC ± 26 , $TP^{\pm}c$ W - 351 - \pm P Image: State sta	L	ROT AI DATA - SIG			
P R R S R R J Foc UPPEE Lim INH W-3JI-9 V Por CW Lim INH W-3JI-9 V Por CW Lim INH W-3JI-6 X Por CCW Lim INH W-3JI-6 X Por CCW Lim INH W-3JI-6 Y Yow PI INH - Sig W-3JI-6 Y Yow PI INH - Sig W-3JI-6 RE	M			·······	
R	N	POT AI DATA - RET	TBLK #26, TP#6	W-351-2	
S	Р				
T W For Upper Lim Int $W-3JI-2$ VPor Cw Lim Int $W-3JI-2$ WFor Lower Lim Int $W-3JI-2$ WFor Ccw Lim Int $W-3JI-2$ YPor Ccw Lim Int $W-3JI-2$ YYow Pl Int - Sig $W-3JI-2$ YYow Pl Int - Sig $W-3JI-2$ Ref W $W-3JI-2$ PR $W-$	R				
UFocUPPERLim $W-3JI-2$ VPotCWLimTUH $W-3JI-2$ WFocLimTUH $W-3JI-2$ WFocLimTuH $W-3JI-2$ XPotCC $W-3JI-2$ $W-3JI-2$ YYow PlTUHSig $W-3JI-2$ AALimitTUH-Rist $W-3JI-2$ BECC $W-3JI-2$ $W-3JI-2$ DDEE $W-3JI-2$ FF $W-3JI-2$ $W-3JI-2$ TITLE:F/R SYSTEM DPROJ:DATE:Jm/83REV: $W-3JI-2$	2				
VPot CW Lin TwhW -3JI- \underline{C} WFoc Lower Lin TwhW -3JI- \underline{L} XPot Ccw Lin TwhW -3JI- \underline{d} YYow P! Twh - SigW -3JI- \underline{f} ZWW -3JI- \underline{f} AALimit Twh - RistW -3JI- \underline{f} BEWW -3JI- \underline{f} CCWW -3JI- \underline{f} DDWW -3JI- \underline{f} FFWW -3JI- \underline{f} JW -3JI- \underline{f} W -3JI- \underline{f} W -3JI- \underline{f} W -3JI- \underline{f} AALimit Twh - RistW -3JI- \underline{f} BEWW -3JI- \underline{f} JW -3JI- \underline{f} W -3JI- \underline{f} JW -3JI- \underline	т				
WFor Lower Lim Twh $W = 3JI = L$ XRot crw Lim Jwh $W = 3JI = d$ YYow P1 Twh = Sig $W = 3JI = f$ Z $W = 3JI = C$ $W = 3JI = f$ AALimit Jwh = Rist $W = 3JI = f$ BE $W = 3JI = C$ $W = 3JI = C$ CC $W = 3JI = C$ $W = 3JI = C$ DD $W = 3JI = C$ $W = 3JI = C$ FF $W = 3JI = C$ $W = 3JI = C$ TITLE:F/R SYSTEM D $W = 3JI = C$ NATICNAL RADIO ASTRONOMY CBSERVATORYPROJ:DATE: Jun 83TITLE:F/R SYSTEM DIREV:		Foc upper Lim InH			W-351-2
XRot ccw Lim Jwh $W - 3JI - d$ YYow P! Iwh - Sig $W - 3JI - f$ Z $W - 3JI - f$ $W - 3JI - f$ AALimit Jwh - RET $W - 3JI - f$ BE $W - 3JI - f$ $W - 3JI - f$ CC $W - 3JI - f$ $W - 3JI - f$ DD $E f$ $W - 3JI - f$ FF $H H$ $W - 3JI - f$ TITLE:F/R SYSTEM D $W - 3JI - f$	V	Pot CW Lin INH			W-371-C
YYow P! $\exists w + - sig$ $w - 3Ji - f$ Z $w - 3Ji - g$ AALimit $\exists w + - RatBEw - 3Ji - gCCw - 3Ji - gDDw - 3Ji - gEEw - 3Ji - gFFw - 3Ji - gHHw - 3Ji - gJJw - 3Ji - gNATICNAL RADIO ASTRONOMY CBSERVATORYPROJ:DATE: Jun 83TITLE:F/R SYSTEM D$	\vee	Foc Lower Lim Inh			
2		ROT COW LIM JNH			
AA Limit INH -RET W-3JI-E BE I I CC I I DD I I EE I I FF I I HH I I J3 I I NATICNAL RADIO ASTRONOMY CBSERVATORY IPROJ: DATE: Jun83 TITLE: F/R SYSTEM D IREV:	Y	YOWP! INH - SIG			w - 3J - f
BE Image: Constraint of the system of the	5	<u></u>			
CC DD EE FF HH JJ NATIONAL RADIO ASTRONOMY OBSERVATORY INATIONAL RADIO ASTRONOMY OBSERVATORY PROJ: DATE: Jun 83 REV:		LIMIT INH - RET	ļ		w-3J1- e -
DD EE FF HH JJ NATICNAL RADIO ASTRONOMY COSERVATORY ITTLE: F/R SYSTEM D REV:					
EE FF HH JJ NATIONAL RADIO ASTRONOMY OBSERVATORY TITLE: F/R SYSTEM D REV:	1				
FF HH JJ JJ NATIONAL RADIO ASTRONOMY OBSERVATORY IPROJ: DATE: Jun83 TITLE: F/R SYSTEM D					
HH JJ NATIONAL RADIO ASTRONOMY OBSERVATORY PROJ: DATE: Jun 83 TITLE: F/R SYSTEM D REV:	!				
JJ NATIONAL RADIO ASTRONOMY OBSERVATORY PROJ: DATE: Jun83 TITLE: F/R SYSTEM D REV:			 		
NATICNAL RADIO ASTRONOMY COSERVATORY IPROJ: IDATE: Jun83 TITLE: F/R SYSTEM D IPEV:					
TITLE: F/R SYSTEM D IPEV:		<u></u>			
			ERVATORY		
		FIR JISICIU V	DWG NO A		SHEET 4 OF SO

WIRE LIST

RACK: C BIN: W SLOT: I-J	2 MODULE	MIL, APEX IN	T TYPE: 34 Pin
LIST BY: WIRE	EBY:		
CONNECTOR TYPE: 200 838-3	CONNECTOR PA	AGE: Z	
PIN FUNCTION	TYPE	FROM	то
KK			
мм			
NN			
NATIONAL RADIO ASTRONOMY CB	SERVATORY	IPROJ:	IDATE: Jun 83 IREV:
	DWG MO	A13740WIU	SHEET 5 OF SP

WIRE LIST

RACK. C $ B N, M $ $ SLOT, 3-J $ MODULE: M 7, F/R (our TYPE: SO Autor of the set of t		WIRE LIST				
CONNECTOR TYPE: 200 277-4CONNECTOR PAGE: /PINFUNCTIONTYPEFROMTOA4150 $2\pi_{0}^{+} \pm 20$ $W - 9TI - f$ BB $G \wedge T$ $B(ACC, \pm 10$ $W - 9TI - M$ CC $4 \le V$ $e2aAgg, \pm 10$ $W - 9TI - M$ CD $Speace$ $W - 9TI - AA$ $W - 9TI - AA$ F Foc $Worder, colser - 1/row$ $W - 9TI - AA$ F Foc $Worder, colser - 1/row$ $W - 9TI - AA$ F Foc $Worder, colser - 1/row$ $W - 9TI - AA$ F Foc $Worder, colser - 1/row$ $W - 9TI - AA$ F Foc $Worder, colser - 1/row$ $W - 9TI - AA$ F Foc $Worder, colser - 1/row$ $W - 9TI - AA$ F Foc $Worder, colser - 1/row$ $W - 9TI - AA$ F Foc $Worder, colser - 1/row$ $W - 9TI - AA$ F Foc $Worder, colser - 1/row$ $W - 9TI - AA$ J $SmA - 1$ $(*1')$ $W - 9TI - AA$ J $SmA - 2$ $(*9')$ $W - 9TI - AA$ J $SmA - 2$ $(*9')$ $W - 9TI - AA$ J $SmA - 2$ $(*9')$ $W - 9TI - AA$ J $SmA - 2$ $(*9')$ $W - 9TI - AA$ J $SmA - 2$ $(*9')$ $W - 9TI - AA$ J $SmA - 2$ $(*9')$ $W - 9TI - AA$ J $SmA - 2$ $(*9')$ $W - 8TI - AA$ J $SmA - 1$ Car $Wh, \pm 2a, TP^{2}$ V $Star - 1$ <td>and the second s</td> <td></td> <td></td> <td>17., F/R CONT</td> <td>TYPE: 50 Pin</td>	and the second s			17., F/R CONT	TYPE: 50 Pin	
PINFUNCTIONTYPEFROMTOA $+15U$ $8e_{5}$, $*20$ $w - 9JI - f$ B G_{N}^{To} $BLACK_{3}$, $*16$ $w - 9JI - W$ C $+5V$ $oeawage, *16$ $w - 9JI - W$ C $+5V$ $oeawage, *16$ $w - 9JI - W$ B $S_{N}aca$ $w - 9JI - K$ E $-15V$ $TELLow * 20$ $w - 9JI - AA$ F Fec $Motion - f(tr)$ $w - 9JZ - K$ H $Sma - C$ $(**)$ $w - 9JZ - K$ L $Sma - C$ $(**)$ $w - 9JZ - K$ L $Sma - 2$ $(**)$ $w - 9JZ - K$ L $Sma - 2$ $(**)$ $w - 9JZ - K$ L $Sma - 2$ $(**)$ $w - 9JZ - K$ M $Dici - 1$ Sig $w - 9JZ - K$ L $Sma - 2$ $(**)$ $w - 9JZ - K$ M $Dici - 1$ Sig $w - 9JZ - K$ M $Dici - 1$ Sig $w - 9JZ - K$ M $CLk I - 1$ Sig $wh, * 2c, TP* n$ M $CLk I - 1$ Sig $wh, * 2c, TP* n$ S $ST EI - 1$ Sig $wh, * 2c, TP* n$ V $SLeo - \phi$ Sig $wh, * 2c, TP* n$ V $SLeo - \phi$ Sig $wh, * 2c, TP* n$ V $Strein - 1$ Sig $wh, * 2c, TP* n$ V $Strein - 1$ Sig $wh, * 2c, TP* n$ V Sig Sig $wh, * 2c, TP* n$ V $Strein - 1$ Sig $wh, * 2c, TP* n$ V $Strein - 1$ Sig </td <td></td> <td>ويستعرب ويستعدن والمستشار الشريا فالتعامل المتكافئة الكالسان وعباني فيتبعن ويستعد والمستعد والمستعد والمراج</td> <td></td> <td>5. /</td> <td></td>		ويستعرب ويستعدن والمستشار الشريا فالتعامل المتكافئة الكالسان وعباني فيتبعن ويستعد والمستعد والمستعد والمراج		5. /		
A+15U $2 e e_{1} = 20$ $W = 9JI = f$ B G_{MD} $BLACK_{3} = 16$ $W = 9JI = W$ C $+5V$ $02AMGR_{16} = 16$ $W = 9JI = L$ D $Seraca$ $W = 9JI = L$ E $-15V$ $Y2LLow = 20$ $W = 9JI = AA$ F Fec Mot_{0} $e_{1}(2r)$ $W = 9JI = AA$ J $SmA = A$ $C^{1}(2)$ $W = 9JI = AA$ J $SmA = C$ (2^{N}) $W = 9JI = AA$ J $SmA = C$ (2^{N}) $W = 9JI = AA$ M $SmA = 2$ (2^{N}) $W = 9JI = AA$ M $CLKI = 1$ SiG $W = 8JI = AA$ N $CLKI = 1$ SiG $W = 8JI = AA$ N $CLKI = 1$ SiG $W = 8JI = AA$ N $CLKI = 1$ SiG $W = 8JI = EE$ T $CLKO = A$ $W = BILE_{1}TE_{1}W = 8JI = AA$ V $STEI = 1$ SiG $W = 1TT = BLE_{1}TE_{1}W = 8JI = TJ$ W $STEI = 1$ SiG $W = 1TT = W = 8JI = M$ V $CLKO = A$ RET $BLE_{1}TE_{2}TT^{T}W = 8JI = M$ V $CLKO = A$ SiG $W = 1TT = W = 8JI = M$ V $STEI = 0$ $PRT = Bar = Bar = 12E_{1}TT^{T} = W = 8JI = M$ V $STEI = 0$ $PRT = Bar = Bar = 12E_{1}TT^{T} = W = 8JI = M$ V $STEI = 0$ $PRT = Bar = Bar = 12E_{1}TT^{T} = W = 8JI = M$ V $STEI = -A$ $STE = Bar = Bar = 12E_{1}TT^{T} = W = 8JI = M$ V $STE = 0$ $PRT = SiG$ $W = 1JI = -K$ S $STE = 0$ $PRT = SiG$ <t< td=""><td></td><td></td><td></td><td></td><td>то</td></t<>					то	
B G_{NE} $BLACE_{3} = 16$ $W = 9JI - W$ C $+SV$ $02AAGB_{3} = 16$ $W = 9JI - L$ D $Scaaa$ $W = 9JI - AA$ E $-1SV$ $YELLOW = 20$ $W = 9JI - AA$ F Fec Mot_{e} (Mot_{e}) $W = 9JI - AA$ J $SmA = O$ (Mot_{e}) $W = 9JI - AA$ J $SmA = O$ (Mot_{e}) $W = 9JI - AA$ J $SmA = O$ (Mot_{e}) $W = 9JI - AA$ J $SmA = O$ (Mot_{e}) $W = 9JI - AA$ J $SmA = O$ (Mot_{e}) $W = 9JI - AA$ J $SmA = O$ (Mot_{e}) $W = 9JI - AA$ J $SmA = O$ (Mot_{e}) $W = 9JI - AA$ J $SmA = O$ (Mot_{e}) $W = 9JI - AA$ J $SmA = O$ (Mot_{e}) $W = 9JI - AA$ J $SmA = O$ (Mot_{e}) $W = 9JI - AA$ J $SmA = O$ (Mot_{e}) $W = 9JI - AA$ M $DLGI = O$ Sig Wh_{e} $W = 9JI - AA$ M $DLGI = O$ Sig Wh_{e} $W = 9JI - AI$ M $DLGI = O$ Sig Wh_{e} Wh_{e} S $STRI = 1$ Sig Wh_{e} $W = 9JI - AI$ V $CLKO = P$ Sig Wh_{e} $W = 9JI - AI$ V $CLKO = P$ Sig Wh_{e} $W = 9JI - AI$ V $CLKI = 1$ Sig Wh_{e} $W = 9JI - AI$ V $CLKO = P$ $ReIT = Sig$ $W = 8JI - BI$ V $CLKO = P$ Sig			Reb, # 20	W - 9JI - f	<u>_</u>	
C + 5 V 02ANGB, #16 $W - 9JI - L$ D Space E -15 V YELLOW # 20 $W - 9JI - AA$ F F_{oc} Material C(1*) $W - 9JZ - H$ J SMA - 6 (1*) $W - 9JZ - H$ J SMA - 7 (1*) $W - 9JZ - H$ L SMA - 2 (1*) $W - 9JZ - L$ M $D16I - 1$ Sig $W - 9JZ - L$ M $D16I - 1$ Sig $W - 9JZ - L$ P $D160 - \phi$ Sig $Wh, #26, TP^{4}I$ $W - 8JZ - LL$ P $D160 - \phi$ Sig $Wh, #26, TP^{4}I$ $W - 8JZ - LL$ P $D160 - \phi$ Sig $Wh, #26, TP^{4}I$ $W - 8JZ - LL$ P $D160 - \phi$ Sig $Wh, #26, TP^{4}I$ $W - 8JZ - LL$ P $D160 - \phi$ Sig $Wh, #26, TP^{4}I$ $W - 8JZ - EC$ T $CLKO - \phi$ Sig $Wh, #26, TP^{4}I$ $W - 8JZ - FF$ U STRI - 1 PCT $BLL, #26, TP^{4}I$ $W - 8JZ - JJ$ W $STZO - \phi$ Sig $Wh, #26, TP^{4}I$ $W - 8JZ - JJ$ W $STZO - \phi$ Sig $Wh, #26, TP^{4}I$ $W - 8JZ - JJ$ W $STZO - \phi$ Sig $Wh, #26, TP^{4}I$ $W - 8JZ - JJ$ W $STZO - \phi$ Sig $Wh, #26, TP^{4}I$ $W - 8JZ - JJ$ W $STZO - \phi$ Sig $Wh, #26, TP^{4}I$ $W - 8JZ - JJ$ W $STZO - \phi$ Sig $Wh, #26, TP^{4}I$ $W - 8JZ - JJ$ W $STZO - \phi$ Sig $Wh, #26, TP^{4}I$ $W - 8JZ - JJ$ W $STZO - \phi$ Sig $Wh, #26, TP^{4}I$ $W - 8JZ - JJ$ W $STZO - \phi$ Sig $Wh, #26, TP^{4}I$ $W - 8JZ - M$ Y $STEO - \phi$ RET $BLK, #26, TP^{4}I$ $W - 8JZ - M$ Y $STEO - \phi$ RET $BLK, #26, TP^{4}I$ $W - 8JZ - M$ Z Foc $UPPAT SET - Sig Wh, #26, TP^{4}I W - 8JZ - MZ Foc UPPAT SET - Sig Wh, #26, TP^{4}I W - 8JZ - M\frac{1}{2} Foc LOWER Lim JUM W - 1JZ - V\frac{1}{2} Foc LOWER Lim JUM W - 1JZ - V\frac{1}{2} Foc AI DATA SET - Sig Wh, #26, TP^{4}S W - 1JZ - K\frac{1}{2} Limit JUH - PET W - 1JZ - K\frac{1}{2} Foc AI DATA - Sig Wh, #26, TP^{4}S W - 1JZ - K\frac{1}{2} Foc AI DATA - Sig Wh, #26, TP^{4}S W - 1JZ - K\frac{1}{2} Foc AI Clock - Sig Wh, #26, TP^{4}S W - 1JZ - ENATIONAL RADIO ASTRONOMY COSERVATORY (PROJ: DATE: JUN 83REV:$	в	GNR				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C	+51		W-951-L		
F F_{ec} m_{ofe} e_{elec} $(-1/r_{elec})$ $w - 9J2 - k$ H $\underline{SmA - B}$ $(-1/r_{elec})$ $w - 9J2 - k$ J $\underline{SmA - 1}$ $(-2'')$ $w - 9J2 - k$ k $\underline{SmA - 2}$ $(-4'')$ $w - 9J2 - k$ L $\underline{SmA - 2}$ $(-4'')$ $w - 9J2 - k$ M $D_{l}GI - 1$ \underline{Sig} $w - 9J2 - k$ M $D_{l}GI - 1$ \underline{Sig} $w - 9J2 - k$ P $D_{l}GO - \phi$ \underline{Sig} $w - 9J2 - k$ P $D_{l}GO - \phi$ \underline{Sig} $w - 9J2 - k$ S $STRI - 1$ \underline{Sig} $wh, \pm 2c, TP^{\pm}i7$ V $STRI - 1$ \underline{Sig} $wh, \pm 2c, TP^{\pm}i7$ V $STRI - 1$ \underline{Sig} $wh, \pm 2c, TP^{\pm}i8$ V $STRI - 1$ \underline{Sig} $wh, \pm 2c, TP^{\pm}i8$ V $STRO - \phi$ \underline{Sig} $wh, \pm 2c, TP^{\pm}i7$ W $STRO - \phi$ \underline{Sig} $wh, \pm 2c, TP^{\pm}i7$ V $STRO - \phi$ \underline{Sig} $wh, \pm 2c, TP^{\pm}i7$ V $STRO - \phi$ \underline{Sig} $wh, \pm 2c, TP^{\pm}i7$ V $STRO - \phi$ \underline{Sig} $wh, \pm 2c, TP^{\pm}i7$ V $STRO - \phi$ \underline{Rer} $Bik, \pm 2c, TP^{\pm}i7$ V $STRO - \phi$ \underline{Rer} $Bik, \pm 2c, TP^{\pm}i7$ V $STRO - \phi$ \underline{Rer} $Wh, \pm 2c, TP^{\pm}i7$ V $STRO - \phi$ \underline{Rer} $Wh, \pm 2c, TP^{\pm}i7$ V $STRO - \phi$ \underline{Rer} $Wh, \pm 2c, TP^{\pm}i7$ V $STRO - \phi$ \underline{Rer} $Wh, \pm 2c, TP^{\pm}i7$ V $STRO - \phi$ \underline{Rer} $Wh, \pm 2c, TP^{\pm}i7$ $W - 9J2 - N$ $wh - 9J2 - N$ \underline{S} $STRO - \phi$ \underline{Rer} $Wh, \pm 2c, TP^{\pm}i7$ \underline{S} Mh	D	Space				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E	-151	YELLUW # 20	W-9JI-AA		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F	For motor outer - 1 rry		·	1-972-K	
K $SMA - Z$ $("4")$ $W - 8JZ - K$ L $SMA - Z$ $("8")$ $W - 8JZ - K$ M $DIGI - 1$ SIG $W - 8JZ - L$ P $DIGO - \phi$ SIG $W - 8JZ - L$ P $DIGO - \phi$ SIG $W - 8JZ - L$ P $DIGO - \phi$ SIG $W - 8JZ - L$ P $DIGO - \phi$ SIG $W - 8JZ - CC$ R $CLKI - 1$ EZT $BLK, ^{E}ZG, TP^{E}I7$ $W - 8JZ - MM$ S $STRI - 1$ EZT $BLK, ^{E}ZG, TP^{E}I9$ $W - 8JZ - FF$ U $STRI - 1$ EZT $BLK, ^{E}ZG, TP^{E}I9$ $W - 8JZ - HH$ V $CLKO - \phi$ RET $BLK, ^{E}ZG, TP^{E}I9$ $W - 8JZ - JJI$ W $STRO - \phi$ SIG $Wh, ^{E}ZG, TP^{E}I0$ $W - 8JZ - MH$ V $CLKO - \phi$ RET $BLK, ^{E}ZG, TP^{E}I0$ $W - 8JZ - MH$ V $STRO - \phi$ SIG $Wh, ^{E}ZG, TP^{E}I0$ $W - 8JZ - MH$ V $STRO - \phi$ RET $BLK, ^{E}ZG, TP^{E}I0$ $W - 8JZ - MH$ Y $STRO - \phi$ RET $BLK, ^{E}ZG, TP^{E}I0$ $W - 8JZ - MH$ Y $STRO - \phi$ RET $BLK, ^{E}ZG, TP^{E}I0$ $W - 8JZ - MH$ Y $STRO - \phi$ RET $BLK, ^{E}ZG, TP^{E}I0$ $W - 8JZ - MH$ Y $STRO - \phi$ RET $BLK, ^{E}ZG, TP^{E}I0$ $W - 8JZ - MH$ Y $STRO - \phi$ RET $BLK, ^{E}ZG, TP^{E}I0$ $W - 8JZ - MH$ Z SMh_3 To $DATA - SIG$ $Wh, ^{E}ZH, TP^{E}I0$ $W - 1JZ - W$ E <td>н</td> <td>SMA-\$ ("1")</td> <td></td> <td>W-BJZ-H</td> <td></td>	н	SMA-\$ ("1")		W-BJZ-H		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	J			w = 8Jz - J		
M $D/AI = 1$ Sig $W-BJZ = AA$ N $CLKI = 1$ Sig $Wh, \# 2c, TP#I7$ $W-BJZ = LL$ P $DIGO = \phi$ Sig $Wh, \# 2c, TP#17$ $W-BJZ = LC$ R $CLKI = 1$ BZT $BLK, \# 2c, TP#18$ $W-BJZ = EE$ T $CLKO = \phi$ Sig $Wh, \# 2c, TP#18$ $W-BJZ = EE$ T $CLKO = \phi$ Sig $Wh, \# 2c, TP#18$ $W-BJZ = FE$ U $STRI = 1$ PET $BLK, \# 2c, TP#18$ $W-BJZ = FE$ V $CLKO = \phi$ ReT $BLK, \# 2c, TP#18$ $W = BJZ = HH$ V $CLKO = \phi$ ReT $BLK, \# 2c, TP#18$ $W = BJZ = MH$ V $CLKO = \phi$ ReT $BLK, \# 2c, TF#20$ $W = BJZ = MH$ V $STRO = \phi$ $SeT = Sig$ $Wh, \# 2c, TF#20$ $W = BJZ = MH$ Y $STRO = \phi$ ReT $BLK, \# 2c, TF#20$ $W = BJZ = MH$ Y $STRO = \phi$ ReT $BLK, \# 2c, TF#20$ $W = BJZ = MH$ Y $STRO = \phi$ ReT $BLK, \# 2c, TF#20$ $W = BJZ = MH$ Y $STRO = \phi$ ReT $BLK, \# 2c, TF#20$ $W = BJZ = MH$ Y $STRO = \phi$ ReT $BLK, \# 2c, TF#20$ $W = BJZ = MH$ Q $STRO = \phi$ ReT $BLK, \# 2c, TF#20$ $W = BJZ = MH$ Q $STRO = DR$ TWH $W = IJZ = V$ $\frac{a}{2}$ SmH_2 SmH_2 SmH_2 $W = IJZ = X$ $\frac{d}{2}$ $Lim IT$ SIG SIG $Wh, \# 2c, TF#3$ $W = IJZ = K$ $\frac{d}{2}$ $Lim IT$ SIG <td>к</td> <td></td> <td></td> <td></td> <td></td>	к					
$ \begin{array}{c c} \mathcal{N} & CL CI = 1 SIG & WA, \overset{\texttt{H}}{=} 2C, TP^{\texttt{H}} 7 W - BJZ - LL \\ \\ \mathcal{P} & DIGO - \mathscr{P} \; SIG & WA, \overset{\texttt{H}}{=} 2C, TP^{\texttt{H}} 7 W - BJZ - CC \\ \\ \mathcal{R} & CLK = -1 \; EET & BLK, \overset{\texttt{H}}{=} 2C, TP^{\texttt{H}} W - BJZ - EE \\ \\ \mathcal{S} & ST \; EI = -1 \; EI \; G & WA, \overset{\texttt{H}}{=} 2C, TP^{\texttt{H}} W - BJZ - EE \\ \\ \mathcal{T} & CLKO - \mathscr{P} \; SIG & WA, \overset{\texttt{H}}{=} 2C, TP^{\texttt{H}} W - BJZ - FF \\ \\ \mathcal{U} & STRI = -1 \; EET & BLK, \overset{\texttt{H}}{=} 2C, TP^{\texttt{H}} W - BJZ - FF \\ \\ \mathcal{V} & CLKO - \mathscr{P} \; RET & BLK, \overset{\texttt{H}}{=} 2C, TP^{\texttt{H}} W - BJZ - JJ \\ \\ \\ \mathcal{W} & STRO - \mathscr{P} \; RET & BLK, \overset{\texttt{H}}{=} 2C, TP^{\texttt{H}} W - BJZ - JJ \\ \\ \\ \mathcal{V} & STRO - \mathscr{P} \; RET & BLK, \overset{\texttt{H}}{=} 2C, TP^{\texttt{H}} W - BJZ - BB \\ \\ \\ \mathcal{Z} & SMA_{2} \; TO \; DATA \; SET - SIG \; WA, \overset{\texttt{H}}{=} 2C, TP^{\texttt{H}} Z \\ W - BJZ - M \\ \\ \\ \\ \mathcal{Y} \; STRO - \mathscr{P} \; RET \; BLK, \overset{\texttt{H}}{=} 2C, TP^{\texttt{H}} Z \\ W - BJZ - RB \\ \\ \\ \\ \\ \mathcal{Z} \; SMA_{2} \; TO \; DATA \; SET - RET \; BLK, \overset{\texttt{H}}{=} 2C, TP^{\texttt{H}} Z \\ W - H JZ - W \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	L	SMA-2 ("8")		w-852-L		
PDIGO - ϕ Sig $w - \beta J Z - CC$ R $CLK I - 1$ RET $BLK_{1}^{K} Z G_{1} TP^{H} I W - \beta J Z - NN$ SSTRI-1 Sig $W A_{1}^{H} Z G_{1} TP^{H} I W - \beta J Z - FF$ T $CLKO - \phi$ Sig $WA_{1}^{H} Z G_{1} TP^{H} I W - \beta J Z - FF$ USTRI-1 RET $BLK_{1}^{H} Z G_{1} TP^{H} I W - \beta J Z - FF$ VCLKO - ϕ RET $BLK_{1}^{H} Z G_{1} TP^{H} I W - \beta J Z - JJ$ VSTRO - ϕ RET $BLK_{1}^{H} Z G_{1} TP^{H} I W - \beta J Z - JJ$ VSTRO - ϕ Sig $WA_{1}^{H} Z G_{1} TP^{H} I W - \beta J Z - JJ$ VSTRO - ϕ Sig $WA_{1}^{H} Z G_{1} TP^{H} I W - \beta J Z - JD$ XSMA_{2} To DATA SET - Sig $WA_{1}^{H} Z G_{1} TP^{H} I W - \beta J Z - MB$ YSTRO - ϕ RET $BLK_{1}^{H} Z G_{1} TP^{H} I W - \beta J Z - BB$ ZSMA_{2} To DATA SET - RET BLK_{1}^{H} Z G_{1} TP^{H} I W - \beta J Z - BBZSMA_{2} To DATA SET - RET BLK_{1}^{H} Z G_{1} TP^{H} I W - \beta J Z - M Φ Foc uppac Lim Juh $W - IJ Z - W$ Φ Foc tower Lim Juh $W - IJ Z - W$ Φ Ret Course Lim Juh $W - IJ Z - Y$ Φ Ret Course Lim Tuh $W - IJ Z - X$ Φ Limit Juh - RET $W - IJ Z - X$ Φ Limit Juh - RET $W - IJ Z - X$ H Foc AI DATA - Sig $WA_{1}^{H} Z G_{1}^{TP} S W - IJ Z - K$ H Foc AI CLOCK - SiG $WA_{1}^{H} Z G_{1}^{TP} S W - IJ Z - E$ NATIONAL RADIO ASTRONOMY COBSERVATORYPROJ:DATE: Jun BTITLE: F/R SYSTEM D	M	DIGI-1 Sig	······		W-BJ2-AA	
R $CLKI-1$ PET $BLK, L26, TP^{4}i7$ $W-8J2-NN$ S $STRI-1$ Sia $Wh, t26, TP^{4}i7$ $W-8J2-EE$ T $CLKO-\beta$ Sia $Wh, t26, TP^{4}i7$ $W-8J2-FF$ U $STRI-1$ PET $BLL, t20, TP^{4}i7$ $W-8J2-FF$ V $CLKO-\beta$ Ret $BLL, t20, TP^{4}i7$ $W-8J2-HH$ V $CLKO-\beta$ Ret $BLL, t20, TP^{4}i7$ $W-8J2-JJ$ W $STRO-\phi$ Ret $BLL, t20, TP^{4}i7$ $W-8J2-DD$ X $STRO-\phi$ Sig $Wh, t20, TP^{4}i7$ $W-8J2-M$ Y $STRO-\phi$ Ret $BLK, t20, TP^{4}i7$ $W-8J2-M$ Q Foc $Upfac$ Lim Suh $W-1J2-W$ E $Simh_{3}$ To $Bath$ $W-1J2-W$ E Foc Lim TwH $W-1J2-V$ $\frac{L}{2}$ $Port$ Lim TwH $W-1J2-K$ $\frac{L}{2}$ Lim TwH $W-1J2-X$ $\frac{L}{2}$ Lim TwH $W-1J2-K$ $\frac{L}{2}$ ToH $Wh, t2c, TP^{4}o$ $W-1J2-K$ $\frac{L}{2}$ TwH $W-1J2-K$ $Wh, t20, TP^{4}o$ $\frac{L}{2}$ ToH $Wh, t2c, TP^{4}o$ $W-1J2-K$ $\frac{L}{2}$ <	N	CLICI-1 SIG	wh, # 26, TP# 17	W-BJZ-LL		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Р					
T $CL \models O - \beta Siq$	R	CLKI-1 Per				
USTRI-1PETBLE, $E26$, $TPE18$ W-8J2-HHVCLEO - ϕ RETBLE, $E26$, $TPE19$ W-8J2-JJWSTRO - ϕ SigWh, $E26$, $TP20$ W-8J2-DDXSMA, TO DATA SET - SIGWh, $E26$, $TP27$ W-8J2-MYSTRO - ϕ RETBLE, $E26$, $TP27$ W-8J2-MYSTRO - ϕ RETBLE, $E26$, $TP27$ W-8J2-MZSMA, TO DATA SET - RETBLE, $E26$, $TP27$ W-8J2-M2Foc upper Lim JuhW-1J2-UW-8J2-N2Foc upper Lim JuhW-1J2-W2Foc LOWER Lim TuhW-1J2-V3For CCW Lim TuhW-1J2-X4Pot CCW Lim TuhW-1J2-X4For CCW Lim TuhW-1J2-X4For AI DATA - SigWh, $E26$, $TPE5$ YOWP JJuhW-1J2-X4For AI DATA - SigWh, $E26$, $TPE5$ KFor AI DATA - SigWh, $E26$, $TPE5$ NATIONAL RADIO ASTRONOMY CBSERVATORYPROJ:DATE: Jun 83TITLE: F/R SYSTEM DREV:	S	STRI-1 SIG				
V $CL = 0 - \phi$ $R = \tau$ $BLK, = 26, TP = 16$ $W - 8J2 - JJ$ W $STRO - \phi$ Sig $Wh, = 26, TP = 20$ $W - 8J2 - DD$ X $STHh_{2}$ TD DATA SET - SIG $Wh, = 26, TP = 20$ $W - 8J2 - M$ Y $STRO - \phi$ $R = \tau$ $BLK, = 26, TP = 20$ $W - 8J2 - M$ Z $STHh_{2}$ TD DATA SET - Ret $BLK, = 26, TP = 20$ $W - 8J2 - M$ Z $STHh_{2}$ TD DATA SET - Ret $BLK, = 26, TP = 20$ $W - 8J2 - M$ Z $STHh_{2}$ TD DATA SET - Ret $BLK, = 26, TP = 20$ $W - 8J2 - M$ ZFoc $Up P = TD = 10$ $W - 1J2 - W$ $W - 8J2 - M$ E FocLim TOH $W - 1J2 - W$ $W - 1J2 - W$ E PortCWLim TOH $W - 1J2 - V$ E PortCWLim TOH $W - 1J2 - X$ E Lim TTOH $W - 1J2 - X$ E Lim TTOH $W - 1J2 - X$ E Lim TTOH $W - 1J2 - X$ E FocAIDATA T TOW P f TOH $W - 1J2 - X$ E FocAIChock - SIG $Wh, = 26, TP = 5$ $W - 1J2 - K$ E FocAIChock - SIG $Wh, = 26, TP = 5$ $W - 1J2 - K$ E FocAIChock - SIG $Wh, = 20, TP = 5$ $W - 1J2 - K$ E FocAIChock - SIG $Wh, = 20, TP = 5$ $W - 1J2 - K$ E FocAIChock - SIG $Wh, = 20, TP = 5$ $W - 1J2 - K$ <	T					
WSTRO - ϕ SiqWh, #26, TP20W-852-DDX5Mh2 TO DATA SET - SIGWh, #26, TP27W-852-DDYSTRO - ϕ RETBLK, #26, TP27W-852-BBZ5Mh2 TO DATA SET - PETBLK, #26, TP27W-852-N a Foc upper Lim JohnW-152-U b Foc Lowier Lim JohnW-152-W c Por CW Lim JohnW-152-V d Por CW Lim JohnW-152-X d Por CW Lim JohnW-152-X f Yow P 1John f Foc AI DATA - SigWh, #26, TP45 f Foc AI DATA - SigWh, #26, TP45 f Foc AI CLOCK - SIGWh Foc AI CLO	U	STRI-1 RET				
X $5Mh_{2}$ To DATA SET - SIG $WK_{3} \pm 26_{3} TP^{2}_{27}$ $W - BJ2 - M$ YSTRO - P RET $BLK_{3} \pm 26_{3} TP^{2}_{20}$ $W - BJ2 - BB$ Z $5Mh_{2}$ To DATA SET - PET $BLK_{3} \pm 26_{3} TP^{2}_{27}$ $W - BJ2 - BB$ $\underline{2}$ SMh_{2} To DATA SET - PET $BLK_{3} \pm 26_{3} TP^{2}_{27}$ $W - BJ2 - BB$ $\underline{2}$ SMh_{2} To DATA SET - PET $BLK_{3} \pm 26_{3} TP^{2}_{27}$ $W - BJ2 - N$ $\underline{2}$ Foc uppare Lim Joh $W - IJ2 - W$ $\underline{2}$ Por CW Lim Joh $W - IJ2 - V$ $\underline{4}$ Por CCW Lim Joh $W - IJ2 - X$ $\underline{2}$ Limit Joh - Ref $W - IJ2 - X$ $\underline{2}$ Limit Joh - Ref $W - IJ2 - X$ $\underline{2}$ Limit Toh - Ref $W - IJ2 - X$ $\underline{2}$ Limit Toh - Ref $W - IJ2 - X$ $\underline{4}$ Foc AI DATA - SIG $Wh_{1}^{\pm} 26_{3} TP^{\pm}_{3}^{\pm}$ $\underline{7}$ Yow P IJoh $Wh_{1}^{\pm} 26_{3} TP^{\pm}_{3}^{\pm}$ $\underline{7}$ Yow P IToh $Wh_{1}^{\pm} 26_{3} TP^{\pm}_{3}^{\pm}$ $\underline{7}$ Foc AI DATA - SIG $Wh_{1}^{\pm} 26_{3} TP^{\pm}_{3}^{\pm}$ $\underline{7}$ Foc AI CLOCK - SIG $Wh_{1}^{\pm} 26_{3} TP^{\pm}_{3}$ $\underline{7}$ Mational Radio ASTRONOMY CESERVATORYPROJ:NATICNAL RADIO ASTRONOMY CESERVATORYPROJ:DATE: Jun I3TITLE: F/RSYSTEM TREV:	V					
YSTRO - ϕ RET $BLK_1^{\#} 26_1 TF^{\#} 20$ $W - 8JZ - BB$ 2 SMh_3 TO DATA SET - BET $BLK_1^{\#} 26_1 TF^{\#} 27$ $W - 8JZ - N$ \underline{a} For uppare Lim Juh $W - 1JZ - U$ \underline{b} For Lower Lim Juh $W - 1JZ - W$ \underline{c} Por CW Lim Juh $W - 1JZ - W$ \underline{c} Por CW Lim Juh $W - 1JZ - V$ \underline{d} Por CW Lim Juh $W - 1JZ - V$ \underline{d} Por ccw Lim Juh $W - 1JZ - X$ \underline{c} Limit Juh - Ref $W - 1JZ - X$ \underline{c} Limit Juh - Ref $W - 1JZ - X$ \underline{c} Limit Lat $- Sig$ $Wh_1^{\#} 26_1 TP^{\#} 5$ \underline{c} For AI DATA - Sig $Wh_1^{\#} 26_1 TP^{\#} 5$ \underline{c} For AI CLock - Sig $Wh_1^{\#} 26_1 TP^{\#} 5$ \underline{c} For AI CLock - Sig $Wh_1^{\#} 26_1 TP^{\#} 5$ \underline{c} For AI CLock - Sig $WL_1^{\#} 26_1 TP^{\#} 5$ \underline{c} For AI CLock - Sig $WL_1^{\#} 26_1 TP^{\#} 5$ \underline{c} For AI CLock - Sig $WL_1^{\#} 26_1 TP^{\#} 5$ \underline{c} For AI CLock - Sig $WL_1^{\#} 26_1 TP^{\#} 5$ \underline{c} For AI CLock - Sig $WL_1^{\#} 26_1 TP^{\#} 5$ \underline{c} For AI CLock - Sig $WL_1^{\#} 26_1 TP^{\#} 5$ \underline{c} For AI CLock - Sig $WL_1^{\#} 26_1 TP^{\#} 5$ \underline{c} For AI CLock - Sig $WL_1^{\#} 26_1 TP^{\#} 5$ \underline{c} For AI CLock - Sig $WL_1^{\#} 26_1 TP^{\#} 5$ \underline{c} Would ASTRONOMY CESERVATORYPROJ: \underline{c} DATE: Jun 83TITLE: F/RSystem T <td>\sim</td> <td>الم من الله فالعرب ، الله فالعرب ، المعالية العرب من من المار العرب من من من من من م الم</td> <td></td> <td></td> <td></td>	\sim	الم من الله فالعرب ، الله فالعرب ، المعالية العرب من من المار العرب من من من من من م الم				
Z SMh_3 To DATA SET - PET BLK, ZO, TP 27 $W-8J2-N$ \underline{a} For uppare Lim Juh $W-1J2-U$ \underline{b} For Lower Lim Juh $W-1J2-W$ \underline{c} Port CW Lim Juh $W-1J2-V$ \underline{d} Port CCW Lim Juh $W-1J2-V$ \underline{d} Port CCW Lim Juh $W-1J2-V$ \underline{d} Port CCW Lim Juh $W-1J2-X$ \underline{d} Port CCW Lim Tuh $W-1J2-X$ \underline{d} Port CCW Lim Tuh $W-1J2-X$ \underline{d} Port CCW Lim Tuh $W-1J2-X$ \underline{d} For Ar CLOCK - SIG $Wh_1^{\mu}26, TP^{\mu}5$ $W-1J2-K$ \underline{d} For Ar CLOCK - SIG $Wh_1^{\mu}26, TP^{\mu}5$ $W-1J2-K$ \underline{d} For Ar CLOCK - SIG $Wh_1^{\mu}26, TP^{\mu}3$ $W-1J2-E$ NATIONAL RADIO ASTRONOMY CBSERVATORYPROJ:DATE: Jun 83TITLE:F/RSYSTEM TOREV:		5Mhz To DATA SET - SIG			W-8J2-M	
$\underline{\alpha}$ For uppare Lim Jwh $W-IJZ-U$ \underline{b} For Lowier Lim Jwh $W-IJZ-W$ \underline{c} Por CW Lim Jwh $W-IJZ-V$ \underline{d} Por ccw Lim Jwh $W-IJZ-V$ \underline{d} Por ccw Lim Jwh $W-IJZ-X$ \underline{c} Limit Jwh - Ref $W-IJZ-AA$ \underline{f} Yow P \underline{f} Jwh \underline{f} For AI DATA - Sig $Wh, ^{\#}26, TP^{\#}5$ \underline{f} For AI CLock - Sig $Wh, ^{\#}26, TP^{\#}5$ $W-IJZ - E$ NATIONAL RADIO ASTRONOMY CBSERVATORYPROJ:DATE: Jun 83TITLE: F/RSYSTEM D	Y			· · · · · · · · · · · · · · · · · · ·		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	[BLK, # 26, TP# 27		W-852-N	
<u>C</u> Por CW Lin Jah W-1JZ-V <u>d</u> Por ccw Lin Jah W-1JZ-X <u>c</u> Limit Jah - Rer W-1JZ-AA <u>f</u> YowP! Jah <u>f</u> YowP! Jah <u>f</u> Foc AI DATA - Sig Wh, *26, TP*5 <u>f</u> Foc AI DATA - Sig Wh, *26, TP*5 <u>f</u> Foc AI CLock - Sig Wh, *26, TP*3 WATIONAL RADIO ASTRONOMY OBSERVATORY PROJ: DATE: Jun 83 TITLE: F/R SYSTEM D REV:						
d Rot CCW Lim TWH W-IJZ-X 2 Limit JWH - RET W-IJZ-AA 1 YOWP! JWH W-IJZ-T 1 YOWP! JWH W-IJZ-Y 1 Foc AI DATA - SIG Wh, *26, TP*5 2 Foc AI DATA - SIG Wh, *26, TP*5 3 Foc AI CLOCK - SIG Wh, *26, TP*5 1 Foc AI CLOCK - SIG Wh, *26, TP*3 1 Foc AI CLOCK - SIG Wh, *26, TP*3 1 Foc AI CLOCK - SIG Wh, *26, TP*3 1 Foc AI CLOCK - SIG Wh, *26, TP*3 1 Foc AI CLOCK - SIG Wh, *26, TP*3 1 Foc AI CLOCK - SIG Wh, *26, TP*3 1 Foc AI CLOCK - SIG Wh, *26, TP*3 1 Foc AI CLOCK - SIG Wh, *26, TP*3 1 Foc AI CLOCK - SIG Wh, *26, TP*3 1 Foc AI CLOCK - SIG Wh, *26, TP*3 1 Foc AI CLOCK - SIG Wh, *26, TP*3 1 Foc AI CLOCK - SIG Wh, *26, TP*3 1 Foc AI CLOCK - SIG Wh, *26, TP*3 1 Foc AI CLOCK - SIG Wh, *26, TP*3 1 Foc AI CLOCK - SIG Wh, *26, TP*3			·	W-152-W		
² LIMIT JNH - REF W-1JZ-AA ² YOWP! JNH W-1JZ-Y ⁴ Foc AI DATA - SIG Wh, [#] 26, TP [#] 5 W-1JZ-K W-1JZ-K ² Foc AI CLOCK - SIG Wh, [#] 26, TP [#] 5 W-1JZ-K DATE: Jun 83 MATICNAL RADIO ASTRONOMY CBSERVATORY PROJ: TITLE: F/R SYSTEM D REV:		Por CW Lin Jat		w = 1JZ = V		
Î YowP! JwH W-1JZ-Y <u>H</u> For AI DATA - SIG Wh, #26, TP#5 W-1JZ-K Z For AI CLOCK - SIG Wh, #26, TP#3 W-1JZ-K NATIONAL RADIO ASTRONOMY OBSERVATORY PROJ: DATE: Jun 83 TITLE: F/R SYSTEM D REV:		ROT COW LIM INH		· · · · · · · · · · · · · · · · · · ·		
h Fac AI DATA - SIG Wh, # 26, TP#5 W-152-K Z Fac AI CLOCK - SIG Wh, # 26, TP#3 W-152-E NATIONAL RADIO ASTRONOMY OBSERVATORY PROJ: DATE: Jun 83 TITLE: F/R SYSTEM D REV:	the second se	LIMIT INH - REF		W - IJZ - AA		
ZFor AI CLORK - SIGWL, # 26, TP#3W - IJZ - ENATIONAL RADIO ASTRONOMY OBSERVATORYPROJ:DATE: Jun 83TITLE: F/R SYSTEM DREV:						
NATIONAL RADIO ASTRONOMY OBSERVATORY PROJ: DATE: Jun 83 TITLE: F/R SYSTEM D REV:	<u></u>					
TITLE: F/R SYSTEM D IREV:	<u></u>					
DWG NO AIZTUANIA SHEFT GOF.SO			LRVAIORY	PROJ:	DATE: Jun 83	
			DWG NO. A	13740W10	SHEET 6 OF.SO	

WIRE LIST

	RACK: C BIN: W SLOT: 3-JI MODULE: M7, FIR Gart TYPE: 50 P.J				
RACK	and the second		AI, FIR CONT	TYPE: 50 N.N	
·		CONNECTOR PAG	E: 2		
PIN		TYPE	FROM	то	
Þ.	For AI DATA - RET	BLACK, #26, TP 5			
<u>m</u>	For AI CLOCK - RET	BLACK, 26, TP 3	W-152-H		
n	Rot AI DATA - SIG	wh, # 26, TP# 6	W = 1JZ - L		
P	Pot AI CLOCK - SIG	Wh, # 26, TP#4			
스	ROT AT DATA - RET	BLK, # 26, TP#2	I		
8	ROT A.I CLOCK - RET	BLK, #26, TP#4	W - 1JZ - J		
ž	CONN JUILK SENSE	l		I/0-35-A	
4	FUE DATA REQ - SIG	wh, #20, TP 1		W - 1JZ - A	
と	ROT DATA BER - SIG	Wh3 # 26, TP#2		W-152-B	
<u>m</u>	FOC DATA REQ - RET	BLK, # 26, TP ",		w-132-C	
ž	RUT DATA REQ - RET	BLK, #26, TP#2		W-152-D	
¥	ALGI-Ø Sig/HI	Wh, #26, TP#16		W-OJZ-KK	
3-	POT BRAKE SSR DRIVE			110-51-CM	
AA	ALGI-C Sig/Lo	BLK, # 20, TP #16		W-852-MM	
BE	ANTA-16 +				
cc	ANTA-8				
20	ANTA -4				
EE	ANTA-2				
FF	ANTA-1				
нн	ANALOG (±15) Common	BLACIC # 20	W-9J1-2		
	* THE THESE POWRS				
	TO GUL AS VORDIRED				
	FOR A SOMMERIC ANT				
	SER # GND = "O"				
	FLOATING ="1"				
	NAL RADIO ASTRONOMY COSI	ERVATORY	PROJ:	IDATE: JUN 83	
	E: FIR SUSTEM D	DWG NO AI	27/10/14-	IREV:	
		SHEET 7 OF50			

WIRE LIST

RACK	C BIN: W SLOT: 4-J	² IMODULE:	M7, FIR Lo	NT ITYPE. 50 PM
LIST	BY: WIRE	BY:		111 4. 00 112
	ECTOR TYPE: 200277-4			
PIN		TYPE	FROM	ТО
<u>A</u>	For CND LED DEV	1		W-952-E
B	For BRK "			W-952-C
С	For upper Lin 11 11			W-952-A
G	For Lower Lin 11 11		 	W-952-F
ε	FOR TRANS PWE II II		<u> </u>	W-952-D
F	RINE ETTENd. " "			W-952-X
4	For Pulsas UP 11 11	1		W-952-B
7	For Pulses DWN II II			W-952-H
ĸ	POT CME II II			W-9JZ-5
L	ROT ERIC (P OUT) II "			W-952-P
M	RINA RETART II II			w-952-V
N	Por CW Lin 11 11			W-932-M
Ρ	ROT COW Lim "			W-952-T
R	Rot TRANS PWE "			W-952-R
s	Ror Moroce Pulsies II II			W-952-W
Т	ROT PULSES CW 11 11			w-9JZ-N
υ	Rot PULSES COW . 11 "			W-952-U
V	Pλ ""			W-952-7
W				W-952-2
×	сх " "			W-952-AA
Y	UX nu			W-9J2-BB
Ş	κλ ιι "			w-952-cc
٩١	χλ μ υ			W-952-00-
اط	Υλ			W-9JZ-EE
ē	<i>×</i> ×			W-952-FF
٩	For Teams Pulse UP	Wh, #26, TP = 34		I/0-J1-P
č	FOR TRANS PULSE DWW	Wh, # 26, TP # 25		I/0-JI-R
	FOC TRANS PULSE RET	BLK, 26, TP 34		I/0-J1- 5
<u>h</u>	For TRANS ESR DRV			I10-J1-A
7_	For BRAKE SSR DEV			I/6-JI- 12
NATIC	NAL RADIO ASTRONOMY COS	ERVATORY	IPROJ:	IDATE: Jun 83
TITLE	: F/R SYSTEM D			IREV:
		IDWG NO 4	113740610	ISHEET BOFSO

WIRE LIST

LIST BY: IWIRE BY: CONNECTOR TYPE: 200277-4 CONNECTOR PAGE: 2 PIN FUNCTION TYPE FROM TO E Ror TREADS RUISE COM WA, #20, TP#32 M ROR TREADS RUISE COM WA, #20, TP#32 M ROR TREADS RUISE CEW WA, #20, TP#32 M ROR TREADS RUISE RET BUE, #21, TP#32 M ROR TREADS RUISE RET BUE, #21, TP#32 M ROR TREADS SEE DEV II/0-JI- MM ROR EXTENDES RE DEV II/0-JI- MM ROR TREADS SEE DEV II/0-JI- MM ROR TREADS MON II/0-JS-AA M ROR TREADS MON WO-AJZ-KK M ROR TREADS MON WO-AJZ-KK M ROR TREADS MON WO-AJZ-KK M ROR DRU OP SW WO-AJZ-HH M ROR DRU CEW SW WO-AJZ-HH M SYNCHRO MON - H, WA SZ, TP SH WO-BJI-M M WO-BJI-M M NOBJI-M M NOBJI-M 	RACK:	C BIN: W SLOT: 4- 3	2 MODULE: A	17, FIR CONT	TYPE: JO PIN
PIN FUNCTION TYPE FROM TO k Rer Teaus Ruise Cw $wh, tze, Tt^{B}zi I/u - 51 - 5 m Rer Teaus Ruise Cw wh, tze, Tt^{B}zi I/u - 51 - 5 m Rer Teaus Ruise Cw wh, tze, Tt^{B}zi I/u - 51 - 5 m Rer Teaus Ruise Cew wh, tze, Tt^{B}zi I/u - 51 - 4 m Rer Teaus SEE Dev I/u - 51 - 4 I/u - 51 - 4 m Rer Teaus SEE Dev I/u - 51 - 4 I/u - 51 - 4 m Rer Teaus Man I/u - 51 - 4 I/u - 51 - 4 m Rer Teaus Man I/u - 50 - 15 - 44 I/u - 50 - 16 - 44 m Ror Teaus Man I/u - 50 - 14 I/u - 50 - 14 m Ror Teaus Man I/u - 15 - 44 W - 912 - 444 m Ror Teaus Man W - 912 - 444 W - 912 - 444 m Ror Teaus Sw W - 912 - 444 W - 912 - 444 m Ror Dev cow Sw W - 912 - 11 W - 912 - 11 m Ror Dev cow Sw W - 912 - 11 W - 912 - 11 M Ror Teaus SW An W - 911 - 1 $	LISTE	BY: WIRE	BY:		
k Rot Teams Ruise CCU $wh, \pm zh, Th^{2}2h$ $I/h - 51 - 5$ m Rot Teams Ruise CCU $wh, \pm zh, Th^{2}2h$ $I/h - 51 - 5$ m Rot Teams Ruise CEU $wh, \pm zh, Th^{2}2h$ $I/h - 51 - 4$ m Rot Teams Ruise Ceut $wh, \pm zh, Th^{2}3h$ $I/h - 51 - 4$ m Rot Teams Ruise Ceut $Wh, \pm zh, Th^{2}3h$ $I/h - 51 - 4$ m Rot Teams SSR DEV $I/h - 51 - 4$ $I/h - 51 - 4$ m Rot Teams Mon $I/h - 51 - 4$ $I/h - 51 - 4$ m Rot Teams Mon $I/h - 51 - 4$ $I/h - 51 - 4$ m Rot Teams Mon $I/h - 51 - 4$ $I/h - 51 - 4$ m Rot Teams Mon $I/h - 51 - 4A$ $M - 51 - 5$ m For Teams Mon $W - 912 - 16$ $W - 912 - 13$ m For Dev Dev Sw $W - 912 - 13$ $W - 912 - 13$ m For Dev Cw Sw $W - 912 - 13$ $W - 912 - 13$ m For Dev Cw Sw $W - 912 - 13$ $W - 912 - 13$ Rot Dev Cw Sw $W - 912 - 13$ $W - 911 - 5$ $W - 911 - 5$ Por N: $H + 32$ $W - 911 - 4$ <td></td> <td></td> <td></td> <td></td> <td></td>					
\underline{m} Rot Teams Rules CCW $Wh, \pm 20, TP^{\pm}27$ $IJO = 31 - T$ \underline{m} Rot Teams Police Retr $IBLE, \pm 20, TP^{\pm}27$ $IJO = 31 - T$ \underline{m} Rot Teams SSE DeV $IJO = 31 - T$ $IJO = 31 - T$ \underline{m} Rot Teams SSE DeV $IJO = 31 - T$ $IJO = 31 - T$ \underline{m} Retrind SSE DeV $IJO = 31 - T$ $IJO = 31 - T$ \underline{m} Retrind SSE DeV $IJO = 35 - 44$ $IJO = 35 - 44$ \underline{m} Retrind SSE DeV $IJO = 35 - 44$ $IJO = 35 - 44$ \underline{m} Retrind SSE DeV $IJO = 35 - 44$ $IJO = 35 - 44$ \underline{m} Retrind SSE DeV $UIO = 35 - 44$ $W = 912 - 15$ \underline{m} Retrind SSE DeV $W = 912 - KK$ $W = 912 - 11$ \underline{m} Retrind SW $W = 912 - MM$ $W = 912 - MM$ \underline{m} Retrind SW $W = 912 - MM$ $W = 912 - MM$ \underline{m} Retrind SW $W = 912 - MM$ $W = 912 - MM$ \underline{M} Retrind SW $W = 911 - R$ $W = 911 - R$ \underline{M} Retrind Active $W = 911 - M$ $W = 911 - M$ \underline{M} M	·····				
	<u>k</u>				I/v - 51 - 5
Pot Teams SSR Dell $H0-TI-E$ Pot Reme Extend Sse. Dev $H0-TI-E$ Pot Reme Sm $H0-TI-E$ Mathematication $H0-TI-E$ Pot Reme Sm $H-9T2-HH$ Pot Dev Dev Sm $H-9T2-HH$ Pot Dev Dev Sm $H-9T2-HL$ AA Pot Dev Com Sm $H-9T2-HL$ AA Pot Dev Com Sm $H-9T2-HL$ AA Pot Dev Com Sm $H-9T1-F$ B2 Pot Dev Com Sm $H-9T1-F$ D Dor H $H = Ator Mon - H_1$ $H^{3}2t_{1}TF^{4}H$ $H = BT1-T$ H Specha Mon - Lo $Ht^{3}2t_{1}TF^{4}H$ $H = BT1-T$ Image Smothead Mon - Lo $Ht^{4}2t_{1}TF^{4}H$ $H = BT1-T$ Image Smothead Mon - Lo $H = BT1-T$ $H = BT1-T$ Image Smothead Mon - Lo $H = BT1-T$ $H = BT1-T$	M	ROT TEANS PULSE CCW			1/0-51-T
A Rung Extend size dev $Ho - JI - k$ 4 Rung Extend size dev $I/o - JI - k$ 4 Rung Extend size dev $I/o - JI - k$ f For Trans Mon $I/o - JS - AA$ m Rot Trans Mon $I/o - JS - AA$ m Rot Trans Mon $I/o - JS - H$ M Rot Trans Mon $U/o - JS - H$ M Rot Trans Mon $U/o - JS - H$ M Rot Trans Mon $U/o - JS - H$ M Rot Trans Mon $U/o - JS - H$ M Rot Trans Mon $U/o - JJ - K$ M Rot Trans Mon $W - 9J2 - KK$ M Rot Dru Dw Sw $W - 9J2 - HH$ M Rot Dru Cw Sw $W - 9J2 - HL$ AA Rot Dru Cw Sw $W - 9J2 - NN$ BE Rot Dru Cw Sw $W - 9J1 - J$ BD Cor II II Az $W - 9J1 - D$ FF Stuckeo Mon - HI $Wh^{3}2L, TP^{3}H$ $W - 8J1 - M$ HH Stuckeo Mon - LO $U - 8JI - T$ U IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	<u>~</u>	Rot TRANS PULLE RET	BLIC, #26, TP# 37		510-51-d
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P_	POT TEANS SSR DEV			I/0-J1- ~
I For TRAWS MON $I/0 - IS^-AA$ M Rot TRAWS SW $W - 9I2 - KK$ M Rot TRAWS SW $W - 9I2 - HH$ K Rot TRAWS SW $W - 9I2 - MM$ R Rot DRU CW SW $W - 9I - I - I$ AA Rot DRU CW SW $W - 9I - I - K$ CC $Rot BAND SW AO$ $W - 9I - I - K$ CC $Rot W - H = MA$ $W - 9I - I - M$ BD Rot III HAL $W - 9I - M$ FF $Synchro Mon - H = Wh^{32} (T f^{2} H) = W - 8J - M$ HH $Synchro Mon - LO$ $BLE^{32} (T f^{2} H) = W - 8J - M$ HH $Synchro Mon - LO$ $BLE^{32} (T f^{2} H) = W - 8J - M$ I I I I I I I I I	7	Ring EXTERIA SSR. DRV			IVO - JI - k
	<u>s</u>	RING RETERT SSE DEN			I/0-JI- 1/2
	Ť	For TRANS MON		I10 - J5 - AA	
$\underline{\mathscr{U}}$ For DRV UP SW $W - 9J2 - HH$ $\underline{\mathscr{U}}$ For DRV DWN SW $W - 9J2 - JI$ $\underline{\mathscr{U}}$ Por DAN CW SW $W - 9J2 - MM$ $\underline{\mathscr{U}}$ Por DAV CW SW $W - 9J2 - LL$ AA Por DAV CW SW $W - 9J2 - LL$ AA Por DAV CW SW $W - 9J2 - MM$ BE Por DAV CW SW $W - 9J2 - MN$ BE Por DAV CCW SW $W - 9J2 - NN$ BE Por DAV CCW SW $W - 9J2 - NN$ BE Por DAV CCW SW $W - 9J2 - NN$ BE Por DAV CCW SW $W - 9J2 - NN$ BE Por DAV CCW SW $W - 9J1 - N$ BD Por III - H $W - 9J1 - D$ EE N Switch Active $W - 9J1 - D$ FF Synchroo Mow - HI $Wh^32JTP^{\pm 4I}$ $W - 8J1 - M$ HH Synchroo Mow - LO BLc $^{\pm}2c_0, TP^{\pm 4I}$ $W - 8J1 - M$ Image: Data structure Image: Data structure Image: Data structure Image: Data structure Image: Data structure Image: Data structure Image: Data structure Image: Data structure Image: Data structure	M	ROT TRANS MON		I/0-55- H	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	Foc RAMP SW		W-9JZ-KK	
$\frac{1}{2}$ R_{OT} R_{AMP} SW $W - 9J2 - MM$ $\frac{1}{2}$ R_{OT} DRU SW $W - 9J2 - LL$ AA R_{OT} DRU SW $W - 9J2 - NN$ BE R_{OT} $BRWON$ $W - 9J2 - NN$ BC R_{OT} R_{MON} $W - 9J1 - K$ CC R_{OT} H $W - 9J1 - J$ DD R_{OT} H $W - 9J1 - D$ FF S_{WCHRO} $MON - HI$ $Wh^{\frac{3}{2}} 2JTP \frac{1}{2} H$ $W - 8J1 - M$ HH S_{TNCHRO} $MON - LO$ $BLk \frac{1}{2} 2JTP \frac{1}{2} H$ $W - 8J1 - M$ HH S_{TNCHRO} $MON - LO$ $BLk \frac{1}{2} 2JTP \frac{1}{2} H$ $W - 8J1 - M$ W $W - 8JI - M$ W $W - 8JI - M$ W $W - 8JI - M$ <td< td=""><td>w</td><td>For DRV UP SW</td><td></td><td>W-952-HH</td><td></td></td<>	w	For DRV UP SW		W-952-HH	
4 R_{OT} R_{MP} W W $9J2-MM$ AA R_{OT} DRV sw $W-9J2-LL$ AA R_{OT} DRV sw $W-9J2-NN$ BP R_{OT} DRV sw $W-9J2-NN$ BP R_{OT} DRV sw $W-9J2-NN$ BP R_{OT} $BRVS$ SW W $W-9J2-NN$ BP R_{OT} $BRVS$ SW W W W CC P_{OT} W W W W W DD R_{OT} W W W W W W EE X $Switter W W W W W W HH S_{TWCHRO} MOW - LO W_{W} W$	×	For DRV DWN SW		W-9JZ-JJ	
2 2_{0T} DRV cw sw $W - 9JZ - LL$ AA R_{0T} DRV ccw Sw $W - 9JZ - NN$ BR R_{0T} BAND SW A0 $W - 9JI - K$ CC 2_{0T} " "A1 $W - 9JI - J$ DD 2_{0T} " "A2 $W - 9JI - J$ EE λ Switch Active $W - 9JI - D$ FF S_{VNCHRO} MON - H1 $Wh^{\frac{4}{2}2}$, $TP^{\frac{4}{3}}$ $W - 8JI - M$ HH S_{TNCHRO} MON - LO $BLe^{\frac{4}{2}26}$, $TP^{\frac{4}{3}}$ $W - 8JI - M$ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	N.			W-952-MM	
BP Rot BAND SW AD $W - 9TI - K$ CC Dot III IIIA $W - 9TI - J$ DD Por IIIIIA2 $W - 9TI - J$ EE λ Switch Active $W - 9TI - D$ FF Stwitch Active $W - 9TI - D$ HI Stwitch Active $W - 9TI - D$ HI Stwitch Active $W - 9TI - D$ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2	<u> </u>		W-952-LL	
BP Rot BAND SW AD $W - 9TI - K$ CC Dot III IIIA $W - 9TI - J$ DD Por IIIIIA2 $W - 9TI - J$ EE λ Switch Active $W - 9TI - D$ FF Stwitch Active $W - 9TI - D$ HI Stwitch Active $W - 9TI - D$ HI Stwitch Active $W - 9TI - D$ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	AA	ROT DRV CCW SW	<u>}</u>	W-952-NN	
CC B_{0T} II A_1 $W - 9TI - J$ bD B_{0T} II A_2 $W - 9TI - H$ EE λ Switch Active $W - 9JI - D$ FF Synchro MON - HI $Wh^{\frac{1}{2}}2L_{1}TP^{\frac{1}{2}}4I$ $W - 8JI - M$ HII Synchro MON - LO $BLk^{\frac{1}{2}}2L_{0}TP^{\frac{1}{2}}H$ $W - 8JI - M$ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <	BR			1	
DD Cor II II A_Z $W - 9JI - H$ EE $\lambda \leq w.itch$ $Active$ $W - 9JI - D$ FF $S_{TWCHRO} MON - H_I$ $Wh^{\frac{4}{3}}2L, TP^{\frac{4}{3}} H$ $W - 8JI - M$ HH $S_TNCHRO MON - LO$ $BLk^{\frac{4}{3}}2L, TP^{\frac{4}{3}} H$ $W - 8JI - M$ Image: Structure of Mon - LO $BLk^{\frac{4}{3}}2L, TP^{\frac{4}{3}} H$ $W - 8JI - M$ Image: Structure of Mon - LO $BLk^{\frac{4}{3}}2L, TP^{\frac{4}{3}} H$ $W - 8JI - M$ Image: Structure of Mon - LO $BLk^{\frac{4}{3}}2L, TP^{\frac{4}{3}} H$ $W - 8JI - M$ Image: Structure of Mon - LO $BLk^{\frac{4}{3}}2L, TP^{\frac{4}{3}} H$ $W - 8JI - M$ Image: Structure of Mon - LO $BLk^{\frac{4}{3}}2L, TP^{\frac{4}{3}} H$ $W - 8JI - M$ Image: Structure of Mon - LO $BLk^{\frac{4}{3}}2L, TP^{\frac{4}{3}} H$ $W - 8JI - M$ Image: Structure of Mon - LO $BLk^{\frac{4}{3}}2L, TP^{\frac{4}{3}} H$ $W - 8JI - M$ Image: Structure of Mon - LO $BLk^{\frac{4}{3}}2L, TP^{\frac{4}{3}} H$ $W - 8JI - M$ Image: Structure of Mon - LO $BLk^{\frac{4}{3}}2L, TP^{\frac{4}{3}} H$ $W - 8JI - M$ Image: Structure of Mon - M	cc				
EE λ Switch Active $W - 9JI - D$ FF $Sywehro Mon - HI$ $Wh^{\frac{4}{3}}2i, TP^{\frac{4}{3}}HI$ $W - 8JI - M$ HH $Sywehro Mon - LO$ $Blk^{\frac{4}{3}}2i, TP^{\frac{4}{3}}HI$ $W - 8JI - M$ I I </td <td>00</td> <td></td> <td></td> <td>W-951-H</td> <td></td>	00			W-951-H	
FF Synchro MON - HI $Wh \stackrel{\$}{} 22, TP \stackrel{\$}{} 41$ $W - 8JI - \underline{m}$ HH Synchro MON - LO $BLk \stackrel{\$}{} 26, TP \stackrel{\$}{} 41$ $W - 8JI - \overline{n}$ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I<			·		
HH Syncheo Mon - LO BLk ± 26 , TP ± 41 W - BJ1 - $\frac{72}{2}$ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <td< td=""><td> </td><td></td><td>wh \$ 26, TP # 41</td><td>W = 8JI = m</td><td></td></td<>	 		wh \$ 26, TP # 41	W = 8JI = m	
NATIONAL RADIO ASTRONOMY CBSERVATORY PROJ: IDATE: Jun 83					
NATIONAL RADIO ASTRONOMY COSERVATORY PROJ: DATE: Jun 83					
NATIONAL RADIO ASTRONOMY CBSERVATORY PROJ: IDATE: Jun 83	}	1			1
NATIONAL RADIO ASTRONOMY COSERVATORY PROJ: DATE: Jun 83					
NATIONAL RADIO ASTRONOMY COSERVATORY PROJ: DATE: Jun 83			÷		
NATIONAL RADIO ASTRONOMY COSERVATORY PROJ: DATE: Jun 83					
NATIONAL RADIO ASTRONOMY COSERVATORY PROJ: DATE: Jun 83	ļ	 	1		
NATIONAL RADIO ASTRONOMY COSERVATORY PROJ: DATE: Jun 83	ļ			1	
NATIONAL RADIO ASTRONOMY CESERVATORY PROJ: DATE: Jun 83	ļ	ļ			
NATIONAL RADIO ASTRONOMY COSERVATORY PROJ: DATE: Jun 83					
NATIONAL RADIO ASTRONOMY OBSERVATORY PROJ: DATE: Jun 83					
TITLE: FIR SYSTEM D IREY:			ERVATORY	IPROJ:	
	Fur	E: FIV SYSIEM ()	DWG NO M	1371101110	ISHEET 9 OF 50

WIRE LIST

RACK	C BIN: W SLOT: 7-		MZ, DATA TAP	ITYPE: 42 P.N
LISTE	BY: IWIRE	and the second secon		
		CONNECTOR PAG		
PIN	FUNCTION CLOCK GONT JAPE	BLACK # 22	FROM	то
		· · · · · · · · · · · · · · · · · · ·		
Z	CLOCK CONT JMPR	BLACK, #22		W-75I-1
3				
4				
उट			l	
5511				
6.0				
GSH				
76				
7SH				
8				
9		· · · · · · · · · · · · · · · · · · ·		
10	+5 Logic Pwe	ORANGE # 16	W - 9JI - M	
u				
12				
13				
14				
15				
16	+151	RED # 22	W-951-6	
17	-15V	1	W = 9JI = BB	
18				
19				
20				j
21	<u></u>			
22		<u>F</u>		
23				
24				
25				
	CMD/DATA TO DT - SIG	Wh, #26, TP 30	W-BJI-A	
	CMD/DATA TO DT - PET	·		
NATIC	NAL RADIO ASTRONOMY CBS		PROJ:	DATE: Jun 83
	E: FIP SYSTEM TO	DWG NO A	12740440	REV:
L		<u>12-012-01-</u>	ISTY WID	SHEE . ICUP OF

WIRE LIST

RACK		SLOT: 7 - J	MODULE: M	12, DATA TAP	TYPE: 42 A.
LISTE	BY:	IWIRE			
	ECTOR TYPE: 2025		CONNECTOR PAG		
PIN	FUNCTIO	N	TYPE	FROM	TO
28					
29					
30					
31					
32	<u></u>				
33					
34	Logic Common		BLACK HIG	W-9J1-X	
35					
36					
37			· · · · · · · · · · · · · · · · · · ·		
380					
3851					
39 C					
39514					
40 C					
405 H		_			
41					
42			· · · · · · · · · · · · · · · · · · ·		
			i		
-					
NATIONAL RADIO ASTRONOMY COSERVATORY PROJ				PROJ:	IDATE: Jun 83
TITLE: FIR SYSTEM D					IREV:
DWG NO A13740WIO				3740610	SHEET IL OF 50

WIRE LIST

WIRE LIST						
LIST BY: VIRE BY: VIRE BY:						
	CONNECTOR TYPE: 200 277-4 CONNECTOR PAGE: /					
PIN	FUNCTION	TYPE	FROM	ТО		
A	CMD DATA TO DT - SIG			W-751-26		
E	CMD INPUT - 516		10-52-F			
С				W-751-27		
D	CMD INPUT - PET	BLK, #26, TP#38	I10-J2-D			
E	CONN INTL'IC		I/0-J1-C5			
F	DATA SET DATA TO EUFFER - SIG	Wh, #26, TP 39		I/0 -J2-J		
H	For BRAKE Volts +			W-151-0		
5	FOL BRAKE AMPS			W-151-2		
ĸ	For Berne Volts Comm			$\omega - 1 \overline{J} \overline{I} - \overline{\underline{C}}$		
L	DATE SET DATA TO BUFFER - REA	B(K, 526, TP 39	<u> </u>	1/0-J2-M		
M						
N	+5V (FOR MI)	DEANGE # 16	W-931-N			
Р	+5V (FOR MID)	ORANGE #16	<u>4-129-w</u>			
R						
S	<u> </u>					
T						
υ	Averente +2 510		<u></u>			
V	Finamore # 1 Sia					
W	Frennen # RET					
×	Epi-plematic det Ret					
Υ.	LOGIC COMMON (FOR MI)	BLACK # 16	W = 9JI = Y			
7	LOGIC COMMON (FOR MID)	BLACK # 16	W = 9JI = 2			
<u>a</u>						
Ē						
<u> </u>						
ă						
e -	Rot Banka Johrs +			W-151-2		
f						
<u>_h</u>						
7	+15V (FURMI)		い-951-ビ			
	NAL RADIO ASTRONOMY OBSE : FIQ SYSTEM D	RVATORY		DATE: Jun 83		
	- FIR DISTERN Y	DWG NO A	The second s	REV:		
1010 10 AISI40000 10H2E . 120,30						

WIRE LIST

DACY	C PIN IL CLOT G		BullBul Tugo	TYPE AT A
RACK			BIN/RIN JMPR	ITTE: SOP.
		CONNECTOR PAG	E: 2	
PIN	FUNCTION	TYPE	FROM	то
R	+15U (Fore Mio)	RED # 20	w-9J1-k	
m	STNCHED MON - HI	wh, #26, TP#41		W - 4JZ - FF
<u>m</u>	<u> </u>			
P-	SYNCHED MON-LO	BLK, # 26, TP#41		W-4J2 - HH
<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	Ron BRAKE AMAS		l	W-151-2
<u>a</u>				
t	AwALOG (115) (OMMUN (FORMI)		$w-951-\underline{t}$	
<u>~</u>	ANALOG (±15) Common (FORMIN)	BLACK # 20	W-951-1	
25				
m				
<u>~</u>				
7 <u>5</u>				
35	Por REARE Volts PET -		1	W-131-₩
AA				
BB				
cc	-15V (FUR MI)	YELLOW # 20	w-91- cc	
סס	-15V (FOR MID)	TELLOW # 20	W-9J1-DD	
EE				
FF				
Нн				
<u></u>				
	l			
		<u> </u>		
NATIO	NAL RADIO ASTRONOMY CBS		PROJ:	IDATE: Jun 83
	E: FIR SYSTEM D			IREV:
·····		IDWG MO A	13740w10	ISHEET 13 CF 50

WIRE LIST

			·····	
RACK:			IN / BIN JMPK	TYPE: 34 P.J
LIST E	ECTOR TYPE: 200 838-3		F. J	
PIN		TYPE	FROM	то
A		0 RA~4 E #, 20	$I_{lo} - J_{l} - f$	
В	FOR BRAKE SSR DRV	· }	F10 - J1 - M	
c	FOR TRANS ESR ERV		Fo-JI-M	· · · · · · · · · · · · · · · · · · ·
D	Ring Extend SSR DRU		Fo -II - g	
E	RIME RETRETSER DRV		I/0 - JI - 11	
F	ROT TRANS SSR DRV		$F_{0}-J_{1}-t$	
4	<u>5MA-Ø</u> ("1")			W-3J1-H
J	SMA-1 ("2")			$\omega - 3JI - J$
ĸ	SMA-2 ("4")			W-351-K
L	<u>SMA-3 ("8")</u>			W-351-L
м	5Mhz Sig	Wh, # 26, TP # 27		W- 351-X
N	5Mhz Rizt	BLK, # 26 , 70 +27		w-3J1-Z
P	POT BRAKE SSR DEWE		1/0-JI-CH	
R	CONN INTLIC			W- 3JI- FRAME GND
S	STWCHED EXC R.	wh, =26, TP=12		W-IJI-N
Т	STRICHED EXC RI	Wh #ZC JTP#13		110-34-A
υ	STNCHPO EXC R2	BLIC #26, TPt12		W-15I-R
V	STNCHRO EXC RZ	BLK# 26, TP#13		I/0-J4-C
W	STNCHED EXC RI	Wh, # 26, TP #14		
×	STNCHPO EXC RI			
Y	SYNCHRO EXC RZ	BLE # 26, TP# 14		
2	SYNCHED EXC RZ			
AA	DIGI-1 SIG		W - 2JI - M	
aa	STRO-Ø SIG	Wh , #26, TP=20		W-3JI-W
cc	DIGO-Ø SIG			W-3JI-P
BE	STRO-Ø RET	ELK, #26, TP# 20		W = 3TI = Y
SC	stet -1 Sig	wh, # 26, TP #18		W - 3JI - S
FF	CLKO-¢ SIG	Wh, # 26, TP=19		W - 3JI - T
нн	STRI-1 Rer	BLE, # 26, TP :: 8		W-351-U
······	CLEO-Ø RET	BLE, # 26, TP #19		w-3JI-V
	NAL RADIO ASTRONOMY COSE E: FIR SUSTEM D	RVATORY	PROJ:	IDATE: Jun 83 IREV:
		DWG NO A	13740010	ISHEET IA CE 50

WIRE LIST

			WIRE LIST		
	C IBIN: W			BIN/BIN JMPE	TYPE: 34 P.J
_IST E	JY:	IWIRE			
	ECTOR TYPE: 2	CD 631-3	CONNECTOR PAG		
PIN		TION	TYPE	FROM	то
	ALGI-0		Wh, # 20, TP #16		w-351-2
LL	CLKI-1		Wh, # 26, TP#		W - 3JI - N
	ALGE - Ø		BLK, # 26, TP#16	the second s	W = 3JI = AA
NN	CLKI-1	_ RAT	BLE # 26, TP# 17		W-351-R
<u></u>			1		
			1		
				1	
		······		1	
	<u> </u>			- <u> </u>	
		· · · · · · · · · · · · · · · · ·			
<u>-</u>					
				Ì	
·					
<u></u>					
<u>,</u>					
VATIO	NAL RADIO AS	TRONOMY CBS	I ERVATORY	I IPROJ:	IDATE: Jun 83
TITL	E: FIR SYSTE	n D			IREV:
			IDWG MO	A13740W10	ISHEE - 15 07.50

WIRE LIST

<u></u>		WIRE LIST		
	C BIN: W SLOT: 9-J		MB, FIR PWR	TYPE: SO P.J
LIST E		CONNECTOR PAG	F· I	
PIN	FUNCTION	TYPE	FROM	ТО
A	APEX INT +15V	RED, # 20		W - IJI - A
В	APER INT +5V	ORANGE # 16		w - 1JI - c
С	APEX INT AND COMM	BLACK # 16		W-1J1-#H
D	X Switch Active		<u> </u>	W-4J2-EE
E	APEX INT -15V	YELLOW # 20		W-IJI-E
F	APIEX INT 5 V COMM	BLACIC # 16		W-IJI-B
ų	Pin SW Az			w-452-00
J	Pin SW AI			w-452-cc
ĸ	Pin SW AD			W-452-BB
L	+ 5 ⁻ V	ORANGE, #16	1	W-3J1-C
M		<u>ا ۴، د</u>		$\omega - 7JI - 10$
N		± 16		W-851-N
P		# 16-		W - 8JI - P
R	+su to ssr's	¥ 20		エノロー フリー チ
S				
Т				
υ	\$	*		
V	+5V	ORANGE #16		
W	LOGIC Common	BLACK # 16		W-3JI- B
×				W-751-34
Y				W-8JI-Y
Z				W-851-2
<u>a</u>				
Þ				
<u> </u>		4		
<u>d</u>	Logic Common	BLACIC#16		FARE Gud
<u> </u>	500.02		<u> </u>	
£	+15 J	RED ; 20		W-351-A
<u>5</u>				W-751-16
Z	4			w-851-7
	NAL RADIO ASTRONOMY CESE E: PIR SYSTEM D	LAAIUAY	IPROJ:	IDATE: Jun 83
		DWG NO	A13740W10	ISHEET IGCE 50

WIRE LIST

BUCK.	C BIN: W SLOT: 9-J		MB, FIR DWD	TYPE: 50 P.~
LIST B				LITE: SO FIN
		CONNECTOR PAG		
PIN	FUNCTION	TYPE	FROM	то
R	+15V	Beo # 20	<u> </u>	W-851-E
m				
<u>~</u>	<u> </u>	<u> </u>		
el	+157	Rep # 20		
스	Space			
<u>s</u>	ANGLOR (±15) Common	BLACK TE 20		W - 3JI - HH
<u>z</u>				w-851- <u>₹</u>
<u>~</u>				w -831-m
~				
2				
~				
12-	ANALOG (±15) Common	BLACE, #20		
3-1	Spare			
AA	-15V	YELLOW # 20		W-351-E
BB		1		W-7JI-17
CC				w -831-cc
ממ				W-851-DD
EE				
FF	ł	↓		
нн	-15V	Tellow, # 20		
1				
i				
	NAL RADIO ASTRONOMY COS	ERVATORY	PROJ:	IDATE: Jun 83
ITLE	: FIR System D	DWG NO	A13740W10	IREV:

WIRE LIST

		WIRE LIST				
RACK: C BIN: W SLOT: 9-J2 MODULE: MO, FIR PWE TYPE: 34 P.						
LIST BY: WIRE BY:						
PIN		CONNECTOR PAG	FROM	ТО		
	For Uppier Lin LED Dev		W-4JZ-C	то		
B	For Pulses UP "		W-452-H			
С	For BRIC 11		W-452-B			
D	FOC TRANS PWE "		W-452-E			
e	For CMD 11		W - 4JZ - A			
F	For Lower Lim 11		W-4JZ-D			
#	For PULSES DWN 4		W-4JZ-J			
J	For Space LED "					
ĸ	For MOT PULSES 11		W-452-F			
L	For Space LED 11					
M	Ror CW Lim 11		W-452-N			
2	Rot Pulses CW "		W - 4JZ - T			
Р	Rot BRAICE 11		W-4JZ-L			
R	ROT TRANS PWR 11		W-452-R			
5	ROT CMP 11		W-452-K			
т	Rot COWLIM "		W-452-P			
υ	Rot Pulses ccw "		w-452-0			
v	POT PIN IN 11		W-452-M			
\sim	ROT MOT PULSES 11		W-452-5			
×	Rot SPARE 11					
Y	ρλ "			W-4J2-V		
2	LX			W -452-W		
AA	<u>CX</u> "			W-452-X-		
вә	υλ ιι			W-452-Y		
CC	<u>κλ</u> "			W-4J2-Z		
00	Χλ 11			w-452- a		
EE	Υλ "			W-452-6		
77	57 "			w-452- <u>≤</u>		
нн	For DRU UP SW			w-452- 11		
21	FOC DRU DWN SW			w-452- <u>≈</u>		
	NAL RADIO ASTRONOMY COSE	RVATORY		DATE: Jun 83		
1116	: FIR SUSTEM D	DWG NO AI		REV:		
			2740010	SHEET 18 CF 50		

WIRE LIST

				MA CLA D	A TYPE -
RACK: LIST BY		ISLOT: 4-J			De TYPE: 34 P.2
			CONNECTOR PAG	GE: 2	
PIN		CTION	TYPE	FROM	ТО
KK F	For RAMP	ຽພ			W-452-2-
LL	ROT DRU	cw sw			W-452-3-
MM	Ror RAMP	sω			W-452-72
NN	eot bru	Cew Sw			W-4JZ-AA
		<u></u>			
i					
	<u></u>				
i		·····			
			·		
İ			· · · · · · · · · · · · · · · · · · ·		
<u> </u>		· · · · · · · · · · · · · · · · · · ·	<u>.</u>		
					1
	<u></u>				
	<u> </u>				
				1	
	<u></u>		l <u> </u>		
	<u></u>				
	<u> </u>				
<u> </u>					
			·		
	·				
	<u></u>	<u> </u>			
NATION	AL RADIO AS	TRONOMY CBS	LAVAIUAY	IPROJ:	IDATE: Jun 83 IREV:
			DWG NO	A13740W10	ISHEET 190750

WIRE LIST

WIRE LIST				
RACK:			AI, DATA SAT	TYPE: 42 P.~
LISTE				
	ECTOR TYPE: 202516-3			70
PIN	FUNCTION	TYPE	FROM	ТО
2				
3				
4	DIGI-2 - RET		X = 1JI = 11 X = 1JI = 28	
5C				
55H				
60				
654				
76	Principation Sia	wh.#26. TF = 43	X-8JI-U	
7 S H	Aron motor === 2 RET	ELK #2: TP = 43	X-8JI-W	
B	CMD/DATA TO DT - SIG	Wh, # 26, TP = 28		X- 8J1- A
9	CMD/DATA TO DT - RET	BL10, #26, 70 28		x-8J1-C
10	+51	ORANGE # 16	X-8J1-N	
11	DSA-Ø ("1")			x-1J1-4
12				
13				
14	ALGI-O Sia	wh #26, tp #15	X-8J2-KK	
15	DATE OUTPUT TO BUFFER-HI	wh, # 26, TP=		X-851-F
16	+151	RED; H 20	x-851-7	
17	-15V	YELLOW, # 120	X-871-CC	
18				
19				
20				
21				
22				
23				
24				
25	CMU INPUT - SIG	Wh, # 26, TP#29	X-8J1-B	
26		R.LK, # 26, TP #29	X-851-0	
27	LATA OUTPUT TO BURESE - REF	Bric, #26, TP# 29	X-851-L	
	NAL RADIO ASTRONOMY CBS	ERVATORY	PROJ:	DATE: Jun 83
	E: F/R SYSTEM D	DWG NO A		REV:
.		TOMO NO M	010010	

WIRE LIST

RACK	C BIN: X SLOT: 1 - J	MODULE:	MI - DATA SEI	TYPE: 12 P.J
LISTE				
PIN	ECTOR TYPE: 202516-3 FUNCTION	CONNECTOR PAG	E: Z FROM	
	DSA -1 ("2")			TO
29				X-1J1-4
30	· · · · · · · · · · · · · · · · · · ·			
31				
32				
	FIGT-C RET			
33 34	Provide # Sia	1. + 121, 7p + 42	7-857-V	
35	Logic Common	BLACK, #16	x851- Y	·
26				
37				
295				
35.2H				
295				
395H				
400				
4054				
41	AHOMEN-T-r=1 Ret	ELK . #21 F #3	7-871-7-	
42	ANALOG (±15) Connon	BLACIE, 16	x-811- 5	
			······································	
	NAL RADIO ASTRONOMY CESS E: FIR SYSTEM D	ERVATORY 1	PROJ:	DATE: Jun 83 REV:
		DWG NO AI	374010	SHEET 21 OF 50

WIRE LIST

RACK	C BIN: X	SLOT: 1 -	JZ MODULE:	MI, DATA SET	ITYPE: 34 Pin
LIST	BY:	IWIRE	BY:		
	ECTOR TYPE: 20		ICONNECTOR PAG		
PIN	1		TYPE	FROM	то
A	DIGC-Ø	Ret			
B			<u> </u>		
С	$DIGO - \phi$	516			X-852-00
D					
E	CLKO-Ø	RET	BLIC, # 26, TP#23		X-8J2-JJ
F			<u> </u>		
н	CLKO -Ø	516	Wh, # 26, TP == 3		x-852-FF
J	ļ				
ĸ	STRO-0	RET	BLK, # 26, TP #21		X-8J2-BB
L					
м	STRO-Ø	Sig	Wh, # 26, TP# 21		x-812-00
N					
ρ					
R	DIGI-1	514		X - 8JZ - AA	
5					
Т	DIGI-1	Rat			
υ					
V	CLKI-1	Sig	wh, # 20, TP= 24		x -852-44
W					
X	CLEI-1	Per	BLK, # 26, TP = 24		X-8J2-NN
Y					
Z	STRI-1	Sig	wh, # 26, TP = 25		X-BJZ-EC
AA					
BR	STRT -1	Ret	BLK, # 26, TP = 25		X-852-14H
cc					
ac	SM.A - 2	Sig			X-852-K
EE	SMA-Ø	Sig			X-8J2-H
F-17					
H H					
11	SMA-3	Sig			X-8J2-L
	NAL RADIO AST		ERVATORY	IPROJ:	IDATE: Jun 83
	E: F/R System	<u></u>	DWG NO AL	3740010	IREV:
-			12476 PH 41	2140010	15H22 · 200750

RACK	C BIN: X SL	OT: 1-3	SZ MODULE: M	II, DATA SET	ITYPE: 34 P.J
LISTE	BY:	WIRE	BY:		
	ECTOR TYPE: 20083		CONNECTOR PAG		
PIN			TYPE	FROM	TO
ĸĸ	SMA-1	519			X-8J2-J
LL					
MM	5mhn	516 *	Wh, # 26, TP#25 BLK, # 26, TP#25	X-852-M	
NN	5 Mhz	Rer *	BLK, # 26, TP #25	x-852-N	
		··			
<u> </u>		. <u></u>			
L	ļ				
	+ 5mhz. Tiz	RMINAT	1000		
	1				
l	37		SOCKET	.M M	
			I WAT RES		
	K LIA	120	Pf 3 SILVIER MICH	·	
	Rite		Sockier	NN	
					
L					
NATIO	NAL RADIO ASTRON E: F/R SYSTEM D	OMY CBS	ERVATORY	IPROJ:	IDATE: Jun 83
	C. FIR JYSTEN D	<u> </u>	EWG NO AI	3740010	ISHEET 23CF 50

WIRE LIST

RACK	C BIN Y LOLOT C	WIRE LIST	P. 1/2	
LIST		and the second second second second second second second second second second second second second second second	ISIN/BIN Jupe	TYPE: SO P.J
	ECTOR TYPE: 200 277- 4	CONNECTOR PAG	Ε: Ι	
PIN	FUNCTION	TYPE	FROM	ТО
A	CMO/DATA TO DT-SIG	WL, # 26, TP# 28	X-121-8	
В	CMD INPUT -SIG	Wh, # 26, TP = 29		X-151-25
C	CMD/DA-1A TO DT - PET	BLK, # 26, TP #28	X-151-9	
D	CMD INPUT - PET	BLK TO TO TE		X-151-26
E	CON INTLIC			X-852-R
F	DATA SAT DATA TO BUFFER-SIG	Wh, # 26, TP# 40	X-1J1-15	
H	For BRAIER Volts +		X-951-2	-
J	For BRARE Amps		X-951-2	
k	FOR BRAKE VOLTS BRT-		X-951-12	
L	DATA SET LATA TO BUFFER-RE	- BLK, # 26 , TP# 40	X-1J1-27	
м				
N	+5U (FOR MI)	DEANGE #16		X-1J1-10
P	+SU (FOR MID)	Derwae # 16		
R				
S				
т				
υ	For provident # 2: Sig	wh. #24 P1: 43		1-107-9c
V	11 #1 Sig	wh#26.70=42		x-101-33
W		B!K=24.70=243		x-101-754
×	" #1 R=*	GLK#26. TP# 42		X-IJI - 41
Y	LOGIC COMMON (FORMI)	BLACK # 16		X-1J1-34
2	LOGIC COMMON (FORMIO)	BLACK #16		
e,				
P				
<u>e</u>				
<u>d</u>				
<u> </u>	ROT BRAKE VOLTS +		X-951-00	
f				
<u>h</u>				
t.	+15V (FORMI)			X-151-16
	NAL RADIO ASTRONOMY COSE	RVATORY I		DATE: Jun 83
	: F/R SUSTEM D	DWG NO AR		REV:
				0.122 .070.000

WIRE LIST

RACK:	C BIN: X SLOT: 8-J	MODULE: R	in/Bin Jmpe	ITYPE SU KA
LIST		BY:		
		CONNECTOR PAG	<u>E:</u> 2	
PIN		TYPE	FROM	то
Ĕ	+15V (FORMIO)			
m	STNCHRO MON -HI	wh, # 26, TP#40	x-931-f	
<u>m</u>				
ア	STNCHED MON-LO	BLK, # 26, TP 40	×-9J1-ヹ	
꼰	ROT REAKIE ANDS		X-951-FF	
<u> </u>				
±	ANGLOG(II) (OMMON (FOR MI)	BLACK, ZO		X-151-42
<u>~</u>	Awalog (±15) Common (FORMIO)			
~				
سير				
<u>~</u>				
75_				
3-	Rot BAARE VOLTS RET -		X-951-HH	
AA				
BE				
cc	-15U (FORMI)	YELLOW , # 20		X-151-17
DD	-15U (FORMIO)			
EE				
FF				1
нн				
	NAL RADIO ASTRONOMY COSE	RVATORY	PROJ:	IDATE: Jun 83
<u>111LE</u>	FIR SYSTEM D	DWG MO AN		IREV: ISHEET 25 CF 50

LIST E	C IBIN: X SLOT: 8-			TYPE: 34 P.~
	ECTOR TYPE: 200838-2			
PIN		TYPE	FROM	TO
A	+ 5V, SSR + Soverie	GRANGE ZO		x-951-A
E	FOR BRAKE SSE DRU			X-951-2
С	For TRANS ESR DRY			x-951-C
D	RING ETTENd SSR DRV			X-9J1-H
E	RING RETIFET SER DEV			X-951-E
F	ROT TRANS SSR DEV			X-951-F
H	SMA-\$ ("1")		X-IJZ-EE	
J	SMA-1 ("2")		X-152-KK	
K	SMA-2 ("4")		X-1JZ-DD	
L	SMA-3 ("8")		X-1JZ-JJ	
M	5Mhy Sic	wh, # 20, TP# 26		X-1JZ-MM
N	5Mhz RET	BLK, # 26, TP# 26		X - 1JZ - NN
Ρ	Por BRAKIZ SSR DRIVE			X-951-D
L.	CONN JNTL'R		X-811-E	
S	STWCHES EXC RI	Wh, # 26, TP #8	X-9J1-5	
T	STNCHPO EXC RI	Wh, # 26, TP # 9	X - 9JI-T	
C	SYNCHPO Exc RZ	BLIC, # 20, TP#8	X-951-0	
V	STNCHOD Exc RZ	BLE # 26 TP#9	X-951-V	
W	STNCHED EXC RI	Wh , =26, TP=10		
×	SYNCHRO EXC RI	Wh # 26 , TP # 11		
7	STNCHPO EXC RZ	Buc, #26, TP#10	X - 951 - Y	
2	STNCHRO Exc RZ	BLK, # 26, TP# 11		
AA	DIGI-1 SIG			X-1J2-R
DD	STRD-\$ SIG	wh, #26, TP #21	X-1J2-M	
cc	DIGO-Ø Sig		X-152-C	
BB	STRO-\$ RET	BLK, # 26, 70 21	X-152-K	
EE	STRI-1 SIG	Wh, # 26, TP#22	X-1J2-2	
FF	CLKO-Ø SIG	Wh, # 26 , TP # 23	X-1J2-H	
ΗH	STRI-1 RET	BLIC, # 26, TP 22	X-152-BB	
33	CLKO - \$ RET	BLK, #26, TP#23	X-152-E	
NATIC	NAL RADIO ASTRONOMY CES	ERVATORY I	PROJ:	DATE: Jun 83
	FIR SYSTEM D			REV:
	· · · · · · · · · · · · · · · · · · ·	DWG MO AL	3740210	SHEET 26 CF SO

	C BIN: X				
		ISLOT: 8-J		Bin/Bin Jmpe	TYPE: 34 M.N
	Y: WERE .	WIRE		F. Z	
			CONNECTOR PAG		
PIN		CTION		FROM	ТО
	ALGI-Ø		wh, # 24, TP#15		X-151-40C
	CLKI-1		wh, #26, TP#24		
	ALGI-Ø		BLK , 26, TP#15		X-1J1-405H
NN	CLKI-1	Ret	ELK, #24, TF24	x-152-X	
		. <u> </u>			
			<u> </u>		
					1
				1	
	- -	<u> </u>			
				<u>.</u>	
i					
	· · · · · · · · · · · · · · · · · · ·	<u></u>		1	
				<u> </u>	
┟╼╼╌┼					
		·····		1	
<u> </u> -					
				l	
<u> </u>					
┝──┞					
 -	<u> </u>				
	<u></u>		·		
					1
				·	
<u> </u>					
		TRONOMY CBS	RVATORY	IPROJ:	IDATE: Jun 83
TITLE:	EIR SUSTEN	1 D	DWG NO A		IREV:

WIRE LIST

		WIRE LIST		
LIST E	: C BIN: X SLOT: 9 - 3 BY: WIRE		M22, FIR SWTCH	ITYPE: 50 Fin
_		CONNECTOR PAG	F. /	
PIN		TYPE	FROM	ТО
A	+STV, ESR + Sourcia		X - 852-A	
B	For BRAKE SSR DRN		X-8JZ-B	
С	For TRANS SSE DEV		X - 852-C	
Ð	Rot BRAKE SSR DRV:		X-852-P	
Ē	RING RETART SER DRU		X - 852-E	
F	ROT TEAMS SER DEN		X- 852-F	
Н	RING External SSR Dev		(x - 812 - D	
J				
k		l		
L				
M				
N				1
Ρ				
R				
S	STACHED EXC RI	Wh, #26 TP *8	1	X-852-5
<u>т</u>	SYNCHED EXC RI	Wh, #26 TP #9		X-852-7
U	STNCHED EXC R2	BLK, #26, TP#8		X-852-U
V	STNCHED Exc R2	BLK, # 26, TP #9		$x - 815 - \Lambda$
\mathbb{W}	STUCHED EXC El	Wh, # 26, TP#10		x - 852-W
×	STNCHRO EXC RI	wh, # 26, TP #11		X - 825-X
٢	STNCHPO EXC RZ	BLK, # 26, TP#10		X - 815 - X
Z	SYNCHRO EXC R2	BLK, #26, TP #11		X - 8J2 - 2
<u>a</u>				
<u> </u>		<u>.</u>		
<u>c</u>				
0		l		<u> </u>
e C				
$\frac{f}{h}$	SYNCHRO MON - HI	Wh, # 26, TP 40		<u> </u>
<u><u></u> <u></u> </u>		BLK, #26, TP#40		
	STUCHED MON-LO NAL RADIO ASTRONOMY COSS			X - 8J1- <u>P</u> DATE: Jun 83
	E FIR SYSTEM D			IREV:

WIRE LIST

	C BIN: X ISLOT: 9-		NZZ, FIR SWICH	TYPE: 50 P.J
LISTE		والمجموع والمستعلقات التدريب المتقال والمتحد ويترج المتحد ويعربون والمتع		
		CONNECTOR PAG		
PIN	FUNCTION	TYPE	FROM	то
k				
m	· 			
٤)				
<u>P</u> _				
스				
<u>R</u>		<u> </u>		
<u>t</u>				
<u>~</u>		·· <u>_</u>		
2	For BRAKE VOLTS +		 	X-8J1-H
<u>m</u>				
ž	For BRAKE AMPS			X-811-1
14 <u>.</u>	For BRAKE PET-		 	X-851-K
3.				
AA				
RE				
cc				
DD	BOT BRAKE VOLTS +			x-951-2
EE				
FF	ROT BRAKE AMPS	·		x-851-2
нн	Rot BRAILE RET-			X-8J1-3_
	 	l		
· · · ·				-
			<u> </u>	
	l		<u> </u>	
	l			
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
NATIO	I NAL RADIO ASTRONOMY CESI	ERVATORY	I IPROJ:	DATE: Jun 83
	E: F/R SYSTEM D			REV:
[DWG NO AI		SHEET 290750

FIR SYSTEM D

A13740W10

SHT. 31 OF 50

.

J6 ANEMOMETER INPUTS SigNALS

ANEmometer#1 Hi ANEMOMETER#2 Ret (ANE MOMETER #2 Hi ANEmometerHI Ret d ょ B E

PANEL BLock - 201298-3 14 pin Socket

Note: a) Not Tobe put on interbook system

FIR System E A1374bwld ShT. 31A of 50

MOC POWER Supply JO SIGNAL PIN ASSIGNMENTS SHEAT Z 7/20/83/00

P2 PIN FUNCTION PIN WIRE COLOR FUNCTION WIRE COLOR FOR UP LIM LES DAV V ROT PIN IN LED DRU For DRV UP B 4 11 W Rot Mur •• n С FOL BRAKE 11 ROT SPARE. X 11 11 ... For Terns D (r 11 Y PX LED et ٨ Ε .. Z FOL CME te L/ H h 11 F For Low Lim сÿ - It u AA H. R " H FOR DRU DWD " " 88 υλ .. w h. For Spark J CC Kλ 40 а .* к ĸ For Mor 18 11 DD 11 XY 11 łc For SpAGE. L Y X 11 EE 11 11 Rot GD Line 11 ... 11 M ት እ π FF 10 Ν Put Deil cus 11 11 For DOU UP SW HH Rot BRAKE Ρ For 71 .. JJ IN DWW II RAMP R 207 TRANS .. KK ** 4 11 S ROT DRU CIJ Por CAR 18 11 LL 4 T Pro GENS Lin " RAMP MM RoT 4 U ROT DEV COW " " NN R 0- DRU COW 11

FIR SUSTEM D

A13740W10

SHT. 32 OF 50

FIR SYSTEM D

SHT. 33 OF 50

A13740WLO

SINGLE WIDE MODI				
(REAR VIEW)				
PIN FUNCTION	WIRE COLOR	PI PIN	FUNCTION	WIRE COLOR
A 415 VOLTS	RED RED	d	CX SENSIE SW	WIRE COLOR
B LOGIC GNE	BLACK	e	UN SIZNSIE SW	
C + S Volts	ORANGE	f	Kh SENSE SW	
D		h	XX SENSE SW	
E - 15 Jours	YELLOW	i	YA SENSE SW	
F For SI	<u> </u>	k	ZA SAUSE SW	
H Por SI		m	SENSE SW GNO	
J Foc 32 K Ror 32	<u> </u>		FOR BRAKE VOLTS	
K Ror 32 L Foc 33		p r	For BRAKE VOLTS For BRAKE AMPS	· · · · · · · · · · · · · · · · · · ·
M Ror 50		s	ROT BRAKE AMPS	
N STUCHED RI		Ť	FOC BRAKS COMM	
Р	······································	u	ROT BRAILLE COMM	
R SYNCHED P2		V		
S		W	FIR MODUT TIMP +	
T FOC UPPER Lim Signest U Rot CW Lim Sense		X		
V For Lower Lin Sinse		y z	FIR MOUNT TEOP-	
W Rot CCW Line Source	<u> </u>	AA		
X Pro In SENSE 2W		88		
Y		CC		
Z PIN OUT SENSE SW		DD		
	· · · · · · · · · · · · · · · · · · ·	EE		
b PX SENSE SW C LX SENSE SW		FF HH	ANDIAC (++ C) C	
1 V 1 L A 3603/2 300 1			ANALOG (±15) GNO	

* INDICATES A FUNCTION NOT FOUND IN THIS MODULE FIQ SYSTEAN D A13740W10

MII-B, APEX TATERFACE COMMECTOE PZ PIN ASSIGNMENTS, 7/78/83/DW SHEET 2

PIN	FUNCTION	WIRE COLOR	PIN	FUNCTION	WIRE COLOR
	FRE BATA REQ-516		V	ROT GW LIM INH	
B	Por DATA REQ - SIG		W	For Lower Lim INH	
C	FOC DATA REQ - PET		X	ROT CCW LIM INH	
D	POT DATA REA -RET		Y	YOWP! SIGNOL	
Ε	For LOAD CLOCK - SIG		Z	TOWP ! & INH RET	
F	ROT LOAD (LIXER-SIG				
H	FOC. LUAN CLOCK - P.FT		BB		
J	For LOAL CLOCK-PET		CC		
K	FOC SER DATA - SIG		DD		
L	RAT SER URTE - SIC		EE		
M	For SER DATA - Ket		FF		
N	C-+ SER DATA _ RET		HH		
Ρ			JJ		
R			КК		
S			LL		
T			MM		
U	FOC UPPER L. INH		NN		

					
	P2 A P1 A P1 A P1 A SINGLE WIDE MOD (REAR VIEW)		'G		SSR DRIVE H SSR DRIVE H SYNCHRO RI[R2 OUTPUT O K V Foc Beased Reserve Beased Foc Beased ND
	(REAR VIEW)		PI		
PIN	FUNCTION	WIRE COLOR	PIN	FUNCTION	WIRE COLOR
A	+ 5 V Source		d		
В	FOC BRAKE SSR		e f		
	FOR TRANS SSR Rot BRAKE (P. out) SSR			STUCHRO MON-HI	
E	ROT PIN IN SSR	<u>-</u>	<u>h</u>	SYNCHRO MON - LO	
F	ROT TEANS SSR	······································	k		· · · · · · · · · · · · · · · · · · ·
Н			m		
J			n		
K			P		
M			r s		
N	· · · · · · · · · · · · · · · · · · ·		1		
Ρ			u		
R			V	FOR BRAKE VOLTS	
S T	SYNCHOD RI		W		
TU	STNCHPS KI STNCHPO RZ		X Y	FOC BRAKE AMPS	
	STNCHED RZ	<u> </u>	Z		
Ŵ	STNEHPA RI		AA		
X	STNCHPO RI	· · · · · · · · · · · · · · · · · · ·	88		
Y	STNCHIO R2		22		
Z	Sturie 0 R.2		DD EE	ROT BRAKE VOLTS	
b	·		FF	ROT BRAKE AMPS	
C			нн	RUT BEAKS RAT	
	CATES A FUNCTION NOT FOU				

* INDICATES A FUNCTION NOT FOUND IN THIS MODULE FIR SYSTEM D 413740WLO

F/R Bins Ilo PANEL CONNECTOR 35 To Foc \$ Ror TRANSLATORS

			P2		
PIN	FUNCTION	WIRE COLOR	PIN	FUNCTION	WIRE COLOR
A	INTLK LINE		V		
B	TOTILE LINE		W	For PULSE UP - HI	
C	Rot Pulse CW-HI		X	For PULSE DOWN-HS	
D	Ror PULSE COW-HI		Y	FOL PULSE UP - RAT	
Ε	Por Pulse CW-RET		Z	FOR PULSE DOWN_RAT	
F	Rot Pulsie CCW- RAT		AA	FOL TRANS PUR MON	
Η	Por TRANS PWR MON		BB		
J			CC		
К			DD		
L			EE		
м			FF		
N			HH		
Р			11		
R			КК		
S			LL		
T			MM		
U			NN		

FIR SYSTEM D

A13740W10

54T. 37 OF 50

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	[
PI (REAR VIEW)PIPI (REAR VIEW)PIPIN FUNCTIONWIRE COLORPINFUNCTIONWIRE COLORSametary Colspan="2">FUNCTIONWIRE COLORSametary Colspan="2		F/R Ense J Panel Conver J4, To Pez Room Joner Box	F = 0 $F = 0$ $F =$	C STACHQO SIGNALS C SIGNALS CIRCUITS S CIRCUITS S TEANS DRIVE PULSES DISCRETES C DISCRETES C FOL & RUT DRAWESS C TEMP PRUGE
PIPINFUNCTIONWIRE COLORPINFUNCTIONWIRE COLORA ISVARIAGE EXECIdRot CCW LimWIRE COLORB INTERFACEFinePin Tw SwC ISWELLO EXE RELfPm our SwD IFGE Structed SIhPX Sewse SWE Rat Structed SIhPX Sewse SWF Fac Structed SIjLX """HKer Structed S2KC N ""J IFGE Structed S2RN X """J IFGE Structed S2RN X """J IFGE Structed S2N K N """J IFGE Structed S2PX X """M Foe Structed S2PX X """N Foe TRANS IN ""Y N """N Foe TRANS IN ""VN Foe TRANS IN ""WR 2at TRANS IN ""WR 2at TRANS IN ""WN Foe TRANS IN ""WN Foe TRANS IN ""WR 2at TRANS IN ""WN Foe TRANS IN ""WN Foe TRANS IN ""WR 2at TRANS IN ""WN Foe TRANS IN ""WN Foe TRANS IN ""WN Foe Two V To ""V Foe TRANS INT ""N Foe TRANS IN ""WN Foe TRANS IN ""WR 2at TRANS IN ""WN Foe Two V To ""WN Foe TRANS IN ""N Foe Trans IN ""WN Foe Two V To ""AN Foe Trans IN ""N Foe Trans IN ""N Foe Trans IN ""N Foe Trans IN ""N Foe Trans			PL (REAR V	
PINFUNCTIONWIRE COLORPINFUNCTIONWIRE COLORAISTURATOR FOR CERCICIRef CCWLimBINTERLORE PINEPINTW SWCISTURATOR LORE PINEPINTWCISTURATOR LORE PINFPINOUT SWCISTURATOR SIhPA SENSE SWDIFRE STURED SIhPA SENSE SWERat Structure SIhPA SENSE SWFFoc Structure SIkC A IIHKOT Structure SINW A IIJIFRE Structure SINW A IIJIFRE Structure SINK A IIHKER Structure SINN A IIIJIFRE Structure SINN A IIILIIIIIMFoe Berk SSE DEVSZ IIINFoe TRANS IIIIIIUNFoe TRANS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	(REAR VIEW			
BI DAT R.R. LOCK ProdCProdProdProdSudCI SWOCKRO EXC. R2.fProdOUT SWDI Foc SWOCKRO SIhP λ SRUSSE SWERot STUCKRO SIjL λ "HKot Stuckro S2KC λ "HKot Stuckro S2MU λ "JI Foc Stuckro S2NK λ "JI Foc Stuckro S2PX λ "MFoc Stuckro S2PX λ "MFoc Ban S5r. DevS2 λ "MFoc TRADS II"1MFoc Trades II"MFoc Trades IIMMFoc Trades IIMMFoc Trades IIMMFoc OF Foc IIMMFoc OF Foc IIMMFoc OF Foc IIMMFoc OF Foc IIMMFoc Trade Foc IIM </td <td></td> <td>WIRE COLOR PIN</td> <td></td> <td>WIRE COLOR</td>		WIRE COLOR PIN		WIRE COLOR
CSweenerFFFFFFDFac SweenerSIhPSewseSweenerERar SynchooSIjLiiiiFFac SynchooS2kCiiiiHKor SynchooS2kCiiiiJFac SynchooS2mUiiiiJIf ac SynchooS2mUiiiiJIf ac SynchooS2mViiiiKRar SynchooS2mVXiiiiKIf ac SynchooS2mViiiiKIf ac SynchooS2miiiiiiKIf ac SynchooS2miiiiiiKIf ac SynchooS2miiiiiiKIf ac SynchooS2miiiiiiKIf ac SynchooS2miiiiiiKIf ac SynchooS2miiiiiiNFac TeanemVFac Backet +iiiiiiNFac UP PutsicXFac TeanemiiiVFac TouYFac TeaneiiiiiiVFac TouYFac TeaneiiiiiiVFac TouYFac TeaneiiiiiiYFac TouYFac Teaneiii<				
DIFRE STACLED SIhPSERNEL SENSE SUERat Stacked SIj $L\lambda$ IIFFac Stacked SIk $C\lambda$ IIHRat Stacked SIMUXIIJIFRE Stacked SIDXXIIJIFRE Stacked SIPXXIIKRat Stacked SIPXXIIKRat Stacked SIPXXIIMFor Bakesse LevSZXIINFor TRANS IIIIIINFor TRANS IIIIIIINFor TRANS IIIIIIIINFor TRANS IIIIIIIIIIINFor TRANS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				
FFor Symplex S2kC λ iiiiHIkot Standard S2MU λ iiHJI For Standard S2MU λ iiHJI For Standard S2NK λ IIHKI Rot Standard S2PX λ IIHLIIIHMFor Brield SR, LeVSZ λ IIHNFor TRANS IIHHHNFor TRANS IIHHNFor TRANS IIHHRZot TRANS IIHHRZot TRANS IIHNS& + Source +HS Rot P.J. T.JHHVFor BRAKE +S Rot P.J. T.JHHV For C.J. For StandardYK For C.J. T.J.KV For C.J. For StandardYV For C.J. For StandardAAX For C.L. For StandardHX For C.L. For StandardHY For C.J. For StandardBBY For C.J. For StandardFD For OP LimEED For D.J. LimFFD For C.W LimHHHH TutTCRLock	D Foc Synched SI	h	PX SENSE SW	
HIKOT STACENO 52MUXIIIIJFac Staces 52RNKXIIIIKRot Staces 52PXXIIIILIrYXIIIIMFoe Bek 55% LevS $2X$ IIIINFoe TRANS IIIIIDiscretize Scase LevNFoe TRANS IIIIIIIINFoe TRANS IIIIIIRZot tek/finiout IIIIIIRZot TERNIZIIVRecentWRot Berket +SRot TennizVVFoe BerketXFoe UP PoistXFoe Berket -UFoe UP PoistYVRot CollectionZWFoe Dub toto:AAXRot CollectionBBYFoe Tote PersonCCZVat Poist VetOD Tanp Person +DFoe Dub LimFFDFoe Dub LimFFDFoe Dub LimHHHHTattelocic				
JFreeSYNCEPEDSZNKIIIIKPXXIIIIIIIILIIIIIIIIIIIMFoe Bakessa LeVS Z IIIIIINFoe TANS IIIIIIIIIIIINFoe TANS IIIIIIIIIIIINFoe TANS IIIIIIIIIIIIRZor TANS IIIIIIIIIIIIRZor TANS IIIIIIIIIIIIRZor TANS IIIIIIIIIIIIRZor TANS IIIIIIIIIIIIRZor TANS IIIIIIIIIIIIRZor TANS IIIIIIIIIIIIRZor TANS IIIIIIIIIIIIRZor TANS IIIIIIIIIIIIRZor TANS IIIIIIIIIIIIRZor GW FolseZor TANS IIIIIIIIIVZor GW FolseIIIIIIIIIIVZor GW FolseIIIIIIIIIIIIVZor GW FolseIIIIIIIIIIIIXZor GCW FolseIIIIIIIIIIIIIYFac Bus IIIIIIIIIIIIIII				
KRor Syncero 22PX λ IIIILIIIIIIMFoe Briesse DevS 2λ IIIINFoe Trade IIIIIIDiscretes Stars, RetPZor Trade IIIIURZor Trade IIIIURZor Trade IIIIIURZor Trade IIIIIURZor Trade IIIIIURZor Trade IIIIIURZor Trade IIIIIURZor Trade IIIIIIIVSo Trade IIIIIVFoe DerectXFoe Trade IIIVSo UP PoissYVZor Trade IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				
M For Bricles Elev S 2 Å 11 11 N For TPANS II 11 1 Discretes Sansi, Ret P Zor TRANS II 11 U 1 R Zor TRANS II 11 1 U R Zor TRANS II 11 1 1 R Zor TRANS II 11 11 11 R Zor TRANS II 11 11 11 S Zor TRANS II 11 11 11 S Zor TRANS II 11 11 11 V For CW Forst Z 12 12 V For CW Forst AA 12 12 Y For CW Forst BB 12 12 Y For Police Fer 00 Tamp Preoce t 12 <t< td=""><td></td><td>P</td><td>χλ 11 11</td><td></td></t<>		P	χλ 11 11	
N FOR TRANS II II I DISCRETES SEASE RET P Por Rek/Fin out II II II II R Por Terring V For BRAKE + IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				
P Zor REX/Fin out II II U R Zor TEANS II V For BRAKE + S Zor PINTN II W Ror BRAKE + T SSE + Sobres X For BRAKE - U For UP PULSE X For BRAKE - U For UP PULSE X For BRAKE - V Zor CW PULSE X For BRAKE - V For UP PULSE X For BRAKE - V For UP PULSE X For BRAKE - V For CW PULSE X For TERAKE - V For CW FULSE X For TERAKE - V For CW FULSE BB				
S Rot Pou Tu W Rot BRAKE + T SSK + Sooren X For Refine - U For UP Pouse Y Rot Refine - V Sor CW Folse Y Rot Refine - V Sor CW Folse Z W For CW Folse AA X Rot CCW Folse BB Y For CCW Folse BD Y For CCW Folse BB Y For Polse Fer CC Z Yor Polse Fer DD Tamp Proces + Q For UP Lim EE D For DWN Lim FF Temp Proces + C Rot CW Lim HH TuterLock				
T SSE + Source X For BRANCE - U For UP Pulse Y Ror BRANCE - V Por GW Pulse Z W For DW Pulse Z W For DW Pulse AA X Por CCW Pulse BB Y For Pulse Per CC Z Yor Pulse Per DD TEmp Proce + Q For UP Lim EE D For DWN Lim FF TEmp Proce - C Por CW Lim HH TWTERLock				
UFor UP PulseYRor Refine -VRor CW FulseZWFor DWN FulseAAXRor CCW FulseBBYFor Rule FerCCZYor Pulse FerDD Tamp Probe +OFor DUP LimEEDFor DWN LimFF TEmp Probe -CRor CW LimHH TwterLock				
V Zor GW Fulso Z W Fac EWD Fulso AA X Zor CCW Fulso BB Y Fac Fulse Fer CC Z Yar Pulse Fer DD TEmp Proce + O Fac DWD Lim EE D Fac DWD Lim FF TEmp Proce - C Rat CW Lim HH TWTERLOCK				
W For LWN Holse AA X Rot CCW Holse BB Y For Relie Ret CC Z Yor Polse Fet DD Temp Procet O For UP Lim EE D For DWN Lim FF Temp Procet C Rot CW Lim HH InterLock				·
Y Free Fulse Fer CC Z YAT PULSE FET DD D Free Procese + O Free DF D Fee DE D Fee DE D Fee DE D Fee DE HH FATERLOCK	W For DWN Holsin			
Z YAT POLCE FOT DD TEMP PROBE + O FAC UP LIM EE D FOC DWN LIM FF TEMP PROBE - C PAT CW LIM HH TATERLOCK				
0 FAC UP LIM EE b FAC DWN LIM FF TEMP PEORE - c RAT CW LIM HH INTERLOCK	T FOC FULLE REF		TAMA PROGET +	
b For DWN LIM FF TEMP PROBLE - C Por CW LIM HH INTERLOCK				
	D FOC DWN LIM			
			INTERLOCK	

* INCICATES A FUNCTION NOT FOUND IN THIS MODULE F/R SVSTEM D 413740W10

* INDICATES A FUNCTION NOT FOUND IN THIS MODULE

Z ISMA, T. DATA SET, PIT

FAC LOWER LIM INH

Ror CW Lim Inu

a

b

C

Foc

"UPPECLIM INH

SHEET 39 OF 50

BLACK

ANTA - 4

ANTA-2

ANTA -2

HH ANALOG GND

DD

EE

FF

* INDICATES A FUNCTION NOT FOUND IN THIS MODULE FIR SYSTEM D

SHEET 40 OF 50

Amp 201037-1, Rin Ilo Conn

WIRE LIST

RACK	C BIN: ~/x SLOT: I/0 -	JI MODULE:	LO PANEL JI	ITYPE: 104 P.
LIST	BY: IWIRE	BY:	ZOT BON	/JUMPER
		CONNECTOR PAG		
PIN		TYPE	FROM	то
A	CONN INTLK			17/0-JI-CA
E	· · · · · · · · · · · · · · · · · · ·	·		
C				
D	CONN INTL'R		II0 - J4-HH	
E	AFEX For Pulse - UP		I/0-34-U	
F	APIEX For PULSE-DOWN		110-14-W	
н	Aprex Rot Polse - CW		110-54-V	
1	APEX Rot PULSE-CCW		I10-54-X	
k	For TRANS PULSE - UP	Wh, #24, TP# 32	70-J5-W	1
L	For TRANS PULSE-DOWN			·····
M	ROT TRANS PULSE - CW	Wh, #26, TP #30	1/0 -J5 -C	
N	Rot TRANS PULSE-COW	Wh, # 26, TP # 3/	1	
P	M7 For Pulse - UP	Wh, #26, TP# 34		<u> </u>
R	M7 For Pulse - Down	Wh, # 26, TP#35		1
S	M7 Por Pulse - CW	wh, #26, TP#36	<u></u>	
Т	117 Rot Pulse - CCW	WL, # 26, TP #37		
υ	APEX For Pulsis Ret	· · · · · · · · · · · · · · · · · · ·	II0-J4-Y	<u> </u>
V	ADEX ROT PULSE RET	<u>.</u>	I/0 - J4 - Z	
W				1
X		<u> </u>		
Ŷ	FOC TEANS PULSE RET	BLK, 426, TO#32 BLK, 426, TP#33	1/0-55-4	
2	ROT TRAUS PULSE RET	BLK5 # 26, TP# 31	I/0-JS-E	
a	APEX SELE		I10-JS-F I10-JY-T	1
b				1
-	M22 55R + 5"	<u></u>		
	RING EXTENS SSR DRIVE			$ \omega - 8JZ - A$ $ \omega - 8JZ - D$
	Aprex For Zak ESR LAN		I/6-J4-M	1 W-81 C - D
	APEX FOC TRANS SSR DEV		$\Xi_{10} - \Xi_{1} - N$	<u> </u>
<u> </u>	FIR RIN ESR +5	¥	W = 9JI - R	<u> </u>
k	M7 Ring Eylend SSE Dev		W-452-2	<u> </u>
	CNAL RADIO ASTRONOMY CES	ERVATORY	IPROJ:	I IDATE:
	E: FIR SYSTEM D		the second second second second second second second second second second second second second second second se	IREV:

WIRE LIST

RACK: C IBIN: W/X ISLOT: JO- JI MODULE: IN PANEL JI ITYPE: 104 FIN LIST BY: IWIRE BY: Bot Box / Jumpier					
CONNE	CTOR TYPE: 201037-1				
PIN I	FUNCTION	TYPE	FROM	ТО	
m	FOC BRAICE SER DEIVE			W-8J2-B	
Ň	For Teams SSR Deile			w-052-c	
1-	Apex Rot TRADS ESE Deu		5/0-54-R		
q_					
~	M7 For BRAKE SSR DRU		W-452-7	1	
<u>A</u>	M7 For TEANS SSR Dev		w-452- <u>h</u>		
	Ror TRANS SER DRIVE			w-8J2-F	
4	Ring Retract SSR Deivie			W-8J2-E	
~	Apex Foc ULim		I/0-J4 - 2		
m	Apex Toc L Lim		I10-J4-6		
i	M7 Ror TRANS SSR DEV		W-452-P	l	
3_	My RINA REPORT SSE DAV		W-4J2-4		
3	AI For U Lim INPUT		W = IJI = T		
AA	AI For L Lim Jupor		W-171-V		
AB	APRX Pot CW Lin		I10-J4- <u>C</u>		
AC	AT ROT CW Lim INPLI		W-131-0		
AL	APRX PX SENSE		I/0 - 54 - 1		
ЭĤ	APEX PIN OUT SENSE		10-54-f		
AF	Apex PIN IN SANSE		I10-J4-C		
Ан	APEX Por CCW Lim Sense		5/0-134-d		
AJ	AI PX INPUT		$W - 121 - \overline{7}$		
AK	AI Pin OUT IN PUT		W - 1JI - Z		
AL	AT PIN IN JUPUT		W-1J1-X		
AM	AI Por CCW Lin Iupor		W-151-W		
AN	Apex KX SENSE		I10-54- m		
	APER UX SENSE		I10 - 54 - m		
	APRX CX SENSE		I10-J4-E	<u> </u>	
	APEX L'A Souse		I10-54-7		
AΤ	A= KX Inpur		W - 1JI - f		
· · ·	AT UX INPUT		W-151-E		
	NAL RADIO ASTRONOMY CES: FIR SYSTEM D	RVATORY	IPROJ:	IDATE: Jun 83 IREV:	
		IDWG NO A	13740W10	SHEE 4307 50	

WIRE LIST

RACK: C IBIN: W/X ISLOT: I/0 -JI IMODULE:	The Parlas TI	
LIST BY: IWIRE BY: CONNECTOR TYPE: 201037 - 1 CONNECTOR PA		x / JUMPER
PIN I FUNCTION I TYPE	FROM	То
AV AI CX JUPUT	W-1JI-d	1
AW AILX INPUT	W- 1J1-C	
AX APEX DISCE SENS COMM	IU-JY- É	· · · · · · · · · · · · · · · · · · ·
AT APEX ZX SUNSUE	10-54- 全	
AZ APEX YX SIENSE	110-54-5	
EA APEX XX SENSE	110-54-52	
BE AT DISCR SENSA. COMM	W - IJI - m	
BC AI ZX Impor	W-1J1-E	
ED AI YX INPUT	W-151-2	
BE AI XX INPOT	W-151-h	
RE Aprix For SI	J10-J4-D	
BH FPEX Foc SZ	140 - 54 - 5	
EJ APEX For 53	10-34-F	
EK APOX Ror SI	10-54-E	
BL AI For SI INPUT		W- 131-F
BM AI FOR SZ INPUT	1	W-151-J
EN AI FOR S3 INPUT		W-151-L
EF AI ROF SI INPUR		W-151-H
ER APRX ROT SZ	I/0 - J4 - H	
BS Apex Por 53	110-54-K	
BT APEX TEMP PROBE +	1/0-J4-DD	
BU APER TEMP PROBE-	10-54-FF	
EV AL BOT SZ INPUT		W-151-K
EW AL ROT 23 INPUT		w-131-M
EX AI TEMP PROBE + INDUT	W-1J1-W	
BT AT TEMP. PROVED - INFOR	W-151-7-	
	2 = 10 - J4 - A	
CA SUNCHEN EXC RZ PLK # 26, TP#4	$2 \frac{1}{2} - \frac{1}{24 - C}$	
C2		
CC (THEY ROT BAR SER TRUI 1/0-34 - P) THO		
NATIONAL RADIO ASTRONOMY CESERVATORY TITLE: FIR SYSTEM D	IPROJ:	IDATE: Jundos IREV:
	A13740W10	154257 44.0750

WIRE LIST

RACK:	G BIN: W/X ISLOT I/0 -	JI MODULE:I	10 PANEL II	ITYPE: 104 P.N
LISTE	BY: IWIRE	<u> 3Y:</u>	207 700	X/JUMPIER
	ECTOR TYPE: 201037-1			
PIN	FUNCTION	TYPE	FROM	то
CD				
CE				
C =				
C H	ROT BRAKE SSR DEIVE			W-852-P
сJ				
ск	FOC BEA-KE VOLTS +		W-1J1-m	
CL	ROT BRAKE VOLTS +		W-1J1-P2	
CM	POT BRAKE SSR DRIVE		W-351-3	
CN	CONN JNTLLE		I10-J1-A	
CF	FOC BRAKE VOLTS -		W-151- 5	·
	Rot BRAKE Volts -		W-151-1	
	CONN INTLIC		<u> </u>	W-8JI-E
Í	<u> </u>	1	<u> </u>	
				!
Ċ	My For Pulse Ritt	B(K, #26, TP#34 TP#36	W-4J2-1	<u> </u>
d	My Roy Pulse RET	BLIC 526, TP#36		<u> </u>
		TP=37		
I	· · · · · · · · · · · · · · · · · · ·			
		· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·			
		1		
	·			
	· · · · · · · · · · · · · · · · · · ·			
1				
	NAL RADIO ASTRONOMY CES	ERVATORY		DATE: Jun 83
TITLE	: F/R SUSTEM D	iews the Al		REV: Sheet hs of so

WIRE LIST

		WIRE LIST				
	C IBIN: W/X ISLOT: -/0 -		10 YANEL JZ	TYPE: 14 Pins		
	LIST BY: IWIRE BY: CMD/DATA I/O SIGNALS.					
	ECTOR TYPE: 201298 - 3					
PIN	FUNCTION	TYPE	FROM	ТО		
Δ						
В	DATA OUTPUT, RET	·	I = -Jz - M			
С						
D	CALL JUPUT RET	BLE #26, TP = 28	I10-J2-N	W-851-D		
ε	DATA OUTPUT, SIG		I10-J2-J			
F	GALL INPUT, SIG	wh, # 26, TP # 38	I/0 - J2 - L	W-871-B		
4						
J	BATA OUTPUT SIG	wh, #26, TP#39	W-8J1-F	I10-J2-E		
ĸ						
L	CARD INPUT, SIG	1	J/0-J2-F			
м	TUATA OUTPUT , RET	BLK, #26, TP#39	W-851-L	I/0-J2-B		
N	CATS INPUT RET		I10-J2-D			
4						
ભ	<u> </u>					
	<u> </u>					
	<u> </u>					
	<u> </u>					
	CNAL RADIO ASTRONOMY CES	ERVATORY	IPROJ:	IDATE: Jun 03		
	E: FIR SYSTEM D			IREV:		
L		IDWG NO A	13740210	19422746 C7 50		

RACK:	C BIN: W/X SLOT: I/0 -	JY IMODULE: I	10 FANAL JY	ITYPE: 50 P.N
LISTE	BY: WIRE			DA JUNET BOX
		CONNECTOR PAG		
PIN		TYPE	FROM	то
A	STNCHRO EXC RI	Wh, #26, TP#13		10-11-32
દ	INTERLOCK		I10-J5-MM	
C	CYNCHRO EXC R2	Bue, #26, TP#13	W-822-V	1/0-JI-CA
D	For Syncheo SI			110- JI-BF
Ε	Rot Studies SI			
F	Foc Synchro 53			1/0 - J1 - BJ
н	Rot Synchoo 52			1/0-JI-BR
J	For Synchro SZ			10-21-8H
ĸ	Rot Synchro 52			J/0-J1-BS
L				
M	For Beaks SER DRV			=10 - J1 - <u>h</u>
N	For TRANS " "			I/0 -51 - 4
F	Ror BRAKE SSR DRIVE		·····	1
R	Rot TRANS 11 "			1/0-J1- 2
5				
Т	SSR + Source			F/0-51-2
υ	Apex For Pulse - UP			I/0-JI-E
V	APEX RUT PULSE - CW			I10-J1- H
W	APEX For PULSE-DOWN			1/0-J1-F
X	APRX ROT Pulse- ccw			No-JI- J
Y	Apex For PulsiE-Ret			7/0-JI-U
7.	Apex Rot Pulse-Ret			I/0-JI-V
<u>a</u>	Foc UP Lim			======================================
<u>b</u>	For Down Lim			I/0-31-W
:	ROT CW Lim			1/0-JI-AB
Ċ.	Rot ccw Lim			I10 - J1 - AH
<u>e</u>	Pin Jan Eus			
Ŧ	Find out SW			70-JI-AE
<u> </u>	FX Sense CW			1/0-51-AD
1. E	ム入 11 11			1/0-J1-AS
	NAL RADIO ASTRONOMY CESE	RVATORY		DATE: Jun 83
TITLE: FIR SUSTEM D				REV:
	SHEET 47 OF 50			

WIRE LIST

RACK:	C IBIN: W/X ISLOT: J/0 -	JY MODUL	E: I/O PANEL J4	ITYPE: JO HN
LISTE	BY: IWIRE			LOOM JUNCT BOK
	ECTOR TYPE: 200 217 -4	CONNECTOR		
PINI		TYPE	FROM	то
2	CX SENSE EW			110-JI- AR
<u>m</u>	<u>UX </u>			5/0-JI-AP
Æ.	κλ ιι "			70-JI-AN
た	x x	<u> </u>		70-51- BA
~	ч <u>х</u> и и			510-JI- AZ
٩I	7× 11 11			F10-J1-AY
t	DISCRETES SENSE RET			1/0-JI- AX
<u>m</u>				
~		1		
m				
ž				
15		1		
7.		1		
AA.				
BB				
cc				
DD	TEMP PROBE +		1	110-51- BT
EE				
FF	TEMP PROBE -	1		I/0-51-BU
Нн	INTERLOGIC			IIU-JI-D
		<u>k</u>		
		<u></u>		
		_ <u></u>		
N.A		VEOTAVEZZ		
TITI	NAL RADIO ASTRONOMY CE	SERVAIURI	IPROJ:	IDATE: Jun 83 IREV:
		IDWG M	1 A12740W10	ISHEET 48 CF50

WIRE LIST

				1
RACK:				
LISTE		and the second design of the s	and the second second second second second second second second second second second second second second second	ST TRANS DRIVE
	ECTOR TYPE: 200 B38 - 3			
PIN I		TYPE	FROM	ТО
A	INT'LK LINR		W - 3J1- Ź	
В	INT'LK LINE			I/0-J5-NN
<u> </u>	RUT PULSE EW-HI	Wh, #26, TP 30	I10-JI-M	
D	Rot Pulse CCW-HI	Wh, # 26, TP #31	$I_{10} - J_1 - N$	
E	ROT PULSE CW-RET	BLC, # 26, TP 30		
π	Rot Pulse cew - Ret	BLIC # 26, TP#31	5/0-51-2	
ц	ROT JEANS PWR MON.			W-4JZ-2
Ъ				
к				
L				
M				
N				
P				
R				
5				
		, , , , , , , , , , , , , , , , , , ,		
υ	· · · · · · · · · · · · · · · · · · ·			
V				
W	FOG PULSE UP - HI	wh, #26, TP#32	I10-J1-K	
X	For PULSE DOWN-HI	wh, #26, TP#33	the second second second second second second second second second second second second second second second se	
Y	For PULSE UP - RET	Bue 26 , TP = 32	I/0 - J 1 - Y	
7	For PULSE DOWN-RAT			
F. F.	FOR TRANS MON	1		W-4JZ- 2 -
28				
с.с 				
L D				
E.				
F.F.			<u> </u>	
11 H				
25				
NATIC	NAL RADIO ASTRONOMY CES	ERVATORY	PROJ:	IDATE: Jun 83
	E: FIR SUSTEM D			IREV:
		DWG NO A	13740010	ISHEET49 CF50

WIRE LIST

RACK	G BIN: W/X SLC)T: =10 -	JS	MODULE:	Elo Pon	125 Jac	TYPE: 34 Min
LIST	BY:	WIRE	BY:			For & Ro	- TRANS DRIVE
CONN	ECTOR TYPE: 200838	- 3	CONN	ECTOR PAG	E: 2		
PIN				TYPE	FI	ROM	ТО
ĸκ				<u> </u>	1		
~~~			! 				
LL							
MAN	INT'LK LINE						I/0-J4-B
NP	INT'LE LINE				I10-	J5-B	
	<u> </u>						
					<u> </u>	····	
			<u> </u>				
			<u> </u>				
	<u> </u>		<u> </u>		<u> </u>	····	
			<u> </u>				
	<u> </u>		<u> </u>				
	<u></u>		ļ				
							-
			<u> </u>				
	E: FIR SYSTEM D	MY CBS	ERVA	TORY	IPROJ:		IDATE: Jun 83 IREV:
<u> </u>	L. FIK JUSTENI U	·····		INVIG MO A	12740		1112 V. 194557 50 (550

LIST BY:	JLE: T/O PANEL J' / TYPE: 14 PI
CONNECTOR TYPE: 201298-3 CONNECTOR	R PAGE
PIN FUNCTION WIRE TY	
A ANEmometer # 1 H, Wh, #26. T	
B ANEMOMETER# 2 H. JH, #26.7	TO THO W- 201 - UL I/0 - J6-TI
C ANEmometer# 1. Ret ULK, #26. TP	
0	
E ANCOMOMETEN #2 Pet BLK, #26,7	TP T43 W-3JI-W I/0-J6- J
5	
H	
J ANSOMSTAT # 2 Rot	3/0-J/- E
K	
2	
m Ansometer#2 Hil	1/001/0-13
j.V	
P Aveometer 1 10	=10-J6-C
R. ANEDDSTOR #7 Hi	I/2-76-A
NATIONAL RADIO ASTRONOMY OBSERVATORY	IPROJ: IDATE:
DV/G. N	



# intط

## 8085A/8085A-2 SINGLE CHIP 8-BIT N-CHANNEL MICROPROCESSORS

- Single +5V Power Supply
- 100% Software Compatible with 8080A
- 1.3 µs Instruction Cycle (8085A); 0.8 µs (8085A-2)
- On-Chip Clock Generator (with External Crystal, LC or RC Network)
- On-Chip System Controller; Advanced Cycle Status Information Available for Large System Control
- Four Vectored Interrupt Inputs (One is Non-Maskable) Plus an 8080A-Compatible Interrupt
- · Serial In/Serial Out Port
- Decimal, Binary and Double Precision Arithmetic
- Direct Addressing Capability to 64k Bytes of Memory

The Intel® 8085A is a complete 8 bit parallel Central Processing Unit (CPU). Its instruction set is 100% software compatible with the 8080A microprocessor, and it is designed to improve the present 8080A's performance by higher system speed Its high level of system integration allows a minimum system of three IC's (8085A (CPU), 8158 (RAM/IO) and 8355/8755A (ROM/PROM/IO)) while maintaining total system expandability. The 8085A-2 is a faster version of the 8085A.

The 8085A incorporates all of the features that the 8224 (clock generator) and 8228 (system controller) provided for the 6080A, thereby offering a high level of system integration.

The 8085A uses a multiplexed data bus. The address is split between the 8 bit address bus and the 8 bit data bus. The on-chip address latches of 8155/8156/8355/8755A memory products allow a direct interface with the 8085A.



# intel

## 8085A/8085A-2

Symbol	Туре	Name and Function	Pin Descripti		Nome and Evention
Ag-A15	0	Address Bus: The most significant 6 bits of the memory address or the 6 bits of the VO address, 3-stated during Hold and Halt modes and during RESET.	READY	Type	Name and Function Ready: If READY is high during a read or write cycle. It indicates tha the memory or perpheral is ready to send or receive data. If READY is low, the cipu will wait an integra
AD ₀₋₇	vo	Multiplexed Address/Data Bus: Lower 8 bits of the memory address (or V0 address) appear on the bus during the first clock cycle (7 state) of a machine cycle. It then becomes the data bus during the second and	HOLD	 	number of clock cycles for READ to go high before completing the read or write cycle. READY must conform to specified setup and hold times Hold: Inducates that another master
ALE So. S1. and 10/10	0	third clock cycles. Address Latch Enable: It occurs during the first clock stale of a ma- chine cycle and enables the address to get latched into the on-chip latch of perpherais. The failing edge of ALE is set to guarantee setup and hold times for the address informa- tion. The failing edge of ALE can also be used to strobe the status information. ALE is never 3-stated. Machine Cycle Status:			now. Indicates that another masses is requesting the use of the address and data buses. The cpu, upor receiving the hold request, will relinquish the use of the bus as soon as the completion of the cur- rent bus transfer internal processo ing can continue. The processo can regain the bus only after the HOLD is removed. When the HOLD is a cknowledged, the Address. Data RD, WR, and IOM hnes are 3-stated.
	Ū	Ovidi         Status           0         0         1         Memory write           0         1         0         Memory write           1         0         1         UO write           1         1         UO write           1         1         O read           0         1         Opcode fatch           1         1         Docode fatch           1         1         Dit write	HLDA	o	NoId Acknowledge: Indicates that the cpu has received the HOLD re- quest and that it will relatively the bus in the next clock cycle. HLDA goes low shifter the Hold request is removed. The cpu takes the bus one half clock cycle after HLDA goes low.
ND.		Acknowledge Acknowledge Acknowledge Acknowledge X Mold X Mold State (high impedance) X – unspectilled State state of the state of the state of the system and state state of these lines.	INTR	8	Interrupt Request: is used as a general purpose interrupt. It is sampled only during the next to the last clock cycle of an instruction and during Hold and Hait states if it is active, the Program Counter (PC) will be initibilied from incrementing and an INTA will be issued. Ouring this cycle a RESTART or CALL in struction can be inserted to jump to the interrupt service routine. The INTA is enabled and disabled by software it is disabled by Beset and immediately after an interrupt is ac- cepted.
VĀ	0	Read Control: A low level on RD indicates the selected memory or VO device is to be read and that the Date Bue is available for the data transfer. Setated during Hold and Hait modes and during RESET.	INTA	0	Interrupt Acknowledge: Is used in- stead of (and has the same timing as) RD during the instruction cycle after an INTR is accepted it can be used to aclivate an 82594 interrupt othe or some other interrupt port
	0	Write Control: A low level on WR indicates the data on the Date Busis to be written into the selected memory or i/O location. Data is set up at the trailing edge of WR 3- stated during Hold and Halt modes and during RESET	AST 55 AST 65 RST 75		Restart Interrupts: These three im- puts have the same timing as INTR except they cause an internal RESTART to be sutomatically inserted. The priority of these interrupts is ordered as shown in Table 2 These interrupts have a higher priority than NTR in addition, they may be individually masked out using the SIM instruction

6-11

#### 8085A/8085A-2

Symbol	Туре	Name and Function	Symbol	Туре	Name and Function
TRAP	1	Trep: Trap interrupt is a non- maskable RESTART interrupt. It is recognized at the same time as INTR or RST 5-7.5 it is unaffected by any mask or interrupt Enable. It has the highest priority of any inter-	RESET OUT	0	ResetOut: Reset Out indicates chu is being reset. Can be used as a system reset. The signal a synchronized to the processo clock and lasts an integral number of clock periods.
RESET IN	rupt (See Table 2) (SET IN I Reset In: Sats the Program Coun- ter to zero and resets the interrupt Enable and HLDA (III)-flops The data and address buses and the control lines are 3-stated during RESET and because of the	X1. X2	1	X ₁ and X ₂ : Are connected to a crystal, LC, or RC network to draw the internal clock generator X ₁ co- also be an external clock input tory a logic gate. The input frequency u divided by 2 to give the processors internal operating frequency.	
		asynchronous nature of RESET, the processor's internal registers and flags may be altered by RESET with	CLK	0	Clock: Clock output for use as a sys- tem clock. The period of CLK $_{\rm H}$ twice the X ₁ , X ₂ input period
	unpredictable results. RESETIN is a Schmitt-triggered input, allowing connection to an R-C network for power-on RESET delay. The cpu is bail in the reset contilion as to bail on the reset contilion as to	Schmitt-triggered input, allowing connection to an R-C network for	SID	'	Serial Input Data Line: The data on this line is loaded into accumulator bit 7 whenever a RIM instruction a executed.
es RESET IN 19 applied.	SOD	°	Serial Output Data Line: The out- put SOD is set or reset as specified by the SIM instruction.		
		Vcc		Power: +5 volt supply.	
			Vss		Ground: Reference.

#### Table 2. Interrupt Priority, Restart Address, and Sensitivity

Name	Priority	Address Branched To (1) When Interrupt Occurs	Type Trigger
TRAP .	1	24H	Rising edge AND high level until sampled
RST 7.5	2	ЗСН	Rising edge (latched).
RST 6.5	3	34H	High level until sampled.
RST 5.5	4	2CH	High level until sampled.
INTR	5	See Note (2).	High level until sampled.

NOTES:

1. The processor pushes the PC on the stack before branching to the indicated address.

2. The address branched to depends on the instruction provided to the cpu when the interrupt is acknowledged.

# inte

### 8085A/8085A-2

#### FUNCTIONAL DESCRIPTION

The 8085A is a complete 8-bit parallel central processor. It is designed with N-channel depletion loads and requires a single +5 volt supply. Its basic clock speed is 3 MHz 8085A or 5 MHz (8055A-2), thus improving on the present 8080A's performance with higher system apped. Also It is designed to fit into a minimum system of three IC's. The Cpu (8085A) a RAM/ID (8156), and a ROM or EPROM/IO chip. 8355 or 8755A).

The 8085A has twelve addressable 8-bit registers. Four of them can function only as two 16-bit register pairs. Six others can be used interchangeably as 8-bit registers or as 16-bit register pairs. The 8085A register set isas follows:

Mnemonic	Register	Contente
ACC or A	Accumulator	8 bits
PC	Program Counter	16-bit address
BC.DE.HL	General-Purpose Registers; data pointer (HL)	8 bits x 6 or 16 bits x 3
SP	Stack Pointer	16-bit address
Flags or F	Flag Register	5 flags (8-bit space)

The 8085A uses a multiplexed Data Bus. The address is split between the higher 8-bit Address Bus and the lower bolt Address/Data Bus. During the first T state (clock cycle. of a machine cycle the low order address is sent out on the Address/Data bus. These lower 8 bits may be (alched externally by the Address Latch Enable signal ALE. During the rest of the machine cycle the data bus is used for memory or 1/0 data.

The 8085A provides RD, WR, S₀, S₁, and IO/M signals for bus control. An Interrupt Acknowledge signal (INTA) is also provided. HOLD and all interrupts are synchronized with the processor's internal clock. The 8085A also provides Serial input Data (SID) and Serial Output Data (SOD) lines for simple serial interface.

In addition to these leatures, the 8085A has three maskable, vector interrupt pins and one nonmaskable TRAP interrupt.

#### INTERRUPT AND SERIAL I/O

The 8085A has 5 interrupt inputs. INTR, RST 5 5, RST 6 5, RST 7 5, and TRAP. INTR is identical in function to the 8080A INT Each of the three RESTART inputs, 5 5, 8 5, and 7 5, has a programmable mask. TRAP is also a RESTART interrupt but it is nonmaskable.

The three maskable interrupts cause the internal execution of RESTART (saving the program counter in the stack and branching to the RESTARTaddress) if the interrupts are enabled and if the interrupt mask is not set. The non-maskable TRAP causes the internal execution of a RESTART vector independent of the state of the interrupt mable or masks. (See Table 2.)

There are two different types of inputs in the restart interfupts RST 5.5 and RST 6.5 are high level-sensitive like INTR (and INT on the 8000) and are recognized with the same timing as INTR RST 7.5 is rising edge-sensitive.

For RST 7.5, only a pulse is required to set an internal  $h_{\rm PD}$ -flop which generates the internal interrupt request. See Section 5.2.7 . The RST 7.5 request flip-flop remains

AF 1-0120

set until the request is serviced. Then it is reset automatically. This flip-flop may also be reset by using the SIM instruction or by issuing a RESET IN to the 8085A. The RST 7 5 internal flip-flop will be set by a pulse on the RST 7 5 pin even when the RST 7.5 interrupt is masked out.

The status of the three RST interrupt masks can only be affected by the SIM instruction and  $\overrightarrow{\text{RESETIN}}$  , See SIM, Chapter S.

The interrupts are arranged in a fixed priority that determines which interrupt is to be recognized if more than one is pending as follows: TRAP — highest priority, RST 75, RST 65, RST 55, INTR — lowest priority. This priority scheme does not take into account the priority of a routine that was started by a higher priority interrupt RST 55 can interrupt an RST 7.5 routines if the interrupts are re-enabled before the end of the RST 75 routine.

The TRAP interrupt is useful for catastrophic events such as power failure or bus error. The TRAP input is recognized just as any other interrupt but has the highest priority. It is not affected by any flag or mask. The TRAP input must go high and remain high until it is acknowledged. It will not be recognized again until it goes low, then high again. This avoids any false tridgering due to noise or logic glitches. Figure 3 illustrates the TRAP interrupt request circuitry within the 805A. Note that the servicing of any interrupt (TRAP, RST 75, RST 65, RST 55, INTR) disables all future interrupts (accept TRAPs) until an El instruction is executed.



#### Figure 3. TRAP and RESET IN Circuit

The TRAP interrupt is special in that it disables interrupts, but preserves the previous interrupt enable status. Performing the first RIM instruction following a TRAP interrupt allows you to determine whether interrupts were enabled or disabled prior to the TRAP All subsequent RIM instructions provide current interrupt enable status. Performing a RIM instruction following INTR, or RST 55-75 will provide current interrupt Enable status, revealing that Interrupts are disabled. See the description of the RIM instruction in Chapter 5.

The serial I/O system is also controlled by the RIM and SIM instructions. SID is read by RIM, and SIM sets the SOD data

#### 8085A/8085A-2

#### **DRIVING THE X1 AND X2 INPUTS**

You may drive the clock inputs of the 8085A or 8085A-2 with a crystal, an LC tuned circuit, an RC network, or an external clock source. The driving frequency must be at least 1 MHz, and must be twice the desired internal clock frequency; hence, the 8085A is operated with a 6 MHz crystal (for 3 MHz clock), and the 8085A-2 can be operated with a 10 MHz crystal . for 5 MHz clock . If a crystal is used, it must have the following characteristics:

Parallel resonance at twice the clock frequency desired CL rioad capacitance ≤ 30 pf

Cs ishunt capacitance ≤ 7 pf

Rs (equivalent shunt resistance) ≤ 75 Ohms Drive level, 10 mW

Frequency tolerance. ±.005% -suggested)

Note the use of the 20pF capacitor between X₂ and ground. This capacitor is required with crystal frequencies below 4 MHz to assure oscillator startup at the correct frequency. A parallel-resonant LC circuit may be used as the frequency-determining network for the 8085A, providing that its frequency tolerance of approximately ±10% is acceptable. The components are chosen from the formula:

> 1= 2#VLICext + Cint

To minimize variations in frequency, it is recommenden that you choose a value for Cant that is at least twice that of Cint. or 30 pF. The use of an LC circuit is not recon. mended for frequencies higher than approximately 5 MHz

An RC circuit may be used as the frequency-determining network for the 8085A if maintaining a precise clock fre quency is of no importance. Variations in the on-chie timing generation can cause a wide variation in frequency when using the RC mode. Its advantage is its low component cost. The driving frequency generated by the circuit shown is approximately 3 MHz. It is not recon. mended that frequencies greatly higher or lower than the be attempted.

Figure 4 shows the recommended clock driver circuits Note in D and E that pullup resistors are required to assure that the high level voltage of the input is at least 4 y

For driving frequencies up to and including 6 MHz you may supply the driving signal to X1 and leave X2 open. circuited (Figue 4D). If the driving frequency is from 8 MHz to 10 MHz, stability of the clock generator will be improved by driving both X1 and X2 with a push-pull source (Figure 4E). To prevent self-oscillation of the 8085A, be sure that Xg is not coupled back to X1 through the driving circuit





# intal

## 8085A/8085A-2

#### GENERATING AN 8085A WAIT STATE

If your system requirements are such that slow memories or peripheral devices ate being used, the circuit shown in Figure 5 may be used to insert one WAIT state in each 8085A machine cycle

The D flip-flops should be chosen so that

· CLK is rising edge-triggered . CLEAR is low-level active.



Figure 5. Generation of a Walt State for 8085A CPU

As in the 8080, the READY line is used to extend the read and write pulse lengths so that the 8085A can be used with slow memory. HOLD causes the cpu to relinquish the bus when it is through with it by floating the Address and Data Buses.

#### SYSTEM INTERFACE

The 8085A family includes memory components, which are directly compatible to the 8085A cpu. For example, a system consisting of the three chips, 8085A, 8156, and 8355 will have the following features:

- 2K Bytes ROM
- · 256 Bytes RAM
- 1 Timer/Counter
- 4 8-bit I/O Ports
- 1 6-bit I/O Port

• 4 Interrupt Levels

. Serial In/Serial Out Ports

#### This minimum system, using the standard I/O technique 18 as shown in Figure 6.

In addition to standard I/O, the memory mapped I/O offers an efficient I/O addressing technique. With this technique, an area of memory address space is assigned for I/O address, thereby, using the memory address for I/O manipulation. Figure 7 shows the system configuration of Memory Mapped I/O using 8085A.

The 8085A cpu can also interface with the standard memory that does not have the multiplexed address/data bus. It will require a simple 8212 (8-bit latch) as shown in Figure 8.



Figure 6. 8085A Minimum System (Stendard I/O Technique}

APHOINS

## 8085A/8085A-2

intപ്ര



Figure 7, MCS-85¹⁴ Minimum System (Memory Mapped I/O)



Figure 8. MCS-85" System (Using Standard Memories)

### 6-16

# intel

## 8085A/8085A-2

#### BASIC SYSTEM TIMING

The 8085A has a multiplexed Data Bus. ALE is used as a strobe to sample the lower 8-bits of address on the Data Bus. Figure 9 shows an instruction fetch, memory read and I/O write cycle (as would occur during processing of the OUT instruction). Note that during the I/O write and read cycle that the I/O port address is copied on both the upper and lower half of the address.

There are seven possible types of machine cycles. Which of these seven takes place is defined by the status of the three status lines (IO/M, Si, Soj and the three control agnais ( $\overline{RD}$ ,  $W\overline{R}$ , and  $\overline{INTA}$ ). (See Table 3.) The status lines can be used as advanced controls (for device selection, for example), since they become active at the T istate, at the outset of each machine cycle. Control lines  $\overline{AD}$  and  $\overline{WR}$  become active later, at the time when the transfer of data is to take place, so are used as command lines.

A machine cycle normally consists of three T states, with the exception of OPCODE FETCH, which normally has either four or six T states (unless WAIT or HOLD states ere forced by the receipt of READY or HOLD inputs). Any Tstate must be one of ten possible states, shown in Table 4.

#### Table 3. 8085A Machine Cycle Chart

			STAT		CONTROL			
MACHINE CYCLE			10/4	\$1	\$0	AD	W.	INTA
OPCODE FETCH	IOFI		0	5	1	0	-	1
MEMORY READ	(MA)		0	1	0	0	1	1
MEMORY WRITE	(MW)		0	0	1	•	0	1
I/O READ	HORI		1	1	٥	0	1	1
I/O WRITE	NOW		1	٥	1	1	٥	1.
ACKNOWLEDGE								
OF INTR	(INA)		1	11	1	•	1.	0
BUSIDLE	(81)	DAD	•	1	0	1	1	1
		ACK OF	· · .		-			
		AST TRAP	1 1	1	1	1	1.1	1
		HALT	TS	0	0	TS	TS	1

Table 4. 8085A Machine State Chart

		Status & Buses				Control		
Machine State	\$1,80	10/14	Ag-A18	ADg -AD	AD.WA	INTA	ALE	
τ,	K	x	×	×	1	1	1.	
та	×	x	x	x	×	×	0	
TWAIT	x	x	x	x	x	x	0	
т,	×	×	×	×	x	×	•	
Т4	1	0.	×	TS	1	1	0	
т	1.	0.	x	TS	1	1	0	
т	1	٥.	×	75	1	1	0	
TRESET	x	TS	TS	TS	TS	1	0	
THALT	0	TS	TS	TS	TS	1	0	
THOLD	x	TS	TS	TS	TS	1 1	0	

9 * Logic "0" TS + High Imped 1 * Logic 11" X + Unspectful

* ALE not generated during 2nd and 3rd methins cycles of DAD instruction f ID/M = 1 during Tg -Tg of INA machine cycle



Figure 9. 8085A Basic System Timing



AFN-013428

#### 8085A/8085A-2

#### ABSOLUTE MAXIMUM RATINGS"

Ambient Temperature Under Bias.	
Storage Temperature	65°C to +150°C
Voltage on Any Pin	
With Respect to Ground	0 5V to +7V
Power Dissipation	1.5 Watt

*NOTICE: Stresses above those listed under "Absolute Maximum Raings" may cause permanent damage to be device. This is a stress rating only and functional operation of the device at these or any other conditions about those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### D.C. CHARACTERISTICS (TA = 0°C to 70°C, V_{CC} = 0V ±5%, V_{SS} = 0V; unless otherwise specified)

Symbol	Parameter	Min.	Мах.	Units	Test Conditions
VIL	Input Low Voltage	-0.5	+0.B	v	
VIH	Input High Voltage	2.0	V _{CC} +0.5	v	
VOL	Output Low Voltage		0.45	~	IOL = 2mA
VOH	Output High Voltage	2.4		v	I _{OH} = -400µA
1 _{CC}	Power Supply Current		170	mA	
LL.	Input Leakage		±10	μA	04 VIN 4VCC
انه	Output Leakage		±10	μА	0.45V < Vout < VCC
VILR	Input Low Level, RESET	-0.5	+0.8	V	
VIHR	Input High Level, RESET	2.4	V _{CC} +0.5	v	
VHY	Hysteresis, RESET	0.25		v	

### 8085A/8085A-2

## A.C. CHARACTERISTICS (TA = O'C to 70°C, VCC = 0V ±5%, VSS = 0V)

int_eľ

Symbol	Perameter	808	5A ^[2]	8085	Unite	
		Min.	Mex.	Min.	Max.	
ICYC	CLK Cycle Period	320	2000	200	2000	ns
1,	CLK Low Time (Standard CLK Loading)	80		40		ns
12	CLK High Time (Standard CLK Loading)	120		70		ns
tty	CLK Rise and Fall Time		30		30	ns
X68	X1 Rising to CLK Rising	30	120	30	100	ns
IXKE	X, Rising to CLK Falling	- 30	150	30	110	03
1 _{AC}	A ₈₋₁₅ Valid to Leading Edge of Control ^[1]	270		115		<b>ns</b>
TACL	A0-7 Valid to Leading Edge of Control	240		115		ns
1 _{AD}	Age 15 Valid to Valid Data In		575		350	ns
¹ AFA	Address Float After Leading Edge of READ (INTA)		0		0	na
tAL	An-15 Valid Before Trailing Edge of ALE ^[1]	115	_	50		ns
1 _{ALL}	Ap., Valid Before Trailing Edge of ALE	90		50	1	ns.
1ARY	READY Valid from Address Valid		220		100	ns.
ICA	Address (As. 15) Valid After Control	120		60		ns
¹ CC	Width of Control Low (RD, WR, INTA) Edge of ALE	400		230		ns
1 _{CL}	Trailing Edge of Control to Leading Edge of ALE	50		25		08
1 _{DW}	Data Valid to Trailing Edge of WRITE	420		230		08
HABE	HLDA to Bus Enable		210		150	08
BABE	Bus Float After HLDA		210		150	ns
HACK	HLDA Valid to Trailing Edge of CLK	110		40		08
THOM	HOLD Hold Time	0		0		08
IHOS	HOLD Setup Time to Trailing Edge of CLK	170		120	<u> </u>	08
INH	INTR Hold Time	0		0	<u> </u>	na
Tins	INTR, RST, and TRAP Setup Time to					
	Failing Edge of CLK	160		150	<b>↓</b>	<u>ns</u>
4 <b>A</b>	Address Hold Time Atter ALE	100		. 50	<u> </u>	<u></u>
110	Trailing Edge of ALE to Leading Edge of Control	130		60	1	ns
LCK	ALE Low During CLK High	100		50	T	08
TIDR	ALE to Valid Data During Read	†	460		270	ns
LOW	ALE to Valid Data During Write	1	200		120	08
-tu	ALE Width	140		80	1	ns
tLRV -	ALE IO READY Stable	1	110	<u> </u>	30	0.8

6-19

# 8085A/8085A-2

## A.C. CHARACTERISTICS (Continued)

Symbol	Parameter	808	5A ^[2]	808	Unita	
		Min.	Max.	Min.	Max.	1
IRAE	Trailing Edge of READ to Re-Enabling of Address	150		90		ns
IAD	READ (or INTA) to Valid Data		300		150	ns
IRV	Control Trailing Edge to Leading Edge of Next Control	400		220		ns
IRDH	Data Hold Time After READ INTAIN	0		0		ns
IRYH	READY Hold Time	0		0		ns
^t RYS	READY Setup Time to Leading Edge of CLK	110		100		ns
twp	Data Valid After Trailing Edge of WRITE	100		60		ns
1WDL	LEADING Edge of WRITE to Data Valid		40		20	ns

#### NOTES:

- $A_8A_{15}$  address Specs apply to 10/M,  $S_0$  and  $S_1$  except  $A_8A_{15}$  are undefined during  $T_4T_6$  of OF cycle whereas 10/M,  $S_0$  and  $S_1$  are stable 1.
- 2. Test conditions: ICYC = 320 ns (8085A)/200 ns (8085A-2), CL = 150 pF.
- For all output timing where C₁ = 150pF use the following correction factors: 25pF 4 C₁ < 150pF 0 10 nupF 150pF < C₁ < 300pF: +0 30 nupF</li>
- 4 Output timings are measured with purely capacilive load
- 5 All timings are measured at output volage  $V_L \approx 0.8V$ ,  $V_M \approx 2.0V$ , and 1.5V with 20ns rise and fall time on inputs.
- To calculate timing specifications all other values of I_{CVC} use Table 7. Data hold time is guaranteed under all loading conditions. 6
- 7

#### A.C. TESTING INPUT, OUTPUT WAVEFORM

#### A.C. TESTING LOAD CIRCUIT





# intel

## 8085A/8085A-2

## Table 5. Bus Timing Specification as a $T_{\rm CYC}$ Dependent

		8085A				8085 A-2
^t AL	-	(1/2) T - 45	MIN	t AL	-	(1/2) T - 50
1LA		(1/2) T - 60	MIN	t _{LA}	-	(1/2) T - 50
	-	(1/2) T - 20	MIN	tLL	-	(1/2) T - 20
LCK	-	(1/2) T - 60	MIN	ILCK_	-	(1/2) T - 50
'LC	-	(1/2) T - 30	MIN	tLC.	-	(1/2) T - 40
AD.	-	(5/2 + N) T - 225	MAX	t _{AD}	-	(5/2 + N) T -
TRD	-	(3/2 + N) T - 180	MAX	1 RD	-	(3/2 + N) T -
TRAE	-	(1/2) T - 10	MIN	TRAE	-	(1/2) T - 10
1CA	-	(1/2) T - 40	MIN	1CA	-	(1/2) T - 40
tow	_	(3/2 + N) T - 60	MIN	^t ow	-	(3/2 + N) T -
_twp	-	(1/2) T - 60	MIN	twp	-	(1/2) T - 40
*cc	+	(3/2 + N) T - 80	MIN	1 cc	-	(3/2 + N) T -
1 _{CL}	-	(1/2) T - 110	MIN	tcL	-	(1/2) T - 75
LARY	-	(3/2) T - 260	MAX	LARY.	-	(3/2) T - 200
HACK	-	(1/2) T - 50	MIN	1 HACK	-	(1/2) T - 60
HABF	-	(1/2) T + 50	MAX	^t HABF	-	(1/2) T + 50
THABE	-	(1/2) T + 50	MAX	THABE	-	(1/2) T + 50
tAC	-	(2/2) T - 50	MIN	tAC	-	(2/2) T - 85
<u>'</u>	-	(1/2) T - 80	MIN	1 1	-	(1/2) T - 60
12	-	(1/2) T - 40	MIN	12	-	(1/2) T - 30
tev	-	(3/2) T - 80	MIN	^t Ry	-	(3/2) T - 80
LDA	-	(4/2) T - 180	MAX	LDA	-	(4/2) T - 130
	equal to	o the total WAIT states.				the total WAIT st

the total WAIT states. T+ICYC-

(5/2 + N) T - 150

(3/2 + N) T - 150

(3/2 + N) T - 70

(3/2 + N) T - 70

MIN

MIN

MIN

MIN

MIN

MAX

MAX

MIN

MIN

MIN

MIN

MIN

MIN

MAX

MIN

MAX

MAX

MIN

MIN

MIN

MIN

MAX

### WAVEFORMS



AFR-018428

8-21

intel

# 8085A/8085A-2







# intel

# 8085A/8085A-2







AP10-01248

e nn

## 8085A/8085A-2

		-							
-			ing		tion		-		Operations
					, 0,	1.07	10		Description
HOVE, LOAD									
WOWN 12	0	1	D	D	D	S	S	S	Move register to register
NOV M r	0	1	2	1	0	S	8	5	Move register to memory
MOV rM MVIr	0	2	0	P	2	1	1	0	Move memory to register
	ê		P	D	0	1	1	0	Move immediate register
NIM XIB	0	0	0	è	0	0	1	0	Move immediate memory
				۰	v	•	0	'	Load immediate register
хıD	i a	0	٥	1	0	٥	0	1	Load immediate register
~ ~	•				•	۰	•		Pair D & E
ж н	6	٥	1	0	0	0	0	1	Load immediate register
		•		-	•	•	•		Par H & L
TAX B	0	٥	0	0	0	0	1	D	Store A indirect
O KAT	0	0	0	۱	0	0	1	0	Store A Indirect
BXAC	Ó	Ó	Ó	0	1	Ó	1	0	Load A indirect
AX D	0	0	0	۱	1	0	1	0	Loed A indirect
A	0	0	۱	1	0	0	۱	0	Store A direct
A	0	0	1	1	1	0	1	0	Load A direct
υ	0	0	1	0	0	0	۱	0	Store H & L direct
u I	D	0	1	0	1	0	1	0	Load H & L direct
HG	1	1	1	0	۱	0	۱	1	Exchange D & E. H & L
ICK OPE	_					_		_	Registers
SH B	,	1	٥	0	0	1	0	1	Push register Pair 8 &
~··•	1	'			v	•	٠	·	C on stack
яно	1	1	0	1	0	1	٥		Push register Pair D &
	1	•		•	•		•	•	E on stack
нн 🛔	1	1	1	0	٥	1	0	1	Push register Pair H &
				-	-		-		L on stack
H PSW	1	1	1	1	0	1	0	1	Push A and Flags
									on stack
PB	1	1	0	0	0	0	0	1	Pop register Pair B &
									C off stack
PD	1	۱	0	1	0	0	0	1	Pop register Pair D &
_									E off stack
РН	1	۱	1	0	٥	0	0	1	Pop register Pair H &
									L off stack
P PSW	1	1	1	1	0	0	0	1	Pop A and Flags
•	1	1	1	ò	۵	0		1	off stack
►	'	'		v	v	U	1	1	Exchange top of
.		1		1	,	0	٥		stack, H & L H & L to stack pointer
50	à	ò	÷	÷	ò	ŏ	ŏ	11	Load immediate stack
- 1	•		•		٠	•	٠	·	pointer
80	0	0	1	1	0	0	1	1	Increment stack pointer
(SP	ō	ō	i.	i	ĩ	ō	i.	; I	Decrement stack
	-	Ť	•		•	-		·	pointer
a i				-		-			· · · · · · · · · · · · · · · · · · ·
•	1	1	0	0	0	٥	1	1	Jump unconditional
	1	t	0	1	١	0	1	0	Jump on carry
	1	۱	0	1	0	0	1	•	Jump on no carry
	1	۱	0	0	1	0	1	•	Jump on zero
	1	۱	0	0	0	0	1	0	ones on no gmul
1	1	1	1	1	0	0	١	0	Jump on positive
	1	1	1	1	1	0	1		Jump on minus
	1	1	1	0	1	0	1	0	Jump on parity even
<u> </u>	2	1	1	0	0	0	1	0	Jump on parily odd
HL	۱	1	1	0	1	C	٥		H & L to program
		_		_				-+	counter
	1	1	0	0	1	1	٥	1	Cell unconditional
	÷	i	ŏ	ĩ	÷	:	ŏ		Call on carry
- 1					•	•	•		our or carry [
	i	÷	õ	1	٥	1	0	01	Call on no carry

#### Table 6. Instruction Set Summary

·	_				_	_			
Mnemonia	0	, De				Co Dy		00	Operatione Description
cz	1	۱	0	0	1	1	0	0	Cell on zero
CNZ	1	1	0	0	0	1	0	0	Call on no zero
CP CM	l:	;	;	1	0	1	0	0	Call on positive
CPE	Ľ.	÷	;	6	÷	;	ŝ	0	Cell on minus
CPO	Ľ.	÷	i	ŏ	ċ	1	ŏ.	ŏ	Cell on parity even Cell on parity odd
RETURN	٣	<u> </u>	-	*	-	-	×		
AET	1	1	0	0	1	0	0	t	Return
AC	1	1	0	1	1	D	0	0	Return on carry
RNC	1	1	0	1	0	0	0	0	Return on no carry
RZ	1	1	0	0	1	0	0	0	Return on zero
AP	1	1	0	0	0	0	0	0	Return on no zero
AM .	l:	;	;	1	0	8	0	°,	Return on positive Return on minus
RPE	Ľ.	÷	i.	ċ	;	ŏ	ŏ	ŏ	Return on parity even
RPO	ĥ.	i	i.	ō	ó	ŏ	ŏ	ŏ	Return on parity odd
RESTART	t			-	<u> </u>		ž	-	
RST INPUT/OUTP		1.	<u>A</u> .	<b>A</b>		1	1	۱	Restart
iN	ii.	1	0	1	1	0	1	1	input
ουτ	1	1	ò	1	0	ŏ	i.	1	Output
INCREMENT					EN	<b></b>			
INR r	10	0	0	D	D	1	0	0	Increment register
DCR r INR M	0	0	D	D	D	1	0		Decrement register
DCR M		0	;	:	0	1	8		Increment memory Decrement memory
INX B	lő.	ŏ		ċ	ŏ	ò	ï		Increment B & C
	<b>ا</b>	•	•	•	•	•	•		registers
INX D	0	0	0	1	٥	٥	1	1	Increment D & E
	L								registers
INX H	0	0	1	0	0	0	١	1	Increment H & L
DCX 8	6	٥	0	0	1	0	1	٠l	registere
DCX D	6		ŏ	1	1	8	;	11	Decrement B & C Decrement D & E
DCX H	lŏ.	ŏ		ò	÷	ŏ	÷		Decrement H & L
ADO	F	-		÷	÷	Ť.	·	÷	
ADD r	1			0	0	8	8	8	Add register to A
ADC /	h.	0	0	0	1	8	8	8	Add register to A
									with carry
ADD M	<u>!</u>				0	!	1		Add memory to A
ADC M	1	0	0	0	۱	1	1		Add memory to A
ADI	١,	1	0	٥	0	1	1		with carry Add immediate to A
ÂCI	li -				ĩ	÷			Add immediate to A
-	Ľ	•	-	-		<i>´</i>			with carry
DAD B	0		0	0			0		Add B & C to H & L
DAD D	0						0	1	Add D & E to H & L
DAD H	0						0		Add H & L 10 H & L
DAD SP	0	0	1	1	1	0	0		Add stack pointer to
SUSTRACT	-			_	_		_	-+	HAL
SUB /	1	0	0	1	0	8	8	8	Subtract register
	Ľ		-		-	-	-		from A
888 r	1	0	0	1	1	8	8	8	Subtract register from
									A with borrow
SUB M	1	0	0	1	0	1	1		Subtract memory
588 M	1	0	•				1		from A Subtract memory from
	•	•	•	•	•	•	•	"	Subtract memory from A with borrow
SUI	1	1	•		D	1	•		Subtract immediate
-									from A
\$ <b>8</b> 1	۱.	1	0	1	1	1	1	o la	Subtract immediate
									from A with borrow
			_						

### Table 6-1. Instruction Set Summary (Cont'd)

tinemonie	۵.				tier Do			<b>D</b> -1	Operatione Description
LOGICAL			_	_	-	-	-		
ANA r	lı.	٥		•	۰			8	And register with A
XRA r	li -	õ	i	õ	ĭ		8	8	Exclusive OR register
ORAr	١.	0	۱.	1	۵	8	8	8	OR register with A
CLAP	Li -	õ.	÷	i.	ĩ	ā.	ā.	š.	Compare register with A
ANA M	1	000	i	ò.	ó.	ĩ	ĩ	ŏ	And memory with A
XRA M	F	ŏ	i	ō	0101	i	i	õ	Exclusive OR memory with A
ORA M	lı.	0	1	1	۰	1	1	0	OR memory with A
CMP M	١.	0	١	1	i	١	ı	0	Compare memory with A
ANI	1	1	1	٥	D	1	1	۵	And Immediate with A
XPU	i.	i	Ť	õ	ï	i	ŧ.	ō	Exclusive OR immediate with A
ÓRI	1	1	1	1	0	1	1	0	OR Immediate with A
CPI	١.	1	1	1	i	1	1	Ó	Compare Immediate with A
ROTATE							-		
RLÇ	0	0	0	0	0	1	1	1	Rotate A left
RAC	l٥	0	0	٥	1	1	1	1	Rotate A right
RAL	ļŏ.	Ó	ō	1	Ó	1	1	1	Rotate A left through carry
RAR	٥	0	0	1	1	1	1	1	Rotate A right through carry

Mnemenie	0,		inst Dş					Do	Operations Description
SPECIALS			_		_				
CMA	0	0	۱	0	1	1	1	1	Complement
STC	0	٥	•	1	•	1	1	1	Sel carry
CMC	ŏ	ŏ	;	i.	ĭ	i	÷	il	Complement
	1 °	-							carry
DAA	0	0	1	0	0	1	1	1	Decimal adjust A
CONTROL									
EI	11	1	1		1	0			Enable Interrupts
DI	[!	1	1	1	0	0	1	1	Disable Interrupt
NOP	0	0	0	0			0		No-operation
HLT NEW BOBSA	0	1	<u> </u>	1	٩	1		9	Han
NEW BOUSA								-	
SIM		×	1	•	8	×	×	X	Read Interrupt Mask Set Interrupt Mask
21M		v		•	v	U	ų.	v	SHAL NUTHALOTO IN MITTAL

NOTES: 1. DDS or SSS: B 000, C 001, D 010, E011, H 100, L 101, Memory 110, A 111, 2. Two possible cycle times (&/12) indicate instruction cycles dependent on condition flags.

"All mnemonics copyrighted @Intel Corporation 1976.

AFN-01242

6-25

## 8155/8156/8155-2/8156-2 2048 BIT STATIC MOS RAM WITH I/O PORTS AND TIMER

- # 256 Word x 8 Bits
- Single +5V Power Supply
- Completely Static Operation
- Internal Address Latch
- 2 Programmable 8 Bit I/O Ports
- = 1 Programmable 6-Bit I/O Port
- Programmable 14-Bit Binary Counter/ Timer
- Compatible with 8085A and 8088 CPU
- Multiplexed Address and Data Bus
   40 Pin DIP
- The 8155 and 8156 are RAM and VO chips to be used in the 8085A and 8088 microprocessor systems. The RAM portion is designed with 2048 static cells organized as 256 x 8. They have a maximum access time of 400 ns to permit use with no wait states in 8085A CPU. The 8155-2 and 8156-2 have maximum access times of 330 ns for use with the 8085A-2 and the full speed 5 MHz 6086 CPU.

The I/O portion consists of three general purpose I/O ports. One of the three ports can be programmed to be status pins, thus allowing the other two ports to operate in handshake mode.

A 14-bit programmable counter/limer is also included on chip to provide either a square wave or terminal count pulse for the CPU system depending on timer mode.



Figure 1. Block Diegram

Figure 2. Pin Configuration

# intel

### 8155/8156/8155-2/8156-2

Symbol	Туре	Name and Function
RESET	1	Reset: Pulse provided by the 8085A to initialize the system (connect to 8085A RESET OUT). Input high on this line resets the chip and initializes the three VD ports to input mode. The width of RESET pulse should typically be two 8085A clock cycls times.
AD ₀₋₇	vo	Address/Data: 3-state Address/Data lines that interface with the CPU lower 8-bit Address/Data Bus. The 5-bit address is latched into the address latch inside the 815588 on the falling edge of ALE. The address can be either for the memory section or the VO section depending on the VOR input signal. data is either written into the chip or read from the chip, depending on the WR or RD input signal.
CE or CE	'	Chip Enable: On the 8155, this pin is CE and is ACTIVE LOW. On the 8156, this pin is CE and is ACTIVE HIGH.
AD.	1	Read Control: (nput low on thus line with the Chip Enable active enables and AD ₀₋₇ buffers. If $iOM$ pints to the AD bus. Otherwise the content of the selected I/O port or command/status registers will be read to the AD bus.
WA	1	Write Control: Input low on this line with the Chip Enable active causes the date on the Address/Date bus to be written to the RAM or I/O ports and command/status register, depending on IO/M.
ALE	1	Address Latch Enable: This control signal latches both the address on the AD ₀₋₇ lines and the state of the Chip Enable and IO/M into the chip at the failing edge of ALE.
0 M	1	VO Memory: Selects memory if low and VO and command/status registers if high.
PA0-7(8)	vo	Port A: These 5 pins are general purpose I/O pins. The in/out direction is selected by programming the command register.
PB _{Q-7} (8)	vo	Port B: These 6 pins are general purpose VO pins. The In/out direction is selected by programming the command register.
PC ₀₋₅ (6)	vo	Port C: These 6 pins can function as either input port, output port, or as control signals for PA and PB. Programming is done through the command register. When PC ₀₋₅ are used as control signals, they will provide the following: PC ₀ — A INTR (Port A interrupt) PC ₁ — ABF (Port A Buffer Full) PC ₂ — ABF (Port B Auffer Full) PC ₃ — B INTR (Port B Interrupt) PC ₄ — B BF (Port B Buffer Full) PC ₄ — B BF (Port B Buffer Full) PC ₄ — B BF (Port B Buffer Full)
IMER IN		Timer Input: Input to the countentimer.
MEROUT	0	Timer Output: This output can be either a square wave or a pulse, depending on the timer mode.
(cc		Voltage: +5 volt supply

#### FUNCTIONAL DESCRIPTION

The 8155/8156 contains the following:

intel

- 2k Bit Static RAM organized as 256 x 8
- Two8-bit I/O ports (PA & PB) and one 6-bit I/O port (PC)
   14-bit timer-counter

The IO/ $\overline{M}$  (IO/Memory Select) pin selects either the five

registers (Command, Status, PA0-7, PB0-7, PC0-5) or the memory (RAM) portion. The 8-bit address on the Address/Data lines, Chip Enable

input CE or CE, and IO/M are all latched on-chip at the failing edge of ALE



Figure 3. 8155/8156 Internal Registers





# intel

## 8155/8156/8155-2/8156-2

#### PROGRAMMING OF THE COMMAND REGISTER

The command register consists of eight latches. Four bits (-3) define the mode of the ports, two bits (-4-5) enable or disable the interrupt from port G when it acts as control port, and the last two bits (-7) are for the timer.

The command register contents can be altered at any time by using the  $\ell/0$  address XXXXX000 during a WRITE operation with the Chip Enable active and 10/M = 1. The meaning of each bit of the command byte is defined in Figure 5. The contents of the command register may never be read.

## **READING THE STATUS REGISTER**

The status register consists of seven latches, one for each bit; six (0-5) for the status of the ports and one (6) for the status of the timer.

The status of the timer and the I/O section can be polled by reading the Status Register (Address XXXX000). Status word format is shown in Figure 8. Note that you may never write to the status register since the command register shares the same I/O address and the command register is elected when a write to that address is usued.



Figure 5. Command Register Bit Asaignment

Figure 6. Status Register Bit Assignment

e 77

#### 8155/8156/8155-2/8156-2

#### INPUT/OUTPUT SECTION

The I/O section of the 8155/8158 consists of five registers: (See Figure 7.)

- Command/Status Register (C/S) Both registers are assigned the address XXXXX000. The C/S address serves the dual purpose
- When the C/S registers are selected during WRITE operation, a command is written into the command register. The contents of this register are notaccessible through the pins.
- When the C/S (XXXXX000) is selected during a READ operation, the status information of the i/O ports and the timer becomes available on the AD₀₋₇ lines.
- PA Register This register can be programmed to be either input or output ports depending on the status of the contents of the C/S Register. Also depending on the command, this port can operate in either the basic mode or the strobed mode (See timing diagram). The I/O pins assigned in relation to this register are PA₀₋₇. The address of this register is XXXX001.
- PB Register This register functions the same as PA Register. The I/O pins assigned are PB0-7. The address of this register is XXXX010.
- PC Register This register has the address XXXXX011 and contains only 6 bits. The 6 bits can be programmed to be either input ports, output ports or as control signals for PA and PB by properly programming the AD₂ and AD₃ bits of the C/S register.

When PCo-s is used as a control port, 3 bits are assigned for Port A and 3 for Port B. The first bit is an interrupt that the B155 sends out. The second is an output signal indicating whether the buffer is full or empty, and the third is an input pin to accept a strobe for the strobed input mode. (See Table 2.)

When the 'C' port is programmed to either ALT3 or ALT4, the control signals for PA and PB are initialized as follows:

CONTROL	INPUT MODE	OUTPUT MODE
BF	Low	Low
INTR	Low	High
STB	Input Control	Input Control

I/O ADDRESS*								SELECTION
A7	**	-	84	A3	A.	AI	A0	BELECTION
×	x	x	x	×	¢	0	0	Interval Command Status Register
×	x	X	×	×	0	0	•	General Purpose I/O Port A
x	×	к	x	x	0	١.	0	General Purpose I/O Port B
×		х	x	x	0	1	1	Port C - General Purpose I O or Cor
×	а.	ж	ж	×	١.	0	0	Low-Order & bits of Timer Count
×	*	×	×	×	1	۰	<b>י</b>	High 6 bits of Timer Count and 2 bits of Timer Mode

## Figure 7. VO Port and Timer Addressing Scheme

Figure 8 shows how I/O PORTS A and 8 are structured within the 8155 and 8156:



Figure 8. 8155/8156 Port Functions

## inte

## 8155/8156/8155-2/8156-2

#### Table 2. Port Control Assignment

Pin	ALT 1	ALT 2	ALT 3	ALT 4
PC0	Input Port	Output Port	A INTR (Port A Interrupt)	A INTR (Port A Interrupt)
PC1	Input Port	Output Port	A BF (Port A Buffer Full)	A BF (Port A Buffer Full)
PC2	Input Port	Output Port	A STB (Port A Strobe)	A STB (Port A Strobe)
PC3	Input Port	Output Port	Output Port	B INTR (Port B Interrupt)
PC4	Input Port	Output Port	Output Port	B BF (Port B Buffer Full)
PC5	Input Port	Output Port	Output Port	B STB (Port B Strobe)

Note in the diagram that when the I/O ports are programmed to be output ports, the contents of the output ports can still be read by a READ operation when appropriately addressed.

The outputs of the 8155/8156 are "glitch-free" meaning that you can write a "1" to a bit position that was previously "1" and the level at the output pin will not change.

Note also that the output latch is cleared when the port enters the input mode. The output latch cannot be loaded by writing to the port if the port is in the input mode. The result is that each time a port mode is changed from input to output, the output pins will go low. When the 8155/56 is RESET, the output latches are all cleared and all 3 ports enter the input mode.

When in the ALT 3 or ALT 2 modes, the bits of PORT C are structured like the diagram above in the simple input or output mode, respectively.

Reading from an input port with nothing connected to the pins will provide unpredictable results.

Figure 9 shows how the 8155/8156 I/O ports might be configured in a typical MCS-85 system.



Figure 9. Example: Command Register = 00111001

APN-002010

#### TIMER SECTION

The timer is a 14-bit down-counter that counts the TIMER. IN pulses and provides either a square wave or pulse when terminal count (TC) is reached.

The timer has the I/O address XXXX100 for the low order byte of the register and the I/O address XXXX101 for the high order byte of the register (See Figure 7.)

To program the timer, the COUNT LENGTH REG is loaded first one byte at a time, by selecting the timer addresses Bits 0-13 of the high order count register will apacity the tength of the next count and bits 14-15 of the high order register will specify the timer output mode (see Figure 10) The value loaded into the count length register can have any value from 2H through 3FFH in Bits 0-13



There are four modes to choose from: M2 and M1 define the timer mode, as shown in Figure 11.



Bits 6-7 TM2 and TM11 of command register contents are used to start and stop the counter. There are four

are used to start and stop the counter. There are tou commands to choose from:

- TM₂ TM₁
- 0 0 NOP Do not affect counter operation.
- STOP -- NOP if timer has not started; stop counting if the timer is running.
- 1 0 STOP AFTER TC Stop immediately after present TC is reached (NOP if timer has not started.
- START Load mode and CNT length and start immediately after loading iff timer is not presently running:. If timer is running, start the new mode and CNT length immediately after present TC is reached.

Note that while the counter is counting, you may load a new count and mode into the count length registers. Before the new count and mode will be used by the counter, you must issue a START command to the counter. This applies even though you may only want to change the count as the previous mode.

In case of an odd-numbered count, the first half-cycle of the squarewave output, which is high, is one count longer than the second ilow) half-cycle, as shown in Figure 12.



Figure 12. Asymmetrical Square-Wave Output Resulting from Count of 9

The counter in the 8155 is not initialized to any particular, mode or count when hardware RESET occurs, but RESET does stop the counting. Therefore, counting cannot begin following RESET until a START command is issued via the C/S register.

Please note that the timer circuit on the 8155/8156 chip is designed to be a square-wave timer, not an even counter. To achieve this, it counts down by twos twice in completing one cycle. Thus, its registers do not contain values directly representing the number of TIMER Its pulses received. You cannot load an initial value of 1 into the count register and cause the timer to operate, as its terminal count value is 10 (binary) or 2 (decimal). (For the detection of single pulses, it is suggested that one of the hardware interrupt pins on the 8085A be used , Alter the timer has started counting down, the values residing in the count registers can be used to calculate the actual number of TIMER IN pulses required to complete the timer cycle if desired. To obtain the remaining count, perform the following operations in order:

1. Stop the count

6-36

- 2. Read in the 16-bit value from the count length registers
- 3. Reset the upper two mode bits
- Reset the carry and rotate right one position all 16 bits through carry
- If carry is set, add 1/2 of the full original count (1/2 full count — 1 if full count is odd).

Note: If you started with an odd count and you read the count length register before the third count pulse occurs. you will not be able to discern whether one or two counts has occurred. Regardless of this, the 8155/56 always counts out the right number of pulses in generating the TIMER OUT waveforms.

AFN-00201C

## into

#### 8155/8156/8155-2/8156-2

### EXAMPLE PROGRAM

HL of the 8085A. The timer-counter,	hen stop the count storing the lower-c	First store the value of the full original count in register to evoid getting an incorrect count value. Then sample order byte of the current count register in register C and er 6. Then, call the following 8080A/8085A subroutine:
ADJUST, 78	MOV A,B	:Load accumulator with upper half ; of count.
E63F	ANI 3F	Reset upper 2 bits and clear carry.
1F	RAR	Rotate right through carry.
47	MOV B.A	Store shifted value back in B.
79	MOV A.C	:Loed accumulator with lower half.
1F	RAR	Rotate right through carry.
4F	MOV C.A	Store lower byte in C.
DØ	RNC	if in 2nd half of count, return. if in 1st half, go on.
3F	CMC	;Clear carry.
70	MOV A,H	(Divide full count by 2. (If HL) (is odd, diaregard remainder.)
1 <b>F</b>	RAA	
67	MOV H,A	
70	MOV AL	
1 <b>F</b>	RAR	
6F	MOV L.A	
09	DAD B	Double-precision add HL and BC.
44	MOV B.H	Store results back in BC.
4D	MOV C.L	
C9	RET	:Return.

6-37

APN-00801C

#### 8155/8156/8155-2/8156-2

#### 8085A MINIMUM SYSTEM CONFIGURATION

Figure 13a shows a minimum system using three chips, containing:

- 256 Bytes RAM
  2K Bytes ROM
  38 I/O Pins

- 1 Interval Timer
- 4 Interrupt Levels



Figure 13a. 8085A Minimum System Configuration (Memory Mapped I/O)

# intel

### 8155/8156/8155-2/8156-2

#### **8088 FIVE CHIP SYSTEM**

- Figure 13b shows a five chip system containing:
- + 1.25K Bytes RAM
- 2K Bytes ROM
- 38 I/O Pine
- 1 Interval Timer
- 2 Interrupt Levels



AFN-008010

### ABSOLUTE MAXIMUM RATINGS*

intel

Temperature Under Bias	
Voltage on Any Pin	
With Respect to Ground	
Power Dissipation	

"NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress reling only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute masimum rating conditions for extended periods may affect device reliability.

SYMBOL	PARAMETER	MIN.	MAX.	UNITS	TEST CONDITIONS
VIL	Input Low Voltage	-0.5	0.8	v	
vін	Input High Voltage	2.0	Vcc+0.5	v	
νοι	Output Low Voltage		0.45	v	loL = 2mA
Ψ	Output High Voltage	2.4		v	юн = -400µA
ł.	Input Leakage		±10	μA	OV < VIN < VCC
ιo	Output Leakage Current		± 10	μA	0.45V < VOUT < VCC
55	V _{CC} Supply Current		180	mA	
IIL (CE)	Chip Enable Leakage 8155 8156		+100 -100	Αµ Αμ	OV < VIN < VCC

## D.C. CHARACTERISTICS (TA = 0°C to 70°C; VCC = 5V ± 5%)

# int_el

#### 8155/8156/8155-2/8156-2

## A.C. CHARACTERISTICS (TA = 0°C to 70°C; VCC = 5V ± 5%)

		8165	/8156	8165-2		
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	UNITS
AL	Address to Latch Set Up Time	60		30		ns
LA	Address Hold Time after Latch			30		ns.
¹ LC	Latch to READ/WRITE Control	100		40		ns
IRO	Valid Data Out Delay from READ Control		170		140	m
ta0	Address Stable to Data Out Valid		400		330	ns
¹ LL	Latch Enable Width	100		70		ns
ROF	Data Bus Floet After READ	0	100	0	80	ns
tcL	READ/WRITE Control to Latch Enable	20	<b></b>	10		ns
LCC	READ/WRITE Control Width	250		200	1	ns
LDW.	Data In to WRITE Set Up Time	150		100	1	- 15
wo	Data In Hold Time After WRITE	0		0	· · · · ·	- 15
^t RV	Recovery Time Between Controls	300		200	1	
lwp	WRITE to Port Output		400		300	- 05
(PR)	Port Input Setup Time	70		50		<b>ns</b>
AP	Port Input Hold Time	50		10	1	n <b>s</b>
^t ser	Strobe to Buffer Full		400		300	ns
155	Strobe Width	200		150		03
ABE	READ to Buffer Empty		400		300	ns
¹ \$1	Strobe to INTR On		400		300	ns.
ADI	READ to INTR Off		400		300	ns.
PSS	Port Setup Time to Strobe Strobe	50		0		<b>ns</b>
PHS	Port Hold Time After Strobe	120		100		ns
SBE	Strobe to Buffer Empty		400		300	ns
WBF	WAITE to Buffer Full		400		300	ns.
Wr	WRITE to INTR Off		400		300	ns
TL .	TIMER IN to TIMER OUT LOW		400		300	ns
Тн	TIMER-IN to TIMER-OUT High		400	-	300	<b>n</b> 3
POE	Data Bus Enable from READ Control	10		10		ns
	TIMER-IN Low Time	80		40		ns
2	TIMER-IN High Time	120		70		08

A C. TESTING INPUT, OUTPUT WAVEFORM

AFN 00201C

### A.C. TESTING LOAD CIRCUIT







6-40

AFN-00201C

## 8155/8156/8155-2/8156-2





# intel

8155/8156/8155-2/8156-2







APN-00301C

## 8755A /8755A-2 16,384-BIT EPROM WITH I/O

- 2048 Words × 8 Bits
   2 General Purpose 8-Bit I/O Ports
   Single + 5V Power Supply (V_{cc})
   Each I/O Port Line Individually
   Programmable as Input or Output
   Directly Compatible with 8085A
   and 8088 Microprocessors
   Multiplexed Address and Data Bus
- U.V. Erasable and Electrically 
   A0-Pin DIP
   Reprogrammable
- Internal Address Latch

The Intel® 8755A is an erasable and electrically reprogrammable ROM (EPROM) and I/O chip to be used in the 8085A and 8088 microprocessor systems. The EPROM portion is organized as 2048 words by 8 bits. It has a maximum access time of 450 ns to permit use with no wait etates in an 8085A CPU.

The I/O portion consists of 2 general purpose I/O ports. Each I/O port has 8 port lines, and each I/O port line is individually programmable as input or output.

The 8755A-2 is a high speed selected version of the 8755A compatible with the 5 MHz 8085A-2 and the full speed 5 MHz 8088.





Figure 1. Block Diagram

Figure 2. Pin Configuration

# intel

### 8755A/8755A-2

#### Table 1. Pin Description

Symbol	Туре	Name and Function	Symi	bol Type	Name and Function
ALE	•	Address Latch Enable: When Address Latch Enable goes $h(gh, Abg_{-7}, KOM, Ag_{-10}, CS_2, and CE_1$ enler the address latches The signals (AD. IO/M, Ag_{-10}, CE) are latched in at the trailing edge of ALE	REAL		Ready is a 3-state output controlled by CE2_CET, ALE and CLK. READY is forced low when the Chip Enables are actove during the time ALE is high, and remains low until the rising edge of the next CLK. (See Figure 6.)
AD _{0 - 7}	t	Bidiractional Address/Data Bus: The lower 8-bits of the PROM or I/O address are applied to the bus lines when ALE is high. During an I/O cycle. Port A or B are selected based on the latched value of AD ₀ IF RD or IOR is low when the latched Chip Enables are active, the output buf- fore present data on the bus.	PA ₀₋	7 VO	Port A: These are general purpose VO pins Their input/output direction is de- termined by the contents of Data Direc- tion Register (DDR). Port A is selected for write operations when the Chip Enables are active and IOW is low and a 0 was previously latched from AD ₀ . AD ₁ . Read Operation is selected by either IOR low and active Chip Enables and AD
A6-10	1	Address: These are the high order bits of the PROM address. They do not affect VO operations.	-		and AD ₁ low. or IQ/M high, RD low, active Chip Enables, and AD ₀ and AD ₁ low.
PROG/CE1 CE2	1	Chip Enable inputs: $\overline{CE}_1$ is active low and $CE_2$ is active high The 8755A can be accessed only when both Chip Enables	P8 ₀ -	, ¥0	Port 8: This general purpose I/O port is identical to Port A except that it is selected by a 1 istched from $AD_0$ and a 0 from $AD_1$ .
		tre active at the time the ALE signal alches them up. If either Chip Enable nput is not active, the $AD_{0-7}$ and READY outputs will be in a high impe- lance state $\overline{CE}_1$ is also used as a pro-	RESE	IT I	Reset: In normal operation, an input high on RESET causes all pins in Ports A and B to assume input mode (clear DDR register).
10 M	1	gramming pin. (See section on programming) UO Mamory: If the latched IO/M is high when RO is low, the output data comes	ĪŌĀ		UO Read: When the Chip Enables are active, a low on IOR will output the selected I/O port onto the AD bus. IOR low performs the same function as the
ÂŌ		from an I/O port. If it is low the output data comes from the PROM.			combination of IO/M high and RD low. When IOR is not used in a system, IOR should be tied to $V_{CC}$ ("1").
	•	Read: If the <u>tetched</u> Chip Enables are active when RD goes low, the ADd-7	Vcc		Power: +5 volt supply.
		output buffers are enabled and output	Vss		Ground: Reference.
		either the selected PROM location or $i/O$ port. When both RD and IOR are high, the AD ₀₋₇ output buffers are 3-stated.	V00		Power Supply: $V_{00}$ is a programming voltage, and must be tied to $V_{CC}$ when the 8755A is being read.
-Ow	-	I/O Write: If the latched Chip Enables are active, a low on IOW causes the output port pointed to by the latched value of $AD_0$ to be written with the data on $AD_{0-7}$ . The state of IO/M is ignored.			For programming, a high voltage is supplied with $V_{DQ} = 25V$ , typical. (See section on programming.)
CLK	'	Clock: The CLK is used to force the READY into its high impedance state after it has been forced low by $\overline{CE}_1$ low.			

6-148

CE2 high, and ALE high

#### FUNCTIONAL DESCRIPTION

#### PROM Section

The 8755A contains an 8-bit address latch which allows it to interface directly to MCS-48. MCS-85 and iAPX 88/10 Microcomputers without additional hardware.

The PROM section of the chip is addressed by the 11-bit address and CE. The address  $\overline{CE}_1$  and  $\overline{CE}_2$  are latched into the address tacthes on the failing edge of ALE. If the latched Chip Enables are active and IO M is low when RD goes low, the contents of the PROM location addressed by the latched address are put out on the AD₀₋₇ lines (provided that Vpp is ted to V_{CC}).

#### I/O Section

The I/O section of the chip is addressed by the latched value of ADo-1. Two 8-bit Data Direction Registers-DDRin 8755A determine the input-output status of each print in the corresponding ports A. 'O' in a particular bit position of a DDR signifies that the corresponding I/O port bit is in the input mode A.''T' in a particular bit position signifies that the corresponding I/O port bit is in the output mode. In this manner the I/O ports of the 8755A are bit-bybit pogrammable as inputs or outputs. The table summarizes port and DDR designation DDR's cannot be read.

AD1	AD ₀	Selection
0	0	Port A
0	1	Port B
1	0	Port A Data Direction Register DDR A
1	1	Port B Data Direction Register . DDR B)

When IOW goes low and the Chip Enables are active, the data on the AD is written into I/O port selected by the latched value of AD_0-1 During this operation all I/O bits of the selected port are affected, regardless of their I/O mode and the state of IO/M. The actual output level does not change until IOW returns high rightch free output.

A port can be read out when the latched Chip Enables are active and either RD goes low with ID/M high, or IOR goes low Both input and output mode bits of a selected port will appear on lines ADa.2.

To clarify the function of the i/O Ports and Data Direction Registers, the following diagram shows the configuration of one bit of PORT A and DDR A. The same logic applies to PORT B and DDR B.



Note that hardware RESET or writing a zero to the DDR latch will cause the output latch's output buffer to be disabled, preventing the data in the Output Latch from being passed through to the pin. This is equivalent to putting the port in the input mode. Note also that the data can be written to the Output Latch even though the Output Buffer has been disabled. This enables a port to be in talized with a value prior to enabling the output

The diagram also shows that the contents of PORT A  $_{\rm E}$  - PORT B can be read even when the ports are contiguit, as outputs.

#### TABLE 1. 8755A PROGRAMMING MODULE CRO85 REFERENCE

	USE WITH
UPP 955	UPP(4)
UPP UP2(2)	UPP 855
PROMPT 975	PROMPT 80/85(3)
PROMPT 475	PROMPT 48(1)
NOTES	
1. Described on p.	13-34 of 1978 Data Catalog
2. Special adaptor	socket.
	13-39 of 1978 Data Catalog
<ol><li>Described on p.</li></ol>	13-71 of 1978 Data Catalog
	-

# intel

#### **ERASURE CHARACTERISTICS**

The erasure characteristics of the 8755A are such that erasure begins to occur when exposed to light with wavelengths shorter than approximately 4000 Angstroms  $\hat{A}$ . It should be noted that sunlight and certain types of fluorescent lighting could erase the typical 8755A in approximately 3 years while it would take approximately 3 years while it would take approximately 3 weak to cause erasure when exposed to threst sunlight in the 8055A is to be exposed to threst sunlight are direct sunlight. If the 8755A is to be exposed to these types of lighting conditions for extended periods of time, opaque labels are available from intel which should be placed over the 8755 window to prevent unintentionale erasure.

The recommended erasure procedure for the 8755A is exposure to shortwave ultraviolet light which has a wavelength of 2537 Angstroms (Å). The integrated dose (i.e., UV intensity X exposure time) for erasure should be a minimum of 15W-sec/cm². The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with a 1200µW/cm² power rating. The 8755A should be placed within one inch from the lamp tubes during erasure.

#### PROGRAMMING

Initially, and after each erasure, all bits of the EPROM Dorisons of the 8755A are in the "1" state. Information is "Miroduced by selectively programming "0" into the desired bit locations A programmed "0" can only be changed to a "1" by UV erasure.

The 8755A can be programmed on the Intel® Universal PROM Programmer (UPP), and the PROMPT* 80/85 and PROMPT-48* design aids. The appropriate programming odules and adapters for use in programming both 8755A's and 8755's are shown in Table 1.

The program mode itself consists of programming a ingle address at a time, giving a single 50 mise pulse or every address. Generally, it is desirable to have a etrily cycle after a program cycle for the same address is shown in the attached timing diagram in the verify <u>icce i e normal memory read cycle Voo</u> should <u>eart-50</u>.

^{b-eliminary} timing diagrams and parameter values per-^{b-ning} to the 8755A programming operation are con-^{b-ned} in Figure 7.

#### SYSTEM APPLICATIONS

#### System Interface with 8085A and 8088

A system using the 8755A can use aither one of the two I/O Interface techniques:

Standard I/O

8755A/8755A-2

Memory Mapped I/O

If a standard I/O technique is used, the system can use the feature of both CE₃ and CE₁. By using a combination of unused address lines  $A_{1-1}$  and the Chip Enable inputs, the 8085A system can use up to 6 sech 8755A's without requiring a CE decoder. See Figure 2a and 2b.

If a memory mapped I/O approach is used the 8755A will be selected by the combination of both the Chip Enables and  $IO/\overline{M}$  using the ADs-15 address lines. See Figure 1.



(Memory-Mapped I/O)



AFN-018418

6-152

Figure 5. \$755A in 8085A System (Standard I/O)

6-153

-----

#### **ABSOLUTE MAXIMUM RATINGS***

	0°C 10 +70°C -65°C to +150°C
Vollage on Any Pin	
With Respect to Ground	-0 5V to +7V
Power Dissipation	1 5W

*NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional opera-tion of the device at these or any other conditions above those indicated in the operational sections of this specific cation is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### D.C. CHARACTERISTICS (TA = 0°C to 70°, V_{CC} = V_{DD} = 5V ± 5%; V_{CC} = V_{DD} = 5V ± 10% for 8755A-2)

SYMBOL	PARAMETER	MIN.	MAX.	UNITS	TEST CONDITIONS
VIL	Input Low Voltage	-0.5	0.8	v	Vcc = 5.0V
VIH	Input High Voltage	2.0	Vcc+0.5	v	V _{CC} = 5.0V
VOL	Output Low Voltage		0.45	v	loL = 2mA
Чон	Output High Voltage	2.4		v	юн = -400µA
4L	Input Leakage		10	μΑ	VSS 4 VIN 4 VCC
lio	Output Leakage Current		:10	μΑ	VSS = 0.45V = VOUT = VCC
łcc	V _{CC} Supply Current		180	mA	
DD	VDD Supply Current		30	mA	VDD = VCC
CIN	Cepacitance of Input Buffer		10	ρF	$I_{C} = 1 \mu Hz$
C1/0	Capacitance of I/O Buffer		15	pF	$f_{\rm C} = 1 \mu Hz$

#### D.C. CHARACTERISTICS - PROGRAMMING (TA = 0°C to 70", VCC = 5V ± 5%, VSS = 0V, VDD = 25V ± 1V; VCC = VDD = 5V = 10% for 8755A-2)

Symbol	Parameter	Min.	Typ.	Max.	Unit
VDD	Programming Voltage (during Write to EPROM)	24	25	26	v
100	Prog Supply Current		15	30	۸m

# intel

#### 8755A/8755A-2

#### A.C. CHARACTERISTICS (TA = 0°C to 70°, V_{CC} = 5V ± 5%; VCC = VDD = 5V ±10% for 8755A-2)

		81	755A	875 (Prelir		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unite
12YC	Clock Cycle Time	320		200		ns
۲,	CLK Pulse Width	80		40	†	
τ,	CLK Pulse Width	120		70		05
ti te	CLK Rise and Fall Time		30		30	05
TAL	Address to Latch Set Up Time	50		30		10
t,a	Address Hold Time alter Latch	80		45		ns
ilc.	Latch to READ/WRITE Control	100	-	40		ns
teo	Valid Data Out Delay from READ Control		170*		140*	ns
tap	Address Stable to Data Out Valid		450		330	ns
tu	Latch Enable Width	100		70		ns
teo#	Data Bus Float after READ	0	100	Ó	85	ns
teu	READ/WRITE Control to Latch Enable	20		10		ns
ICC	READ/WRITE Control Width	250		200		03
tow	Data In to Write Set Up Time	150		150		ns
two	Data In Hold Time After WRITE	30		10		ns
twp	WRITE to Port Output		400		300	ns
tea	Port Input Set Up Time	50		50		ns
lap	Port Input Hold Time to Control	50		50		ns
IRYM	READY HOLD Time to Control	0	160	0	160	ns
IARY	ADDRESS CE to READY		160		160	ns
lay	Recovery Time Between Controls	300		200		ns
IRDE	READ Control to Data Bus Enable	10		10	<u> </u>	ns
1.0	ALE to Data Out Valid		350		270	ns

 $C_{\rm LOAD}$  = 150pF,  $C_{\rm TAD}$  = (T_{AL} + T_{LC}), whichever is greater.

# A.C. CHARACTERISTICS — PROGRAMMING (T_A = 0°C to 70°, V_{CC} = 5V ± 5%, V_{SS} = 0V, V_{DD} = 25V ± 1V; V_{CC} = V_{DD} = 5V ± 10% for 8755A-2)

Bymbol	Parameter	Min.	Typ.	Max.	Unit	
PS	Data Setup Time	10			05	
PD	Data Hold Time	0			ns	
5	Prog Pulse Setup Time	2			μS	
1	Prog Pulse Hold Time	2			8µ	
PA	Prog Pulse Rise Time	0.01	2		8 س	
sk	Prog Pulse Fall Time	0.01	2		μB	
PAG	Prog Pulse Width	45	50		msec	

AFN-010418

intel

# intel 8755A/8755A-2

A.C. TESTING INPUT, OUTPUT WAVEFORM





### WAVEFORMS





# intel

8755A/8755A-2







. ...

# entel 8755A/8755A-2

WAVEFORMS (Continued)





APH-016418



**Integrated Circuit 10-Bit Analog-to-Digital Converter** 

# AD571*

10

#### FEATURES

Complete A/D Converter with Reference and Clock Fast Successive Approximation Conversion - 25µs No Missing Codes Over Temperature 0 to +70°C - AD571K -55°C to +125°C - AD571S Digital Multiplexing - 3 State Outputs 18-Pin Ceramic DIP Low Cost Monolithic Construction

#### PRODUCT DESCRIPTION

The AD\$71 is a 10-bit successive approximation A/D converter consisting of a DAC, voltage reference, clock, comparator, successive approximation register and output buffers - all fabricated on a single chip. No external components are required to perform a full accuracy 10-bit conversion in 25µs.

The AD571 incorporates the most advanced integrated circust design and processing technology available today. It is the first complete converter to employ 12 L (integrated injection logic) processing in the fabrication of the SAR function. Laser trimming of the high stability SiCr thin film resistor ladder network at the wafer stage (LWT) insures high accuracy, which is maintained with a temperature compensated, subsurface Zener reference.

Operating on supplies of +5V to +15V and -15V, the AD571 will accept analog inputs of 0 to +10V, unipolar or 25V bipolar, externally selectable. As the BLANK and CONVERT input is driven low, the three state outputs will be open and a conversion will commence. Upon completion of the conversion, the DATA READY line will go low and the data will appear at the output. Pulling the BLANK and CON-VERT input high blanks the outputs and readies the device for the next conversion. The AD571 executes a true 10-bit conversion with no missing codes in approximately 25µs.

The AD\$71 is available in two versions for the 0 to +70°C temperature range, the AD\$71J and K. The AD\$71S guarantees 10-bit accuracy and no missing codes from -55°C to +125°C.

*Covered by Peems Nos. 3,940,760; 4,213,806; 4,136,349.



#### PRODUCT HIGHLIGHTS

- 1. The AD571 is a complete 10-bit A/D converter. No external components are required to perform a conversion. Full scale calibration accuracy of ±0.3% is achieved without external trims.
- 2. The AD571 is a single chip device employing the most advanced IC processing techniques. Thus, the user has at his disposal a truly precision component with the reliability and low cost inherent in monolithic construction.
- 3. The AD571 accepts either unipolar (0 to +10V) or bipolar (-SV to +SV) analog inputs by simply grounding or opening a single pin.
- 4. The device offers true 10-bit accuracy and exhibits no missing codes over its entire operating temperature range.
- 5. Operation is guaranteed with -15V and +5V to +15V supplies. The device will also operate with a -12V supply.

## SPECIFICATIONS (7,=25°C, Y+=+5Y, Y-=-12Y or -15Y, all voltages measured with respect to digital common,

		AD57			AD571			AD571	5	Г
Model	Min	Тур	Maa	Mia	Trp	Mas	Min	Tm	Max	Un
RESOLUTION		10			10			10		Bru
RELATIVE ACCURACY, TA			#1			\$ 1/2			=	LS
Taun to Taun			±l			± 1/2			21	LSI
FULL SCALE CALIBRATION?	1	:2			= 2		+	22		LSI
UNIPOLAR OFFSET	1		±1			212	+		= 1	1.5
BIPOLAR OFFSET	+		11	+		*1/2	<u> </u>		**	LSI
DIFFERENTIAL NONLINEARITY, TA	10			10			10			_
TantoTan	1.			10			10			Bits
TEMPERATURE RANGE	0		+ 70			• 70	- 55			
TEMPERATURE COEFFICIENTS	ļ •			<u>+</u>		• /0	- "		+ 125	٣
Utipolar Offert	1		#2							
Bipolar Offset	1		1/	1		±l			\$2	LSI
Full Scale Calibration ²	1		27			#1			±2	LSI
	[		24			±2			25	LSE
POWER SUPPLY REJECTION				1						
CMOS Poultive Supply										
+ 13.5V x V + x + 16.5V	· ·	-	-	1 •		±1	-	-	-	LSI
TTL Possive Supply + 4.5V s V + s + 5.5V	1									1
			±2			±1			#2	LSE
Negative Supply	I.			1						
- 16.0V = V - S - 13.5V			#2			21			#2	LSI
ANALOG INPUT IMPEDANCE	3.0	50	7.0	3.0	30	7.4	3.0	50	7.0	LŪ.
ANALOG INPUT RANGES										
Unapolar	0		+ 10			+ 10	0		+ 10	l v
Bepolar	-5		+ 5	5		+ 5	-5		+5	l v
OUTPUT CODING							+			<u> </u>
Unipolar	Postore	True Buna	~		True Basa	_		THE BINARY		
Bipolar		True Offa			True Office			THE BINKEY		
LOGICOUTPUT			Contery	7060	The Out	полегу	Positive	rue Offici	Bunary	
Output Sink Current										
(Votr = 0.4V max, Tanto Tan)	3.2			3.2			1.2			
Output Source Current							1.4			<b></b>
(VOLT = 2 4V MAIL, Tank to Tank)	0.5						8.5			-
Output Lenkage	•		z 41			± 40			± 48	μA μA
LOGICINPUTS				t			╂			-
Input Current			z 100			+ 100			± 100	<b>m</b>
Logic "I"	2.0			2.0			2.0			v
Logic "0"			0.8			8.5			6.8	v.
ONVERSION TIME, TA and -							<u> </u>			·····
Tere to Tere	15	25		15	25	46	15	25	40	-
OWER SUPPLY				<u>+</u>			<u>├</u>			
۷.	+4.5	+ 5.0	+7.4	+4.5	+ 5.0	+ 14.5	++.5	+ 5.0	+7.0	v
v-	- 12.0	- 15	- 16.5	-12.0	- 15	- 14.5	-12.0	+ 3.0	- 16.5	v
PERATINGCURRENT										<u> </u>
V+		15	25		15	25		14		
v-		,	15		9	25 15		15 9	25 15	mA
ACKAGE ⁴					<u>,                                     </u>	- 15		7	15	ωA
Centauc DIP		<b>.</b>								
Ceranuc DIP Planac DIP		DIAA			DISA			DIRA		
		NISA			NIEA					

Behaves accuracy is defined as the deviation of the code transition points from the ideal transfer point on a straight the from the arts to the full scale of the device. "Fail scale schedulention a parameter dramable to area with an external SOA potentionerter in place of the 13

fixed res

The part of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second

See Section 19 for package outline inform ipecifications subject to change without notice

specifications shows in holding united to all production units at final electrical test. Results from those tests are used to calculate outgoing quals levels. All and mas specifications are guaranteed, although only them shows at boldines are tested on all production same.

ANALOG TO DIGITAL CONVERTERS VOL 1 10 21

VOL I, 10-32 ANALOG-TO-DIGITAL CONVERTERS

#### ABSOLUTE MAXIMUM RATINGS

V+ to Digital Common	AD5713, S 0 to +7V
	AD571K 0 to +16.5V
V- to Digital Common	
Analog Common to Dig	ntal Common
Analog Input to Analog	Common
Control Inputs	
Digital Outputs (Blank	Mode)
Power Dissipation	

#### **CIRCUIT DESCRIPTION**

The AD571 is a complete 10-bit A/D converter which requires no external components to provide the complete successiveapproximation analog-to-digital conversion function. A block diagram of the AD571 is shown in Figure 1. Upon receipt of the CONVERT command, the internal 10-bit current output DAC is sequenced by the 12 L successive-approximation register (SAR) from its most-significant bit (MSB) to leastsignificant bit (LSB) to provide an output current which accurately balances the input signal current through the  $5k\Omega$ input resistor. The comparator determines whether the addition of each successively weighted bit current causes the DAC current sum to be greater or less than the input current; if the sum is less the bit is left on, if more, the bit is turned off. After testing all the bits, the SAR contains a 10 bit binary code which accurately represents the input signal to within 1%LSB (0.05%).



#### Figure 1. AD571 Functional Block Diagram

Upon completion of the sequence, the SAR sends out a DATA READY signal (active low), which also brings the three-state buffers out of their "open" state, making the bit output lnes become active high or low, depending on the code in the SAR. When the BLANK and CONVERT line is brought high, the output buffers again go "open", and the SAR is prepared for another conversion cycle. Details of the timing are given further.

The temperature compensated buried Zener reference provides the primary voltage reference to the DAC and guarantees excellent stubility with both time and temperature. The bipolar offset input controls a switch which allows the positive bipolar offset current (exactly equal to the value of the MSB less %LSB to be injected into the summing (+) node of the comparator to offset the DAC output. Thus the nominal 0 to +10V unipolar input range becomes a -5V to +5V range. The  $3k\Omega$  thin film input resistor is trained so that with a full scale input signal, an input current will be generated which exactly matches the DAC output with all bits on. (The input resistor is trained slightly low to facilitate user trainming, as discussed on the next page.)

#### **POWER SUPPLY SELECTION**

The AD571 is designed for optimum performance using a +5V and -15V supply, for which the AD5711 and AD5715 are specified. AD571K will also operate with up to a +15V supply, which allows direct interface to CMOS logic. The input logic threshold is a function of V+ as shown in Figure 2. The supply current drawn by the device is a function of both V+ and the operating mode (BLANK or CONVERT). These supply current variations are shown in Figure 3. The supply current schange only moderately over temperature as shown in Figure 7.



Figure 2. Logic Threshold (AD571K Only)



Figure 3. Supply Currents vs. Supply Levels and Operating Modes

#### ANALOG-TO-DIGITAL CONVERTERS VOL. 1, 10-33

VOL. I, 10-34 ANALOG-TO-DIGITAL CONVERTERS

## Applying the AD571

#### BIPOLAR OPERATION

CONNECTING THE ADS71 FOR STANDARD OPERATION The ADS71 contains all the active components required to perform a complete A/D conversion. Thus, for most situauons, all that is necessary is connection of the power supply (+5 and -15), the analog input, and the conversion start pulse. But, there are some features and special connections which should be considered for achieving optimum performance. The functional pursuit is shown in Figure 4.



Figure 4. AD571 Pin Connections

#### FULL SCALE CALIBRATION

The \$k \ thin-film input resistor is laser trimmed to produce a current which matches the full scale current of the internal DAC-plus about 0.3%-when a full scale analog input voltage of 9.990 volts (10 volts - 1 LSB) is applied at the input. The input resistor is trimmed in this way so that if a fine trimming potentiometer is inserted in series with the input signal, the input current at the full scale input voltage can be trimmed down to match the DAC full scale current as precisely as desired. However, for many applications the nominal 9.99 volt full scale can be achieved to sufficient accuracy by simply inserting a 15 $\Omega$  resistor in series with the analog input to pin 13. Typical full scale calibration error will then be about 22LSB or 20.2%. If the more precise calibration is desired, a 50 trimmer should be used instead. Set the analog input at 9.990 volts, and set the trummer so that the output code Bjust at the transition between 1111111110 and 1111111111. Each LSB will then have a weight of 9.766mV. If a nominal full scale of 10.24 volts is desired (which makes the LSB have weight of exactly 10.00mV), a 1000 resistor in series with a 100Ω trimmer (or a 200Ω trimmer with good resolution) should be used. Of course, larger full scale ranges can be arranged by using a larger input resistor, but linearity and full scale temperature coefficient may be compromised if the external resistor becomes a sizeable percentage of  $5k\Omega$ .



Figure 6. Standard AD571 Connections

The standard unipolar 0 to +10V range is obtained by shorting the bipolar offset control pin to digital common. If the pin is left open, the bipolar offset current will be switched into the comparator summing node, giving a -5V to +5V range with an offset binary output code. (-5.00 volts in will give a 10-bit code of 000000000 an input of 0.00 volts results in an output code of 1000000000 and 4.99 volts at the input yelds the 111111111 code). The bipolar offset control input s not directly TLL compatible, but a TLL interface for logic control can be constructed as shown in Figure 6.



Figure 6. Bipoler Offset Controlled by Logic Gate Gate Output = 1 Unipoler 0 - 10V Input Range Gate Output = 0 Bipoler 15V Input Range

#### COMMON MODE RANGE

The AD571 provides separate Analog and Digital Common connections. The circuit will operate properly with as much as 2200mV of common mode range between the two commons. This permits more flexible control of system common bussing and digital and analog returns.

In normal operation the Analog Common terminal may generate transent currents of up to 2mA during a conversion. In addition, a static current of about 2mA will flow into Analog Common in the unipolar mode after a conversion is complete. An additional 1mA will flow in during a blank interval with zero analog input. The Analog Common current will be modulated by the variations in input signal.

The absolute maximum voltage rating between the two commons is  $\pm 1$  volt. We recommend the connection of a parallel pair of back-to-back protection diodes between the commons if they are not connected locally.



Figure 7. AD571 Power Supply Current ve. Temperature ANALOG-TO-DIGITAL CONVERTERS VOL. 1. 10-35

#### ZERO OFFSET

The apparent zero point of the AD371 can be adjusted by inserting an offset voltage between the Analog Common of the device and the actual signal return or signal common. Figure 8A illustrates two methods of providing this offset. Figure 8A shows how the converter zero may be offset by up to 23 bits to correct the device initial offset and/or input signal offsets. As shown, the circuit gives approximately symmetrical adjustment in unipolar mode. In bipolar mode R2 should be omitted to obtain a symmetrical range.







#### Figure 8. (B)

Figure 9 shows the nominal transfer curve near zero for an AD\$71 in unipolar mode. The code transitions are at the edges of the nominal bit weights. In some applications it will be preferable to offset the code transitions so that they fall between the nominal bit weights, as shown in the offset characteristics. This offset can easily be accomplished as shown in Figure 8B. At balance (after a conversion) approximately 2mA flows into the Analog Common terminal. A 2.7 resistor in series with this terminal will result in approximately the desired 36 bit offset of the transfer characteristics. The nominal 2mA Analog Common current is not closely controlled in manufacture. If high accuracy is required, a  $S\Omega$  potentiometer (connected at a rheostat) can be used as R1. Additional negative offset range may be obtained by using larger values of R1. Of course, if the zero transition point is changed, the full scale transition point will also move. Thus, if an offset of MLSB is introduced, full scale trimming as described on previous page should be done with an analog input of 9.985 volts.

NOTE: During a conversion transient currents from the Analog Common terminal will disturb the offset voltage. Capacitive decoupling should not be used around the offset network. These transvents will settle as appropriate during a convertion. Capacitive decoupling will "pump up" and fail to settle resulting in conversion errors. Power supply decoupling which returns to analog signal common, should go to the signal input side of the resistive offset network.

#### VOL. L. 10-36 ANALOG-TO-DIGITAL CONVERTERS





Figure 9. AD571 Transfer Curve - Unipolar Operation (Approximate Bit Weights Shown for Illustration, Nominal Bit Weights ~9.766mV)

#### BIPOLAR CONNECTION

To obtain the bipolar -5V to +5V range with an offset binary output code the bipolar offset control pin is left open.

A -5.0 volt signal will give a 10-bit code of 00000000 00; an input of 0 000 volts results in an output code of 10000000 00 and +4.99 volts at the input yields the 11111111 11 code. The nominal transfer curve is shown in Figure 10.



Figure 10. AD571 Transfer Curve - Bipolar Operation

## Control and Timing of the AD571

#### CONTROL AND TIMING OF THE AD\$71

There are several important timing and control features on the AD571 which must be understood precisely to allow optimal interfacing to microprocessor or other types of control systems. All of these features are shown in the timing diagram in Figure 11.

The normal stand-by situation is shown at the left end of the drawing. The BLANK and  $\overline{CONVERT}$  (B &  $\overline{C}$ ) line is held high, the output lines will be "open", and the DATA READY (DR) line will be high. This mode is the lowert power state of the device (typically 150mW). When the (B &  $\overline{C}$ ) line is brought low, the conversion cycle is initiated; but the  $\overline{DR}$  and Data lines do not change state. When the conversion cycle is scomplete (typically 250s), the  $\overline{DR}$  line goes low, and within 500ns, the Data lines become active with the new data.

About 1.3µs after the 8 &  $\overline{C}$  line is again brought high, the  $\overline{DR}$  line will go high and the Data lines will go open. When the 8 &  $\overline{C}$  line is again brought low, a new conversion will begin. The minimum pulse width for the 8 &  $\overline{C}$  line to blank previous data and start a new conversion the Conversion will stop, and the DR and Data lines will not change. If a 2µs or longer pulse is applied to the 8 & C line during a conversion, the converter will cleur and start a new conversion, the conversion, the converter



#### Figure 11, AD571 Timing and Control Sequences

#### CONTROL MODES WITH BLANK AND CONVERT

The timing sequence of the AD\$71 discussed above allows the device to be easily operated in a variety of systems with differing control modes. The two most common control modes, the Convert Pulse Mode, and the Multiplex Mode, are illustrated here.

Consert Pulse Mode – In this mode, data is present at the output of the converter at all turnes except when conversion is taking place. Figure 12 illustrates the turning of this mode. The BLANK and CONVERT line is normally low and conversions are triggered by a positive pulse. A typical application for this timing mode is shown in Figure 13 in which µP bus interfacing a easily accomplished with three-state buffers.

Multiples Mode — In this mode the outputs are blanked except When the device is selected for conversion and readout; this timing is shown in Figure 13. A typical AD571 multiplexing Application is shown in Figure 16.

This operating mode allows multiple AD571 devices to drive common data linet. All BLANK and CONVERT lines are held high to keep the outputs blanked. A single AD571 is selected, its BLANK and CONVERT line is driven low and at the end of conversion, which is indicated by DATA READY going low, the conversion result will be present at the outputs. When this data has been read from the 10-bit bus, BLANK and CONVERT is restored to the blank mode to clear the data bus for other converters. When several AD571's are multiplexed in sequence, a new conversion may be started in one AD571 while data is being read from another. As long as the data is read and the first AD571 is cleared within 15µs after the start of conversion of the second AD571, not adta overlap will occur.



10

SAMPLE-HOLD AMPLIFIER CONNECTION TO THE AD571 Many structions in high-speed acquisition systems or digitizing of rapidly changing signals require a sample-hold amplifier (SHA) in front of the A-D converter. The SHA can acquire and hold a signal faster than the converter can perform a conversion. A SHA can also be used to accurately define the exact point in time at which the signal is sampled. For the AD571, a SHA can also serve as a high input impedance buffer. Figure 14 shows the AD571 connected to the AD582 monolithic SHA for high speed signal acquisition. In this configuration the AD582 will acquire a 10 volt signal in less than 10µs with a droop rate less than 100µV/ms. The control signals are arranged so that when the control line goes low, the AD582 is put into the "hold" mode, and the AD571 will begin its converion cycle. (The AD582 stites to final value well in advance of the



Figure 14, Sample-Hold Interface to the AD571

-----

first comparator decision inside the AD571) The DATA READY line is fed back to the other side of the differential input control gate so that the AD582 cannot come out of the "hold" mode during the conversion cycle. At the end of the conversion cycle, the DATA READY line goes low, automatically placing the AD582 back into the sample mode. This feature allows imple control of both the SIIA and the A-D converter with a single line. Observe carefully the ground, supply, and bypass capacitor connections between the two devices. This will minimize ground noise and interference during the conversion cycle to give the most accurate measurements.

INTERFACING THE AD571 TO A MICKOPROCESSOR The AD571 can easily be arranged to be driven from standard microprocessor control lines and to present data to any standard microprocessor bus (4-, 8-, 12-or 16-bit) with a minimum of additional control components. The configuration shown in Figure 13 is designed to operate with 8-bit bus and standard 8080 control stenals.

The input control circuitry shown is required to insure that the AD571 receives a sufficiently long B &  $\tilde{C}$  input pulse. When the converter is ready to start a new conversion, the B &  $\tilde{C}$  line is low, and  $\tilde{DR}$  is low. To command a conversion, the start address decode hne goes low, followed by  $\tilde{WR}$ . The B &  $\tilde{C}$  line will now go high, followed about 1.5µs later by DR. This resets the external flip-flop and brings B &  $\tilde{C}$  back to low, which initiates the conversion cycle. At the end of the conversion cycle, the DR line goes low, the data outputs will become active with the new data and the control lines will return to the stand-by state. The new data will remain active until a new conversion is commanded. The self-pulsing nature of this circuit guarantees a sufficient convert pulse width.

This new data can now be presented to the data bus by enabing the three-state buffers when desired. A data word ( $\theta$ -bit or 2-bit) is loaded onto the bus when its decoded address goes low and the RD line goes low. This arrangement presents data to the bus "left; justified," with highest bits in the 8-bit word; a "right; justified" data arrangement can be set



Figure 15. Interfacing AD571 to an 8-bit Bus (8080 Control Structure)

VOL. I, 10-38 ANALOG-TO-DIGITAL CONVERTERS

up by a simple re-wiring. Polling the converter to determine if conversion is complete can be done by addressing the gate which buffers the DR line, as shown. In this configuration, there is no need for additional buffer register storage since the data can be held indefinitely in the ADS71, since the B &  $\bar{C}$ line is continually held low.

# BUS INTERFACING WITH A PERIPHERAL INTERFACE CIRCUIT

An improved technique for interfacing to a µP bus involves the use of special peripheral interfacing circuits (or I/O devices), such as the MC6821 Peripheral Interface Adapter (PIA). Shown in Figure 16 is a straighforward application of a PIA to multiplex up to 8 AD571 circuits. The AD571 has 3-state outputs, hence the data bit outputs can be paralleled, provided that only one converter at a time is permitted to be the active state. The DATA READY output of the AD\$71 is an open collector with resistor pull-up, thus several DR lines can be wire-ored to allow indication of the status of the selected device. One of the 8-bit ports of the PIA is combined with 2-bits from the other port and programmed as a 10-bit input port. The remaining 6-bits of the second port are programmed as outputs and along with the 2 control birs (which act as outputs), are used to control the 8 AD\$71's, When a control line is in the "I" or high state, the ADC will be automatically blanked. That is, its outputs will be in the inactive open state. If a single control line is switched low, its ADC will convert and the outputs will automatically go active when the conversion is complete. The result can be read from the two peripheral ports, when the next conversion is desired, a different control line can be switched to zero, blanking the previously active port at the same time. Subsequently, this second device can be read by the microprocessor, and so forth. The status lines are wire-ored in 2 groups and connected to the two remaining control pins. This allows a conversion status check to be made after a convert command, if necessary. The ADC's are divided into two groups to minimize the loading effect of the internal pull-up resistors on the DATA READY buffers. See the Motorola MC6821 data sheet for more application detail.



Figure 16. Multiplexing 8 AD571s Using Single PIA for µP Interface. No Other Logic Required (6800 Control Structure).



# Low Cost Sample/Hold Amplifier



#### PRODUCT DESCRIPTION

The AD\$82 is a low cost integrated circuit sample and hold amplifier consisting of a high performance operational amplifier, a low leakage analog switch and a JFET integrating amplifier - all fabricated on a single monolithic chip. An external holding capacitor, connected to the device, completes the sample and hold function.

With the analog switch closed, the AD582 functions like a standard op amp, any feedback network may be connected around the device to control gain and frequency response. With the switch open, the capacitor holds the output at its last level, regardless of input voltage.

Typical applications for the AD582 include sampled data systems, D/A deglitchers, analog demultiplexers, auto null systems, 4. The ADS82 has a typical charge transfer less than 2pC. A strobed measurement systems and A/D speed enhancement.

The device is available in two versions: the "K" specified for operation over the 0 to +70°C commercial temperature range and the "S" specified over the extended temperature range, -55°C to +125°C. All versions may be obtained in either the hermetic sealed, TO 100 can of the TO-116 DIP.

**PRODUCT HIGHLIGHTS** 

- 1. The specially designed input stage presents a high impedance to the signal source in both sample and hold modes (up to ±12V). Even with signal levels up to ±V5, no undesirable signal inversion, peaking or loss of hold voltage occurs.
- 2. The AD582 may be connected in any standard op amp configuration to control gain or frequency response and provide signal inversion, etc.
- 3. The ADS82 offers a high, sample-to-hold current ratio: 10? The ratio of the available charging current to the holding leakage current is often used as a figure of merit for a sample and hold circuit.
- low charge transfer produces less offset error and permits the use of smaller hold capacitors for faster signal acquisition
- 5. The AD582 provides separate analog and digital grounds, thus improving the device's immunity to ground and switching transients.

# SPECIFICATIONS (typical @ +25°C, Vg = ±15V and CH = 1000pF, A = +1 unless otherwise specified)

MODEL	ADSEZK	AD5625
SAMPLE/HOLD CHARACTERISTICS		
Acquisition Time, JOV Step to 0.1%,	<b>A</b>	•
CH = 100pF Acquisition Time, 10V Step to 0.01%,	<b>tu</b> n	-
C _H = 1000pF	23µs	•
Aperture Tune, 20V p-p Input,		
Hold OV	200ns	•
Aperture Jitter, 20V p-p Input, Hold 0V	15m	•
Setting Time, 20V p-p Input,	12.00	
Hold OV, to 0 0 1%	0 Sµs	•
Droop Current, Steady State, \$10VOUT	100pA max	•
Droop Current, Tmin to Tman	InA SpC max (1 SpC typ)	150nA mas
Charge Transfer Sample to Hold Offact	o SmV	•
Feedthrough Capacitance		
20V p.p. luktis Input	0 05pF	•
RANSFER CHARACTERISTICS		-
Open Loop Gain		
VOLT - 20V P.P. RL + 2k	25k min (50k typ)	•
Common Mode Rejection	60d8 min (70d8 typ)	
V _{CM} = 20V p·p Smail Signal Gein Bandwidth	both mus (sone chits	
VOUT + 100mV p.p. CH = 100pF	1 SMHa	•
Full Power Bandwidth		
VOUT = 20V P.P. CH = 100PF	70kHz	•
Siew Rate	<b>}</b> √/µs	
VOUT = 20V p.p. CH = 100pF Output Resistance	J V 100	
Hold Mode, LOUT = 25mA	12Ω	•
Lunranity		
VOUT + 20V P.P. RL + 24	10 01%	:
Ourput Short Circuit Current	125mA	· · · · · · · · · · · · · · · · · · ·
NALOG INPUT CHARACTERISTICS		
Offset Voltage Offset Voltage, Tasts to Tasts	émV maz (2mV syp) 4mV	8mV max (5mV typ)
Bus Current	JuA max (1 SuA typ)	•
Offert Current	300nA mas (75nA typ)	•
Offert Current, Tmin to Tmen	100nA	400mA mas (100mA typ)
Input Capacitance, f = 3MHs	2 <b>p</b> F	•
Input Resistance, Sample or Hold 20V p-p Input, A = +1	FOME	•
Absolute Max Diff Input Voltage	JOV	•
Absolute Max Input Voltage, Either Input	1V6	•
DIGITAL INPUT CHARACTERISTICS		
+Logic Input Voltage		_
Hold Mode, Tmm to Tmm, Logic @ OV Sample Mode, Tmm to Tmm, Logic @ OV	+2V min	:
*Logic Input Current	+0 \$V max	-
Hold Mode, +Logic @ +5V, -Logic @ 0V	L SµA	•
Sample Mode, +Logic @ OV, -Logic @ OV	InA	•
-Logic Input Current		
Hold Mode, +Logic @ +5V, -Logic @ OV	24µA 4uA	•
Sample Mode, +Logic @ OV, -Logic @ OV Absolute Max Diff Input Voltage, +L to +L	•15V/-6V	:
Absolute Man Input Voltage, Either Input	1V1	
POWER SUPPLY CHARACTERISTICS Operating Voltage Range	19V to 118V	19V 10 122V
Supply Current, Re + *	4 3mA max (3mA typ)	•
Power Supply Rejection.		
ΔVs = SV. Sample Mode (see next page)	60dB nun (75dB typ)	•
EMPERATURE RANGE		
Specified Performance	0 to +70°C	+55 °C to +125 °C
Operating	-25 C to +85 C	-55°C 10 +125°C
Storage	-65°C 10 +150°C +300°C	:
Lead Tempersture (Soldering, 15 sec)	-,00 C	
PACKAGE OPTION		
"H" Package TO-100	ADS82KH	ADS#2SH
"D" Package TO 116 Style (D14A)	ADS\$2KD	ADS825D

*Specifications same as AD\$02K *See Section 19 for suchage motions inf

as asbject to change without as

#### VOL. I, 14-24 SAMPLE/TRACK-HOLD AMPLIFIERS

## Applying the AD582

#### APPLYING THE ADS82

Both the inverting and non-inverting inputs are brought out to allow op amp type versatility in connecting and using the AD382. Figure 1 shows the basic non-inverting unity guin connection requiring only an external hold espacitor and the usual power supply bypass capacitors. An offset null pot can be added for more entical applications.



Figure 1. Sample and Hold with A = +1

Figure 2 shows a non-inverting configuration where voltage gain, Ay, is set by a pair of external resistors. Frequency shaping or non-linear networks can also be used for special applicationa.



Figure 2. Sample and Hold with  $A = (1 + R_E/R_I)$ 

The hold capacitor,  $C_H$ , should be a high quality polystyrene (for temperatures below  $*85^{\circ}C$ ) or Teflon type with low dielectric absorption. For high speed, limited accuracy applications, capacitors as small as 100pF may be used. Larger values are required for accuracies of 12 bits and above in order to minimize feedthrough, sample to hold offset and droop errors (see Figure 6). Care should be taken in the circuit layout to minimize coupling between the hold capacitor and the digital or signal inputs.

In the hold mode, the output voltage will follow any change in the -V₅ supply. Consequently, this supply should be well regulated and filtered.

Biasing the +Logic Input anywhere between -6V to +0.8V with respect to the -Logic will set the sample mode. The hold mode will result from any bias between +2.0V and (+V₅ - 3V). The sample and hold modes will be controlled differentially with the absolute voltage at either logic input ranging from -V₅ to within 3V of +V₅ (V₅ - 3V). Figure 3 illustrates some examples of the flexibility of this feature.



Figure 3A. Standard Logic Connection



14

Figure 3B. Inverted Logic Sense Connection



Figure 3C. High Threshold Logic Connection

### DEFINITION OF TERMS

Figure 4 illustrates various dynamic characteristics of the AD582.



Figure 4. Pictorial Showing Various S/H Characteristics

Aperture Time is the time required after the "hold" command until the switch is fully open and produces a delay in the effective sample timing. Figure 5 is a plot giving the maximum frequency at which the AD582 can sample an input with a given accuracy (lower curve).

Aperture Jitter is the uncertainty in Aperture Time. If the Aperture Time is "tuned out" by advancing the sample-to-hold command 200ns with respect to the input signal, the Aperture Jitter now determines the maximum sampling frequency (upper curve of Figure 5).

Acquisition Time is the time required by the device to reach its final value within a given error band after the sample command has been given. This includes switch delay time, slewing time and setting time for a given output voltage change.

Droop is the change in the output voltage from the "held" value as a result of device leakage. In the AD582, droop can be in either the positive or negative direction. Droop rate may be calculated from droop current using the following formula:

$$\frac{\Delta V}{\Delta T} (Volts/sec) = \frac{l(pA)}{C_{H}(pF)}$$

(See also Figure 6.)

Feedtbrough is that component of the output which follows the input signal after the switch is open. As a percentage of the input, feedthrough is determined as the ratio of the feedthrough capacitance to the hold capacitance  $(C_P/C_H)$ .

Charge Transfer is the charge transferred to the holding capacitor from the interelectrode capacitance of the switch when the unit is switched to the hold mode. The charge transfer generates a sample-to-hold offset where:

S/H Offset (V) =  $\frac{\text{Charge (pC)}}{C_{H}(pF)}$ 

(See also Figure 6.)

Sample to Hold Offset is that component of D.C. offset independent of  $C_H$  (see Figure 6). This offset may be nulled using a null pot, however, the offset will then appear during the sampling mode.

Figure 5. Maximum Frequency of Input Signal for %LSB Sampling Accuracy



Figure 5. Semple and Hold Performance as a Function of Hold Capacitance





SAMPLETBACK MOLD AND DEEDE MOL LAN TE

VOL. I, 14-28 SAMPLE/TRACK-HOLD AMPLIFIERS

# 🖁 HARRIS

# HI-508/HI-509

Single 8/Differential

HI-508/509

4

MULTPLEXERS

# 4 Channel CMOS Analog Multiplexer

FEATURES	DESCRIPTION
FAST ACCESS     220ns     FAST SETTLING (0.01%)     600ns	These responsible CMOS multiplexers seck include an erray of right snakog suiches, a digital decode circuit for channel selecting, a voltage reference for logic thresholds, and an ENABLE input for device selection when several multi- plexers are present.
LOW R _{ON} 180 12     8 REAK-BEFORE-MAKE SWITCHING     NO LATCH-UP	The Datatrice Inductor (D)) process used in Inducations of them device elementary is the problem of latch-use. Along, D) offers much have advanced relation devices (concertaints) and the D) of the transition - advanced to the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the device of the
• TTL/CMOSCOMPATIBLE 2.4V (LOGIC "1")	Switches are guaranteed to break-ballore-make, so that read channels are never shorted together. The seniching threshold for each digital input is established by an internal +5V.
APPLICATIONS	retrience; pro-ding a pupulated minimum 2.44 for "1" and Maximum 8.84 for "0". This allows direct interface without pull-up resistors to septials from most lenge femanies. CMOS. THIS, OIL endowne PMOS for proceeding agent transuent overretitage the digital inputs include a sarrae 20012 resistor and a direct camp to besh poper.
<ul> <li>PRECISION INSTRUMENTS</li> <li>DATA ACQUISITION SYSTEMS</li> </ul>	The H1-508 is an eight channel project-dided multiplease, and the H1-509 is a four channel differential version. The recommended supply voltage is 2.15V, however, reasonable performance is available down to 2.7V. Each device a packaged on 16 $\pm$ 07V.
• TELEMETRY	The MI-508/508 is offered in both commercial and military grades. For addition- al Hi-Rel screening including 160 hour burn-in, specify the "-8" suffix. For further information see Application Notes 520 and 521
PINOUTS	FUNCTIONAL DIAGRAMS
H1-508 TOP VIEW $a_0 = 1$ $f = A_1$ $f = A_1$ f	
$\begin{array}{c} HI - 509 \\ \hline HI - 509 \\ \hline \\ A_0 - 1 \\ EAAAL - 2 \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY \\ V SUPPLY $	HI-509

## SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS (Note 1)
-----------------------------------

VSupply ⁽⁺⁾ to VSupply ⁽⁻⁾	44V	Power Dissipation *	750mH
VSupply ⁽⁺⁾ to GND VSupply ⁽⁻⁾ to GND	22V	Operating Temperature Ranges:	
VSupply ⁽⁻⁾ to GND	22V	HI-508/509-2, -8	-55°C to +125°C
		HI-508/509-5.	0°C to 75°C
Digital Input Overvoltage:		HI-508/509-1	-55°C to +200°C
	+4V		
VEN. VA {VSupply(+) VSupply(-)	-4V	Storage Temperature Range	-65°C to +150°C
Analog Input Overvoltage (Note 6):			
VSupply ⁽⁺⁾	+2V		
VD. VS {VSupply(+) VSupply(-)	-2V	*Derate 9.6mW/°C above TA = 9	5°C

ELECTRICAL CHARACTERISTICS Unless otherwise specified: Supplies + 115V, GND = 0V

24 25	1 v P 180 230 5 0 03 10 10 10 220 220 70 310	MA A -15 600 500 100 260 100 1000 1000	UNITS > CC > 42 52 55 54 > > 4 88 8		77 47 1 1 1 1 1 1 1 1 1 1 1 1 1	А1 Х Ц Ц Н Н Н	Hi- Ag Z L H L H L	508 EN H H H H	CHANNLL CHANNLL NONE 1 2 3 4 5 6 7 0
24	230 5 6 03 0 3 10 10 10 220 220	600 500 100 200 100 200 100 5 6 60 7 0 8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		×	Х L H H L L H	A ₀ X H H L H L H	EN L H H H H H H H H H	CHANNLL NONE 1 2 3 4 5 6 7
24	230 5 6 03 0 3 10 10 10 220 220	600 500 100 200 100 200 100 5 6 60 7 0 8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		×	Х L H H L L H	A ₀ X H H L H L H	EN L H H H H H H H H H	CHANNLL NONE 1 2 3 4 5 6 7
	230 5 6 03 0 3 10 10 10 220 220	500 10 100 100 100 100 100 100 100 100 1			×	Х L H H L L H	A ₀ X H H L H L H	EN L H H H H H H H H H	CHANNLL NONE 1 2 3 4 5 6 7
	5 603 63 10 10 220 70	10 200 100 200 100 100 100 100 100 100 1	8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		×	Х L H H L L H	A ₀ X H H L H L H	EN L H H H H H H H H H	CHANNLL NONE 1 2 3 4 5 6 7
	0 03 0 3 10 10 10 220 70	200 100 200 108 5 60 0 8			×	Х L H H L L H	Х Ц Н Ц Н Ц Н Ц		CHANNLL NONE 1 2 3 4 5 6 7
	0 J 10 10 220 70	200 100 200 108 5 60 0 8	44 44 44 44 44 44 44 44 44 44 44 44 44		×	Х L H H L L H	Х Ц Н Ц Н Ц Н Ц		CHANNLL NONE 1 2 3 4 5 6 7
	0 J 10 10 220 70	100 260 108 60 0.0 1	nA aA aA aA v v v v v v v v v v v v v		×	Х L H H L L H	Х Ц Н Ц Н Ц Н Ц		NONE 1 2 3 4 5 6 7
	0 J 10 10 220 70	100 260 108 60 0.0 1	nA aA aA aA v v v v v v v v v v v v v				L H L H L H		1 2 3 4 5 6 7
	10	108 6 60 08 7	2 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				H H H H H		2 3 4 5 6 7
	10	108 6 60 08 7	2 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				L H L H		3 4 5 6 7
	10	100 0.0	πΑ ν ν μΑ Π Π		H H H	L L H	L H H	* * *	5
	10	<u>  -</u>	× "A		н	н	L H	H	i
	10	<u>  -</u>	× "A				H	<u> </u>	
25	10	<u>  -</u>	<u>и</u> А С		<u>["</u> ]	H	L	L	<u> </u>
25	10	<u> </u>	-						
ъ	10	1000							
25	10	1000							
25									
	110						H1-	509	
			[∾[	-t					<u> </u>
		1000	<b> </b> ~			، ا ،			DN"
	190		•					t l	NONE
		1000	1		1	1		н	1
	600				L				2
50	41		- 44	1					1
	1.8	Ì					1	-1	<u>.</u>
	n	1	<b>1</b>						
	1		0F	1					
	- 08		- 44	1					
	{	1 .							
	$C_1 = 1$ e note: the sut $V_A = 0$ ithen it	50 48 5 21 3 06 C1 = 15pF, V1 # risolean octs the sutout Brit who is anticas	50 600 50 80 51 21 21 2 08 2 2 3 08 2 3 50 4 5 5 5 5 5 5 5 5 5 5 5 5 5	300	380	1000         n           300         n           50         48           3         47           21         47           22         44           3         44           2         44           3         48           2         44           3         46           3         47           48         48           49         44           40         45           40         45           40         45           40         45           40         45           40         45           40         45           40         45           40         45           40         45           40         45           40         45           40         45           40         45           40         45           40         45           40         45           40         45           40         45           40         45           40         45<	1000         n         L           300         n         L         L           30         48	1000         n         L         L           300         n         L         L           90         48	1000         n           300         n           30         a           30         a           31         a           32         a           33         a           34         a           35         a           31         a           32         a           33         a           34         a           35         a           36         a           37         a           38         a           39         a           30         a           30         a           30         a           31         a           31         a           32         a           33         a           34         a           35         a

4-26





4-28







# HARRIS

# HA-1608

# +10V Adjustable Voltage Reference

FEATURES	DESCRIPTION
WIDE INPUT RANGE 12V TO	<ul> <li>Bit dets convertion system: A stable + 10V output is provided by a reference sever and buffer amplifier coupled with laser trimmed feed-back and zero back and zero back seresistors. Long term stability is ensured through integration of all reference components into a monolithic design. Fisatibility of HA-1608 is provided through an external turm control which allows the user to adjust the output voltage error of ± 1/4 LSB for 8 bit D/A or A/D converters. Low standby power (0 3mW) makes HA-1608 e nature is total output voltage error of ± 1/4 LSB for 8 bit D/A or A/D converters. Low standby power (0 3mW) makes HA-1608 e nature is leaded to portable battery operated equipment, comparator references, and reference stacking circuits. These devices can also be used on -10V references.</li> </ul>

## FUNCTIONAL SCHEMATIC



PINOUT



### **SPECIFICATIONS**

#### ABSOLUTE MAXIMUM RATINGS (Note 1)

Input Voltage	40V	Operating Temperature R	Inge
Output Short Circuit Duration	Indefinitely	HA-1608-2	-55°C to +125°C
Power Dissipation	500mW	HA-1608-5	0°C to +75°C
Storage Temperature Range	-85°C to +150°C		

ELECTRICAL CHARACTERISTICS (Note 2) (VIN = +15V, IL = 0mA, unless otherwise specified)

		-59	HA-160	•		HA-1608 IPC to +7	•	
PARAMETER	TEMP	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
POWER INPUT CHARACTERISTICS	1							
Input Voltage Range, VIN	Fult	12	15	30	12	15	30	v
Quiescent Current, IQ	25°C Full		1.9	3.0		1.9	3.0	mA
REGULATED OUTPUT CHARA.S								
Output Voltage, VO	25°C	9.990	10.00	10.010	9.990	10.00	10.010	v
Output Load Current, IL	Full	10	20		10	20		mA
Line Regulation (VIN = 12V to 30V)	25°C Full		0.006	0.015		0.006	0.015	%/V
Load Regulation (IL = Open to 10mA)	25°C Fulf		0.006	0.015		0.006	0.015	%/mA
Output Voltage Error Total IL = OrnA (Relative to 8-bit accuracy, see Definition #3)	Full			± 1/4 LSB			±1/4 LS8	
Output Noise Voltage, EN 0,1Hz to 10Hz	Fult		35			35		µV ₉₋₉
Dynamic Load Settling Time to ± 0.1% to ± 0.01%	25°C 25°C		2.5 5			2.5 5		μı
Warm-up Time (10±0.01%)	25°C Full		1 3			1 3		NC

NOTES

 Absolute maximum ratings are limiting values beyond which the serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied.

2. The specified electrical characteristics apply to suggested hook-up only.



HA-1608

OPAMP.COMP.

#### DEFINITIONS

- 1. Dutput Noise Voltage the output noise voltage in a specified frequency band
- 2. Quiescent Current, IQ the current required from the supply to operate the device at no load condition after the device is warmed-up.
- 3. Output Voltage Error Total Includes effects of Noise Voltage, Line Regulation, and AVDTC relative to B-bit (10V output) resolution where 1 LSB = one part in 256 or 39mV for a +10V output.

4. Line Regulation (%/V) - the ratio of the change in output

#### PERFORMANCE CURVES



5

GND





יואמי 0 -VI-16V TYPI

voltage to the change in line voltage producing it; line rep. ulation (%/V) = [( \DV 0/10V) x 100] / \DV IN.

- Load Regulation (%/mA) the ratio of the change in output voltage to the change in load current producing it, load rag-
- 6 Dynamic Load Settling Time the time required for the output to settle to within the specified error band for a change in

ulation (%/mA) = [(ΔVg/10V) x 100]/ΔmA

the load current of 1mA.

5KO

- 16V



# Two-Terminal IC Temperature Transducer

AD590 FUNCTIONAL BLOCK DIAGRAM

AD590*

8

#### FEATURES

Linear Current Output: 1µA/K Wide Range: -66°C to +160°C Probe Compatible Ceramic Sensor Package Two-Terminal Device: Voltage In/Current Out Laser Trimmed to 20.5°C Calibration Accuracy (AD590M) Excellent Linearity: 20.3°C Over Full Range (AD590M) Wide Power Supply Range: +4V to +30V Sensor Isolation from Case



BOTTOM VIEW

#### PRODUCT DESCRIPTION

The AD590 is a two-terminal integrated circuit temperature transducer which produces an output current proportional to absolute temperature. For supply voltages between +4V and +30V the device acts as a high impedance, constant current regulator passing 1 $\mu$ A/K. Laser trimming of the chip's rhin film relators is used to calibrate the device to 298.2 $\mu$ A output at 298.2K (< 25 C).

The AD590 should be used in any temperature sensing application below  $+150^{\circ}$ C in which conventional electrical temperature sensors are currently employed. The inherent low cost of a monolithic integrated circuit combined with the elimination of support circuitry makes the AD590 an attractive alternative for many temperature measurement situations. Linearization circuitry, precision voltage amplifiers, resistance measuring circuitry and cold junction compensation are not needed in applying the AD590.

In addition to temperature measurement, applications include temperature compensation or correction of discrete components, biasing proportional to absolute temperature. flow rate measurement, level detection of fluids and anemometry. The AD590 is available in chip form making it suitable for hybrid circuits and fast temperature measurements in protected environments.

The AD590 is particularly useful in remote sensing applications. The device is insensitive to voltage drops over long lines due to its high impedance current output. Any well-insulated twisted pair is sufficient for operation hundreds of fect from the receiving circuitry. The output characteristics also make the AD590 easy to multiplex, the current can be switched by a CMOS multiplexer or the supply voltage can be switched by a logic gate output.

*Covered by Patent No. 4,123,698

#### PRODUCT HIGHLIGHTS

- The AD590 is a calibrated two terminal temperature sensor requiring only a dc voltage supply (+4V to +30V). Costly transmitters, filters, lead wire compensation and linearization circuits are all unnecessary in applying the device.
- State-of-the-art laser trimming at the wafer level in conjunction with extensive final testing insures that AD590 units are easily interchangeable.

3. Superior interference rejection results from the output being a current rather than a voltage. In addition, power requirements are low (1.5mW's  $\oplus$  5V  $\oplus$  +25°C). These features make the AD590 casy to apply as a remote sensor.

- 4. The high output impedance (>10MΩ) provides excellent rejection of supply voltage drift and ripple. For instance, changing the power supply from 5V to 10V results in only a 1µA maximum current change, or 1°C equivalent error.
- The AD590 is electrically durable: it will withstand a forward voltage up to 44V and a revene voltage of 20V. Hence, supply irregularities or pin reversal will not damage the device.

SPECIFICATIONS (@ + 25°C and Vs = 5V unless otherwise noted)

	AD590I		AD590j			AD590K			
Mia	Тур	Max	Mia	Typ	Max	مناه	Тур	Max	Uaite
						t			
		+ 44			+ 44	1		+ 44	Volus
		- 20	i		- 20			- 20	Volta
		= 200			± 200			± 200	Volta
- 55		+ 150	- 55		+ 150	- 55		+ 150	τ
- 65		+ 155	- 65		+ 155	- 65		+ 155	т <u>с</u>
		+ 300	i i		+ 300			+ 300	÷
1 .4		+ 30			+ 30	• •		+ 30	Volts
1	298 2			298.2			298.2		
	1			1			1		µA/K
		±10	l I		± 5.0			\$2.5	÷C
									_
		± 20			± 10			±5.5	<del>۳</del>
		25.8			± 3.0			22.0	r
		23.0	ł		#1.5			20.8	ΥC
1		:01			201	1		201	rc –
		:0.1			= 0 1			±0.1	τ
1	40			40			40		pA/√Hi
E C									
1	05			0.5		[	0.5		₩A/V
1	02			0.2		F	0.2		"A/V
	0.1			0.1			01		µ.A/V
1	10**			1010		1	10**		n
1	100			100			100		۶F
	20			20			20		
1	10			10		1	10		pА
									·····
	AD5901H	1		AD590JH	1		AD590KI	4	
1	AD\$901F			AD5901F		1	AD590KI		
	- 55 - 65	Mis         Typ           - 55         - 65           - 4         296 2           1         1           40         0 5           0 2         0,1           10 ⁶⁰ 100           20         10	Mia         Typ         Max           -44         -20           -55         -150           -65         +150           -65         +150           -4         -30           -4         -30           -4         -30           -4         -30           -4         -30           -4         -30           -55         -135           -65         -135           -7         -130           -10         -20           -10         -20           -10         -20           -10         -20           -10         -20           -10         -20           -10         -20           -10         -20           -10         -20           -10         -20	Mia         Typ         Max         Min           - 44         - 20         - 200           - 55         - 155         - 65           - 65         - 155         - 65           - 4         - 30         - 4           - 20         - 35         - 65           - 65         - 155         - 65           - 4         - 30         - 4           208 2         1         218           208 2         1         218           208 2         1         201           201         201         201           201         201         201           1016         1006         100           100         10         10           100         10         10	Mia         Typ         Max         Mia         Typ           -44         -20         200         -55         -65           -55         +150         -55         -65         -65           -4         +30         -4         -         -75           -65         +155         -65         -65         -           -4         +30         -4         -         -           206         2         1         1         1           206         2         1         1         1           206         2.5.6         2.3.6         2.5.6         2.5.6         2.5.6           201         2.01         2.01         -         -         -           -40         -0.1         -         0.1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	Min         Typ         Maz         Min         Typ         Max           -44         -20         -20         -20           -55         -150         -55         +150           -65         +155         -65         +155           -65         +155         -65         +151           -65         +155         -65         +151           -65         +155         -65         +153           -65         +155         -65         +153           -65         +161         216         298.2           1         210         298.2         1           298.2         1         210         201           201         201         201         201           201         201         201         201           01         01         01         101           100         100         20         20           20         20         20         20           10         100         100         100           10         100         100         20	Min         Typ         Max         Min         Typ         Max         Min           -44         -44         -44         -20         -20         -20           -55         -50         -55         +155         -65         +155         -65           -65         +155         -65         +155         -65         +155         -65           -4         +30         +4         +30         +4         -30         +4           298.2         1         1         25.6         -55         -55           -10         298.2         1         -20         -20         -20           298.2         1         1         25.6         -4         -4           298.2         1         1         25.6         -55         -55           -201         201         201         201         -201         -201         -201         -201         -201         -201         -201         -201         -201         -201         -201         -201         -201         -201         -201         -201         -201         -201         -201         -201         -201         -201         -201         -201         -201         -20	Min         Typ         Max         Min         Typ         Max         Min         Typ           -44         -44         -44         -20         -20         -20           -20         -20         -20         -20         -55         -155           -65         +155         -65         +155         -65         +155           -65         +155         -65         +155         -65         +165           +300         +4         +30         +4         -30         +4           296.2         296.2         296.2         1         1           ±10         ±5.0         -55         -155         -155           ±0         ±10         ±5.0         -1         1           ±10         ±0.1         ±0.1         1         1           ±0.1         ±0.1         ±0.1         ±0.1         1           ±0.1         ±0.1         ±0.1         ±0.1         10           ±0.2         0.2         0.2         0.2         0.2           0.1         0.1         10 ¹⁰ 10 ¹⁰ 100           100         100         100         10      10	Min         Typ         Max         Min         Typ         Max         Min         Typ         Max           -44         -44         -44         -44         -44         -44         -44           -20         -20         -20         -20         -20         -20         -20           -55         +150         -55         +155         -65         +155         -65         +155           -65         +155         -65         +155         -65         +155         +200           -44         +30         -4         +30         -4         +30         +4         +30           -44         +30         -4         +30         -4         +30         +4         +30           -4         +30         -4         +30         +4         +30         +4         +30           -1         218         298.2         298.2         1         1         21.5         22.6         22.6         22.6         22.6         22.6         22.6         22.6         22.6         22.6         20.1         20.1         20.1         20.1         20.1         20.1         20.1         20.1         20.1         20.1         20.1<

"The AD590 has been used at - 100"C and + 200"C for short periods

of manuarment with no physical damage to the device. However, the absolute errors specified apply to only the rated performance importance range. Maximum deviation between + 25°C readings after tempera-

amperature range. Maximum deviation between + 25°C readings after temperasure cycling between - 55°C and + 150°C, guaranteed not tested. "Conditions constant + 5V, constant + 125°C, guaranteed, not issued. See Serios 19 for pickage autors information. Specifications where to change motion associ-Specifications where to change motion and approduction surse is final electronic terr. Results from these rests are used to calculate outgrang quality ferets. All must and max specifications are guaranteed, although only those shows to biddless are tested on all production wants.



"Lenkage current doubles every 10°C

#### **TEMPERATURE SCALE CONVERSION EQUATIONS**

$$C = \frac{3}{9} \cdot (^{\circ}F - 32)$$
 K =  $^{\circ}C + 273.15$   
 $^{\circ}F = \frac{9}{5} \cdot C + 32$   $^{\circ}R = ^{\circ}F + 459.7$ 

TEMPERATURE MEASUREMENT COMPONENTS VOL. I. 8-15

VOL. I, 8-16 TEMPERATURE MEASUREMENT COMPONENTS

Model	AD596L			1	AD590M		
	Mia	Typ	Max	Min	Typ	Мах	Uaita
ABSOLUTE MAXIMUM RATINGS							
Forward Voltage (E + to E - )			+ 44			+ 44	Volts
Revene Voltage (E + to E - )			- 20	1		- 20	Volta
Breakdown Voltage (Case to E + or E - )			± 200			± 200	Volta
Raied Performance Temperature Range	- 55		+ 150	- 55		+ 150	τ
Storage Temperature Range	- 65		+ 155	- 65		+ 155	r.
Lead Temperature (Soldering, 10 sec)	1		+ 300			+ 300	r c
PUWERSUPPLY	1			t			
Operating Voltage Range	1		+ 30	1 .4		+ 30	Volu
OUTPUT	1			+			
Nominal Current Output (e. + 25°C (298 2K)		298.2		1	298.2		щA
Nominal Temperature Coefficient		1			1		uA/K
Calibration Error (a. + 25%	1	-	#1.0	1	•	× 0.5	rc i
Absolute Error (over rated performance	1			1			1
Unitpersiture range)				1			
Without External Calibration Adjustment			#3.0	1		\$1.7	- C
Wath + 25°C Calabration Error Set to Zero			21.6	1			r.
Nonimersty			28.6	1		±0.3	l rc
Reposebulity ²	1		20.1	i i		20.1	r.
Long Term Druft [#]	1		20.1	1		20.1	r c
Current None		40		1	40		DA VH2
Power Supply Rejection				1			1
+ 4V x V1 x + SV		0.5		1	0.5		MAN
• 5V=V1= + 15V		0.2		1	0.2		MAN
+ 15V 5 V3 5 + 30V		0.1		1	0.1		MAN
Case Isolation to Either Lead		1010		ł	1010		0
Effective Shunt Capacitance	1	100			300		pF
Electrical Turn-On Turne	1	20		1	20		
Reverse Bus Leakage Current*	1			I			
Revenue Voltage = 10V)	1	10		1	10		pA
ACKAGE OPTION'	1			t			t
"H" Pickage: TO-52	1	ADS90LH		1	AD590M	4	
'F" Pachage Flat Pack (F2A)	1	AD590LF			AD590M	-	1

#### CIRCUIT DESCRIPTION¹

The AD390 uses a fundamental property of the silicon trantators from which its made to realize its temperature propotional characteristic: if two identical transistors are operated at a constant ratio of collector current densities, r, then the difference in their base-emitter voltages will be (kT/q)(In r). Since both k. Boltzman's constant and q, the charge of an electron, are constant, the resulting voltage is directly proportional to absolute temperature (PTAT).

In the AD590, this PTAT voltage is converted to a PTAT current by low temperature coefficient thin film resistors. The total current of the device is then forced to be a multiple of



this PTAT current. Referring to Figure 1, the schematic diagram of the AD590, Q8 and Q11 are the transistors that produce the PTAT voltage. R5 and R6 convert the voltage to current. Q10, whose collector current tracks the collector currents in Q9 and Q11, supplies all the bias and substrate leakage current for the rest of the circuit, forcing the total current to be PTAT. R5 and R6 are laser trimmed on the wafer to calibrate the device at +25° C.

Figure 2 shows the typical V-1 characteristic of the circuit at +25°C and the temperature extremes.



⁴ For a more detailed circuit description see M.P. Timko, "A Two-Terminal IC Temperature Transducer," IEEE J. Solid State Circuita, Vol. SC-11, p. 784-788, Dec. 1976.

TEMPERATURE MEASUREMENT COMPONENTS VOL 1. 8-17

#### EXPLANATION OF TEMPERATURE SENSOR SPECIFICATIONS

The way in which the AD\$90 is specified makes it easy to apply in a wide variety of different applications. It is important to understand the meaning of the various specifications and the effects of supply voltage and thermal environment on accursey.

The AD590 is basically a PTAT (proportional to absolute temperature)³ current regulator. That is, the output current is equal to a scale factor times the temperature of the sensor in degrees Kelvin. This scale factor is trimmed to  $J\mu A/K$  at the factory, by adjusting the indicated temperature (i.e. the output current) to agree with the actual temperature. This is done with SV across the device at a temperature within a few degrees of 23°C (298.2K). The device is then packaged and tested for accurate, to accurate, your temperature.

#### CALIBRATION ERROR

8

At final factory test the difference between the indicated temperature and the actual temperature is called the calibration error. Since this is a scale factor error, its contribution to the total error of the device is PTAT. For example, the effect of the 1°C specified maximum error of the AD590L varies from 0.73°C at  $-55^{\circ}$ C to  $1.42^{\circ}$ C at  $150^{\circ}$ C. Figure 3 shows how an exaggerated calibration error would vary from the ideal over temperature.



Figure 3. Celibration Error vs. Temperature

The calibration error is a primary contributor to maximum total error in all AD590 grades. However, since it is a scale factor error, it is particularly easy to trim. Figure 4 shows the most elementary way of accomplishing this. To trim this circuit the temperature of the AD590 is measured by a reference temperature sensor and R is trimmed so that  $V_T = 1mV/K$  at that temperature. Note that when this error is trimmed out at one temperature, its effect is zero over the entire temperature range. In most applications there is a current to voltage conversion resistor (or, as with a current input ADC, a reference) that can be trimmed on tat.



Figure 4. One Temperature Trim

 ${}^{3}T(^{6}C) = T(K) - 273.2$ , Zero on the Kelvin scale is "absolute zero", there is no lower temperature.

VOL. I. 8-18 TEMPERATURE MEASUREMENT COMPONENTS

## ERROR VERSUS TEMPERATURE: WITH CALIBRATION ERROR TRIMMED OUT

Each AD390 is also tested for error over the temperature range with the calibration error trimmed out. This specification could also be called the "variance from PTAT" since it is the maximum difference between the actual current over temperature and a PTAT multiplication of the actual current at 25°C. This error consists of a slope error and some curvature, mostly at the temperature extremes. Figure 5 shows a typical AD90K temperature curve before and after calibration error trimming.





ERROR VERSUS TEMPERATURE: NO USER TRIMS Using the AD590 by simply measuring the current, the total error is the "variance from PTAT" described above plus the effect of the calibration error over temperature. For example the AD590L maximum total error varies from 2.33°C at -55°C to 3.02°C at 150°C. For simplicity, only the larger figure is shown on the specification page.

#### NONLINEARITY

Nonlinearity as it applies to the AD590 is the maximum deviation of current over temperature from a best-fit straight line. The nonlinearity of the AD590 over the -55°C to +150°C range is superior to all conventional electrical temperature sensors such as thermocouples, RTD's and thermistors. Figure 6 shows the nonlinearity of the typical AD590K from Figure 5.



Figure 7A shows a circuit in which the nonlinearity is the major contributor to error over temperature. The circuit is trummed by adjusting  $R_{\parallel}$  for a 0V output with the ADS90 at 0°C. R₂ is then adjusted for 10V out with the sensor at 100°C. Other pairs of temperatures may be used with this procedure as long as they are measured accurately by a reference sensor. Note that for +15V output (130°C) the V of the op amp must be greater than 17V. Also note that V - should be at least -4V. if V- is ground there is no voltage applied across the device.

## **Understanding the AD590 Specifications**



Figure 7A. Two Temperature Trim



#### Figure 7B. Typical Two-Trim Accuracy

#### **VOLTAGE AND THERMAL ENVIRONMENT EFFECTS**

The power supply rejection specifications show the maximum expected change in output current versus input voltage changes. The insensitivity of the output to input voltage allows the use of unregulated supplies. It also means that hundreds of ohms of resistance (such as a CMOS multiplexer) can be tolerated in series with the device.

It is important to note that using a supply voltage other than SV does not change the PTAT nature of the AD\$90. In other words, this change is equivalent to a calibration error and can be removed by the scale factor trim (see previous page).

The AD\$90 specifications are guaranteed for use in a low thermal resistance environment with 5V across the sensor. Large changes in the thermal resistance of the sensor's environment will change the amount of self-heating and result in changes in the output which are predictable but not necessanly desirable.

The thermal environment in which the AD590 is used determines two important characteristics: the effect of self heating and the response of the sensor with time



#### Figure 8. Thermal Circuit Model

Figure 8 is a model of the AD590 which demonstrates these characteristics. As an example, for the TO-52 package,  $\theta_{\rm JC}$  is the thermal resistance between the chip and the case, about 26°C/watt.  $\theta_{CA}$  is the thermal resistance between the case and its surroundings and is determined by the characteristics of the thermal connection. Power source P represents the power dissipated on the chip. The rise of the junction temperature, Ti, above the ambient temperature TA is:

$$T_{j} - T_{A} = P \left( \theta_{jC} + \theta_{CA} \right). \qquad \text{Eq. 1}$$

Table I gives the sum of  $\theta_{1C}$  and  $\theta_{CA}$  for several common thermal media for both the "H" and "F" packages. The heatsink used was a common clip-on. Using Equation 1, the temperature rise of an AD590 "H" package in a stirred bath at +25°C, when driven with a 5V supply, will be 0.06°C. However, for the same conditions in still air the temperature rise is 0.72°C. For a given supply voltage, the temperature rise varies with the current and is PTAT. Therefore, if an application circuit is trimmed with the sensor in the same thermal environment in which it will be used, the scale factor trim compensates for this effect over the entire temperature range.

8

MEDIUM		(°C/watt)	<u>r (sec</u>	)(Note 3)
	Н	E	Ħ	E
Aluminum Block	30	10	0.6	0.1
Stirred Oil ¹	42	60	1.4	0.6
Moving Air ²				
With Heat Sink	45	-	\$.0	-
Without Heat Sink	115	190	13.5	10.0
Still Air				
With Heat Sink	191		108	-
Without Heat Sink	480	650	60	30
Now: 7 is dependent upor listed above.	velocity of	oil; average	e of severa	l velocities

3 Air velocity a 9ft/sec. *The time constant is defined as the time required to reach 63.2% of an instantaneous temperature change.

#### Table I. Thermal Resistances

The time response of the AD\$90 to a step change in temperature is determined by the thermal resistances and the thermal capacities of the chip, CCH, and the case, CC. CCH is about 0.04 watt-sec/°C for the AD590. Ce varies with the measured medium since it includes anything that is in direct thermal contact with the case. In most cases, the single time constant exponential curve of Figure 9 is sufficient to describe the time response, T(t). Table I shows the effective time constant, r, for several media.



TEMPERATURE MEASUREMENT COMPONENTS VOL. 1. 8-19

#### VOL. I, 8-20 TEMPERATURE MEASUREMENT COMPONENTS

Connecting several AD590 units in series as shown in Figure 11 allows the minimum of all the sensed temperatures to be indicated. In contrast, using the sensors in parallel yields the average of the sensed temperatures.

Figure 11. Series & Perallel Connection

**GENERAL APPLICATIONS** 

and 2 are left open.

10kΩ (0.1%)

ADSAC

AD2040

GŇD

Figure 10. Variable Scale Display

Figure 10 demonstrates the use of a low-cost Digital Panel

Meter for the display of temperature on either the Kelvin,

Celsius or Fahrenheit scales. For Kelvin temperature Pins 9,

4 and 2 are grounded; and for Fahrenheit temperature Pins 4

The above configuration yields a 3 digit display with 1°C or

333.30

4059

VT AVG

ature calibration is performed on an AD590K, L. or M.

The circuit of Figure 12 demonstrates one method by which differential temperature measurements can be made, R1 and R2 can be used to trim the output of the op amp to indicate

#### v. 1**0**⊾Ω AD5901 R, AD74 OFFSET CALIBRATION 640 T1 - T2I(10mV/*C) AD690L 50k ( 10kΩ . GAIN SCALING OFFEET SCALING

Figure 12. Differential Measurements

a desired temperature difference. For example, the inherent offset between the two devices can be trimmed in. If V+ and V- are radically different, then the difference in internal disarpation will cause a differential internal temperature rise. This effect can be used to measure the ambient thermal resistance seen by the sensors in applications such as fluid level detectors or anemometry.



Figure 13. Cold Junction Compensation Circuit for Type J Thermocouple

Figure 13 is an example of a cold junction compensation circuit for a Type J Thermocouple using the AD590 to monitor the reference junction temperature. This circuit replaces an ice-bath as the thermocouple reference for ambient temperatures between +15°C and +35°C. The circuit is calibrated by adjusting RT for a proper meter reading with the measuring junction at a known reference temperature and the circuit near +25°C. Using components with the T.C.'s as specified in Figure 13, compensation accuracy will be within ±0.5°C for circuit temperatures between +15°C and +35°C. Other thermocouple types can be accommodated with different resistor values. Note that the T.C.'s of the voltage reference and the resistors are the primary contributors to error.





Figure 14 is an example of a current transmitter designed to be used with 40V, 1kΩ systems; it uses its full current range of 4mA to 20mA for a narrow span of measured temperatures. In this example the 1µA/K output of the AD590 is amplified to ImA/°C and offset so that 4mA is equivalent to 17°C and 20mA is equivalent to 33°C. Ry is trimmed for proper reading at an intermediate reference temperature. With a suitable choice of resistors, any temperature range within the operating limits of the AD590 may be chosen.



Figure 15. Simple Temperature Control Circuit

Figure 15 is an example of a variable temperature control cir-(uit (thermostat) using the AD590,  $R_H$  and  $R_L$  are selected to At the high and low lumits for RSET. RSET could be a simple Pot. a calibrated multi-turn pot or a switched resistive divider. Powering the AD590 from the LOV reference isolates the AD590 from supply variations while maintaining a reasonable voltage (~7V) across it. Capacitor C1 is often needed to filter estraneous noise from remote sensors. R_B is determined by the B of the power transistor and the current requirements of the load.

Fure 16 shows how the AD590 can be configured with an 8bt DAC to produce a digitally controlled set point. This

HGH - TEMPERATURE ABOVE SET POW OUTPUT LOW - TEMPERATURE BELOW SET POINT Figure 16. DAC Set Point

particular circuit operates from 0 (all inputs high) to +\$1°C (all inputs low) in 0.2°C steps. The comparator is shown with 1°C hysteresis which is usually necessary to guard-band for extraneous noise; omitting the \$.1MΩ resistor results in no hysteresis.



The voltage compliance and the reverse blocking characteristic of the AD\$90 allows it to be powered directly from +5V CMOS logic. This permits easy multiplexing, switching or pulsing for minimum internal heat dissipation. In Figure 17 any AD590 connected to a logic high will pass a signal current through the current measuring circuitry while those connected to a logic zero will pass insignificant current. The outputs used to drive the AD590's may be employed for other purposes, but the additional capacitance due to the AD590 should be taken into account.



Figure 18. Matrix Multiplexer

CMOS Analog Multiplexers can also be used to switch AD590 current. Due to the AD590's current mode, the resistance of such switches is unimportant as long as 4V is maintained across the transducer. Figure 18 shows a circuit which combines the principal demonstrated in Figure 17 with an 8 channel CMOS Multiplexer. The resulting circuit can select one of eighty sensors over only 18 wires with a 7 bit binary word. The inhibit input on the multiplexer turns all sensors off for minimum dissipation while idling.



Figure 19. 8-Channel Multiplexer

Figure 19 demonstrates a method of multiplexing the AD\$90 in the two-trim mode (Figure 7). Additional AD590's and their associated resistors can be added to multiplex up to 8 channels of ±0.5°C absolute accuracy over the temperature range of -55°C to +125°C. The high temperature restriction of +125°C is due to the output range of the op amps; output to +150°C can be achieved by using a +20V supply for the op amp.

TEMPERATURE MEASUREMENT COMPONENTS VOL I, 8-21

## VOL. I, 8-22 TEMPERATURE MEASUREMENT COMPONENTS