VLA Technical Report No. 64
 Synthesizer Control Module, Type L16

Paul Harden
12/15/86
"The untold story of the FLUKES in the VLA System."

TABLE OF CONTENTS

1.0 Introduction
1.1 Purpose
1.2 MLO/Synthesizer System Overview
2.0 Brief Functional Description
2.1 Module DCS Addressing
2.2 Command Processing
2.3 Frequency Counter
$2.4 \quad 1$-Second Gating and Time Base
2.5 Update Sequencing
2.6 Monitor Data Actions
2.7 Frequency Display
2.8 Error/Status Flags
3.0 Detailed Circuit Analysis
3.1 Module Interconnections and Specifications
3.2 Module Selection/Addressing
3.3 5 Mhz Time Base
3.4 Command Loading
3.5 Frequency Counter
3.6 Update Sequencing \& Control Logic
3.7 Monitor Data Processing
3.7.1 Command Echo Logic
3.7.2 Frequency Count Monitor Logic
3.8 Frequency Display Logic
3.9 Error Flags and Status
4.0 List of L16 Drawings
5.0 List of MLO Drawings

LIST OF ILLUSTRATIONS

Figure 1 - MLO/Synthesizer Block Diagram
Figure 2 - L16 Block Diagram

Figure 3 - Time Base Logic \& Waveforms
Figure 4 - Command Loading

Figure 5 - Frequency Counters \& Waveforms
Figure 6 - Update Logic \& Waveforms
Fỉgure 7 - Frequency Display Logic \& Waveforms
Figure 8 - Troubleshooting Tree
Appendix 1 - L16 Drawings
Logic Schematic Diagram
Exploded View
Top Assembly BOM
I.C. \& Component Locations

Ass'y A3 Prescaler PCB Assembly/BOM
Ass'y A5 Display PCB Assembly/BOM
Appendix 2 - Special Component Data Sheets
SP8637B Prescaler I.C.
DL330M 3-Digit LED I.C.
MCL 10 db Coupler

This manual describes the operation of the Model B Synthesizer Control module, type Ll6. Functional and detailed circuit analysis serve as a troubleshooting guide in performing corrective maintenance actions. Pertinent component data sheets, assembly drawings, Bill of Materials, etc provide further maintenance information and construction data should additional Ll6's (over the existing ten units) be someday required.

The System Overview (Sect 1.2) presents a brief description of the synthesizer portion of the Master Local Oscillator (MLO) system, the generation of LO's A, B, C, D, and the differences existing between the two synthesizer systems in Racks MT-1 and MT-2. This is presented to place the system in proper context and thus offer the role. purpose and design considerations of the L16's in proper perspective.

1.1 PURPOSE

The Synthesizer Control Module $L 16$ provides the Monitor and Control interfacing required for remote frequency tuning and monitoring of the Model 6160B Fluke Synthesizers by the Central Computers via the DCS System. The four primary functions of the L16 are:
a) Formatting standard DCS serial command data into the 36 bit parallel "latched" tuning commands required by the Fluke Synthesizers for remote operation.
b) Command "echo" readback for command word verification.
c) Real-time 9-digit frequency counter of the Synthesizer RF output for both local display and DCS monitor data.
d) Various status and error monitor reporting.

The Command Echo and Frequency Counter data is used by the MODCOMP Control Computers to confirm proper tuning of the Flukes as a result of the most recent commanded frequency to ensure proper operation of this segment of the MLO System. In Spectral Line and Polarization mode observations., proper setting of the four Flukes, within 2 Hz , is of paramount importance as this establishes the final IF-to-baseband conversion prior to correlation.

There are eight Fluke Synthesizers and associated L 16 modules; one for each Fluke, physically located in Racks MT-1 and MT-2 as follows:

Rack MT-1 contains four sets of L16's/Fluke Synthesizers, labeled Channel A, B, C and D. This is the primary local oscillator source for the VLA LO/IF System in the Central Electronics Room. The Fluke RF outputs are routed through their respective L16, sent to power dividers in Rack MS for equal distribution to the MLO electronics in Racks M-1 and M-2, with RF relays in Rack MS selecting either Rack M-1 or M-2 as the "Master" LO System. Rack MT-1 also contains Data Set 3 (DCS-0) serving the L16's in both MT-1 and MT-2 racks.

Rack MT-2 contains four sets of L16's/Fluke Synthesizers, labeled Channels AA, BB, CC, and DD to distinguish these four channels from MT-1. This rack serves the dual-role of providing the local oscillator signals required by the VLBA observing equipment plus as a ready backup for the VLA in the event of a Rack MT-1 failure. Additionally, Rack MT-1 Flukes can be selected by various VLA antenna D-Racks as an alternate source of LO for split-IF operation. The L17 Synthesizer Phase Lock modules and associated electronics are identical to the Rack MT-1, M-1/M-2 arrangement, except these modules are physically located in Rack MT-2 to form a second, self-contained MLO system.

The Fluke Synthesizers in Racks MT-1 and MT-2 are thus both under computer control for remote frequency tuning and monitoring through their respective Ll6 control modules.

1.2 MLO/SYNTHESIZER SYSTEM OVERVIEW

(Fig 1)
The VLA antennas provide four IF channels of astronomical data, called IF's A, B, C, and D, each being 50 Mhz in bandwidth. In Continuum Mode, the distributed power across the 50 Mhz band is of interest. In Spectral Line Mode, a specific frequency of much narrower bandwidth, located within the 50 Mhz IF , is the signal of interest with all other signals to be rejected. In Polarization Mode IF's A and B contain right-hand circularly polarized signals, while IF's C and D contain the left-hand polarized signals. The role of the Central Electronics LO/IF system is to convert these four IF's to 0 - 50 Mhz baseband (video) analog data for the Samplers and Correlator in the Screen Room. This must be accomplished to accomodate the desired mode (Continuum, Spectral Line, Polarization) while preserving the phase characteristics of the signals within nano-second accuracy.

These four IF's emerge from the T1 Modems in the 1.3-1.7 Ghz passband with the same spectral distribution as they left the antenna. Two levels of conversion follow, both being performed by the Baseband Converter module, type T3. Conversion to UHF occurs by mixing IF's AC with 1200 Mhz to produce 200-250 Mhz
while IF's BD are mixed with 1800 to produce $200-250$ Mhz. To accomplish the final $0-50 \mathrm{Mhz}$ conversion, the LO signals must mix with these two ranges to produce IF's with a center frequency of 25 Mhz , being half the bandwidth. Lo values would thus be 125 Mhz and 225 Mhz , and indeed these values are used for Continuum Mode baseband conversion when the full 50 Mhz bandwidth is desired. However, for Spectral Line Mode, it is desireable to be able to select any portion of each of these four IF passbands as the center frequency and filter out narrower bandwidths for increased selectivity and reject unwanted signals. The resultant narrow bandwidth signal coincides with the precise spectral-line of interest. For this reason, the local oscillator required for the final IF-to-baseband conversion must be variable in frequency. Slewing the center frequency along the four IF passbands to match the various bandwidth filters is the primary function of the four Fluke Synthesizers; a tunable Lo in the ranges of $100-150 \mathrm{Mhz}$ (for If's AC) and 200-250 Mhz (for IF's BD) in 2 Hz steps under computer control.

The UHF converters in T3 produce composite IF AC being upper side band (USB) and IF BD being inverted lower sideband (LSB) as a result of the 1200 and 1800 Mhz LO. Considering IF AB, the composite signal is applied to two USB-rejection mixers so that the desired sideband is selected and the unwanted image substantially rejected. Mixer outputs are the $0-50 \mathrm{Mhz}$ baseband desired, with Fluke Synthesizers A and B being the Lo source (indirectly). In a similar manner, IF's $C D$ are applied to USBrejection mixers, producing two baseband outputs, Fluke C and D being the LO source.

The four A, B, C, D basebands are amplified and sent to Baseband Filter modules, type T4, one for each IF, where the final analog filter to establish the desired bandwidth, down to 0.098 Mhz is accomplished. Filter selection is under computer control using pin-diode switches to select one-of-eight octave step filters. Filter select commands are decoded and distributed to the proper filter modules for Baseband Control Module T6C, one for each antenna/D-Rack. The pin-diode arrays and filters are in the T4 Baseband Filter Modules, whose output are further amplified by Baseband Drivers, type T5C, and sent to the Samplers in the Correlator Room. The T5'C, one for each IF, also generates the ALC used by the Samplers for level control. Thus through the actions of the Fluke Synthesizers and Baseband Control and Filter modules, precise center frequency tuning and selectable bandwidth filtering is accomplished and coordinated under computer control via the DCS System. The Flukes/L16's are serviced by DCS-0, Data Set 3 and the filter selection through Data Set 5 of the associated DCS Channe1.

The output of the Fluke Synthesizers are not sent to the four T3 Converter modules (per antenna) directly. The outputs are processed by Synthesizer Phase Lock modules, type Ll7, one for
synthesizer pair $A C$, another for pair $B D$, to ensure these $L O$ pairs are phase-locked to the MLO to support polarization mode observing. In polarization mode, IF A is the RH polarization signal, with the corresponding LH polarization signal being IF C. Note the sum difference between A (100-150 Mhz) and C (200-250 Mhz) is always 350 Mhz . Polarization analysis requires the phase coherence between A (RH pol) and C (LH Pol) signals to be maintained within a fraction of a cycle with a $350 \mathrm{Mhz}+/-2 \mathrm{~Hz}$ sum difference. To preserve this phase, the local oscillator signals AC must likewise be properly phased. The same is true for IF B (RH pol) and D (LH pol) pairs.

The Synthesizer Phase Lock modules L17 perform two major functions:

1. Since the Fluke Synthesizers can not tune above 160 Mhz , and LO's B and C must be tunable over $200-250 \mathrm{Mhz}$, the L 17 performs the frequency doubling required to $L O B$ and C. The Flukes are tunable with a 1 Hz accuracy; however this accuracy is multiplied to $+/-2 \mathrm{~Hz}$ through the frequency doublers. Lo signals A and D are not modified by their respective L17's.
2. LO AC phase locking is performed by a portion of the A and 'Cx2 signal being applied to a mixer to produce the 350 Mhz sum signal. Phase referenced 50 Mhz is multiplied $x 7$ by the $L 17$ to form a 350 Mhz reference. This reference and the 350 Mhz AC sum is compared, the resultant difference an error signal driving a 5 Mhz VCXO phase-locked oscillator loop. This phase-locked 5 Mhz is sent to the "A" Synthesizer as the external 5 Mhz reference.
(The L17 for channels BD functions in an identical manner).
The B and C Fluke Synthesizers receive 5 Mhz external reference from the MLO system (un-locked), while the A and D Flukes receive their external 5 Mhz reference from the phase adjusted 5 Mhz output from their respective L17's. Any phase difference occurring in either the AC or BC Synthesizer pair output, or in the external 5 Mhz Synthesizer reference, will produce a 350 Mhz phase error signal in the L17. The action of the phase-lock 5 Mhz VCXO will immediately compensate for the phase to null the error. Thus, even though separate synthesizers are used to generate four tunable LO's, the AC and BD signals to the T3 Baseband Converters are always maintained at the $350 \mathrm{Mhz}+/-2 \mathrm{~Hz}$ sum difference with the phase relationship always known. This scheme also virtually eliminates all relative phase noise and spurious mixer products.

The outputs from the L17's, A, Bx2, Cx 2 , and D , are amplified by Variable Frequency Driver module L18. In VLBI Rack MT-2, the L18 outputs feed the various distribution loads directly. In Rack MT-1, the Fluke synthesizer output are split by power dividers and supplied to two sets of L17's simultaneously; one

set in M1, another set in Rack M2. The outputs of the L18 Drivers in both M1 and M2 Racks are inputs to RF relays. Both M1 and M2 racks are processing the Synthesizer signals, with all L17's "locked up". The RF relays determine which system, M1 or M2 is used for the "on-1ine" MLO. Relay outputs of LO's A, B, C, D, are sent to power dividers for distribution to each D Rack/T3 Baseband converters. The "off-line" rack LO signals are terminated into 50 ohm loads by the relays to simulate system loading.

2.0 BRIEF FUNCTIONAL DESCRIPTION (Fig. 2)

This section presents a brief functional description of the logic and circuitry of the L16, with the sub-sections organized by the primary functions of the module. Detailed circuit analysis for troubleshooting is in Section 3. See Figure 2.

2.1 MODULE DCS ADDRESSING

There are eight 116's serviced by DCS-0, Data Set 3. The Command and Monitor Sub-mux addresses (SMA's) are listed below:

Channel -->	MT-1 Rack L16's				MT-2 Rack LI6's			
	A	B	C	D	AA	BB	CC	DD
Commands:								
Synth Cmd Wd A	320	322	324	326	340	342	344	346
Synth Cmd Wd B	321	323	325	327	341	343	345	347
Data Set Cmds:	DIGO-0 CLKO-0 STRO-0				DIGO-1 CLKO-1 STRO-1			
Outputs Mon:	DIGI-0 CLKI-0 STRI-0				DIGI-1 CLKI-1 STRI-1			
Monitor Data:								
Cmd Wd A Echo	220	222	224	226	240	242	244	246
Cmd Wd B Echo	221	223	225	227	241	243	245	247
Synth Freq ($1-100 \mathrm{Mhz}$)	230	232	234	236	250	252	254	256
Synth Freq ($1-100 \mathrm{Khz}$)	321	233	235	237	251	253	255	257

The command and monitor addresses shown above are selected by the states of the four SMA lines during the proper command or monitor time of the Data Set. The LSB (SMA-0) and MSB (SMA-3) specify the proper function within the L16 (i.e., whether the MSB or LSB of the command or monitor word), while address lines SMA-1 and SMA-2 identify the proper L16. Coding is provided by hard-wiring of the bin connector, which "programs" the L16 response address and illuminates the proper ID LED on the front panel. The SMA lines and the monitor and command data, clock and strobe lines are daisy chained to all eight L16's, with only one module responding as a result of this channel address coding.

2.2 COMMAND PROCESSING

The Fluke Synthesizers require a steady-state 34-bit parallel TTL command word for remote tuning. This word is eight BCD (32 bits) defining the $1-\mathrm{Hz}$ to 10 Mhz digits, a 100 Mhz bit, and a 1 12 Mhz or $10-160 \mathrm{Mhz}$ range bit. This 34 bit tuning command is derived from two DCS 24 -bit serial commands from the Data Set. The commands are serially loaded into shift registers by Data Set terms DIGO (data), CLKO (load clocks) and STRO (terminating load strobe). The load strobe stores the command into a latch for static storage. This latch, requiring two serial commands to specify the full Fluke Synthesizer command, is sent to the Fluke remote frequency command connector. The latch output is also loaded into a paralel in/serial out shift register for command echo readback to accomplish a bit-for-bit verification that the frequency command was correctly received. The storage latch is used to store the tuning command for long periods, as Fluke tuning commands are normally infrequently issued by the control computers only during source changes.

2.3 FREQUENCY COUNTER

To verify proper frequency setting of the Fluke Synthesizers over its useful range, a frequency counter is provided to match the 1 Hz resolution required. The Fluke +10 dbm output is routed through a 10 db coupler in the L16, providing 0 dbm of RF for the frequency counter stages. This coupled signal, in the nominal range of $100-150 \mathrm{Mhz}$, is applied to a divide-by-ten high speed ECL digital prescaler IC. The divide by ten ECL output is buffered to TTL and used to clock the following eight stages of TTL decade counters, enabled over a precise 1-second gating period. This forms a nine-digit frequency count to 160 Mhz (the maximum Fluke setting) in 1 Hz steps. The $B C D$ count of the prescaler IC forms the least significantl-9 Hz digit, the subsequent stages forming the 10 Hz to 100 Mhz BCD digits. The frequency count is formatted for DCS monitor word readout and local LED display, as discussed in 2.5 and 2.6.

2.4 1-SEC. GATING AND TIME BASE

The time base is driven by an external 5 Mhz sinusoidal signal from the MLO system, 0 dbm nominal, which is converted to a TTL clock by an LM 360 differential comparator. The time base establishes the 1 -second gate period and provides clocks and discrete timing terms to the update (housekeeping) and LED multiplexed display logic. The 5 Mhz clock is applied to seven stages of TTL decade counters producing a 1-second terminal count used to clock the GATE flip flop OFF. When GATE is off, the frequency counter is halted, a binary counter is enabled to sequence through the various update terms to latch the frequency count, and upon completion, clocks the GATE on to begin another 1 -second counting period. Display multiplexing is pulled off the

10 Khz stage to form the LED scanning terms.
The time base is basically free-running during both the $1-s e c$. count period and the 10 usec update period, synchronized to a count of zero at the end of the update cycle. Synchronization to "re-start" the time base to the 5 Mhz external input ensures a consistent gating period to compensate for propagation delays reducing frequency counter inaccuracies due to time base errors. Since a 5 Mhz one-half cycle error can easily cause a $10-\mathrm{Hz}$ error in the frequency count, or a one-digit error. Synchronization keeps the count error within $+/-3 \mathrm{~Hz}$ and consistent to avoid last digit flickering.

2.4 UPDATE SEQUENCING

At the termination of the l-sec GATE counting period, the frequency count is latched into registers to drive the local LED display and to be ready as monitor data when polled by the Data Set. Data Set monitor data polling (and command transmissions) are asynchronous to the L16 functions. Once the frequency count and flags are latched, the next count period is immediately commenced. A new tuning command is processed by the L16 and Fluke to "settle out" at the new frequency in less than a second. Keeping the update sequencing cycle at less than 10 usec between count cycles ensures that while the Fluke output is slewing to a new frequency, no more than two count cycles will be contaminated by an erroneous count; the third cycle will be stable for the control computers to read for new tuning command verification.

The update actions are as follows in the order of their occurrance:

1. HALT the GATE enable flip flop.
2. HALT the Prescaler $I C$ counter, then remaining frequency counter stages.
3. LATCH the Prescaler 1.9 Hz count. (if no overflow)
4. DUMP remaining count stages into latches. (if no overflow)
5. LATCH flags (command interrupt, 5 Mhz OK, Prescaler warning, Overflow and frequency slewing.
6. RESET Prescaler IC and frequency counter stages to zero.
7. CLEAR error flags. (unlatched flags)
8. SYNC Time Base and start next count.

2.5 MONITOR DATA ACTIONS

Four monitor data words are polled from the L16 by the Data Set: 2 words containing the command echo and 2 words constituting the 9 digit frequency count and status flags.

Command echo monitor data is simply a parallel load shift register loaded by the Data Set load (STRI) term to read the contents of the tuning command register. Two DCS monitor words
are required to read out the 34 command bits and two status flags (Fluke power $O N$ and local/remote mode switch). The MSB bits in one register are polled by the Data Set during one VLA waveguide cycle, the LSB's polled during the next cycle.

Frequency counter monitor data is formatted in like fashion; two 24-bit parallel-load, serial-out shift registers; one containing the status and 1-100 Mhz count; the second containing the $1 \mathrm{~Hz}-100 \mathrm{Khz}$ count. At the end of each count period, the frequency count latches are updated. The FC latch outputs are the parallel inputs to the monitor word shift registers, being loaded by the Data Set load (STRI) term to the register corresponding to the SMA address. Data Set clocks (CLKI) follow, shifting the count bits to the Data Set. When the Data Set polls either of the monitor word shift registers, a Monitor Data Interrupt term is generated that halts the update sequencer, if active, for the duration of the data shifting operation. Halting the update actions ensures the frequency counter latches will not be updated while actively shifting out monitor data since the Data Set timing and L16 sequencing is asynchronous. Monitor data shifting does not interrupt the time base when in the frequency counting cycle.

The status flags Overflow, Prescaler warning, 5 Mhz warning and Command Update are loaded by the STRI load term to the shift register containing the most significant frequency count.

2.6 FREQUENCY DISPLAY

The frequency counters are $B C D$ counters, each stage being one digit. The eight frequency counter stages are stored into FC latches at the end of the counting cycle. The FC latch outputs, in addition to loading the monitor word shift registers, is also routed to a bank of 4 bit multiplexers to select one of eight digits plus the 100 Mhz bit. The selected digit and multiplexer address is sent to the front panel LED display logic to drive the 9 digit scanning LED numeric displays. The LED readout thus provides the full frequency count resolution of $150 \mathrm{Mhz}+/-1 \mathrm{~Hz}$. The front panel display is primarily for local indication and control of Flukes, the same frequency of the display being the
same count read by the Data Set as monitor data for remote monitoring and control.

2.7 ERROR/STATUS FLAGS

Various status and error events are captured to monitor and report the operation of the L16 and associated Fluke, summarized below:

1. PWR FLAG indicates the Fluke Synthesizer is on and power supplies within operating range.
2. REMOTE FLAG indicates the Fluke Synthesizer mode switch is selected to remote commanding. If in Local mode, DCS commands through the L16 will be ignored. (note: power and remote flags are part of the Command Echo word).
3. 5 Mhz WARNing is activated upon loss of or insufficient level to drive the time base. It indicates the time base and hence the frequency counters are not running and the count values are not being updated. This error illuminates a front panel LED.
4. PRESCALER ERROR is generated by the Prescaler Board upon loss of prescaler output being in the $100-150 \mathrm{Mhz}$ range. This indicates loss of or incorrect Fluke Synthesizer RF output due to a Fluke failure, a. frequency outside the normal system 100-150 Mhz range, or failure of the prescaler IC. This error illuminates a front panel LED. When active indicates the frequency count is erroneous.
5. OVERFLOW is generated by the Frequency Counters when a count of 200 Mhz or greater is reached to indicate obvious malfunction in the frequency counter. This error illuminates a front panel LED. When active indicates the frequency count displayed is the last good count, as the frequency latches are not updated on Overflow. The frequency should thus be questioned.
6. CMD UPDATE is generated upon receipt of a new tuning command to verify the command was received and that the Fluke Synthesizer output is likely slewing. Indicates the frequency count may be erroneous when active, the duration nominally only a couple of $1-\mathrm{sec}$ count cycles.

All flags are latched during the update cycle, while the capturing circuitry is cleared such that the condition can be re-checked during the next count cycle. Thus temporary and permanent error conditions can be determined.

3. DETAILED CIRCUIT ANALYSIS

This section presents detailed circuit descriptions necessary for the troubleshooting and maintenance of the L16. The main function and purpose of this logic is described in Section 2. Refer to the L16 Logic Diagram, C13220L2 and Prescaler Schematic, Cl3220s12.

3.1 MODULE INTERCONNECTIONS AND SPECIFICATIONS

The L 16 requires the following INPUTS:

1. 5 Mhz REF IN - via OMQ P15, Odbm 5 Mhz from the MLO system.
2. SYNTH RF INPUT - via OMQ P13, +10 dbm 100-150 Mhz from the Fluke Synthesizer.
3. Data Set Interconnections - via P2, the SMA address lines, clocks, strobes and command data line to execute Data Set communications with the Ll6.
4. Synthesizer Status - via P1, the Fluke Power and Remote mode flags (part of the Synthesizer Command cable).

The L16 provides the following OUTPUTS:

1. SYNTH RF OUT - via OMQ P14, +10 dbm 100-150 Mhz from the Fluke Synthesizer through the $L 1610 \mathrm{db}$ coupler.
2. SYNTH COMMAND CABLE - a multi-wire cable via P1 carrying the 34 bit parallel tuning command to the Fluke remote input connector.
3. MONITOR DATA - via $P 2$, the serially shifted digital monitor data when polled by the Data Set.

NOTE: Fluke Synthesizer $R F$ output is routed through the 10 db coupler in the L16. Therefore, an L16 module (or suitable patch between P13 and P14) must be installed for proper system distribution.

The L16 satisfies the following specifications as per Memo, Feb. 21, 1980, L16 Specifications by Larry Beno:

1. Signal Input - 100-150 Mhz nominal into 50 ohm load via OMQ connector, +10 dbm nominal level, with frequency counte operation to 0 dbm sensitivity.
2. External Time Base - 5 Mhz , approximatly 250 mv RMS (0 dbm) sinusoidal input into 50 ohm load via OMQ connector.
3. Accuracy of Counter $-+/-1$ count $+/-$ time base error.

Resolution - 1 Hz
Display - nine digit numeric LED
4. The L16 shall produce no reflections on inputs and generate system noise within acceptable limits for proper MLO operation.

3.2 MODULE SELECTION/ADDRESSING (Logic Diagram Sheet 1)

To ensure only the proper L16 responds to Data Set commands and monitor polling, each L16 is hardwired through the bin connectors to be programmed to execute actions associated with the assigned MUX addresses. SMA address inputs are compared to the hardwired address by digital comparator 7485 E8, producing a MODULE EN term on the receipt of the proper SMA address. SMA lines SMA-0 and SMA-3, with MODULE EN, is decoded by 9301 E12 to produce discrete enabling terms associated with the SMA address.

Gates 7402 E6 and E11 further produce enabling to route the Data Set clocks and strobes to the proper devices. SMA address functions are listed in Section 2.1. The hard-wired address drives 9301 decoder $E 13$ to illuminate one-of-four front panel LED's indicating the Channel (A, B, C, D) the L16 is programmed to respond to.

3.3 5 MHZ TIME BASE (Sheet 3; Fig 3)

External 5 Mhz input is carried from rear panel OMQ P15 to SMA P3 on the Prescaler Board using . 161 Semi-rigid coax. On the Prescaler board, the 5 Mhz is terminated by a 51 -ohm resistor, with approximatly 100 mv peak (-10 dbm) applied to the input to high speed comparator LM 360 U 2 . Loaded LM360 output goes HI at +50 mv input and LO at -50 mv with hysteresis. Rise and fall times are tr $=15 \mathrm{~ns}$ and $\mathrm{tf}=9 \mathrm{~ns}$. The LO to HI Lm360 output transition occurs at about 30 deg after the zero crossing point, provides consistent switching in relation to the 5 Mhz sinusoidal input. This stability in generating the TTL 5 Mhz clock is important as the $20: 1$ time base to frequency ratio (5 Mhz :100 Mhz input) produces a 1 Hz count error every 18 degrees of 5 Mhz . The LM 360 stability in comparator performance and temperature stability ($<5 \mathrm{~ns}$ over 0 deg C to $25 \mathrm{deg} C$) maintains a count accuracy within 3 counts over the worst case signal and temperature operating range.

The (-) LM360 output is the 5 Mhz TTL referenced clock sent to the time base on the logic assembly. The (+) output drives retriggerable one-shot AM26S02 U3b such that loss of 5 Mhz or marginal signal level is detected and reported.

LM360 TTL output enters the logic assembly via ribbon connector A4P2 at IC location $C 21-10,11$ and inverted by 74 SO 4 (low delay time) C22. The two inverters $\mathrm{C} 22-2$ and $\mathrm{C} 22-4$ split the 5 Mhz TTL distribution to equalize fan-out loading to keep propagation times as balanced as possible. (Driving all 5 Mhz loads off one $74 \mathrm{SO4}$ section approaches the fan-out limit with a very "mushy" rising edge for switching). 5 Mhz is divided by 5 to 1 Mhz by $74160 \mathrm{Cl7}$, producing a carry at 1 usec intervals so the following six stages of 74160 are operating at base ten units of one second. The 74160 stages C19, 20, 23, 24 and 25 are cascaded and clocked by 5 Mhz . The terminal count (TC) at $74160 \mathrm{C} 25-15$ occurs on the rising 5 Mhz edge at $1.000000 \mathrm{sec} .+/-5 \mathrm{~ns}$, being $<20 \mathrm{~ns}$ in duration, and captured by 74LS109, the master GATE FF. Though the 1 second period has been reached, the time base is allowed to continue providing a 1 Mhz clock to the input sequencer (see Sect 3.6) and display multiplexer terms (to avoid blanking of the display during the update cycle).

The Prescaler IC count is inhibited upon the 1 -sec switching of the GATE FF, halting the frequency counters. At 9 usec following the $1-s e c$ GATE trigger, update actions have been completed and
term SYNC TB - is generated, initiating the start of the next 1sec GATE period. SYNC TB - is applied to the preset load enable (PE) on all time base stages (except 1 Mhz stage C17) and to the GATE FF clear C30-1. This switches the GATE FF "ON" and restarts the time base stages at a count of all zeros upon the next rising edge of the 5 Mhz clock. This scheme produces the same propagation delay in starting the counter as the delay produced when the $1-s e c$. terminal count was reached, ensuring both the start and end of the $1-s e c$ gate is synchronized to 5 Mhz.

3.4 COMMAND LOADING (Sheet 2; Fig. 4)

Data Set commands, clocks and load strobes (DIGO, CLKO, STRO) enters the L16 through J2 (being daisy changed to all L16's). When a command destined for the $L 16$ is detected by the SMA address and module select logic, command enable terms MADR - 0 or MADR - 1 are generated. DIGO and CLKO inputs are routed to the correct set of command loading shift registes by gates 7402 D4. The most significant command word is serially loaded into 74164 shift registers D17, D22, and D27, enabled by MADR - 0; the least significant command word is serially loaded into shift registers D2, d7, and D12, enabled by MADR - 1. The command strobe STRO is distributed by 7402 D19-4, the MSB word, and D19-1, the LSB word, to dump the parallel outputs of the shift registers into the corresponding latches; 74174 D21, D26, D29 MSB command, and D1, D6 D11 LSB command. Fluke tuning commands from the Data Set occur infrequently (usually only at source changes). The latches provide static storage of the command word for the Fluke Synthesizer remote input and continuous command echo monitoring.

The tuning command, requiring two successive DCS command words to load, are nine sets of $B C D$ digits representing the 1 Hz to 100 Mhz digits bits CB0 - CB23 and CAO - CA8. MSB CA23, when HI, selects the $10-160 \mathrm{Mhz}$ tuning range of the Flukes, the intended range. Each command must contain MSB CA23.

3.6 FREQUENCY COUNTER (Sheet 4 and Schematic Cl3220S12; Fig.5)

Fluke Synthesizer RF output is routed through a 10 db coupler in the L16, with th 0 db coupled port providing the RF power to drive the frequency counter circuit and logic. Connections to and from the coupler uses semi-rigid coax, with the coupled port terminated into 51 -ohms on Prescaler PCB Assy A3 through SMA A3J1. The 0 dbm (${ }^{2} 500 \mathrm{mv}$) RF signal is capacitively coupled to Prescaler IC UT, a Plessy SP8637 400 Mhz ECL decade divider. (See data sheets in the Appendix). The actions of the Prescaler Board elements vary depending whether the $L 16$ is in the counting or update cycle.

The COUNT CYCLE is defined by the GATE + term being HI (1 second duration). GATE + (TTL) is translated to ECL by MC10124 U8

FUnCTIONAL BLOCK DIAGRAM
(A) 5 MHPZ REF

(A) $\operatorname{MMPLT}(0 \mathrm{aBm})$

$\left\{\begin{array}{l}\text { LM360 } \\ \text { SWITCHING } \\ \text { PoInTS }\end{array}\right.$
(B) LM - оит 60
(5 MHz
SQLIARED $\rightarrow \rightarrow \sim=\sim 60^{\circ}$
(C) ${ }^{5 M H Z}$ TTL CLOCK
(D) ${ }_{\text {CARRY }}^{1 M H Z}$
(E) 1 MHZ

SEQUERCE CLK
(to show phasing)
(F) I-SECOND TICK CARRY
(G) GATE FF-
(H) $\overline{\operatorname{SYAC} T B}$

FIGURE 3

to ECL CLK INH term on the Prescaler. When CLK INHB goes ECL LO, providing a BCD A,B,C,D output and and a TTL divide by 10 carry (U7-11). While counting, the A, B, C, D outputs are $<1 v$ and unable to be used. The TTL carry (an anemic TTL) is "squared up" by saturating amplifier 2 N 2907 Q , forming the clock to 74LS160 decade counter U6, the 10 Hz counter stage. The Q3 output of U6 counter is used for the divide by 100 clock, the clock source for the following seven stages of counters on the logic assembly. Q3 is used for the clock as its rising edge occurs at the zero crossing point of the input RF (CLK INPUT) to the Prescaler, keeping the phase of the various counting devices in phase. U6 output $Q 0$, representing divide by 20 , clocks retriggerable one-shot AM26S02 U3 as an activity sensor for the Prescaler, transistor amplifier and 2nd stage counter $U 6$ to detect a failure in the frequency counter "front end". Additionally, the one-shot will fail to retrigger at a frequency below about 4 Mhz , representing a frequency 80 Mhz (4 Mhz x 20) of the input RF , to indicate the Fluke Synthesizer is operating at a frequency below the normal system range. In these cases, the one-shot U3 will illuminate the PRESCALER ERROR front panel LED and associated error flags being set. (Momentary power glitches can clear the command latches. A zero command word to the Flukes will cause it to wander wildly in the $20-30 \mathrm{Mhz}$ range. A PRESCALER error with a wandering frequency display indicates this state, corrected by re-issuing valid tuning commands). A PRESCALER error with a zero frequency display indicates loss of Fluke $R F$ input, or failure of the Prescaler "front end" circuitry.

The divide by 100 clock from $U 6$ enters the logic assembly by ribbon connector A4P1, IC location C1-6. It is buffered by 7404 D9-12 and D9-14 which adds propagation delay to ensure the A3 CY term from the Prescaler is captured by 3 rd stage (1 Khz) counter 74160 C2 and following stages C3 thru C8. A11 frequency counter stages on both the Prescaler and logic assemblies will continue to count each cycle of the input RF for the 1-sec. duration of the Count/GATE cycle.

The UPDATE CYCLE is defined by the GATE + term being LO, a function of the time base/gate logic. TTL GATE + going LO is translated by prescaler IC U8 to ECL HI, the CLK INHB (inhibit) state of prescaler IC U7. This halt the counting action of U7. The TTL CY term U7-11 becomes static, halting the clock generation to the following counter stages, freezing the $B C D$ counts of the frequency count in all nine counters. BCD outputs A, B, C, D on $U 7$ prescaler settle within 2 usec to a TTL level, pulled up by 10 k resistors R 10 - R 13 and applied to the inputs of quad latch $74 L S 75$ U5. At UPDATE +2 usec, sequence term LATCH A3 clocks the 1 Hz BCD count into latch U 5 , and the $10-\mathrm{Hz} \mathrm{U} 6 \mathrm{BCD}$ count into latch 7475 U4. (Note:term LATCH A3 is not generated if OVERFLOW error is. detected). Term FC DUMP latches the remaining counters 74160 C 2 thru 12 . The 100 Mhz bit is latched into D-FF 7474 C13.

At UPDATE +4 usec, sequence term RESET A3 + resets the BCD count in $U 7$ prescaler to all zero. This inadverdently produces a TTL CY output and clocks counter U6, incrementing the frequency count by 10 Hz . For this reason, 74 LS 16010 Hz counter U 6 is cleared by term RESET - at time UPDATE +6 usec, after the occurrance of the false U7 TTL CY to prevent an initial count of 10 Hz from occurring. At UPDATE +7 usec the remaining frequency counter stages are cleared by term FC RST. All counter stages have now been read, latched and cleared awaiting the next count/gate cycle to begin. The outputs of the frequency count latches store the last count until the next update cycle, thus remaining static to drive the display and monitor word logic.

The last frequency counter stage, 74160 C8, develops the 100 Mhz count bit at Q ; output Q1, if HI , would represent 200 Mhz , an impossible count for the Fluke Synthesizer range. C8-13 Q1 is used as an OVERFLOW ERROR detector, indicating a malfunction in either the frequency counter stages or the time base operating beyond its l-second interval. Frequency counts are not latched if an OVERFLOW occurs, so that the latched count represents the last "good" count. The term illuminates the OVRFLW front panel LED and is captured as an error flag.

3.6 UPDATE SEQUENCING \& CONTROL LOGIC (Sheet 3; Fig. 6)

Of the main functions of the L16, the frequency counting components must be synchronous to the 1 -second gating, while command and monitor functions between the L16 and Data Set are asynchronous (can occur at any time in relation to the gate timing). The updating logic must therefore be synchronous to preserve the precise l-second count period.

All the update logic centers around the MASTER GATE flip flop, 74LS109 C30-6,7. When GATE + goes HI (C30-7), the 1 -second count period begins; when GATE + goes LO, as a result of the time base reaching the 1 -second $+/-5$ ns point, the count cycle ends and the update cycle begins.

At time base $=1.000000$ second, 74160 C25-15 terminal count (TC) is clocked into GATE FF by the 5 Mhz clock, toggling GATE + to LO (C30-7) and GATE - to HI (C30-6). The time base continues to run, however, to generate 1 Mhz CLK required by the update logic. When GATE + goes LO, the transition triggers 9602 oneshot El7-6 to produce a 180 ms period to illuminate the UPDATE front panel LED. GATE FF term GATE - going HI enables the update sequence counter $74160 \mathrm{Cl6}$, clocked by the time base 1 Mhz , such that counter C16 increments its BCD count every 1.0 usec. The BCD counter outputs Q0 - Q3 drive 9301 10-line decoder C26 to produce ten sequential discrete outputs Y0 through Y9, each being active lo for 1 usec.

At UPDATE +1 usec (Y0, C26-13), no action occurs to allow the frequency counters, particularly the prescaler, to halt and settle. At UPDATE +2 usec (Y1, C26-12), the LO output is and'd with the OVFLOW flag to produce terms LATCH A3FC DUMP if no OVERFLOW occurred. LATCH A3 latches the 1 - and 10 Hz counts on the prescaler board, FC DUMP latching the seven 100 Hz to 100 Mhz count stages.

At UPDATE +3 usec (Y2, C26-11), inverter C22-12 produces active HI term LATCH FLAGS, the L-H edge clocking the error states into the respective error latches.

At UPDATE +4 usec (Y3, C26-10), inverter C22-14 produces active HI term RESET A3 + , clearing the prescaler IC BCD count, readying it for the next count cycle.

At UPDATE + 5 usec nothing happens because I couldn't think of anything for it to do!

At UPDATE +6 usec (Y5, C26-5), term CLR WARN - clears the various error detecting capturing FF's.

This completes the update sequencing required to latch the frequency counts and restoring the logic for the next count cycle. The update cycle is now terminated and the count cycle initiated.

At UPDATE +10 usec (Y9, C26-7), the SYNC TB - term going Lo immediately clears the GATE FF, the transition of GATE + going HI defining the start of the count/gate cycle. GATE + going HI also triggers 26 SO 2 one-shot E 19 producing variable delayed GATE of 10 - 50 ns , adjusted by potentiometer E9-7. A3 GATE FF 7474 C15 develops a special GATE period for the prescaler IC that is delayed slightly beyond the true gate start time, but is stopped in union with the MASTER GATE FF. This delay compensates for some chattering in the prescaler IC when first re-enabled for counting in which a few counts tend to accumulate before the first RF cycle. UPDATE $+10 \mathrm{usec} / \mathrm{sync} \mathrm{TB}$ - is also used by the update sequence counter C16 for the PE - enable, loading a count of zero on the next 1 Mhz count, ensuring it is ready for the next count cycle. When SYNC TB - cleared the GATE FF to the count state, term MSTR GATE - going LO, the update counter enable term, inhibits the counter from sequencing during the next count/gate cycle. The next 1 Mhz time base clock does, however, clear the sequence counter through the PE preset, where it remains for the duration of the l-sec. count cycle.

The update cycle actions are accomplished in 10 usec. The only interruption to the sequencing actions is caused by a monitor interrupt, caused when the Data Set, being asynchronous to the L16 timing, happens to poll for monitor data during the 10 usec update cycle. If either of the frequency count monitor words is
polled, the Data Set shift clocks (CLKI) trigger one-shot 9602 E17 (Sheet 5) to produce a 270 usec pulse MON INTR -. The update sequence counter is inhibited while MON INTR - is active LO, preventing the sequence logic from updating the frequency count and error latches until Data Set monitor polling is completed. This of course prevents monitor data from being "read" while the register contents are changing. (Additionally, the MON INTR - feature keeps all L16's count cycles closely synchronous to each other, as the Data Set polls each Ll6 for monitor data in sequence, causing the MON INTR to occur in each L16 within two waveguide cycles of each other. This is evident by the UPDATE LED's on the four L16's in each MT-1 and MT-2 racks "blinking" at the same time). During the MON INTR 270 usec period, the sequence counter is halted and held at the state it was in when interrupted. When MON INTR is completed, update actions will continue where they left off.

3.7 MONITOR DATA PROCESSING

Two monitor data values are polled by the Data Set: 2 words of Command Echo and 2 words of Frequency Count. The L16's are hardwired addressed to segment the L16's to respond only to the correct Data Set SMA address. (See Section 3.2)

3.7.1 COMMAND ECHO LOGIC (Sheet 2)

The two DCS tuning commands are stored in 74174 latches D1, D6, D16, D21 and D29, outputs being static between updates and sent to the Flukes as the parallel command word. The latch outputs are also loaded into the parallel inputs of 74165 shift registers D18, D23, D28, the high order command bits, and D3, D8, D13, the 24 low order bits. Loading occurs upon receipt of the DS STRI, being routed to the proper shift registers (terms MCLK-0, MCLK1), the shift register contents being serially marched out to the Data Set. There is a bit-to-bit image (or "echo") of the command word format. The control computers use the Command Echo word to verify the tuning commands were received by the L16 as sent. Note the difference between the Command Mux and Echo Mux is 100 (octal); thus Command Mux 320 can be seen "echoing" back on Mux 220. (See also Sect 3.4)

3.7.2 FREQUENCY COUNT MONITOR LOGIC (Sheet 4 and Sheet 5)

The frequency count is latched into registers on both the Prescaler board and main logic assembly. The 100 Hz to 100 Mhz digits from 74714 latches C9 - C12 are combined with the 1 Hz and 10 Hz digits from the Prescaler board on Sheet 4, forming the FCX BUS. The 9 digit frequency count is delivered to the display logic and the monitor data registers via the FCX BUS. Shift registers 74165 load the $F C X$ BUS upon receipt of the Data Set stroge STRI, being sent to the proper shift register by steering gates on Sheet 1 . Shift registers D5, D10, D15 contain the $1-\mathrm{Hz}$
to 100 Khz BCD digits, and D30 the error flags. The format of the duo word used for tuning commands, command echo and frequency count are identical, allowing a direct BCD readout on a DCS Data Tap by viewing the appropriate MUX's.

3.8 FREQUENCY DISPLAY LOGIC (Sheet 5 and 6; Fig 7)

The frequency count, in addition to being provided as DCS monitor data, is also available on the L16 front panel as a local numeric display. The full 150 Mhz range with 1 Hz accuracy and resolution is displayed as a nine-digit word.

The full frequency count from the latches is sent via the FCX BUS to display multiplexers 9312 E1 throuh $E 4$ to select one-ofeight frequency digits. The address scanning is derived from the time-base, the selected digit further multiplexedby 74157 E10 to merge in the 100 Mhz bit (F1J+). If the 100 Mhz bit is $\mathrm{HI}, 7402$ D19 forms BCD "1" (0001) on the 74157 inputs; if the 100 Mhz bit is LO, all 74157 BCD inputs become. HI producing an LED blanking code (1111).

The four-bit scanning address and selected 4-bit BCD frequency digit is sent to the Display Board Assembly A5 through a ribbon cable. The selected digit is sent to the BCD-to-7 segment decoder CD4511 U1, (Sheet 6) the output sent to the segment select inputs on the numeric LED displays. Resistors RI through R7 are current limiters for proper display intensity. The 4-bit scanning address is sent to CMOS BCD-Decimal decoder CD4028 U2 producing active HI digit select strobes, amplified by 2 N 918 transistors Q1 through Q8 to form the proper digit drive voltages of +2.4 volts (OFF) and 0 volts (ON). The multiplexer display scans from right to left at 5 Khz , each digit illuminated for 200 usec. CMOS devices were selected for U1 and U2 to keep currents at a minimum so the switching currents during LED scanning would not cause EMI interference to the sensitive MLO environment. The active $H I$ feature of CMOS also eliminated using inverters for proper logic sense with the DL-330M common-anode display units.

Discrete LED's on the front panel/Display Board are driven by logic on the main logic assembly for status and error indications as follows:

5 MHZ REF AVAIL - illuminated to show 5 Mhz availability.
COUNT - "blinks" to show 1-sec. time base operation.
GATE - illuminated during the update cycle.
OVRFLW - illuminated upon Overflow condition of frequency counters.
PRESCALER - illuminated to show prescaler error or failure.
LOSS OF 5 MHZ - illuminated upon loss of 5 Mhz .

3.9 ERROR FLAG AND STATUS (Sheet 5)

Several status and error flags are generated to indicate normal and abnormal operation of the L16 and associated Fluke Synthesizer.

CMD INTR - OR gate C29-15 senses the arrival of either tuning command words, and when sensed is captured for presetting 7474 FF C13-11. During update, the event is clocked into error latch 74715 E15 and reported during the next monitor word polling. This flag indicates a new frequency command has been received, the Flukes likely "slewing", and thus the frequency count may not yet be settled. The capture FF C13-11 is cleared during each update cycle by CLR WARN -.

5MHZ OK - is generated by a retriggerable one-shot on the Prescaler Board. Should the external 5 Mhz fail, or be of insufficient level to clock the time base, 5 Mhz OK goes Lo to indicate the error condition, captured by the 7474 FF C14-5 and sent directly to the monitor data register. 5 MHZ OK error is not latched since loss of 5 Mhz would render the update sequence inoperative, the event being otherwise unreported. A front panel LED is also illuminated.

PRESCALER error - is generated by a retriggerable one-shot on the Prescaler Board, an error indicated by PRESCALER ERROR being LO, captured by 7474 FF C14-10 and clocked into error latch El5 and reported during the next monitor word polling. The capture FF C14-10 is cleared during each update cycle.

OVERFLOW error is produced when a count of 200 Mhz or greater is accumulated in the frequency counter. The 200 Mhz bit, when set HI defines overflow and is clocked into error latch E15 and reported during the next monitor word polling. A front panel LED is also illuminated. The overflow condition is cleared when the frequency counters are cleard during the update cycle.

NOTE: The 74175 error latch El5 provides temporary storage of error conditions for reporting by DCS monitor data. If the error condition is momentary, the flag will be cleared upon the next latch update. (next 1 -second gate end) and may not be active when monitor data is polled. Error flag reporting through monitor data is intended for a persistent error.

The Fluke Synthesizers provide two status monitor bits, the POWER on flag ($\mathrm{H}=\mathrm{ON}$) and REMOTE/local flag ($\mathrm{H}=$ remote) to indicate the mode of operation. These two status flags are loaded into the command echo monitor word shift registers 74165 D23-3 (REMOTE) and D28-11 (POWER) on Sheet 2.

FUNCTIONAL BLOCK DIAGRAM

FREQUENCY
DISPLAY
FORMAT

Scan count
$(5 \operatorname{can} \phi \rightarrow 3)$

0	1	2	3	4	5	6	7	8	9	0	1	\cdots

(A) $\begin{cases}\text { SCAM- } \varnothing & (1) \\ \text { SCAM-1 } & (2) \\ \text { SCAM-2 } & (4) \\ \text { SCAM -3 } & (8)\end{cases}$

(B) DISPLAY DECODER \square $+1.2 \mathrm{~V}$ (TYPICAL)
(C) DIGIT CATHODE 7 DRIVE (TYP.)
(D) T-SEGMENT - SEGMERT "On"
(Typical when selected)
figure 7 FREQUENCY DISPLAY


```
4.0 LIST OF Ll6 DRAWINGS
Top Assembly Drawings
\begin{tabular}{ll} 
D13220p18 & Top Assembly Drawing \\
A13220Z18 & Top Assembly Bill of Materials \\
C13220L12 & L16 Logic Diagram \\
C13220S12 & L16 Prescaler PCB Schematic
\end{tabular}
Sub-Assembly Drawings
Assembly A3 - Prescaler P.C.B. Assembly
    C13220P21 Prescaler Assembly Drawing
    Al3220Z17 Prescaler B.O.M.
    C13220AB13 P.C.B. 2:1 Artwork
    Cl3220M34 P.C.B. Drill Drawing
Assembly A4 - I.C. Module Logic Assembly
    C13220P20 I.C. Module Assembly Drawing
    A13220Z16 I.C. Module B.O.M.
    Al3220P24 Dip Header Assembly
    Al3220Z21 Dip Header B.O.M.
    Al3220W10 Wire List, Master
    Al3220W11 Wire List, Machine
    Al3220W12 Wire List, Hand
    Al3220W13 Wire List, Connector
Assembly A5 - Front Panel Display Assembly
    C13220M33 Front Panel
    C13220M36 Front Panel Engraving
    C13220AA12 Front Panel Silk Screen
    D13220P23 Display P.C.B. Assembly Drawing
    Al3220Z20 Display P.C.B. B.O.M.
    C13220AB24 Display P.C.B. 2:1 Artwork
    Cl3220M39 Display P.C.B Drill Drawing
```

Miscelleneous
C13220M35 Assembly A1 - Rear Panel
B13220M42 Assembly A2 - RF Coupler Mounting Plate
For a list of drawings of major mechanical components (Side Panels, Module Rails, etc), see Top Assembly B.O.M. A13220218
5.0 LIST OF MASTER LOCAL OSCILLATOR (MLO) DRAWINGS

D16000B4 MLO Block Diagram (older, Dumke version)
D16000B10 MLO System Rack Layout
D16000B11 MLO System Block Diagram (as-built version)
Al3220W15 MLO Rack MT1, Rack Wire List
A13220W16 MLO Rack MT2, Rack Wire List
Al3220W14 MLO Rack MT1, Bin "E" Wire List
A13220W17 MLO Rack MT2, Bin "E" Wire List

LI6 DRAWINGS

GENERAL NOTES

1. CIRCUIT SYMBOLOGY USED

cacemenction	
${ }^{182}{ }^{\circ}$	
Lc. rree	SHEET 200 NE
	connecr
17	P2/ $\square^{\text {(1) }}$
	\|, 1
	W

Front panel
AOJUSTMENT
CONTAOL/NOICATOR - [EAZIT] EGAM] [PariTV]
2. LC. PIN NUMBERS ARE ALL REFERENCED MOY DIFE R EROM EOC PIN-OUTS ANO MA DSF Reromile. pin-OUT.
3. UNLESS OTHERWISE MNDCATED ALL
ALL DVETPE FFi ARE
7474

SPECIFIC NOTES

1. Θ denotes hand wire; others machine wires
[2] LIG BIN SLOTS CODED VIA P2/J2-BB,CC, DD TO
3 RACK MT-1 SMA ADDRESS SELECTION

RACK MT- SMA AODRESS SELECTION
CMDIMON DATA

$4 L 6$ SUB-ASSEMBLY NOMENGLATURE

5 CUT POWER PADS (PIN 16) AT C1, C21, ES
(1) [6] RACK MT. 2 SMA ADDRESS SELECTION

CMO/mON DATA	SUB-MUX ADR SEL				LIG ADR
	A		C	D	
SER CMD WO-A	340	342	344	346	MADR - ${ }^{\text {a }}$
SZR CMD wo-b	301	383	305	347	MAOA-1
CMO-A ECHO MCN CMD-B E(H) MON	240	242	244	$\begin{array}{\|c\|c} 246 \\ 0 \end{array}$	MADR- \varnothing
STA FREQ WD-A	250	252	254	256	MADR. 2
S2R EREQ WD-8	23.	253	255	257	MAOR-3

MOINULE SELECT/ADDRESSING LOGIC

\qquad 5 REV: 10 JUL 1981

ITEM	$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	manuracturer	mfg part	description	$\begin{gathered} \text { TOTAL } \\ \text { QUA } \end{gathered}$	
1		NRAO	A13220Z 18	LIG-SYNTHESIZER CONTROL	-	
2		1				
3			A13220W10	WIRE LIST-MASTER		
4			A13220 WII	WIRE LIST- MACHINE		
5			A13220 W 12	WIRE LIST- HAND		
6			A13220W13	WIRE LIST - CONNECTOR		
7						
8	A2		B13220M42	R.F. CHASSIS SUB-ASSY	1	
9	A3		A13220Z17/P21	DRESCALER SUB-ASSY	1	
10	A4		A13220Z16/P20	I.C. MODULE PANEL SUB-ASSY	1	
11	A5		$\begin{array}{\|l\|} \hline 13220 P 23 \\ A 13220 Z 20 \\ \hline \end{array}$	L.E.D. DISPLAY SUB-ASSY	1	
12						
13	P/0 A5		C13220M33	PANEL, FRONI	1	
14	AI		C13220M35	PANEL, REAR	1	
15			C13720M15-1	RAIL, MODIFIED (TOP LEFT)	1	
16		γ	C13720M15-2	RAIL, MODIFIED (BOTTOM LEFT)	1	
17		NRAO	C13720M17	RAIL, INSULATED SPACER	2	

mational radio astronomy observatory
\square ELECTRICAL
MECHNNICAL
BOM Al3270z18 REV_B DATE 31 OCT 980 PACE 2 OF 5

Iten	$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	mantracturer	mfg part	description	$\underset{\substack{\text { Total } \\ \text { QUA }}}{ }$	
18		NRAO	B13050M23	RAIL, SIDE SUPPDRT (R.H. SIDES)	2	
19			C13720P68	SIDE PLATE (LH. SIDE)	1	
20			B13720M49	INSULATION (FOR 7 ABONE)	1	
21			B13050M18	SIDE PLATE (R.H. SIDE)	1	
22			B13720M47	BAIL, END SPACER	4	
23			B13050M4	GUIDE BLOCK	4	
24		\downarrow	B13050M22-1	COVER, PERFORATED (2UA)	2	
25		NRAO	(T.A.D. NOTE)	DISPLAY FILTER (RED)	1	
26		SOUTHCO MFG.	47-10-204-10	CAPTIVE SCREW	4	
27		NRAO			2	
28						
29						
30						
31	DC1	MINI-CIRCUITS LAB	MCL-ZFOCIO-1	DIRECTIONAL COUPLER, 10 dB	1	
32	A4P1, P2	A-P PRODUCTS	924108-6	JIMPER CABLE, 14-PIN, 8 INCH	2	
33	A4P3	A-P PRODUCTS	924110-6	JUMPER CABLE, 14-PIN, 10 INCN	1	
34	A4P4	CANNON	CA16P-11 MW	I.C. DIP PLUG	1	

EL		X mechanicas bom Al3	$3220 Z 18 \text { REV } B$	- Dnre 31 OCT 1980pnge 3	or 5	
${ }_{1781}$	$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	manuracturer	MFG PART !	descriptiou	$\begin{aligned} & \text { Torat } \\ & \text { QUA } \end{aligned}$	
35	DS7,058	ELECTROMECH	$\begin{aligned} & 674-32102815- \\ & C-6 y-y 328 \\ & C \end{aligned}$	INOICATOR, SQUARE, 2-COLOR	1	
36			XC556 CLIPLITE	L.E.D. LENS/MOUNT	10	
37						
38						
39						
40	P2	AMP SPECIAL INDUSTRIES	601488-2	CONNECTOR, 34-PIN	1	
41			202434-4	SHIELD, 34-PIN CONN.	1	
42	P1		601488-3	CONNECTOR, 50-PIN	1	
43			202394-2	SHIELD, 50-DIN CONN.	1	
44			200833-4	GUIDE PIN	2	
45			202514-1	GUIDE PIN (GROUND)	2	
46			202964-6	GUIDE SOCKET	4	
47		1	204219-1	CONNECTOR PIN, CRIMP	2	
48		AMP SPECIAL INOUSTRIES	66460-6	CONNECTOR PIN, WIRE WRAP	80	
49	113-J15	OMNI-SPECTRA	OMQ-3043-75	JACK, .141SR BULKHEAD	3	
50	$\begin{array}{\|c\|} \hline \left.\begin{array}{l} A 2 P 1, A 2 P 2 \\ A 3 P 1, A 3 P 3 \end{array} \right\rvert\, \\ \hline A \end{array}$		OSM 221-2	PLUG, RIGHT ANGLE, -14ISR	4	
51	A2P4	\downarrow	OSM 201-2A	PLUG, . 141 SEMI-R1610	1	

BILL OF
InL
MATIONAL RADIO ASTROHOMY OBSERVATORY

 DATE 31 OCT 1980 PAGE \qquad or \qquad 5

LIG SYITHESIZER COMTROL
 ASSY A3-PRESCALER P.C.B.
 ASSEMBLY DETAILS

NATICNAL RNDIO ASTRONOHY OBSCRVATORY

${ }_{1}^{\text {ITEM }}$	${ }_{\text {reser }}^{\text {Ref }}$	manuracturer	mpg part	description		
1		NRAO	C13220AB13	PRESCALER ASSY P.C.B.	1	
2	J1, 32	OMNI-SPECTRA	OSM 244-2	CONNECTOR, SMA P.C. MOUNT	2	
3	U1	NATIONAL, OR EQUIV.	LM320K-5.2	1.C., REGULATOR TO-220-5.2v	1	
4	$U 2$		LMIGON	1.C., COMPARATOR (8-PIN DIP)	1	
5	U3		26502	1.C., ONE-SHOT	1	
6	U4, 15		741575	I.C.; QUAD LATCH	2	
7	46	γ	74LS160	1.C., DEC. COUNTER	1	
8	47	PLESSY SEMICONOUCTOR	SP8637B	1.c., $400 \mathrm{MLZ} \div 10$ PRESCALER	1	
9	48	FAIRCHILD	10124	I.C., TTL-ECL TRANSLATOR	1	
10	-	T.I. OR EQUIV.	C8516	SOCKET, I.C., 16 -PIN, S.T.	6	
11	-		C8514	SOCKET, I.C., 14-PIN, S.7.	2	
12	-		C8508	SOCKET, I.C., 8-PIN, S.7.	1	
13	Q1	SYLVANIA OR EQUIV.	2N2907	TRANSISTOR, TO-5	1	
14	-			SOCKET, TO-5 TRANISTOR	1	
15	Cl	MALLORY		CAP., 1000 pF NPO	1	
16	C2			CAP., 33pF NPO CHIP	1	
17	c3, 55,49			CAP., 0.1/ F	3	

BILL OE

${ }_{7}^{1781}$	$\underset{\text { sesfe }}{\text { Ref }}$	manufacturer	mfg part	deschiption	$\underset{\substack{\text { Total } \\ \text { Qua }}}{ }$	
18	C4			CAP, 100pF	1	
19	c6			CAP, 30pF	1	
20	C7			CAP, $2.2 \mu \mathrm{~F}$	1	
21	c8			CAP, $1.0 \mu \mathrm{~F}$	1	
22	C10			CAP, $0.01 \mu \mathrm{~F}$	1	
23	R1, R14			RES., $51 \Omega 1 / 8 \mathrm{~W}$	2	
24	R6,R19-20			RES., $2 K$	3	
25	R7, R16			RES., IK	2	
26	R10-R13			RES, 10K	4	
27	R15			RES., 7.5 K	1	
28	R17			RES, 30 K	1	
29	R21			RES., 68K	1	
30	R22			RES., 200K	1	
31	R24			RES., 2.4 K	1	
32	R25			RES., 39K	1	
33	R27			RES., 820Ω	1	
34	${ }^{\circ}+5^{\prime \prime}{ }^{\circ} 6000^{\circ}$	H.L. SMITH	20250	TERMINAL LUG, SOLDER	2	

- mechanical
national radio astronomy observatory
BON A/3220Z17 REV B
DATE $\frac{16 \text { MAR } 80}{\text { REV. } 29 \text { SEP } 83}$ PAGE 3
of 3

BILL of MuTERIAL
NATIONAE RADIO ASTRONONY OBSERVATORY
ヌelectrical

 or 2 L16 DISPLAY (ASSY A5)PCB B.O.M.

${ }_{\text {rren }}$	$\underset{\substack{\text { ReF } \\ \text { Destc }}}{\text { cele }}$	manutactuer	mrg phat	descraption	$\begin{array}{r} \text { moral } \\ \text { nut } \end{array}$	
1 A	A5-1	NRAO	C13220AB16-1	PRINTED CIRCuIT A5-1	1	
18	A5-2		C13220AB16-2	PRINTED CIRCUIT A5-2.	1	
2						
3	+5v, 6 ND	H. H. SMITH CO.	HHS 2010	TERMINAL, SPLIT LUG	2	
4	+5,6,Y	H.H. SMITH CO.	HHS 1502-4	TERMINAL, MIN. TUROUGH	3	
5	U1	ría (or equiv)	C04511	1.C., DISPLAY DECODER (cmos)	1	
6	42	RCA (OR EQUIV)	CD4023	I.C., DECIMAL OECODER (CMOS)	1	
7	A5J1	T. I. (or equiv.)	C8114-5T	SOCKET, 14-PIN I.C. - IN-LINE	4	
8	C1, c2	Panasonic	220-10R	Capacitor, electrocytic 2zonf	2	
9	L1	NYTRONICS	WEE 100	INDUCTOR, $100 \mu \mathrm{H} 5 \%$	1	
10	Q1-Q9	T.I. (OR EQUIV.)	2N2222	TRANSISTOR, NPN-HSS, PLASTIC	9	
11	Q10,011	T.I. (OR EQUIV.)	2N2219	TRANSISTOR, NPN-HSS, METAL TO. 5	,	
12	OS4-DS6	H.p. (or Equiv.)	5082-4655	L.E.D., $T 1-3 / 4, R \in D$	3	
13	DS9-012	H.P. (OR EQUIV.)	5082-4955	L.E.D., $T 1-3 / 4$, GREEN	4	
14	${ }^{\text {DS91-DS3 }}$	H.P. (or equiv)	5082-4555	L.E. D., T1-3/4, AMBER	3	
15		$A-B$	RCR076221J	RESISTOR, 220ת $59.1 / 4 \mathrm{~W}$	10	
16	R14, R15	$A-B$	RCRO7G751J	RESISTOR, $750 \Omega 5 \% 1 / 4 \mathrm{~W}$	2	

BILL OF MATERIAL
MATIONAL RAOIO ASTRONONY OBSERVATORY
3 ELECTRICAL

SP8000 SERIES high speed dividers

SP8634B - 10700 MHz SP8636B $\div 10500 \mathrm{MHz}$

The SP86348, SP8635B, SP86368 and SP86378 are divide-bveten circuits with binary coded decimat ourpurs for operation from DC up to specified input frequencies of 700. 600. 500 and 400 MHz . respectively. over a guaranteed remperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

These devices. optimised for counter applications in sustems using both ECL and TTL. are intended to be operated between OV and -5.2 V power ralls and to

FEATURES

- Direct gating capability at up to 700 MHz
- TTL cumparivle BCD vuipuis

E TTL and ECL-comnatible carry ourpuls

- Power consumpion less than 500 mW
- Wide dynamic input range

APPLICATIONS

- Counters

Timers
Sunthesist:rs

SP8635B $\div 10 \mathbf{6 0 0} \mathrm{MHz}$ SP8637B $\div 10400 \mathrm{MHz}$

interface with TTL operating between $0 V$ and +5 V The BCD outputs and one of two carry outputs are TTL-compatible, while the second carry output is ECL compatible. The clock input. which is normally capacitivety coupled to the signat source, is qated by an ECL III/ECL $10 k$-compatible inpur. The TTL-compatible reset forces the 0000 state regardiess of the state of the other inputs.

fig i Pin connections troon)

Fig. 2 Loguc didgram

OUICK REFERENCE DATA

Powne Sunplies $\quad V_{c c}$
Range of clock inpulamplitude
Operational temperature range
Frequency range with sinusoidal i/P
Frequency range with sfuare wive i/P

5 2V:025V
$400.800 \mathrm{mV} \mathrm{p} \cdot \mathrm{p}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$40.700 \mathrm{MH} /(S P 86348)$
DC 10700 A : H ((SP86348)

SP8634/5/6/7

Test Conditions (unless otherwise stated)		
$T_{\text {amb }}$		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Power Supplies	$V_{C C}$	0 V
	$V_{E E}$	$-5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}$

Characteristic	Value			Units	Conditions		
	Min.	Typ.	Max.				
Clock Input (pin 14)							
Max input trequency							
SP8634B	700			MHz			
SP86358	600			MH2	input voltage		
SP86368	500			MHz	400.800 mV p.p		
SP86378	400			MHz			
Min. input frequency with sinusoidal I/P				MHz			
Min. slew rate of square wave for			100	V/us			
cortect operation							
down 10 DC							
Clock inhibit input (pin 16)							
Logic ievels							
High linhibit)	-0.960			v	$\mathrm{Tamb}=+25^{\circ} \mathrm{C}$		
Low			-1.650	v	(see Note 1)		
Edge speed for correct operation at maximum clock I/P frequency			2.5	ns	10\%-90\%		
Reset input (pin 3)							
Logic ievels							
High (lesel)	See Note 2						
Low			+0.4	v			
Reset ON lime	100			ns			
TTL outputs ABCD (pins 2,7,8,10)							
High	+2.4			v	lak $\$ 2$ resistor and		
					TTL gate from 0/P		
Low			+0.4	v	to +5 V rall		
TTL cesry output (pin 11)							
Oulput Voltage							
High state	+2.4			v	$5 \mathrm{k} \Omega$ resistor and 3		
					TTL gates from o/p		
Low			+0.4	v	to 5 V rall		
ECL ciary outzut (pin 9)							
Outpul Voltage							
High	-0.975			v	$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$		
					External current		
Low			-1.375	v	= OmA (See Note 4)		
Power wpply drain current		75	90	mA	$V_{E E}=5.2 \mathrm{~V}$		

 be come or connecling a 1 bi Ω resistict tham the iniput of the drivirg $T T L$ gate and only lanning out io the resel input of the 5 P8000 Tows downe

Fig. 3 ECL IIIIECL 10000 interisaing

Fig. 4 TTL carry and ABCD ou ©ut structure

OPERATING NOTES

The devicess are intonded to be used with TTL and ECL in s counting system - the ECL and the docade counter being connected between voltage rails of OV and -5.2 V and the TTL between voltage rails of $O V$ and +5.0 V . Provided that this is done ECL and TTL compatability is echieved (see Figs. 4 and 5).

The clock is normally capacitively coupled to the signal source: a 1000pF UHF capacitor is normally adequate. If low frequency operation is required the 1000 pF capacitor should be connected in paratlel with a higher value capacitor. The blas decoupling (pin $1 /$ should be connected to eacth via a capacitor - preterably a chip iype - tut any case a low inductance type suip lope - UHF applications. The devices normallv have inn in for UHF operatiog range tar gearer 400 operating range far greater than the specified 400 to of a UHF eype, or it is connected to an earh poins is no of a UHF vpe, or in is con a significant impedance between the capacitor and the $V_{C C}$
connection. then the input dynamic range will sulfer and the maximum signal for correct operation will be reducerl Under certain conditions, the alisence of an input signa may cause the device to self oscillate. This can be prevented (while still maintaining the specitied input sensitivity) by connecting a 68k! resistor teitween the clock.-nnut and the negative supply. It the transition of either the clock input or the clock inhibit input is slow the devise may start to setf oscillate during the transition for this reason, the input slew rates should be greater than $100 \mathrm{~V} / \mathrm{\mu s}$. It should also be noted that a positive going transition on either th clock input or the clock inhibit input will clock the device. provided that the other input is in the low state. The BCD a olits inpur is in me low stare
The BCD outputs give TTL compatible outputs (lianour = 1) when a $10 k \Omega$ resistor is connected from the outpul to the +5 V rail. In this configuration the outputs will be ver slow compared with the clocking rate of the decade and so the state on the BCD outputs can only be determined when the clock has stopped or is inhibited
The fan out capability of the TTL carry output can lse increased by buffering it with a PNP emitter follower. The interface is shown in Fig. 5.

Fig. 5 Typical application conligurstion

Fir 6 Oocede counter timing diegram

| FREQUENCY
 (MH2) | MAINLINE LOSS
 (dB) | COUPLING
 (dB) | DIRECTIVITY
 (dB) | IN | VSWR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OUT | | | | | |\quad CPL

FREQUENCY (MHz)	MAINLINE LOSS (dB)	COUPLING (dB)	DIRECTIVITY (dB)	IN	VSWR OUT	CPL
. 50	. 73	11.17	37.21	1.11	1.13	109
20.789	. 62	11.50	3692	1.10	1.13	1.06
53.078	. 68	1149	3696	1.09	1.13	1.08
105.050	. 72	11.52	3048	106	114	1.09
158.234	. 74	11.52	3507	104	1.14	1.109 1.12
210.812	. 81	11.60				
26339	84	1159	33.32	102 101	1.15 115 1	8.12
315.908	. 92	1150	2736	1.01		
368.540	.95	1150	2422	1.09	115 115	1.13 115
421124 50000	1.02	1149	2184	109	1.14	115
500.00	1.12	1143	1871	1.01	1.12	1.22

PDC-10-1
computer-automated performance data
typical production unit / for data of other models consult factory

