VLA Technical Report No. 68 FRONT END CONTROL INTERFACE

Module Type F14
David Weber
5/15/92

Table of Contents

1.0 INTRODUCTION 1
F14 Physical Description 1
Receiver Description 3
2.0 THEORY OF OPERATION 7
2.1 RECEIVER CONTROL AND MONITOR REQUIREMENTS 7
Command Functions 7
Monitor Functions 9
Digital Monitor Data 9
Analog Monitor Data 11
2.2 DATA SET INTERFACE 13
Multiplex Address 13
Digital Command Output DIGI-0 13
Digital Monitor Input DIGI-1 13
Analog Monitor Inputs ALGI-3 to ALGI-6 14
2.3 DIGITAL LOGIC OPERATION 15
Command and Monitor Data Enable Decode Logic (Sheet 3) 15
Command Register Logic (Sheet 1) 15
Command Register Multiplexers (Sheet 3) 17
Digital Monitor Logic (Sheets 1 and 2) 17
Noise Calibration Switching Logic (Sheet 3) 18
Normal and Solar Cal Drive Logic (Sheets 4, 5 and 6) 19
Power Reset Logic and +5V Critical Power Regulator (Sheet 3) 20
2.5 FRONT PANEL DISPLAY LOGIC (Sheet 9) 21
2.4 ANALOG SIGNAL MULTIPLEXING AND CONDITIONING 27
Analog Signal Conditioning (Sheets 8 and 9) 27
Analog Signal Multiplexing (Sheets 8 and 9) 27
10 Volt Reference (Sheet 8) 28
2.6 COMMAND SIMULATOR CONTROL OF THE SINGLE-BAND, FRONT END RECEIVER 29
3.0 MODULE ALIGNMENT AND TEST 31
4.0 DRAWINGS 33
5.0 DATA SHEETS 53
6.0 APPENDIX 85
F14 I/O Connector Pin-Signal Assignments: 85
List of Relevant NRAO Technical Reports, Memos and Supportive Data 86

List of Illustrations

Figure 1, F14 - Receivers System Interconnect Cabling 6
Figure 2, Command Timing 16
Figure 3, Digital Monitor Timing 16
Figure 4, Front Panel Display Logic Timing 22

1.0 INTRODUCTION

This manual describes the VLA F14, Front End Control Interface module used to control and monitor three Single-Band, Front End Receivers on the VLA antennas. The emphasis of this manual is on the F14 theory of operation (Section 2) and maintenance (Section 3). Construction details are not included but all drawings used in F14 fabrication are listed in the BOM (Bill of Materials) drawing. Section 4 contains the drawings and Section 5 contains data sheets for the special-purpose components used in F14.

Features of the Single-Band, Front End Receivers that are relevant to the F14 functions are also described. These include receiver command and digital monitor data formats, analog signal levels and their normal range. The Appendix lists NRAO reports that describe the various Single-Band, Front End Receivers and related equipment.

Single-Band, Front End Receivers are used in both the VLA and VLBA projects and have been implemented in a number of frequency bands. A Single-Band, Front End Receiver is a complete, independent, modular assembly consisting of a dewar, RF amplifiers, refrigerator, vacuum and cryogenic plumbing, and interface circuitry. Since it is a modular design, differences between receivers are principally in the RF circuitry. This modularity provides greater commonality among receivers which reduces construction costs, eases installation and simplifies maintenance. In contrast to the older VLA front end receivers which share a common dewar, these newer receivers may be quickly removed from the antenna for maintenance or replacement without disturbing the other receivers. In removing a SingleBand, Front End Receiver, the receiver's vacuum is closed, the vacuum and cryogenic lines to the receiver are disconnected. (The cryogenic lines use self-sealing connectors.) Finally, the receiver AC power and interface cables are disconnected. After completing these simple operations, the receiver may then be unbolted and replaced by another unit.

F14 replaces the C1 Front End Control Interface module which was previously used to control and monitor one (X-band) Single-Band, Front End Receiver. The F14 is installed in F-Rack Slot 4, Bin N a location previously assigned to the C1 module. The F-Rack F14 currently controls the X-band receivers, some L-band Single-Band, Front End Receivers and could control a third receiver. (L-band versions of the Single-Band, Front End Receivers are replacing the older A-Rack L-band receivers.) FS, the A-Rack receiver interface, currently controls the receivers in the A-Rack Dewar: C-band, older L-band, K-band and Ku-band receivers.

If more than three Single-Band, Front End Receivers are installed, a second F14 will be added to the F-Rack. In any case, the existing F5 Front End Interface will still be used to control other A-Rack functions. The 75 and 327 MHz receivers are not (and will not be) controlled by F14.

On the F-Rack F14, P2 and P3 connect to the 3.5 cm (X-band) receiver, P4 and P5 connect to the 20 cm (L-band), and P6 and P7 will connect to a future 0.7 cm (Q -band) or 13 cm (K -band) receiver.

F14 Physical Description

At this point, the reader should refer to drawing D13190P10 (in Section 4) which depicts the F14 Assembly. The F14 is a 4-wide VLA module with one rear-panel 50-pin AMP pin connector (P1) that mates with the 50 -socket AMP bin connector. DC power, Critical Power (described below) monitor and control signals (from M1) and the 9.6 Hz (from L8) switching signal are routed through this connector. Three pairs of DB25 connectors (P2-P3, P4-P5 and P6-P7) on the module back panel contain the three sets of receiver interface signals. (P2, P4 and P6 are socket connectors; P3, P5 and P7 are pin connectors.) Three pairs of shielded, 25 -conductor cables connect these signals to corresponding DB25
connectors on the three front ends. Since the cables are connected to the module back panel, a mechanical interlock may be installed on the bin back panel to mechanically lock the F14 in place until the interface cables are disconnected. This feature inhibits removal of the F14 if any DB25 cable connector is still connected. An obvious and very important concern is that, since the DB25 connectors are not keyed, care should be taken to properly connect the three pairs of interface cables when performing maintenance on the receivers or F14. If they are cross- or mis-connected, the receiver's control and monitor states will be confused and the problem will not be obvious in the monitor data.

The F14 front panel has three sets of LED displays, one set for each receiver. The displays are vertically aligned on the panel and are for receivers A, B and C (left to right respectively). The Serial Number display consists of three four-digit alpha-numeric LED's that show the three associated receiver (decimal) serial numbers. The Band display consists of three, four-digit alpha-numeric LED's that show the receiver frequency bands (in cm). Discrete LED's for each receiver show: Red - Pump Request (powered by Critical Power); Green - drive to "Normal" cals is active; Yellow - drive to "Solar" cals is active.

The Serial Number and Band alpha-numeric displays are developed from a ten-bit plus parity hard-wired code from the receiver via the interface cables. The display logic converts the encoded values to ASCII code for the displays.

The receiver Serial Number is unique to each receiver and ranges from 1 through 63. The receiver serial number is a six-bit, straight binary code. The two leading Serial Number display characters are blanked.

The Band displays show the receiver operating wave length in centimeters. The Band data is coded in a four-bit straight binary code and has an even parity bit (Band codes are shown in Section 2). The leading Band display character is blanked if only three digits are used. (The decimal point is a digit.) In the event of a Band Code parity error or an unassigned Band Code state, the display logic causes the word BAD to be displayed (the leading digit is blanked).

All F14 circuitry is contained on five wire-wrap connector boards. These boards, front panel and rear panel are wire-wrapped in one wiring machine set-up. Sheet 3 of the Assembly Drawing shows the board layout and IC location designators. Note that connector board " E " is located in the front of the module and board "A" is located at the back of the module. These board location designators are a component of the chip location designator. Thus for boards A through D, a typical location designator might be B20, designating IC location 20 on board B. Pin 3 on this chip is designated B20-3. An important designation convention should be mentioned here: Since all IC locations on these five logic connector boards are for 16-pin chips, when a 14 -pin chip is used, pins 1 and 14 are inserted into sockets 1 and 16. Thus IC pins 8 through 14 are physically located in sockets 10 through 16 . On the schematic diagrams, these (i.e. IC pins 8 through 14) pins are designated in the 16 -pin connector board format. Thus pin B09-12 on chip B09 (a 7406) is really pin 10 of the IC. Although this may seem unusual, it is an easy convention and should not lead to confusion as the IC socket numbers (1 through 16) are printed on the connector boards. The F14 circuit schematic drawing (D13190S4) uses these designators to identify the physical location of the chips.

The logic connector board IC pin designation convention for board "E" is shown on Assembly Drawing Sheet 4. This board is a "universal" board which accommodates chips having more than 16 pins or transverse pin spacings that are multiples of 0.300 inch. This board has nine columns (A through J) of sockets numbered 1 through 50 . The chip location designators are derived from the column-row location of pin 1 of the chip. Thus, the 24 pin chip EG19 has chip pin 1 inserted into the socket at column location G, row 19. All schematic diagram IC pin numbers for this board refer to the chip pin number, not the column-row socket locations; thus pin EG19-20 designates pin 20 on chip EG19. Sheet

6 of the IC Location Diagram, A13190P11, shows the locations of these board E chips in terms of the column-row socket designators.

Sheet 4 of the assembly drawing shows the front panel display PC board IC locations and wirewrap pin locations and designators.

Although it is not a maintenance concern, the IC location designators described above are those used in wiring the module; the Master, Machine and Hand wire lists all use these designators.

The F14 and C1 50 pin AMP connector pin-outs are different so it is necessary to rewire the bin when replacing C1 with an F14.

Receiver Description

For a better perspective of F14 functions, a very brief functional description of the Single-Band, Front End Receiver follows. The emphasis is on the control and data aspects; RF properties are treated lightly. Readers are referred to the NRAO technical reports listed in the Appendix for detailed descriptions of the receivers and related equipment.

A waveguide polarizer on the receiver input separates the left and right circular polarized (LCP and RCP) signals for amplification by two, cooled amplifiers. Normal and Solar calibration signals are coupled into the receiver inputs via a power splitter and directional couplers. After passing through the dewar walls, the signals are filtered by band-pass filters and are further amplified by room temperature post-amplifiers. The two signals are then output to the mixers-IF system. An LED in the cooled amplifiers stabilizes HEMT sensitivity. The Normal and Solar noise source power level varies as a function of receiver frequency band; the noise drive voltage is the same for all receivers but the source current differs between bands. At 20 cm and 3.6 cm (L and X bands), an amplifier is required to achieve the required noise level. The amplifier is switched by the Solar cal drive.

The receiver is enclosed in an evacuated dewar which is cooled by a closed-cycle, Helium-cooled refrigerator. The dewar is connected to a vacuum manifold through an electrically operated vacuum valve and quick-disconnect coupling. The refrigerator is connected to Helium supply and return manifolds via Arequipt couplings and operates continuously (in the COOL state) but the vacuum pump operates only when commanded by a receiver. When the vacuum pump is not operating, the vacuum manifold is vented to atmospheric pressure; this helps to seat the receiver's vacuum valve. The Helium supply supply pressure should be $270+/-10 \mathrm{psi}$. The Helium return pressure should be $60+/-15 \mathrm{psi}$.

Dewar vacuum, refrigeration and heating control is performed by control logic in the receiver (described below); control bits X, C and H define the receiver control states as shown on the next page. ${ }^{1}$

Receiver Control State Table

Control bit	X	C	H	
Cryo off	1	0	1	No refrigerator power, heater power, or vacuum pumping.
Cool	1	1	1	Normal cooled operation.
Stress	1	0	0	COOL with small added heat to stress-test cryogenics.
Heat	0	1	0	Fast warm-up of dewar, 65 Watts of heater power.
Pump	0	1	0	No refrigerator or heater power.

${ }^{1}$ The receiver manuals designate X and M (described below) as \bar{X} and \bar{M}. The F14 logic drawing uses the notation X and M for these terms; the drawing convention is used in this manual for consistency.

The reason for the all-1's COOL code, is that in the event of an "X, C and H stuck high" failure of the receiver controller or the receiver J 5 cable is disconnected, the control logic defaults to the COOL state, the desired default condition for a receiver. The STRESS command causes a small amount of heat to be generated in the Dewar; the response of the refrigerator to this additional load may be seen in the 15 and 50 degree stage temperatures. The HEAT command is a maintenance feature which causes the Dewar to be heated; this permits the dewar to be warming up while receiver maintenance personnel are on the way to the Antenna. The PUMP command causes the vacuum valve and vacuum pump to be turned on. These states are controlled by receiver control logic described below.

Dewar vacuum and temperature transducers are conditioned by a control and monitor electronics card cage attached to the dewar. A mode control switch on the card cage enables the receiver vacuum, refrigeration and heater circuitry to be manually set to any of six states: CPU, OFF, COOL, STRESS, HEAT, and PUMP. The CPU position permits central control of these functions via F14 and the Monitor and Control System. In the CPU position, the X, C and H control bits from F14 set the control states to OFF, COOL, STRESS, HEAT or PUMP. When the mode switch is set to any position other than CPU, these functions are determined by X, C and H control bits from the control logic as a function of the local control switch position. ${ }^{2}$

Control logic in the card cage controls the operation of the vacuum pump request, vacuum valve, refrigerator, and heater. The control logic inputs are the mode control switch X, C and H bits; the F14 X, C and H control bits; dewar and port (manifold) vacuum; dewar (15 deg stage) temperature and AC current load. Control outputs are the discretes: vacuum valve solenoid drive (S), pump request (P), refrigerator motor power, dewar heater power, and the mode control switch state (M). The operations performed by the control logic are described in the next paragraph.

The vacuum valve (S) operation is inhibited if the pump port (i.e., manifold) vacuum is above 50 microns. The vacuum valve is opened if the pump port vacuum is less than the dewar vacuum and the dewar vacuum is greater than 7 microns. The pump request (P) signal becomes true (i.e., a " 1 ") if dewar vacuum exceeds 5 microns and goes false (" 0 ") if the dewar vacuum becomes less than 3 microns. The refrigerator operation is inhibited if the dewar vacuum is above 50 microns. The control logic is designed to continue the refrigerator operation in the event that the J5 cable (power, control bits and ID code) from F14 is disconnected. This permits maintenance of the system electronics but does not affect the cryogenics operation. The control logic turns on the heater when the mode switch is set to HEAT or when the central computer commands the HEAT state. The control logic also protects the dewar from overheating by the heater when in the HEAT state.

Monitor circuitry in the card cage reads out the three current control bits (X, C and H from either F14 or the mode control switch, depending upon the switch position) and control output discretes (P, S and M). The monitor circuitry also reads out the following analog values: vacuum (dewar and pump port); linear temperature measurements (15, 50 and 300 degree stages); a non-linear temperature measurement (SENS, on the 15 degree stage); AC current load (total); HEMT and FET gate bias levels, and the LED voltage. With the exception of SENS, these parameters are output to F14 analog multiplexers via monitor connector J2. The normal values and working range are tabulated in Section 2.1.

A 12-position manual selector switch and integral DMM on the card cage permits the analog parameters to be monitored locally.

[^0]The receivers read out digital values that indicate the receiver serial number, the frequency band and the modification level. These codes are hard-wired in the receiver when it is manufactured and are output to the F14 on the Power-Control-ID connector J2. These codes are described in Section 2.1.

Two DB25 connectors on the receiver provide the $+/-15 \mathrm{~V}$ Critical Power and the F14 control and monitor connections. Two shielded, 25 conductor cables connect a receiver to F14. J5 (25 pin contacts) carries Critical Power, the central control computer X, C and H control bits, the band ID bits, the receiver serial number ID bits and receiver modification level ID bits. J2 (25 socket contacts) carries analog and discrete monitor signals.

A Critical Power Panel (CPP) in the F-Rack provides power and system support for six SingleBand, Front End Receivers. Two F14's are required for six receivers (the use of two F14's in the F-Rack is discussed below). The CPP has +15 V and -15 V Critical Power supplies; this power is routed to the receivers via F14 connectors P3, P5 and P7. If these connectors are disconnected from F14 or F14 is removed from the bin, Critical Power is not available to the receivers. The CPP also provides two-phase, 150 volts AC power for the refrigerators. The unshifted phase of this 150 volt $A C$ also powers the vacuum valves and dewar heaters. This 150 volts AC power is provided by an isolation transformer and phase shift networks. The receiver manuals show this AC circuitry in a P112 power supply but in the VLA application, the CPP contains this AC circuitry. The CPP also differs from the VLBA application in that the receiver AC current monitor circuitry is not used. The CPP also monitors the vacuum pump 110 volt AC current; this current monitor is connected to the Common Analog inputs of both F14's.

In addition to the two DB25 connectors mentioned above, the Single-Band, Front End Receiver has an "AUX" DE9 (9 socket contacts) J4 connector, which carries the Pump Request (P) and the AC current analog monitor signal and their returns. A 9-conductor, shielded cable connects this DE9 connector to corresponding connectors on a small, 3-receiver "Auxiliary" chassis mounted on the back of the F-Rack in bin N locations 11 and 12. In the VLA application, the receiver's AC current monitor signals are not routed through the Auxiliary chassis to F14. Pump requests (P) from the Front-Ends are OR-ed together in the Auxiliary chassis to activate the vacuum pump via the CPP. The Auxiliary Chassis logic is powered by +5 V derived from +15 V Critical Power from the receivers via the receiver's J 4 (AUX) connector. When the F14 is removed from the bin or the F14 J3, J5 and J7 cables are disconnected, the Auxiliary chassis logic power is removed. In this state the Pump Request (P) is disabled and the Vacuum Pump cannot be activated.

The Single-Band, Front End Receivers do not have an internal transfer capability in which the LCP and RCP signals can be interchanged for test purposes. As implemented at the VLA, the transfer command interchanges the signals in F6, down-stream from the receiver outputs so this capability is still useable.

Figure 1 (next page) depicts the interconnect cabling between three Single-Band, Front End Receivers, F14, CPP, the Aux Chassis and Data Set. In the six-receiver configuration, a second F14 (not pictured in Figure 1) would be added with connections for 9.6 Hz , Data Set command and monitor messages and analog monitor data. The Appendix (Section 6) lists the F14 connector pins and signals.

2.0 THEORY OF OPERATION

In this section, we first consider the F14 Command and Monitor functions. This is followed by a description of the circuits that implement these functions.

2.1 RECEIVER CONTROL AND MONITOR REQUIREMENTS

Command Functions

The Single-Band, Front End Receivers have a small set of command functions. These fall into two categories: Observing Commands and Diagnostic Commands. Observing Commands (MUX address 322 ${ }_{8}$) are those invoked for Astronomical purposes and are a set of commands to control the receiver calibration circuitry (i.e., to turn on or off a continuous or switching drive to two noise source diodes). Diagnostic Commands (MUX address 323_{8}) are used to control or test the receiver cryogenic and vacuum functions. The specific command arguments and multiplex address for these commands are tabulated below. The digital command multiplex address is a unique address that enables the two types of commands to be loaded into two static command storage registers.

An unusual (for the VLA) feature is the format and usage of the two command arguments. Although the F14 receiver drive circuitry is capable of driving only three receivers, the receivers actually require only a small number of command states for both types of commands - only three bits are required to encode all receiver command states but four bits are used. The unused command bit is designated U (for unused) in the tables below. Therefore it was decided to structure the F14 command format so that for each type of command (i.e., Observing and Diagnostic), the command format conveys commands for six receivers, even though this would appear to be a useless feature. The reason for this unusual provision is the potential future use of two F14's in the F-Rack. In this application, two F14's would control six receivers and both F14's would store the same commands. The first set of receiver commands are designated A, B and C, and the second set of receiver commands are designated A^{\prime}, B^{\prime} and C^{\prime}. A back-panel wire jumper (to F14 digital selector logic) determines which set of three receiver commands are connected to the receiver drive circuits. Thus F14 \#1 would use the A, B and C commands and F14 \#2 would use the A^{\prime}, B^{\prime} and C^{\prime} commands. In the F-Rack, the jumper is set to select F14 \#1's A, B and C commands. If a second F14 is added, this jumper will not be installed.

Designating the six F-Rack receivers A through C (F14 \#1), A' through C' (F14 \#2), the 24-bit command arguments are assigned to six four-bit command functions as shown below. Note that the format shows the control bits as they appear in the F14 command registers.

	Command Format																						
F14		\#	1		\#2				\#1				\#2			\#1				\#2			
Revr		A			A^{\prime}				B				B'			C				C'			
Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	16	17	18	19	20	21	22	23
	C		C	U	C	C	C	U	C	C	C	U	C	C	C	c	c	c	U	c		C	U

For each receiver, the two sets of calibration command states are designated Observing Commands and are as shown below. Remember that the formats show the command bits as they appear in the command registers.

$$
\text { Observing Command Format, MUX } 322_{8}
$$

Revr	A				$A^{\prime \prime}$				B				B^{\prime}				C				${ }^{\prime}$			
Bit	0	1	2	3	4	5	6	7	8	9	10		12		14		16	17	18	19	20	21	22	23
	S	N	A	U	S	N	A	U	S	N	A		S	N	A		S	N	A	U	S	N	A	

F14 logic maps these Observing Command bits into a state table as follows:

Condition	MS			LS		
F14 Reg bit label	\mathbf{u}	A	N	S	Hex	Cal state
Cals off	0	0	0	0	0	No drive to either noise source
Solar contirurus	0	0	0	1	1	Solar (only) continuous noise source drive
Normal continuous	0	0	1	0	2	Norm (only) continuous noise source drive
Both continuous	0	0	1	1	3	Both noise sources on contimously
** Solar auto	0	1	0	1	5	9.6 Hz drive to Solar (only) noise source
* Norm auto	0	1	1	0	6	9.6 Hz drive to Norm (only) noise source
Both auto	0	1	1	1	7	9.6 Hz drive to both noise sources

In the this table, there are "Normal" and "Solar" calibration states. These control the drive to the two noise source diodes. Since the signal level of solar flux is much higher than that of typical astronomical sources, the solar cal noise signal is a higher level than the normal level. Secondly, a continuous cal command state causes a constant (i.e., non-switching) drive to the noise source diode. The auto states cause the 9.6 Hz signal from L8 to drive the noise diodes when it is a logic 1 or high.

F14 provides the central computer control discretes X, C and H to the receiver control logic that controls the vacuum, refrigerator and heater control circuits (see the Receiver Description above). These commands are designated Diagnostic Commands and the state table is as shown below.

Diagnostic Command Format, MUX $\mathbf{3 2 3}_{8}$

Rcvr	A				A^{\prime}				B				B ${ }^{1}$				C				C'		
Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	2223
	H	C	X	U	H	C	X	U	H	C	X	U	H	C	x	U	H	C	X	U	H	c	$\times \mathrm{U}$

The receiver's control logic maps these Diagnostic Command bits into a state table as follows:

F14 Reg bit label	U	X	C	H	Hex	Receiver Control State
Cryo off	0	0	1	0	2	No refr. or heater power, no vacuum pumping
* Cool	0	0	0	0	0	Normal cooled operation
Stress	0	0	1	1	3	Cool with small added heat to test cryo
Heat	0	0	0	1	1	Fast warm-up of dewar, 65 of heat
Pump	0	1	0	1	5	No refr. or heater power.

[^1]An important point needs to be emphasized here: these control bits are the complement of those required by the receiver control losic (see the Receiver Description above). The F14 inverts these command message bits to attain the states required by the receiver control logic. Note that in the table above, the COOL command states are all 0's. The reason for this inversion is, that in the event of a momentary power drop-out, the Diagnostic Command storage register will be be cleared (to 0 's) by the power clear logic. This state is also set when the F14 is powered on. This state defaults the receiver control logic to the COOL state, the desired condition for a receiver in the event of control ambiguities such as disconnected cables, etc. The receiver control logic operations are described in Section 1.0.

The states of the F14 command registers are read back as command echo monitor data; the formats are identical to the command formats. This command echo verifies that the commands were loaded into the F14 command registers and permits comparison of the F14 command register states with the command states generated by the central control computers.

A Critical +5 volt power, derived from the CPP Critical +15 V , is used to power the three F14 front panel Pump Request Mon LED's. The LED's are driven by the Pump Request Monitor bit P, in the digital monitor data registers.

Since maintenance personnel may need to locally control the F14 for test purposes, Section 2.6 describes the Command Simulator (M5) switch settings to command the receiver control logic.

Monitor Functions

The monitor data read from F14 is indicative of the performance of the receivers, F14, and the Helium-Vacuum systems. Monitor data is divided into two classes, analog and digital, according to the character of the data sources. For example, the frequency band, receiver serial number and mod level are digital values because they are hard-wired digital codes in the receiver, but Helium supply and return manifold pressures and dewar and pump port vacuum are derived from continuous output analog pressure sensors. The analog monitor data is, of course, converted to digital values in the Data Set but has a format which differs from the digital data.

Digital Monitor Data

There are two types of digital monitor data. The first type, Observing and Diagnostic Command Echos, are formatted as an exact replica of the two types of commands. The second type, the digital monitor points, are a composite of several sets of digital data as described below. Remembering that one F14 is currently used in the F-Rack and that a second one may be added, the octal mux addresses of the digital data are as shown below. For convenience, the command echo addresses are 100_{8} lower than the command addresses.

F14 Usage	F-Rack \#1		F-Rack \#2
Obs 'vg Cmd Echo	222		232
Diag Cmd Echo	223		233
Dig Mon Data, Revr	A	224	A'
" " 11	234		
" Rcvr	B	225	B'
" " 11	, Revr	C	226

The F-Rack Digital Monitor Data are input to the Data Set on the DIGI-1 port (address range $220 \mathbf{8}_{8}-237_{8}$). The Digital Monitor Data is shown in Register Format on the next page.

Receiver Digital Monitor Data Format

Consider monitor data bits 8 through 23 as four Hex digits in Numeric Format (as they would appear on a Data Tap's binary bit display or a CRT screen, the reverse of the Register Format shown above).

The receivers frequency band code is two Hex digits (B_{0} through B_{3}). The top digit is always a 0 or 1 and contains an even parity bit P_{B} for the four bits of frequency band code. The wavelength, frequency, frequency band encoding (numeric format) and associated display digits are shown below.

Receiver Frequency Band Code and Band Display

Hav'lth cm	Frequency	Band	$\begin{aligned} & \text { Parity, } \\ & P_{B} \end{aligned}$	$\begin{aligned} & \text { Code }_{16} \\ & \mathrm{~B}_{0} \mathrm{~B}_{3} \end{aligned}$	$\begin{aligned} & \text { Mon Readback } \\ & \mathrm{P}_{\mathbf{B}}, \mathbf{8}_{0}-\mathbf{8}_{\mathbf{3}} \end{aligned}$	Band Display, Centimeters
400	75 MHz	P	0	0	00 Xxxx	400.
50/90	600/327 MHz	P	1	1	11 XXXX	${ }^{5} 50.0$
20	1.4 GHz	L	1	2	12 XXXX	-20.0
13	2.3 GHz*	s	0	3	03 xxxx	-13.0
6	4.8 GHz	c	1	4	14 XXXX	${ }^{\wedge} 6.0$
4	8.4 GHz	x	0	5	05 XxXx	${ }^{\wedge} 3.6$
2.8	10.7 GHz*	X	0	6	06 Xxxx	${ }^{\wedge} 2.8$
2	15 gHz	u	1	7	17 XXXX	-2.0
1.3	23 GHz	k	1	8	18 xxxx	${ }^{\wedge} 1.3$
0.7	43 GHz	Q	0	9	09 XxXX	$\wedge 0.7$
0.35	86 GHz	W	0	A	OA XXXX	0.35
(not ass	igned)		1	B	18 XXXX	${ }^{\wedge}$ BAD
(not ass	igned)		0	c	Oc xxxx	${ }^{\text {a }}$ BAD
(not ass	igned)		1	D	10 XXXX	${ }^{\text {a }}$ BAD
(not ass	igned)		1	E	1E XXXX	${ }^{\text {A BAD }}$
(not ass	igned)		0	F	OF XXXX	${ }^{\text {a }}$ BAD

Notes: * Denotes receiver bands are not installed on the VLA but included in the f14 frequency band code display logic for potential future use. XXXX are the lower four hex digits of the digital monitor data. \wedge denotes a blanked display digit. The period (.) character is one display digit.

The middle two Hex digits are the receiver serial number code, S_{0} through S_{5}. For example, a readback of XX 13 XX (Numeric Format) indicates receiver serial number 19_{10}.

Bits 6 and 7 are M_{0} and M_{1} which indicate the receiver's modification level, 00 for the initial design.
$\mathrm{X}, \mathrm{C}, \mathrm{H}, \mathrm{M}, \mathrm{P}$ and S are control logic monitor bits which indicate the state of the receiver's control logic. S, P and M are discretes which indicate the following:
$\mathrm{M}=$ Manual State, $1=\mathrm{CPU}$, (i.e., central computers), $0=$ manual control switch off CPU position. $\mathrm{P}=$ Pump request, $0=$ request vacuum pump, $1=$ don't pump.
$\mathrm{S}=$ Vacuum valve monitor, $0=$ closed, $1=$ open.
X, C and H are the current Receiver Control Bits (see the Receiver Description above) from the receiver control logic. Remember that these are complement of the Diagnostic Register state table shown above. In Numeric Format the states are shown on the next page.

Monitor Data Receiver Control Bits

State	X	C	H	Code $_{16}$
Cryo Off	1	0	1	5
Cool	1	1	1	7
Stress	1	0	0	4
Heat	1	1	0	6
Pump	0	1	0	2

Analog Monitor Data

Analog monitor data falls into two classes: Common Analog Functions and Receiver-Specific.
Most of the Common Analog Functions are power supply voltages but Helium supply and return pressures and Vacuum pump current are also measured. ${ }^{3}$ These functions are classed as Common because they are not particular to a receiver. The table below shows these Common Analog functions.

An internal (to the F14) pair of accurate +10 and - 10 volt references are included in the Common Analog Monitor functions to provide a means of checking the Data Set A / D gain drift. The Analog Ground parameter provides a means of checking the Data Set $A \mathcal{D}$ zero drift. The Common Analog Functions are tabulated below.

Common Analog Functions

Function	Mux addr ${ }_{8}$	1V =	Normal Value	Data Range
Analog gnd	140	IV	0.000	-0.020 to +0.020
+10V ref	141	IV	+10.000	+9.980 to +10.020
-10V ref	142	IV	-10.000	-10.020 to -9.980
Gnd (spare)	143	IV	0.000	-0.020 to +0.020
+15V/2	144	2 V	+7.500	+7.480 to +7.520
-15V/2	145	2V	-7.500	-7.520 to -7.480
+5V	146	1V	+5.000	+4.980 to +5.020
$+28 \mathrm{~V} / 4$	147	4 V	+7.000	+6.985 to +7.015
+15V/2 (Crit)	150	2V	+7.500	+7.480 to +7.520
-15V/2 (Crit)	151	2V	-7.500	-7.520 to -7.480
Vac pump curr	152	1A	0.000*	*
He sup pres	153	100psi	2.700	+2.400 to +3.000
He ret pres	154	100psi	0.750	+0.500 to +1.000
Gnd (spare)	155	1 V	0.000	-0.020 to +0.020
Gnd (spare)	156	1V	0.000	-0.020 to +0.020
Gnd (spare)	157	IV	0.000	-0.020 to +0.020

* Vacuum Pump quiescent, pump-on Normal value and Working Range not yet established.

The spare channels are connected to analog common but could be assigned to some future F14 function but would require a modification of F14 wiring. There is one spare (unassigned) pin on P1 which could be connected to one of these spare channels.

[^2]The Receiver-Specific functions are those particular to a receiver and will typically have different values for each receiver. These are tabulated below.

Receiver-Specific Functions

There are five unassigned lines on the receiver J 2 connector and four unassigned lines on the receiver J 5 cable. These lines could be assigned to the spare channels but would require F14 and receiver wiring modifications to connect these J2 and J5 pins to the multiplexers.

The addresses shown in the tables above are those presently assigned to F-Rack, F14 \#1. The Data Set is capable of multiplexing 128 channels of analog data from eight 16 -channel sources. F12 is also installed in the F-Rack and provides 16 channels of analog monitor data to one Data Set analog input. In the event that a second F14 is added to the F-Rack, three additional sets of Data Set multiplex addresses would be required for the three new Receiver-Specific analog functions. The F14 \#2 Common Analog functions need not be used since they are redundant with F14 \#1. In this dual-F14 configuration, the six Receiver-Specific, Common Analog and F12 analog data will use all the analog multiplexing capacity of the Data Set. The addresses assignments shown above might be changed for this configuraton.

2.2 DATA SET INTERFACE

All F14 command-monitor data operations are a response to command or monitor data message stimulus from the Data Set. This section describes these interface signals and their usage in the F14.

Multiplex Address

The Multiplex Address is four, low-true, TTL logic signals having binary weights of 2^{0} through 2^{3}. These permit decoding up to sixteen unitary enables (five monitor and two command enables are decoded in the F14). These four bits are the lower portion of the eight-bit address component of Data Set command and data messages. The Data Set decodes the upper four bits to select a Data Set digital output or input to/from a device controlled by the Data Set. In the case of analog inputs to the Data Set, the upper four bits enable one of eight Data Set analog input multiplexer channels. Between command or data operations, the Multiplex Address lines are quiescent and a logic high (" $0^{\prime \prime}$ state).

For example, for the Observing Command, Mux 322_{8} F14 decodes the lower four bits (0010) to generate CMD EN2 (a command enable) that permits the F14 Observing Command Register to be serially loaded by the Data Set. The Data Set decodes the upper four bits (1101) to activate the DIGO-0 output.

An analagous digital data example is the Observing Command Echo Mux 222_{8}. F14 decodes the lower four bits (0010) to generate EN2 (a monitor enable) that permits the F14 Observing Command Echo Register to be serially read out to the Data Set. The Data Set decodes the upper four bits (1001) to active the DIGI-1 input.

In the case of analog signals multiplexed by the F14, two eight-channel analog multiplexers select one analog signal from a group of sixteen analog signals for output to the Data Set. One multiplexer selects one of the lower eight signals and the second selects one of the upper eight signals. The multiplexers have internal one-of-eight decoders which drive the analog switches. The decoder has an enable input which permits the decoder outputs to drive the analog switches. Thus the three lower Multiplex Address bits ($2^{0}, 2^{1}$ and 2^{2}) activate (via the one-of-eight decoder) one of the channels on each multiplexer and the most significant bit, 2^{3}, enables the lower or upper multiplexer decoder. The two multiplexer outputs are tied together and drive the Data Set Analog multiplexer.

Digital Command Output DIGI-0

The Data Set digital command output used by F14 is DIGO-0, which consists of three low-true lines: DIGO-0, CLKO-0 and STRO-0. The DIGO-0 signal is a serial data line, clocked into an F14 serial input command register by CLKO-O. After 24 shift clocks, the data is parallel-loaded into a static storage register by the STRO-0 signal. In the interval between command messages directed to DIGO-0, the Data Sets sets the DIGO-0 lines high. Figure 2 (Section 2.3) depicts the DIGO-0 timing. DIGO-0 address are $320_{8}-337_{8}$.

Digital Monitor Input DIGI-1

The Data Set digital monitor data input used by F14 is DIGI-1, which consists of three low-true lines: DIGI-1, CLKI-1 and STRI-1. The STRI-1 signal parallel-loads an F14 monitor register. The DIGI1 signal is a serial data line, the output of a serial monitor register. The DIGI-1 line is clocked into the Data Set monitor input register by CLKI. In the interval between monitor messages evoked from DIGI-1, the Data Set sets the DIGI-1 lines high. Figure 3 (Section 2.3) depicts the DIGI-1 timing. DIGI-1 addresses are $220_{8}-237_{8}$.

Analog Monitor Inputs ALGI-3 to ALGI-6

The Data Set analog monitor data inputs presently used by F14 \#1 are ALGI-3 through ALGI-6 and the associated addresses range from 608 through 157_{8}. These accept four differential analog signals from 16 -channel analog multiplexers in the F14. In the event that a second F14 is added to the F-Rack, these assignments could change.

The Data Set differential inputs have a common-mode rejection ratio $>80 \mathrm{db}$. Input impedance is greater than 10^{10} ohms. Settling time to less than one bit error is less than 18 microseconds but the Data Set provides 30 microseconds of settling time; 30 microseconds after the start of an analog to digital conversion sequence, the Analog to Digital converter sample/hold is set to the hold mode and the conversion sequence is started.

2.3 DIGITAL LOGIC OPERATION

Command and Monitor Data Enable Decode Logic (Sheet 3)

The four (low-true) Mux address bits (SMA0- through SMA3-) are inverted to high-true format by open-collector buffer B09. The buffer output levels swing between 0 and 5 volts. A 7406 buffer and pullup resistors are used in place of a simple inverter in the event that it becomes necessary to use analog multiplexer chips with overvoltage protection (typically an HI 508 A). These multiplexers require a logic 1 greater than 4.0 volts.

The Command and Digital Monitor enables are decoded by different 1 -of-eight decoders. This is the result of the requirement for the use of a six-argument command for two F14's in the F-Rack. For simplicity, all digital monitor data is input to the Data Set on port DIGI-1. In this case, the second F14 digital monitor data addresses are translated 10 (octal) addresses higher but the command addresses are not because all six command arguments are packed into a single command argument. This usage is described in Section 2.1 above.

The Command Address Enable decoder B17, a 74LS138, is enabled by the low-true SMA3-, high for multiplex addresses 00_{8} through 07_{8}. (See a TTL data book for details on the operation of the 74LS138.) The low-true CMD EN2 and CMD EN3 outputs are decodes of mux codes 02_{8} and 03_{8} respectively. These two enables permit the CLKO-0 clock to load the DIGO-0 data into the two command registers as described below.

The Digital Monitor Address Enable Encoder B04, a 74LS138, performs an identical decode but the G2A input is driven by an 74LS86, an exclusive-or with high-true SMA3 and Slot B/A- as inputs. The Slot B / A - term is a hard-wired term in the bin wining. When Slot B / A - is tied low via a bin jumper between J1-N and J1-L, the low-true exclusive-or output enables B04's G2A for mux addresses 00_{8} through 07_{8}. The high-true exclusive-or output disables the decoder for mux addresses 10_{8} through 17_{8}. The jumpered-to-ground configuration is used to detect digital monitor addresses 222_{8} through 226_{8}, the FRack F14 \#1 addresses. The floating B/A- configuration is used to detect digital monitor addresses 2328 through $236{ }_{8}$, the F-Rack F14 \#2 addresses.

The Slot B/A- term is also used to control the selection of command arguments in the Command Register Multiplexer described below.

Command Register Logic (Sheet 1)

Two identical (except for the unitary enables described above) command registers are loaded by the DIGO-0 command output. Consider the Observing Command register logic on the upper left of Sheet 1. The command register logic consists of three serial-in-parallel-out shift registers and four parallel-input storage registers. Three sets of gates, enabled by a command enable (described above), load the registers under control of the Data Set DIGO-0 lines. The state of the 74LS164 A and B inputs is shifted into Q_{A} and the contents are shifted to the right on the rising edge of the clock input. The two 74LS02 low-true AND-gates (A05-1 and A010-3) enable the low-true serial data (DIGO-0) and the low-true clock (CLKO0) to serially shift the 24 command argument bits into 74LS164's A04, A09 and A14. The low-true CLKI0 signal has 24 falling (leading) edges which become rising edges through A10-3. 5 microseconds after the serial load has been completed, the trailing edge of the 5 microsecond low-true strobe STRO-0 parallel-loads the 24 -bit contents of the serial register (A04-A14) into the static storage registers A03, A08, A13 and A18. Figure 2, (next page) depicts the digital command timing operations.

FIGURE 2, DIGO-D TIMING

NOTE: S14 DENOTES F14 SAMPLING POINT

FIGURE 3, DIGI-1 TIMING

NOTE: SDS DENOTES DATA SET SAMPLing point

NOTES: 1 SIGNALS SHOWN AT INPUT TO F14 LOGIC
2 TIME IN MICROSECONDS
3 UP RRROWS DENOTE CLOCKING EDGE
FIGURES 2 AND 3
F14 COMMAND AND MONITOR
TIMING DIAGRAMS

The static storage registers are cleared by the power clear circuit when the F14 is powered up or when a momentary power drop-out occurs. This reset clears the Cal command bits (the Cals off state, an innocuous condition) in the Observing Command storage register and the H, C and X command bits to all zeros in the Diagnostic Command register. The zero's state in the Observing Command register is not a concern but the zero's state in the Diagnostic Command storage register is. An all zero's state drive to the receiver control logic is a STRESS state and hence undesirable. This problem is solved in the Command Multiplexer logic (described below) which uses 74LS158's (an inverting output, quad 2-line-to-1-line, multiplexer) to select between the A, B and C or A^{\prime}, B^{\prime} and C control arguments for the receiver's control logic. Thus the receiver's control logic sees " 1 's" for the reset state of the Diagnostic Command storage register; this is the COOL command, the desired default control state for the receiver control logic.

Command Register Multiplexers (Sheet 3)

Section 2.1 described the six-argument formats of the Observing and Diagnostic commands which are the result of the requirement for the potential use of two F14's in the F-Rack. The usage of the Slot B/A- term to decode monitor data enables was described in Digital Command and Monitor Data Enable Decode Logic above. The Slot B/A- term is used to control the selection of either the A, B and C or A^{\prime}, B^{\prime} and C^{\prime} arguments of the two command messages for control of the three receivers. Quad 2-line-to-1-line multiplexers are used for these selections.

Three 74LS157's (B03, B08 and B13) select either the Observing Command A, B and C or A', B^{\prime} and C^{\prime} arguments for control of the Noise Switching Logic (described below).

Three 74LS158's (B18, B23 and B28) are used for selection of the three sets of Diagnositc Command bits which drive the receiver control logic. As noted in the description of the Command Register Logic above, the 74LS158's have inverted outputs so the reset state of the Diagnostic Command register becomes the COOL command state of the receiver control logic.

When the Select input to these multiplexers is low, the $1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}$ and 4 A inputs are selected for output to the 1Y, 2Y, 3Y and 4Y outputs. A high on the Select input selects the B1, B2, B3 and B4 inputs. Thus when Slot B/A- is tied to logic ground via the J1-l to J1-N jumper, the command register's A, B, and C inputs are selected. This is the F-Rack F14 \#1 configuration. The jumper is omitted for F14 \#2. The multiplexer strobe input G is tied to logic ground to continuously enable the multiplexers.

Digital Monitor Logic (Sheets 1 and 2)

The digital monitor data logic is similar to the digital command logic - a set of three serial shift registers. Three parallel-input, serial-output shift registers (74LS165) are parallel-loaded and serially unloaded into the Data Set under control of the Data Set DIGI-0 input lines. Three gates, enabled by a monitor data enable (described above in Command and Monitor Data Enable Logic), permit the low-true STRI-1, DIGI-1 and CLKI-1 signals to read the digital monitor data. Gate A15-3 impresses the 20 microsecond STRI-1 strobe on the three 74LS165 Shift/Load (S/L) inputs. This loads the register with the state on the A through H inputs. 100 microseconds after the rise of STRI-1, the CLKI-1 shift clocks start the serial unload of the 24 monitor data bits in the register to the Data Set DIGI-1 input via gate A06-3.

The DIGI line is driven by an open-collector buffer that is enabled by the monitor data enable. The buffer pull-up resistor is in the Data Set and all the other monitor data sources on the DIGI-1 line sink current through this resistor as they input digital monitor data to the Data Set. The 74LS165 Clock Inhibit inputs are tied to logic ground which permits the shift clocks to unload the register. The LSB
serial input A01-10 is tied to ground so that the register fills with zero's during unload, although this would not be a problem as the shift register is always parallel-loaded by STRI-1 at the start of a new shift sequence.

If the CLKI-1 signal is viewed on an oscilloscope, a curious feature will be seen: there are two pauses in the clock train. These have a duration of one bit period and occur after eight shift clocks. This pause is an artifact of the Data Set monitor shift logic. The monitor data is not stored in a register in the Data Set; the serial stream of data from the F14 is merged directly into the Data Set's message output logic. The pause is used to inject the Data Set's serial parity bit into the message data stream.

A natural question is: is there a possibility of time contention between Data Set command and monitor operations which could obscure the readout of the command echo monitor data? The answer is no; the Data Set command and monitor operations are widely separated in time so there is no possibility of conflict.

Figure 3 (page 16 above) shows the timing of the digital monitor data logic.

Noise Calibration Switching Logic (Sheet 3)

The receivers normally use a 9.6 Hz signal from the L 8 to drive the calibration noise sources. For test purposes, the noise source drives can be commanded to seven states via the Observing Command. These states were described in Section 2.1 and are repeated here for convenience.

* Usual observing condition.
** Usual Solar observing condition.
U Denotes an unused command bit.
The calibration control logic (coordinates D3 on Sheet 3) implements this state table to drive the receivers A, B and C calibration switching circuits. This logic is driven by the Observing Command register control bits, Auto, Norm and Solar that are selected from either the A, B, and C set or the A^{\prime}, B' and C' set by the Command Register Multiplexers (B03, B08 and B13, described above).

B02, a 74 LS 367 non-inverting bus driver, buffers the 9.6 Hz signal from L 8 to this calibration control logic and to the three receivers's cal switching circuits on Sheets 4,5 and 6.

These three mode control bits drive three gates to implement the state table. Consider the receiver A path. If the Auto bit is a 1 , gate B07-3 passes the inverted 9.6 Hz signal to gates $\mathrm{B} 01-3$ and B01-6. If either (or both) the Norm or Solar bits on these two gates are a 1, and the Auto bit is a 1 , the inverted 9.6 Hz signal drives the cal switching logic on Sheets 4,5 and 6 . If Auto is a 0 , gate $\mathrm{B} 07-3$ is forced high which inhibits the passage of the 9.6 Hz drive and B07-3 provides a continuous enable to gates B01-3 and B01-6. If either (or both) Norm or Solar is a 0, gates B01-3 and/or B01-6 are inhibited
and there is no drive to the associated calibration noise sources. If either (or both) Norm or Solar is a 1 and Auto is a 0 , the noise sources are driven continuously.

Normal and Solar Cal Drive Logic (Sheets 4, 5 and 6)

These circuits implement the power switching drive to the Normal and Solar calibration noise sources. The noise source drive voltages and currents are sensed and input to Sample/Hold circuits. Since these signals are normally switching and the Data Set analog data sampling is not synchronized to the "On" state of the drive, the Sample/Hold circuits have a constant output which is sampled by the Data Set via the F14 analog multiplexers. The Solar and Normal cal drive and monitor circuits for all three receivers are identical except for component locations.

For simplicity, the Normal and Solar noise cal drive circuits are identical; the noise power delivered to the cooled amplifiers is determined by RF circuitry in the receiver. Examples of such are power splitters, directional couplers, gated amplifiers, etc.

There are two important requirements for a cal switching circuit. It must have a low "On" impedance and must have short rise and fall times so that the noise source operates at a known power level. To meet these power and speed requirements, fast heavy-drive components are used in F14. This heavy drive reduces the time to charge and discharge the capacitances of F14 circuit wiring and F14 to receiver cables.

The cal switch circuitry uses a power MOSFET (Motorola MTP8P08) driven by an open-collector, high-current, high-voltage, power Darlington driver. A 74LS367 buffer (B02, Sheet 3) buffers the 9.6 Hz signal to the Darlington driver. The 74LS367 has a high-power totem-pole output circuit with typical rise and fall times of about 10 ns with a 45 pf load capacitance. For comparison, this is about the same rise and fall time as a 74LSO4 with a 15 pf load capacitance. The TTL-compatible ULN2023A Darlington driver is capable of driving large surge currents (up to 500 ma); this high current drive can quickly charge and discharge the circuit shunt capacitances and the MOSFET's 1200 pf gate input capacitance. The typical turn on/off delay of the Darlington is about 250 ns . The MOSFET rise and fall times are 150 ns, the turn-on delay is 80 ns and the turn-off delay is 200 ns. The rough value for the rise or fall times of the noise suorces is thus about 400 ns , a fractional uncertainty in the noise source drive of about 7 parts/million of the drive on period.

The Darlington load is two 2000 ohm resistors to +28 volts. The junction of the two resistors drives the MOSFET gate so that the resultant gate signal swings between +28 V (Darlington off) to about +14 V (Darlington on). The MTP8P08 MOSFET is a P-channel, enhancement mode FET in which the source-drain current is zero with a source-gate bias of zero. The gate must be driven negative (relative to the source) past a threshold voltage to turn on the source-drain channel. The MTP8P08 threshold (gate to source) is -4.5 volts max, and the Darlington drive is -14 volts so the MOSFET drive is more than adequate. The source-drain resistance is typically 0.25 ohms at room temperature (0.35 ohms at $100^{\circ} \mathrm{C}$) for currents up to 14 amps . The cal switching circuitry is thus both fast and a low impedance in the "on" state. Section 5.0 has data sheets for the ULN2023A and MTP8P08.

It is useful to monitor the noise source drive voltage and current. Operational amplifiers C01-1 and C01-10 perform this function. The amplifier is an LF347N, JFET input operational amplifier with an internally trimmed input offset voltage (2 mV). The amplifier has a large gain-bandwidth product (4 MHz) and high output slew rate ($13 \mathrm{~V} / \mathrm{usec}$). The input bias current is 50 pA and input impedance is 10^{12} ohms.

Consider Solar cal circuits on Sheet 4 with amplifiers C01-A and C01-C. Amplifier C01-A is a differential amplifier that is driven by the $\mathrm{I}_{\text {ND }}$ voltage drop across a 10 ohm resistor. The inverted output
of C01-A drives inverting amplifier C01-C. The output of C01-C, V_{C}, is a measure of the noise source current and the current/voltage transfer function of the two amplifiers is:

$$
\mathrm{I}_{\mathrm{NO}} / N_{\mathrm{C}}=1 / \mathrm{R}_{\mathrm{D}}\left\{\left(\mathrm{R}_{\mathrm{FA}} / \mathrm{R}_{\mathrm{IA}}\right)\left(\mathrm{R}_{\mathrm{FC}} / \mathrm{R}_{\mathrm{IC}}\right)\right\}
$$

$I_{\text {NO }}$ is the noise diode current, R_{D} is the 10 ohm resistor, $R_{F A}, R_{I A}, R_{F C}$ and $R_{I C}$ are the feedback and input resistors of C01-A and C01-C respectively. Using the circuit values we see that the scaling is $10 \mathrm{~mA} / \mathrm{V}$. Thus to determine the value of the noise source current, multiply the data value (in volts) by this transfer function.

Potentiometer C08-1,2,3 is a zero-adjustment on the two-amplifier circuit. The adjustment of this pot is described in Section 3.0.

Amplifier C01-B is a voltage-follower (non-inverting, unity gain) to buffer the divided cal voltage to the voltage Sample/Hold circuit (Analog Devices AD582). This buffering eliminates perturbations of the C01-A and C by Sample/Hold charge transfer effects. Note that the pot and two associated resistors are a voltage divider with a factor of 4 .

The Sample/Hold circuits are set to the sample mode by the (always active) 9.6 Hz signal from the 74LS367 buffer which drives the +LOGIC S/H input. The S/H is set to the Hold mode when the +LOGIC input is high (it must be >2.0 volts). When this input is <0.8 volts the S / H is in the Sample mode. Note that this 9.6 drive is opposite in phase to the drive to the (inverting) ULN2032A driver. The driver's output is in phase with the $9.6 \mathrm{~Hz}+\mathrm{L}$ OGIC drive so the S / H is in the sample mode when the noise source is being driven. The hold capacitor is charged during the sample period and this charge drives the S / H output amplifier during the hold period. The droop rate during the hold period is 10 $\mathrm{mV} / \mathrm{sec}$ with the 0.01 uf hold capacitor. Over the $55,000 \mathrm{usec}$ of hold period, the output droop is thus about 0.55 mV .

The AD582 is configured as a voltage follower, i.e., the signal is applied to the + input and the output is fed back to the -input. A pair of back-to-back 10 -volt zener diodes and limiting resistor limit the output swing of the AD582. This is done to protect the analog multiplexers from an over-range input in the event that the 9.6 Hz drive is lost. This could happen on the test bench or when an antenna cable is disconnected. Section 5.0 has data sheets for the AD582 and the LF347N.

Power Reset Logic and +5 V Critical Power Regulator (Sheet 3)

The power reset circuit is a simple RC circuit with a diode clamp. When 5 -volt power is applied, the 22 uF capacitor charges to +5 volts through the 1 Kohm resistor; the time constant is 22 msec . The capacitor output is connected to the Clear inputs of the command storage registers which holds them reset until the capacitor voltage exceeds the logic threshold of the chip input, about 1.6 volts. Assuming that the 5 -volt power is applied as a step and the capacitor charge rate is roughly linear below the 1 TC point, the time delay to the threshold voltage is about 11 msec , a period more than adequate to reset the storage registers. The diode protects the chips from the capacitor charge (+5 volts) when the power is turned off. When the power is removed, the Clear inputs are limited to the 0.6 V diode forward drop.

An LM7805 linear IC regulator powered by Critical +15 V provides +5 volt power to the 7406 Pump Request Monitor drive (front panel) indicator LED drivers (EG10). The Critical power common is ground-referenced to the Rack F DC power common in the bin wiring.

2.5 FRONT PANEI. DISPLAY LOGIC (Sheet 9)

The front panel alphanumeric displays are an important feature of the F14. The display consists of three pairs of Serial Number (upper) and Band (lower) LED displays for receivers A, B and C (left-toright). Sequencing and code conversion logic on the left side of Sheet 9 select the serial number ID code and frequency ID code bits for conversion to ASCII codes and storage in the display. The HPDL-2416 is a "smart" display with an internal RAM memory which stores the display characters in ASCII format. This section describes the process of storing the two parameters in the display memory; a detailed description of all the display features is unnecessary and beyond the scope of this manual. The display chip has several features such as decimal points, blanking, a cursor character, etc., which are not used by the F14; since they are not used, they will not be described. A data sheet for the HPDL-2416 is included in Section 5; the interested reader may wish to refer to it in the following discussion. The timing diagram on page $7-40$, the logic diagram on page $7-42$ and truth table on page $7-43$ are of particular interest.

The 2416 inputs for functions that are not used are tied low or high as required by the 2416 truth table.

The display logic can be considered to consist of two parts: 1) The bit selection and memory address-load logic; 2) The code conversion logic. The bit selection and memory address-load logic develops sequencing terms which are used to drive both the Serial Number and Band displays. The two sets of bit selection logic each use three identical selector chips for code bit selection. The code conversion logic implementations are different for the two displays; this will be described later.

We will first consider the bit selection and memory address-load logic. The three sets of display chip RAM memories (for receivers A, B and C, left to right) are each loaded serially with four ASCII characters: Dig0, Dig1, Dig3 and DIG3, right-to-left. There are two aspects: 1) display chip selection; 2) digit memory selection and loading. This logic cycles continuously and is clocked by the 9.6 Hz cal switching signal.

The reader should refer to Figure 4 (next page) and Sheet 9 during the following discussion.
The 9.6 Hz cal switching signal clocks B16, a 74 LS 161 synchronous binary counter (at coordinates D7 of Sheet 9). The counter's four Q outputs (terms T0, T1, T2 and T3) are the sequence logic control terms. The 74LS161 sequences through sixteen states, 0 through 15.

Terms T2 and T3 control the selection of the receiver ID and band code ID bits. The code bit selector is a parallel multiplexer which simultaneously selects all 6 code bits from a receiver. Receiver A bits are selected first, receiver B bits secondly and receiver C bits thirdly. Two sets of dual 4-line-to-1 line multiplexers (74LS155) implement the code bits multiplexer. (The reader should review the 74LS155 multiplexer logic in a TTL data book.) Chips C05, C10 and C15 select the receiver ID code bits and chips C20, C25 and C30 select the receiver band code bits. The T2 and T3 terms sequence through four states during the 16 state sequence of counter B16; the first three T2-T3 states are used; the last is not. The first T2-T3 state (counter states 0 through 3) selects receiver A code bits, the second state (counter states 4 through 7) selects receiver B code bits and the third state (counter states 8 through 11) selects receiver C code bits. The six-bit parallel outputs of these two multiplexers are presented to two ASCII code converters for sequential conversion to four ASCII characters for input to the 2416's; the code converters are described below.

We will next consider the RAM loading logic. Terms T2 and T3 also drive the A and B inputs of a 74LS138 decoder (3-lines-to-8-lines); the C, G2A and G2B inputs are tied to logic ground. The 9.6 Hz clock drives the G1 input. (The reader should review the 74 LS 138 decoder in a TTL data book.) Assuming for the moment that G1 (the 9.6 Hz signal) is always high, only the $74 \mathrm{LS} 138 \mathrm{YO}, \mathrm{Y} 1, \mathrm{Y} 2$ and
FIGURE 4, FRONT PANEL
FIGURE 4, FRONT PANEL
DISPLAY LOGIC TIMING
DISPLAY LOGIC TIMING

Y3 outputs will ever be active (low) for the sequencing inputs T2 and T3 because the C input is grounded. The Y0, Y1 and Y2 outputs (labelled WRITE1, WRITE2 and WRITE3) are used to load the three receiver display chip RAM memories. Now consider the action of the 9.6 Hz clock on the G1 input. When G1 is high, the Y0, Y1 and Y2 outputs are active (low) and when it is low, the three outputs are high; thus the 9.6 Hz signal is passed through the 74LS138 and inverted; T2 state changes are the result of four counts of the 9.6 Hz clock. The Y0, Y1 and Y2 outputs thus have four 9.6 Hz clock components as shown on Figure 3. Note that the Y0, Y1 and Y3 outputs are low for the first half of each 9.6 Hz period. These three sets of four clocks are the Write clocks for each memory digit of the three 2416's. WRITE1 is the display chip WR- term and drives the receiver A displays, WRITE 2 drives the receiver B displays and WRITE3 drives the receiver C displays. (The reader should review the HPDL-2416 timing diagrams on 2416 data sheet page 7-40). Note that the trailing edge of the WR-pulse is used to strobe the memory). Since the 2416 addresses and input data are formulated at the start of each counter state, there is about 55,000 microseconds of settling time before the data is strobed into the 2416 .

The 2416 display chips use a two-bit address, A_{0} and A_{1}, to select each RAM location address. Terms T0 and T1 (from counter B16) drive these address inputs. Thus T0 and T1 address the four memory locations and the four WRITEn clocks strobe the ASCII character on the chip data inputs (DO ... D6) into the addressed RAM locations.

Remember that the receiver serial number code is a six-bit binary code and the receiver band code is a 4-bit binary code with even parity bit; two different processes are required but both must generate a sequence of four ASCII values.

We will first consider the receiver ID code converter which is a binary to BCD process. The receiver ID code is a 6 -bit value ranging from 1 through 63 and the converter sequentially generates four ASCII characters. The four digits always have leading zeros and are right-adjusted in the display. Receiver ID code display values thus range from --01 to --63 (- denotes a blanked or non-illuminated digit, more about the blanking later).

A 74185 binary to BCD converter chip is used to convert the 6 -bit value. (The reader should review the operation of the 74185 chip in a TTL data book.) This case of binary to BCD conversion is very simple. The least significant bit $\left(2^{0}\right)$ is identical in both code formats. Binary code bits 2^{1} through 2^{5} are input to the 74185 A through E inputs. The 74185 Y1 (MSB), Y2 and Y3 outputs in conjunction with the 2^{0} bit form the least significant BCD digit. These four bits are connected to the " $\mathrm{A}^{\text {" in inputs }}$ C05, a 74LS157 quad 2-line-to-1-line multiplexer. C05's Select input (-A/B on the logic diagram) is connected to TO and the strobe input is connected to T1. When the strobe input is low, the four Y outputs follow the four inputs selected by the $-A / B$ input. If $-A / B$ is low and strobe is low, the outputs follow the A inputs. If $-A / B$ is high and strobe is low, the outputs follow the B inputs. If the strobe is high, the outputs are forced low, irrespective of the state of the $-\mathrm{A} / \mathrm{B}$ input.

Remember that T0 and T1 cycle through a four state sequence starting with 00 (state 0) and ending with 11 (state 3). Thus in state $0, C 05$ selects the A inputs (the LSD of the converted value) for input to the lowest 2416 data inputs (DO, D1, D2 and D3; the state of the other inputs are described below). In state 1, CO5 selects the B inputs, the MSD of the converted value. Since the code value is never greater than 63, the most significant bit in the MSD is always a zero; thus input 4 B on $\operatorname{CO5}$ is connected to logic ground.

At this point, the 74185 converter has generated two digits of BCD code. We know that the upper display digits are 0's; how are they generated? During states 2 and 3, the strobe input of 005 is set high by $\mathrm{T1}$; this forces all outputs to the zero state which produces a BCD value of zero.

The reader should refer to the 2416 ASCII codes shown on 2416 data sheet, page 7-44. Note that this is an abbreviated code set; not all ASCII codes are recognized by the 2416's 64 -character code generator. Note that there is a code for a decimal point; this character is used in the display and uses one digit space. Codes which are not in this set are ignored by the character generator.

At this point four sets of BCD digits have been sequentially generated and presented to the 2416's DO, .. D3 inputs. How are the upper three bits of ASCII code for these four characters generated? The 2416's ASCII code table shows that for the 0 through 9 character set, ASCII code bits D6, D5 and D4 are 0,1 and 1 , respectively. The 2416's D5 and D4 inputs are forced high by a pull-up resistor to $+5 \dot{V}$ making bits D5 and D4 a 1. Bit D6 is driven by T1, which is low for T0-T1 states 0 and 1 (the periods for conversion and entry of the LSD and MSD characters). The proper upper ASCII bits (D4, D5 and D6) are thus appended to the lower four converted bits for each of the first two display characters. T1 drives D6 high during states 2 and 3 (the periods for conversion of the upper two display characters). This produces a 1, 1, 1 code on 2416 inputs D6, D5 and D4. Referring to 2416 data sheet page 7-41, when D5 = D6 in the RAM, the associated display character is blanked. Thus the two left digits of the display are blanked.

During the first half of each T0-T1 state, a memory write signal, (one of the WRITEn clocks) clocks the associated ASCII character into the RAM. This was described above.

The receiver band code converter is quite simple and uses an Intel 2732 (4 K by 8 bits) EPROM for conversion logic.

The band ID code is shown below. The most significant bit is always a 0 or 1 and is an even parity bit for the four bits of receiver band code.

Receiver Frequency Band Code and Band Display

$\begin{aligned} & \text { Parity } \\ & P_{B} \end{aligned}$	$\begin{aligned} & \text { Code } 16 \\ & B_{0}-B_{3} \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{B}}+ \\ & \mathrm{B}_{0}-\mathrm{B}_{3} \end{aligned}$	Display	EPROM Data	Parity P_{B}	Code $_{16}$	$\begin{aligned} & \mathrm{P}_{8}^{+} \\ & \mathrm{B}_{0}-\mathrm{B}_{3} \end{aligned}$	Display	EPRON Data
0	0	00	400.	${ }^{1} .004^{\prime}$	1	0	10	${ }^{\wedge} \mathrm{BAD}$	'DAB ${ }^{\prime}$
1	1	11	${ }^{\text {a }}$ BAD	' DAB	0	1	01	50.0	10.05
1	2	12	${ }^{\text {a }}$ BAD	'DAB	0	2	02	20.0	'0.02'
0	3	03	13.0	'0.31'	1	3	13	${ }^{\text {BAD }}$	'0AB
1	4	14	${ }^{\text {a }}$ BAD	${ }^{1}$ DAB	0	4	04	${ }^{\wedge} 6.0$	10.6
0	5	05	${ }^{\wedge} 3.6$	16.3	1	5	15	${ }^{\wedge}$ BAD	${ }^{\prime}$ DAB
0	6	06	${ }^{\wedge} 2.8$	${ }^{1} 8.2$	1	6	16	${ }^{\wedge} \mathrm{BAD}$	'DAB
1	7	17	${ }^{\wedge} \mathrm{BAD}$	'DAB	0	7	07	${ }^{\wedge} 2.0$	${ }^{\prime} 0.2$
1	8	18	${ }^{\wedge} \mathrm{BAD}$	'DAB	0	8	08	$\wedge 1.3$	13.1
0	9	09	${ }^{\wedge} 0.7$	17.0 '	1	9	19	^BAD	'DAB
0	A	OA	0.35	'53.0'	1	A	1A	${ }^{\text {a Bad }}$	'DAB
1	B	1B	${ }^{\text {a }}$ BAD	'DAB	0	B	OB	abAD	'DAB
0	C	OC	${ }^{\wedge} \mathrm{BAD}$	'dAB	1	C	1C	${ }^{\wedge} \mathrm{BAD}$	'DAB
1	D	1D	${ }^{\text {a }}$ BAD	'DAB	0	D	00	${ }^{\wedge} \mathrm{BAD}$	${ }^{\prime}$ DAB
1	E	1E	${ }^{\text {a }}$ BAD	'DAB	0	E	OE	${ }^{\wedge} \mathrm{BAD}$	' DAB
0	F	OF	${ }^{\wedge} \mathrm{BAD}$	'DAB	1	F	1F	*BAD	' DAB

Notes: ^ denotes a blanked display digit. The (') character delimits the EPROM data. The period (.) character is one display digit. A blank space () in the EPROM data is an ASCII space character. The EPROM start address is $000{ }^{\mathbf{1 6}}$.

The four band code and parity bit are an address which drives EPROM 2732 address inputs A2,... A6 ($2^{2}, \ldots 2^{6}$, respectively) and the T0 and T1 sequencing terms drive the A0 and A1 inputs (2^{0} and 2^{1} respectively). Address lines A7,..A11, the chip enable (CE-) and Output Enable (OE-) are grounded. The ASCII code portion of the 2732 can be considered to be a memory consisting of 32 sets of four-byte wavelength values, where each byte contains an ASCII character to be loaded into the 2416 RAM memory.

Eight of these sets are assigned to error-free, assigned wavelength values and 24 are assigned to parity error or unassigned cases. The selected bytes set is addressed by the A2,..A6 address the band ID code plus parity) and each byte in the four-byte set is addressed by the T0, T1 states on the A0, A1 inputs. The base address of each set is 00 and the top address is 11 , corresponding to the beginning and end of the T0-T1 four-state sequence.

Seven of the eight 2732 EPROM data outputs ($O 0, O 1, \ldots$ O7), are connected to the seven 2416 display D0....D6 inputs. As T0 and T1 sequence through the four states, the four-byte contents of the addressed byte set is read into the 2416 RAM by the strobe logic described above. The eight assigned, error-free, band ID code wavelength values are stored in the EPROM locations defined by the addresses. All parity error and unassigned code cases have the four ASCII bytes "-BAD" stored in these sets of locations. The - BAD and the error-free wavelength values are shown in the table above.

2.4 ANALOG SIGNAL MULTIPLEXING AND CONDITIONING

This section describes the analog signal multiplexing and signal conditioning. Remember that there are two classes of analog data: Common Analog and Receiver-Specific functions. Each set consists of 16 parameters and were listed in Section 2.1 above. Channels labled gnd (spare) are available for future use but would require a non-trivial modification of the F14 wiring. These channels have been provided with RC filters but the filter inputs are connected to analog ground.

Analog Signal Conditioning (Sheets 8 and 9)

Each channel has an RC filter that provides some charge-transfer isolation to reduce perturbations to signal sources during sampling. The multiplexer chips (HI -508's) have break-before-make properties but circuit wiring and chip capacitances (although small) can retain charges between actuation of the multiplexer channels. The Data Set defaults the four multiplex address lines to address 15_{10} (Hex F) between command or monitor operations; the stored charge associated with this address state is the charge that exists on this capacitance when an analog signal is selected. The 0.1 uF capacitor in the RC filter will be charged to the signal source voltage (all the signals are DC values); this capacitor must charge the multiplexer-wiring capacitances. Assuming a channel filter capacitor is charged to +10 volts and the multiplexer default address $\left(\mathrm{F}_{16}\right)$ had selected a -10 volts source, the worst case signal swing on a multiplexer output is 20 volts. Estimating 50 pF for the HI-508 chip and wiring capacitances and using Data Set multiplexer "on" capacitance of 100 pF , the filter capacitor charge is reduced by about 3 mV , about a $1 / 2$ count error in the converted value. This (worst case) 3 mV charge must be replaced by the signal source through the 1000 ohm filter resistor. The charge time constant is about 50 ns so the output, wiring and Data Set input capacitance is charged within about 1 us. The Data Set A/D shifts to the "Hold" mode 30 us after the multiplex address goes true; thus there is more than adequate time for analog settling before A / D conversion is initiated.

Signal voltages greater than 10 volts are divided by a divider resistor across the filter capacitor. These are 15 and 28 volt signal cases.

Clamping diodes on the HI-508 inputs and outputs will clamp over-range inputs or outputs to the +15 V or -15 V chip inputs. Chip damage under these conditions is very unlikely because the 1000 ohms (or 5110) ohm resistors in the RC filter circuits will limit "On" channel current to less than the 20 mA limit.

An HI-508 data sheet is included in Section 5.

Analog Signal Multiplexing (Sheets 8 and 9)

The F14 has four 16-channel analog multiplexers - one for the Common Analog parameters and one for each of the three Receiver-Specific parameters. Each of these multiplexer outputs is connected to a differential-input multiplexer in the Data Set. Each 16 -channel multiplexer consists of two eightchannel, single-ended analog multiplexer chips. One multiplexer selects one of the lower eight signals and the second selects one of the upper eight signals. The multiplexers have internal one-of-eight decoders which drive the analog switches. The decoder has an enable input which permits the decoder outputs to drive the analog switches. Thus the three lower Multiplex Address bits ($2^{0}, 2^{1}$ and 2^{3}) activate (via the one-of-eight decoder) one of the channels on each multiplexer and the most significant bit (2^{3}) enables the lower or upper multiplexer decoder. The two multiplexer outputs are tied together and drive the + (signal high) input of the Data Set multiplexer.

Each receiver provides an analog ground reference line (QGND) that is connected to a Data Set analog multiplexer - (signal low) input. This ground reference may differ from the F14 analog common by a small common-mode voltage resulting from the voltage drop of the $+/-15$ Critical power wire between the CPP and receiver. Since the Data Set analog inputs are differential and have a high common-mode rejection (about 80 db), the receiver common-mode signals have a negligable effect upon the converted values.

The Common Analog ground reference is the F14 $+/-15 \mathrm{~V}$ common which is tied to the - low side) input of the Data Set multiplexer.

10 Volt Reference (Sheet 8)

To provide a means of checking the Data Set A/D converter gain drift, the F14 has an Analog Devices AD2702 precision reference. The +10 volt and -10 volt outputs are connected to the inputs of the Common Analog multiplexers. The A/D converter zero drift can be checked by the Analog Ground value. The AD2702 data sheet is included in Section 5.

2.6 COMMAND SIMULATOR CONIROL OF THE SINGLE-BAND, FRONT END RECEIVER

For test or maintenance purposes it may be useful to locally command the receivers cryo or the cal circuitry via the Command Simulator. This section describes how this may be done. (The Command Simulator is easy to use but the reader may wish to refer to the Command Simulator manual for additional details.) Single-Shot commands should be used; this avoids the possibility of sending garbage commands to the receivers when the thumbwheel switches are being set up in the recurrent command mode.

Remember that the F-Rack F14's are controlled by Data Set \#4.
Consider the Diagnostic Commands which have the following F14 Register format.
Diagnostic Command Format, MUX 323 $\mathbf{8}_{8}$

The Command Simulator's octal command argument thumb-wheel switches (S0 ... S8) are in Numeric Format, i.e., LSD on the right - the reverse of the Register Format shown above. Rearranging the table above to Numeric Format and adjusting the column spacing to conform to octal format, we get the table shown below. These switch settings can be verified by checking the hex format LED display.

Diagnostic Command Thumbwheel Switch Settings

Next consider the Observing Commands in Register Format.
Observing Command Format, MUX 322 ${ }_{B}$

Revr	A				$A^{\prime \prime}$				B				B'				C				C ${ }^{1}$			
Bit	0	1	2	3	4	5	6	7	8	9	10		12	13	14	15	16	17	18	19	20	21	22	
	S	N	A	U	S	N	A	u	S	N	A	U	S	N	A	U	S	N	A	U	S	N	A	

$S=$ Solar command bit, $N=$ Normal command bit, $A=A u t o$ command bit, $U=$ Unused command bit.
F14 logic maps these Observing Command bits into a state table as follows:

Condition	MSB			LSB	
F14 Reg bit label	U	A	N	S	Cal State
Cals off	0	0	0	0	No drive to either noise source
Solar contimuous	0	0	0	1	Solar (only) continuous noise source drive
Normal contimuous	0	0	1	0	Norm (only) continuous noise source drive
Both continuous	0	0	1	1	Both noise sources on continuously
** Solar auto	0	1	0	1	9.6 Hz drive to Solar (only) noise source
* Norm auto	0	1	1	0	9.6 Hz drive to Norm (only) noise source
Both auto	0	1	1	1	9.6 Hz drive to both noise sources

** is the usual Solar observing condition. * is the usual Normal observing condition. U can be either 0 or 1 , shown as a for the table hex code.

Rearranging the table above in the same manner as the Diagnostic Command case above we get the following:

Observing Command Thumbwheel Switch Settings

3.0 MODULE ALGNMENT AND TEST

This Section describes the test bench module alignment and test functions that consists of two parts: analog tests and digital tests.

A vital factor in the quality of a module test is the realism of the test environment and the rigor of the tests. The essentials of this environment are as follows:

1) A source for Data Set-compatible Digital commands and digital monitor signals. The VLA Monitor and Control Lab test bench provides all the requisite features to stimulate F14 and to evaluate the response of the F14 digital and analog circuitry.
2) A set of power supplies to power F14: $+/-15$ volts, +5 volts and +28 volts.
3) A TTL-level signal of about 10 Hz to simulate the L 89.6 Hz signal. The frequency is not critial but it should be a square wave.
4) An F14 test harness to connect the test bench to F14 connectors P1, P2, P4, P6 and P3, P5, P7. The harness would have only one set of DB25 connectors which are first connected to the P2-P3 pair, next to the P4-P5 pair and then to the P6-P7 pair for sucessive tests of the receiver interface signals. The details of implementing this simple test harness are not included here.

Features of this test harness are:
A) The test bench $+/-15$ is connected to both the P1 module power and Critical Power pins.
B) The 28 volt supply is connected to the P1 28 volt pins.
C) The P3 connector has jumpers to connect the receiver control signals X, C and H to P3 control mode monitor signals X, C, H and discretes S, P and M. This permits simulation of the response of the receiver's control logic and connector wiring. When the three receiver's control signals are sequenced through the test states by digital commands, the receiver's response can be evaluated on the digital monitor data.
D) The 10 Hz TTL signal is connected to the 9.6 Hz input on P1.
E) A set of 12 toggle switches to simulate the receiver's serial number ID code, frequency band ID code and the modification code. An additional toggle switch is used on the Slot B/A- P1 pins to actuate the command register multiplexers.
F) A pair of resistors on the P5 connector to simulate the noise source loads.
G) A set of voltage divider resistors powered by the + and - 15 volt power supplies to provide unique test voltages to stimulate the following analog signals: 1) The P1 analog inputs Vacuum pump current, Helium supply and return pressures; 2) The P2 analog inputs Pump and Dewar vacuum, AC current, four temperature ($15,50,300$ and Sens.), the six receiver amplifier gate voltages (RCP and LCP Stage 1's and Stage 2-3 sums) and the LED voltage. The dividers output levels should be accurately measured and recorded for comparison with the F14 test data.

The F14 to be aligned should be power-short tested before installation of chips and dip headers. If there are no apparent problems, the IC chips and dip headers should be properly installed and checked before installation of power. Check for bent-over IC pins that could cause shorts to the ground plane or
stuck signals. In the test environment outlined above, apply power to F14; if there are no smoke signals, perform the following tests in sequence.

1) Apply digital commands to test the two sets of command loading and storage registers. Read the command echo registers by stimulating digital monitor channels. First command a sequence of command states consisting of: (a) all 1's, (b) all 0's, (c) alternating 1's an 0's, (d) an lsb and msb of 1's, all other bits 0 's, (e) an lsb and msb of O's, all other bits 1's. Secondly, sequence through the receiver's A, B, C, A', B' and C' operating states shown in Section 2. Actuate the Slot B/A- switch during these tests to exercise the command multiplexer logic.

Observe the response of the command echo digital monitor outputs to these command states. If the command echo monitor data output does not identically agree with the commanded states, troubleshoot the command and command echo monitor data logic circuits. The details of these checks are straight-forward and involve checks of the stimulus signals through the enable circuits, presence of load and shift clocks on the registers and flow of serial data through the registers.
2) Test the response of the digital monitor circuitry by actuating the receiver serial number ID, receiver band ID and Modification toggle switches. It should not be necessary to sequence through all possible states; toggling actuations of each switch should be adequate. During this test, verify that the serial number and band display values on the front panel displays are correct. Sequence the test harness through the three sets of DB25 rear panel connectors to check all connector inputs.

Test the response of the digital monitor circuitry to the receiver discretes monitor inputs by commanding 1's and 0's for the six receiver's X, C and H control inputs. Actuate the Slot B/A- switch for these tests. Verify that the six monitor discretes ($\mathrm{X}, \mathrm{C}, \mathrm{H}, \mathrm{P}, \mathrm{S}$ and M) are correct in the digital monitor data output. If not correct, check the monitor data logic with tests similar to that suggested in step 1 above. Check the front panel Pump LED when the P discrete becomes a 1.

Check the receiver serial number ID, the frequency band ID and the Mod codes on the digital monitor data output. During this test, set invalid band codes on the frequency band ID switches and check that the front panel band display shows -BAD. Next set improper parity on the parity switch and observe that the display shows - $B A D$.
3) Test the response of the Observing Command circuitry by commanding the cal states shown in Section 2. Observe the 28 volt signals impressed upon the two resistors which simulate the solar and normal noise sources. Check the Solar and Normal LED's on the front panel.
4) Command the cal switching circuitry to the continuous on state without a load to simulate a noise source. Adjust the current zero potentiometer for a zero volts $+/-5 \mathrm{mV}$ output from the second stage of the current-to-voltage amplifier. Connect a load resistor to simulate a noise source to the noise cal output and verify that the amplifier output is a correct measure of the load current. The current-to-voltage scaling of this amplifier is $10 \mathrm{~mA} / \mathrm{V}$. Verify that the current Sample-and-Hold output is correct.

With the switching circuit in the on state, verify that the cal voltage follower amplifier and associated Sample-and-Hold output is +7 volts.

With an oscilloscope check the voltage and current Sample and Hold circuits for droop. The droop should be less than 5 mV over the hold period.
5) Check the Common Analog and three Receiver-Specific analog signals for proper correspondance with the test stimulus values.

4.0 DRAWINGS

This section contains B-sized reductions of the following drawings:
D13190S04 F14 Schematic Diagram
D13190P10 F14 Assembly Drawing
C13190P10 F14 Front Panel Assembly Drawing
A13190Z06 F14 Assembly Bill of Materials
A13190P11 F14 IC Location Diagram
A13190P12 F14 Dip Header Assembly Drawing

NATIONAL RADIO ASTRONOMY OBSERVATORY
 PO BOX 0
 SOCORRO, N.M. 87801

DWG \# Al3190Z06 REV \quad SHEET 2 of 5

ITEM \#	REF DES	MANUFACTURER	MFG PART \#	DESCRIPTION	QTY
1	---	NRAD	D13190P10	F14 ASSEMBLY DWG.	---
2	---	NRAD	A13190206	F14 ASSEMBLY BIM	---
3	---	NRAD	Al3190W01	F14 WIRE LIST (MASTER)	-
4	---	NRAD	A13190W04	F14 WIRE LIST (HAND)	--
5	\cdots	NRAD	Al3190W05	F14 WIRE LIST (MACHINE)	---
6	\cdots	NRAD	D13190S04	F14 SCHEMATIC DIAGRAM	---
7					
8	---	NRAD	D13190P09	F14 FRINT PANEL display PCB	1
9					
10	---	NRAD	A13190P11	F14 IC LICATIDN DIAGRAM	---
11	---	NRAD	A13190P12	F14 DIP HEADER ASSEMBLY	\cdots
12					
13	----	NRAO	C13190AB07	F14 FRINT PANEL	1
14	-	NRAD	D13190AB09	F14 FRINT PANEL SILKSCREEN	---
15	---	NRAD	B13190M10	F14 FRONT PANEL FILTER	1
16					
17	---	NRAD	C13190M06	F14 REAR PANEL	1
18	---	NRAD	B13050M03	MIDDULE MDUNTING RAILS	2
19	-	NRAD	C13720M15-1	UPPER IC MDUNTING RAILS	1
20	---	NRAD	C13720M15-2	LOWER IC MDUNTING RAILS	1

NATIONAL RADIO ASTRONOMY OBSERVATORY
PO BOX 0
SOCORRO, N.M. 87801

DWG \# Al3190Z06 REV _ SHEET 3 of 5

ITEM \#	REF DES	MANUFACTURER	MFG PART \#	DESCRIPTION	QTY
21					
22	---	NRAD	B13050M18	RIGHT AND LEFT SIDE PLATES	2
23	---	NRAD	С13050M22-3	4 WIDE PERFDRATED CDVER	2
24					
25	---	NRAD	C13740M45	RAIL INSULATING SPACER	2
26					
27	---	NRAD	B13050M04	Madule guide black	4
28	---	NRAD	C13050M70	MODULE PULLER KNUB	2
29	---	NRAD	C13720M53	16 PIN X 30 LDGIC bIARD	4
30	---	NRAD	C13720M54	UNIVERSAL LIGIC BIARD	1
31					
32					
33					
34					
35	---	SIUTHCD	47-10-204-10	CAPTIVE THUMB SCREW	4
36	-	------	\#6-32 \times. 75	FH PHP SS SCREW	2
37	---	--	\#6-32 $\times .50^{\prime}$	FH PHP SS SCREW	2
38	\cdots	----	\#4-40	SS HEX NUT	4
39					
40	---	HH SMITH	8681	\#4-40 $\times .25$ OD $\times .687$ PHENDLIC SPACER	4

NATIONAL RADIO ASTRONOMY OBSERVATORY
 PO BOX 0
 SOCORRO, N.M. 87801

DWG \# A13190Z06 REV \quad SHEET 4 of 5

ITEM \#	REF DES	MANUFACTURER	MFG PART \#	DESCRIPTION	QTY
41	---	------	\#4-40 X .25*	NYLIN SCREW	4
42					
43	---	HEWLWTT PACKARD	HLMP-0103	$13 / 4$ LAMP MDUNTING CLIP	9
44					
45	---	AMP	201358-3	50 PIN CDNNECTIR BLDCK	1
46	---	AMP	202394-2	50 PIN CONNECTIR SHIELD	1
47	---	AMP	204219-1	\#16 WIRE CRIMP PIN	6
48	---	AMP	601488-1	. 025 WIRE WRAP PIST	44
49	---	AMP	203964-6	GUIDE SDCKET	2
50	----	AMP	200833-4	guide Pin	2
51					
52	---	AMPHENDL.	DB25P-F179	25 PIN MALE D-CONNECTIR	3
53	---	AMPHENDL	DB25S-F179	25 PIN FEMALE D-CDNNECTIR	3
54	-	KEYSTINE	7231	D-CONNECTIR MOUNTING JACKS	12
55					
56	---	-----	\#6-32 $\times 1{ }^{1}$	BH SS SCREW	4
57	---	--.---	\#6-32 \times.75	BH SS SCREW	4
58	-	-----	\#6	SS EXTERIDR TIDTH LICKWASHER	18
59	---	-----	\#6-32 $\times .500^{\circ}$	SCH SS CAP SCREW	2
60	---	-----	\#6-32 \times.375	FH PHP SS SCREW	2

NATIONAL RADIO ASTRONOMY OBSERVATORY
 PO BOX 0
 SOCORRO, N.M. 87801

DWG \# A13190Z06 REV ——_SHEET 5 of 5

ITEM \#	REF DES	MANUFACTURER	MFG PART \#	DESCRIPTION	QTY
61					
62	---	----	\#4-40 \times. 50°	BH SS SCREW	20
63					
64	---	Gc electranics	13-280-c	Salder Lug	1
65	---	HH SMITH	2025-D	TERMINAL (THRU TURRET)	5
66	---	HH SMITH	2010-D	TERMINAL (SPLIT)	5
67					
68	---	-----	\#6-32 \times.25*	FH SS SCREW	12
69	---	ALPHA	286	buss bar tinned \#14 avg capper	---
70	---	ALPHA	TFT-200-13-NAT	TEFLON EXTRUDED TUBING	---
71					
72	---	CONN HARD RUBBER	TYPE K350	KAPTIN TEMP-R TAPE . 50° WIDE	--
73					
74					
75					
76					
77					
78					
79					
80					

SPECIAL SUB-ASSY'S

| OWG.
 NO. A13190P11 | SHT.
 NO. |
| :--- | :--- | :--- |

SPECIAL SUB-ASSY'S

| DWG. A13190P11 | SHT. 3 of 6 | REV |
| :--- | :--- | :--- | :--- |

SPECIAL SUB-ASSY'S

| DWG.
 AIn A13190P11 | SHT
 NO. 4 of 6 | REVV. |
| :--- | :--- | :--- | :--- | :--- |

SPECIAL SUB-ASSY'S

OWG. NO. A13190P11	SHT. NO.	of 6	REV.

LICATIDN_E

SPECIAL SUB-ASSY'S

| DWG.
 NO. A13190P11 | SHT. 6 of 6
 NO. |
| :--- | :--- | :--- | :--- |

REV	DATE	DRAWN BY	APPRV'D BY	

MODULE F14 FE CONTRQL INTERFACE

BOARD LOCATION A26, B26, C28, EE37

MODULE \quad F14 FE CONTRIL INTERFACE
BOARD LOCATION B27

OWG. NO. A13190P12	SHT. NO.	of 14	REV.

	DESCRITION	VALUE	MFG	MFG PART \#
0				
$[-m-d$	RESISTIR	10 DHM 1\%	DALE	RNGODIOROF
$\cdots-10$	RESISTIR	29.4K DHM, 1\%	DALE	RN55D2942F
$[-m-1]$	RESISTAR	30.1 K DHM 1\%	DALE	RN55D3012F
[-m-1]	RESISTIR	10K पHM, 1\%	DALE	RN55D1002F
[1-m-1]	RESISTIR	10K पHM, 1\%	DALE	RN55D1002F
[1-m-7]	RESISTIR	301K पHM 1\%	DALE	RN55D3013F
[$0-3-7]$	RESISTDR	10K OHM, 1\%	DALE	RN55D1002RF
[1-m-1]	RESISTIR	9530 DHM 1\%	DALE	RN55D9531F

MODULE F14 FE CONTRDL INTERFACE
BOARD LOCATION _C2, c7, c12, C17, c22, c27

DWG. NO.	Al3190P12	SHT. NO.	of 14

	DESCRITION	VALUE	MFG	MFG PART \#
DIP HEADER				
10^{10}				
$[-m$]	RESISTAR	2K DHM, 5\%	ALLEN BRADLEY	RCR07CB202JS
$\square-m-]$	RESISTUR	2K ロHM, 5\%	ALLEN BRADLEY	RCRO7CB202JS
-m-1]	RESISTDR	2K ロHM, 5\%	ALLEN BRADLEY	RCR07CB202JS
$\square-m$ -	RESISTOR	2K पHM, 5\%	ALLEN BRADLEY	RCR07CB202JS
$\bar{\sim}-1 / 1 / 1 / 2$	MZSFET, PDWER	P CHANNEL MLSFET	MDTORILA	MTP8P08
$\mathrm{H}_{2} \mathrm{c}_{2}+7$	MDSFET, POWER	P CHANNEL MDSFET	MOTDRDLA	MTP8P08
[10				

MODULE \qquad F14 FE CONTRDL INTERFACE

BOARD LOCATION \qquad

| DWG. Al3190P12 | SHT. 5 of 14 | REV. |
| :--- | :--- | :--- | :--- |
| NO. | | |

$$
\text { MODULE } \quad \text { F14 FE CDNTRDL INTERFACE }
$$

BOARD LOCATION _C16

DWG. NO. A13190P12	SHT. NO.	of 14	REV.

| DESCRITION | VALUE | MFG | MFG PART \# |
| :---: | :---: | :---: | :---: | :---: |
| DIP HEADER | | | |

MODULE F14 FE CONTROL INTERFACE

BOARD LOCATION C8

DWG. NO.	AL3190P12	SHT. NO.	7 OF 14	REV.

OWG. A13190P12 NO.	SHT. 8 of 14 NO.	REV.

MODULE F14 FE CDNTRGL INTERFACE

BOARD LOCATION D1, D2, D6, D7, D11, D12 D16, D17, D21, D22, D26, D27, EA10, EA37

| DWG.
 NO. A13190P12 SHT.
 NO. |
| :--- | :--- | :--- | :--- |

	DESCRITION	VALUE	MFG	MFG PART \#
DIP HEADER				
$0-10$	CAPACITDR, POLYESTER	. 01 UF	MALLORY	168103J100A
$[-m-1]$	RESISTIR	5.1K पHM, 5\%	ALLEN BRADLEY	RCR07CB512JS
$0>0]$	DIDDE	10 V ZENER	MOTDRDLA	1N5240B
[-1]	DIDDE	10 V ZENER	MOTORDLA	1N5240B
[-1-0]	CAPACITAR, POLYESTER	. 01 LF	MALLORY	168103J100A
[-m-d	RESISTDR	5.1K DHM, 5\%	ALLEN BRADLEY	RCR07CB512JS
[-1	DİDE	10 V ZENER	MOTORDLA	1N5240B
	DIDDE	10 V ZENER	MDTERDLA	IN5240B

MODULE \qquad F14 FE CDNTRDL INTERFACE
BOARD LOCATION
D3, D8, D13, D18, D23, D28

DWG. NO.	Al3190P12	SHT. NO.	10 of 14

	DESCRITION	VALUE	MFG	MFG PART \#
\square				
$\rightarrow 0$	DIIDE	IOV ZENER	MDTOROLA	1N5240B
$\square \rightarrow-1$	DİDE	10 V ZENER	MDTOROLA	1N52408
$\square]$	DIDDE	10V ZENER	MOTORILA	1N5240B
[-m-1]	RESISTDR	5.11K DHM, 1\%	DALE	RN55D5111F
7-m-1]	RESISTOR	5.11K DHM, 1\%	DALE	RN55D5111F
[-m-1]	RESISTUR	1.69 K OHM, 1%	DALE	RN55D1691F
[1-m-1]	RESISTOR	5.11 K OHM 1\%	DALE	RN55D5111F
[1-m-1]	RESISTIR	5.11 K DHM, 1%	DALE	RN55D5111F

MODULE F14 FE CDNTRDL INTERFACE

BOARD LOCATION EAO1

| PWG. | | |
| :--- | :--- | :--- | :--- |
| NO. | Al3190P12 | SHT. |

	DESCRITION	VALUE	MFG	MFG PART \#
DIP HEADER				
[10-m]	RESISTDR	5.11K DHM 1%	DALE	RN55D5111F
$[-1-1]$	CAPACITDR	. 1 uF	SPRAGUE	IC20Z5U104M050B
[1-m-]	RESISTIR	5.11K पHM, 1\%	DALE	RN55D5111F
$0-1]$	CAPACITIR	. 1 UF	SPRAGUE	IC2025U104M050B
[1-mil]	RESISTDR	1 K पHM, 5\%	ALLEN BRADLEY	RCR07CB102JS
-1-0]	CAPACITOR	1 uF	SPRAGUE	IC2025U104M050B
[-m-l	RESISTDR	5.11K पHM, 1\%	DALE	RN55D5111F
[1H0]	CAPACITDR	1 uF	SPRAGUE	IC2025U104M050B

MODULE FI4 FE CDNTROL INTERFACE
BOARD LOCATION EA19

| OWG.
 NO. A13190P12 | SHT.
 NO. | 12 of 14 | REV. |
| :--- | :--- | :--- | :--- | :--- |

	DESCRITION	VALUE	MFG	MFG PART \#
DIP HEADER				
	RESISTDR	5.11 K OM 1%	DALE	PN
	CAPACITOR	$1{ }^{1} \mathrm{uF}$	SPRAGUE	IC2025U104M050B
	RESISTIR	5.11K DHM 1\%	DALE	RN55D5111F
	CAPACITDR	. uF	SPRAGUE	IC2025U104M050B
	RESISTDR	1K DHM, 5\%	ALLEN BRADLEY	RCR07CB102JS
	CAPACITDR	. 4 F	SPRAGUE	IC2025U104M050B
	RESISTIR	1 K पHM 5\%	ALLEN BRADLEY	RCR07CB102JS
	CAPACITDR	. 1 FF	SPRAGUE	IC2025U104M050B

MODULE F14 FE CONTROL INTERFACE
BOARD LOCATION EAZ8

| DWG. A13190P12
 NO. | SHT.
 NO. | 13 of 14 | REV. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

MODULE F14 FE CINTRDL INTERFACE

BOARD LOCATION EGO1

DWG. NO. A13190P12	SHT.	14 of 14	REV.

5.0 DATA SHEETS

This section contains the following data sheets:
Plot of Receiver Vacuum Pressure as a function of Monitor Output Voltage
Receiver Card Cage Assembly, D53203A004
Hewlett-Packard HPDL-2416
National Semiconductor LF347
Motorola MTM8P08

Sprague ULN2023A and Allegro 2023
Analog Devices AD582
Harris H1508
Analog Devices AD2702
Intel 2732

Vacuum Pressure as a Function of Monitor Output Voltage

Features

- SMART ALPHANUMERIC DISPLAY

Buill-in RAM, ASCII Decoder, and LED Drive Circuitry

- wide operating temperature range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- very fast access time 160 ns
- EXCELLENT ESD PROTECTION

Buill-in Input Protection Diodes

- CMOS IC FOR LOW POWER CONSUMPTION
- full ttl compatibility over operating temperature range
$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}$
- wave solderable
- RUGGED PACKAGE CONSTRUCTION

- end-stackable

- WIDE VIEWING ANGLE

Description

The MPOL-2416 has been designed to incorporate several
improvements over compettive products. It has a wide operating lemperature range. last IC access time and improved ESO protection. The HPDL-2416 is tully TTL compatible, wave solderabie. and higniy reliabie. This display
is ideally suited for industrial and commercial applications where a good looking, easy-to-use alphanumeric display is required
The HPDL-2416 is a smart $4.1 \mathrm{~mm}(0.16$ in) tour character. sixteen-segment red GaAsP display. The on-board CMOS IC contains memory. ASCII decoder. multiplexing Clircuitry.
and drivers. The monolithic LED characters are magnitied by an immersion lens which increases boin character size and luminous intensity. The encapsulated dual-In-line package construction provides a rugged. environmentally
sealed unit

Typical Applications

- portable data entry devices
- MEDICAL EQUIPMENT
- process control equipment
- test equipment
- industrial instrumentation
- COMPUTER PERIPHERALS
- telecommunication equipment

Absolute Maximum Ratings

Supply voltage. vcc 10 Ground - $0.5 \mathrm{v}_{10} 7.0 \mathrm{v}$ Input Vollage. Any Pin to Ground Temperature Range. T_{A} 0.5 v 10 Vcc 10.5 V elative Humidity non-condensing' at $65^{\circ} \mathrm{C}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ orage Temperalure Ts Maximum Solder Temperature. $1.59 \mathrm{~mm} 0.063 \mathrm{~m} .1 \quad 260^{\circ} \mathrm{C}$ Nelow
Noter
1 fee

Package Dimensions

Recommended Operating Conditions

Parameter		symbol	Min.	Nom.	Max.	Units
Supply Voltage	:	$v_{\text {cc }}$	4.5	5.0	\% 6.5	U V
Input Voltage High		$\mathrm{V}_{\text {IH }}$	2.0		\%	V
Input Voltage Low	\%	v_{1}			${ }^{6} 0.8$	v

DC Electrical Characteristics Over Operating Temperature Range typical values

Parameter	Symbol	Units	$40^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	Test Condition
ICC 4 digits on 10 seg/digit ${ }^{\text {1.21 }}$	Icc	mA	100	95	85	75	72	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
Icc Cusor ${ }^{\text {23, }}$:	Ícicu.	mA	147	140	125	110	105	$\mathrm{VCCO}=5.0 \mathrm{~V}$
ICc Blank		mA	1.85		1.5		195	$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V} \\ & \mathrm{BL}=0.8 \mathrm{~V} \end{aligned}$
Input Current, Max.	$1 /$	$\mu \mathrm{A}$	20		17		$14 *$	$\begin{aligned} \mathrm{VCCO}_{\mathrm{CO}} & =5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }} & =0.8 \mathrm{~V} \end{aligned}$

guaranteed values

Parameter	Symbal	Units	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \mathrm{v}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \hline \end{gathered}$	$\underset{\substack{\text { Maximum Over } \\ \text { Operating Temperature }}}{\text { Resent }}$.Range - $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
Icc 4 digits on 110 seg/digith 1.2	Icc	mA	115	170
Icc Cursor ${ }^{2.3}$	${ }^{16 c}$ ' $\overline{C U}$)	mA	165	232
Icc Blank	${ }_{10 \mathrm{ct}}(\overline{\mathrm{BL}}$)	mA	3.5	8.0
Input Current, Max.	11	HA	30	40.
Power Dissipation 4	P_{0}	mw	575	910

Noles: ,ituminated in all tout characiers

+ Powet cissidation vas ies 10 seg
Cuisor character is sixieen seqments anc op on

AC Timing Characteristics Over Operating Temperature Range at $\mathrm{VCC}=4.5 \mathrm{~V}$

Parameler	Symbol	$\begin{aligned} & -20^{\circ} \mathrm{C} \\ & \mathrm{I}_{\text {IIN }} \\ & \hline \end{aligned}$	$25^{\circ} \mathrm{C}$ $\mathrm{I}_{\mathrm{min}}$	$70^{\circ} \mathrm{C}$ Imin	Units
Address Setup Time	us	90	115	150	－ns
Write Delay Time	two	10	15	20	ns
Write Time	w	80	100	130 \％	ns
Data Setup Time	tos	40	60	80	ns \％
Data Hold Time	tor	40 \％	45	50	ns ${ }^{\text {相 }}$
Address Hold Time	UH	40	45	50 \％	ns
Chip Enable Hold Time	LCEM	40	45	50	ns
Chip Enable Setup Time	tces	90	115	150	ns
Clear Time	tCLA	$\cdots 24$	－3．5	－ 4.00 弥納	ms ${ }^{\text {a }}$
Access Time		$130 \cdots$	160	$200{ }^{\circ} \mathrm{F}$ ，	ns
Retrosh Rate		420－790	310－630	270－550	Hz （2）

Optical Characteristics

Parameter	Symbol．	Test Condition	Min．	Typ．	Units ${ }^{\text {a }}$
Peak Luminous intensity per digit， 8 segments on（character average）	Iv Peak	$\mathrm{VCC}=5.0 \mathrm{~V}$ ＂＊＂illuminated in all 4 digits．	0.5	1.25	mod
Peak Wavelength	${ }_{\text {Apeak }}$			655	nm ＊
Dominant Wavelength	λ_{1}			640	nm
Off Axis Viewing Angle				± 50	degrees
Digit Size				4.1	mm

Timing Diagram

Electrical Description

Display Internal Block Diagram
Figure 1 shows the internal block diagram tor the Figure 1 shows the internal block diagram for the
HPDL－2416 display．The CMOS IC consists of a lour－word ASCII memory．a tour－word cursor memory．a 64 －word character generator． 17 segment drivers．four digit drivers． and the scanning circuitry necessary to multiplex the four
monolithic LED characters．In normal operation，the divide－ monolithic LED characters．In normal operation，the divide
by－tour counteg sequentially accesses each of the tour RAM locations and simultaneously enables the appropriate dis－ play digit driver．The output of the RAM is decoded by the character generator which，in turn，enables the appropriate
display segment drivers．For each display location，the cur－ display segment drivers．For each display location．the CUr
sor enabie ICUE selects whether the data from the ASCI RAM ICUE $=0$ ）or the stored cursor ICUE $=11$ is to be displayed．The cursor character is denoted by all sixteen segments and
RAM．Since the display utlizes a 64 －character decoder，hall of the possible 128 input combinations are invalid．For each display location where $D_{5}=D_{0}$ in the ASCII RAM，the dis－ play characier when $\overline{\mathrm{BL}}=0$
Data is loaded into the display through the data inputs $\left(\mathrm{D}_{6}\right.$ ．
 determines whether data is stored in the ASCII RAM（CU）$=$ 1）or cursor memory（ $\mathrm{CU}=0$ ）．When $C E_{1}=\mathrm{CE}=\mathrm{WR}=0$ and CS 1 ，the information on the ASII RAM at the location specified by the address inputs $\left(A_{1}, A_{0}\right)$ ．When $\overline{C E} E_{1}=\overline{C E} E_{2}=\overline{W R}=0$ and $\frac{\text { CU }}{C U}=0$ ． information on the data input， O_{0} ．is stored in the cursor at the location speched by the adcress inputs（ A_{1} ．A_{0} ）．It D_{0} $=1$ a cursor character is stored in the cursor memory．
$\mathrm{D}_{0}=0$ a a peviously stored cursor character will be removed trom the cursor memory．
If the clear input（CLR）equals zero tor one internal display cycle（ 14 ms minimum），the data in the ASCII RAM will be rewritten with zeroes and the display will be blanked．Note
that the blanking input（ \bar{L} ）must be equal to logical one during this time．

Data Entry

Figure 2 shows a truth table tor the HPDL－2416 display．Set－ ing the chip enabies（CEE，CE2）to their low state and the The desired data inputs $\left(\mathrm{D}_{6}-\mathrm{O}_{0}\right)$ and addoress inputs $\left(\mathrm{A}_{1}\right.$ ． A_{0} ）as well as the chip enabies（ $C E_{1}, \mathrm{CE}_{2}$ ）and cursor select（CU）must be held stable during the write cycle to ASCII data codes are shown in Figure 3．The display accepts standard seven－bit ASCII data．Note that $\mathrm{D}_{6}=\mathrm{D}_{5}$ tor the codes shown in Figure 2 ．If $\mathrm{D}_{6}=\mathrm{D}_{5}$ during the write cycle，then a blank we me sion $=A_{0}=0$ ，data is stored in the furthest right－hand display location．

Cursor Entry

As shown in Figure 2 ，setting the chip enabies $\left(\overline{C E}, \overline{C E}_{2}\right.$ ）to their low state and the cursor select icul to its low siate will enabie cursor taading．The cursor character is indicated by The least significant data input（ D_{O} ），the address inouts （ A_{1}, A_{0} ），the chip enables（ $C E_{1}, C E_{2}$ ）．and the cursor select （CU）must be held stabie during the write cycie to ensure Inat the correct data is stored in the display．If D_{0} is in a low sill se removed at the indicatec iocation．If D_{0} is in a high state euring the write cycle，then a cursor character will be stored at ite indicated location．The presence or absence of a cursor characler does not atiect the ASCII data stored at that location．Again，when $A_{1}=A_{0}=0$ ，the cursor
character is stored in the furthest right－hand display location．
All stored cursor characters are displayed it the cursor ena－ ble ICUE）is hign．Simiiarly，the stored ASCII data words are displayed．regarcless of the cursor characters，it the cursor on the storage or removal of the cursor characters within the display．A flashing cursor is displayed by pulsing the cursor enable（CUE）．For applications not requiring a cur－
sor，the cursor enable（CUE）can sor，the cursor enable（CUE）can be connected to ground
and the cursor select（CU）can be connected to Vcc．This and the cursor select ICU can be connected tovcc．This
innibits the cursor function and allows only ASCII data to be loaded into the display．

Display Clear
As shown in Figure 2．the ASCll data stored in the display will be cleared it the clear ICLR＇is held low and the blank－ ing inpul $\overline{B L}$ is held high for 4 ms minimum．The cursor characters can be stored or removed even while the cleas （ $\overline{C L R}$ ）is low．Note that the display will be cleared regardiess of the slate of the chip enabies $\overline{C E}_{1}, \overline{C E}_{2}$ ）．However． 10 ensure that all lour display characters are cleared．CL Display Blank
As shown in Figure 2．the display will be blanked it the
olanking input IBL）is neld low．Note that the display will be

Function	BL	CLR	CUE	$\overline{\text { cu }}$	$\overline{\bar{E},}$	$\overline{\mathrm{C}}_{2}$	$\overline{\text { WR }}$	A_{1}	A_{0}	D_{6}	D_{5}	0.	D_{3}		D_{2}	D_{1}	D_{0}	$\mathrm{DIG}_{3} \mathrm{OIG}_{2} \mathrm{OIG}_{1} \mathrm{DIG}_{0}$
Write Data Memory	L	H	x \times 	$\begin{gathered} \mathrm{H} \\ \text {-OR. } \\ \mathrm{H} \end{gathered}$	L L	L L	L	$\begin{aligned} & \hline L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~b} \\ & \mathrm{c} \end{aligned}$	a b c c d	$\begin{aligned} & a \\ & b \\ & b \end{aligned}$	b		$\begin{aligned} & \text { a } \\ & \text { b } \\ & \text { c } \\ & \text { d } \end{aligned}$	$\begin{aligned} & \text { a } \\ & \text { b } \\ & c \\ & \text { d } \end{aligned}$	1 0 c d 	
Disable Data Memory Write	x x	$\begin{aligned} & \hline x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \hline H \\ & X \\ & X \end{aligned}$	X	\times	x	x	\times	x		x	x	x	Previously Written Data
Write Cursor	x	\times	x	L	L	L	L	$\begin{array}{\|l\|} \hline L \\ \mathrm{~L} \\ \mathrm{H} \\ \hline \end{array}$	$\begin{aligned} & L \\ & H \\ & H \\ & H \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline x \\ x \\ \text { x } \\ \hline \\ \hline \end{array}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \end{aligned}$			$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & x \end{aligned}$	H H H H	$\begin{array}{ll} \\ N C \\ N C & N C \\ N C \\ \text { NC } \\ \text { 橉 }\end{array}$ NC 橉 NC NC ＊NC NC NC
Clear Cursor	${ }^{x}$	\times	x	L	L	ᄂ	L	$\begin{aligned} & \hline L \\ & L \\ & H \\ & H \\ & \hline \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \end{aligned}$	$\begin{array}{\|l\|} \hline x \\ x \\ x \\ x \\ \hline \end{array}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & \hline \end{aligned}$		$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & x \end{aligned}$	L L L	
Disable Cursor Memory	x \times \times	$\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & L \\ & \stackrel{L}{L} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{H} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{x} \\ & \mathrm{X} \end{aligned}$	x	\times	x	x	x	\times		\times	X	\times	Previously Written Cursor

$\mathrm{x}=$ DONT CARE \quad 类＝CURSOR CHARACTERIALL SEGMENTS ON
Figure 2a．Cursor／Data Memory Wrile Truth Table
E_{2} ）or write（WR）inputs The ASCll data slored in the dis play and the cursor memory are not atlected by the blanking input．ASCII dala and cursor data can de stored even while the blanking input IELT，is low Note that while ine bianking input IBLI is low．the clear ICLR＇Iunction is inhi－
bited．A flashing oisplay can be obtained oy Irequency square wave to the blanking input（BLI），Because the blanking input（BL）also resets the internal display mul－ （BLiex shounter，the trequency appled to ine blanking input BL）should be much slower than the display multiplex rate （SL）is not recommended For turner adolucaion into Note 1026

Figure 2b．Displayed Data Truth Table

	$\left[\begin{array}{l} 0, \\ 0 \\ 0, ~ \\ 0_{0}^{0} \\ 0 \end{array}\right]$		！	！	i	－	；			：	:								
0,0	mx	－	，	2	．	－	－		＊	，							\bigcirc		
			！	＂	\pm	\＄	名		¿	，	＜	）		＊	＋	，			
	，	\square	1	2	1	4	5		6	7	日		1	－	－	\angle	$=$		
		可	A	B	L	I	E		F	G	H			J	K	L			
$1 \cdot$	－	P	\square	尺	5	T	L		\checkmark	W	X		Y	Z	［	\}			

Figure 3．HPOL－2416 ASCII Character Sel

Mechanical and Electrical

Considerations

The HPDL－2416 is an 18 pin dual－in－line package that can ee stacked horizontally and vertically to create arrays ol between $-40^{\circ} \mathrm{C}$ to $\cdot 85^{\circ} \mathrm{C}$ with a maximum of 10 segments on per digit．
During continuous operation of all four Cursors the ope ating temperature should be limited to $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ At emperatures above $555^{\circ} \mathrm{C}$ ．the maximum number of Corlows：No Cursors illuminausty should be reduced as ove $75^{\circ} \mathrm{C}$ One Cursor can be illuminated continuous at operating temperatures below $75^{\circ} \mathrm{C}$ ．Two Cursors can be illuminated continuously at operating temperatures below $68^{\circ} \mathrm{C}$ ．Three Cursors can be ilumnated continuously perating temperatures below $60^{\circ} \mathrm{C}$
The HPOL－2416 is assembied by die attaching and wis the CMOS IC to a nigh temperature printed circuit board An immersion lens is formed by placing the PC board assembly into a nylon iens niled winh epoxy．A plastic cap reates an air gap to protect the CMOS IC．Backfill epory environmentally seals the display package．This packag
construction provides the disolay with a high tolerance temperature cycling
The inputs to the CMOS IC are protected against static discharge and input current latchup．However，for best results stancard CM handing precaulions should be used．Prior to use．the MPOL－2416 should be stored in anit grounded conductive work area should be used，an assembly personnel should wear conductive wrist straps Lab coats made of synthetic material should be avoide rince lich ap is caused wien the CMOS in
ather to a voltage below ground iV $\mathrm{V}_{\text {IN }}<$ ground）or to a oiltage higher than $\mathrm{V}_{\mathrm{CC}} \cdot \mathrm{V}_{\mathbb{1}}>\mathrm{V}_{\mathrm{CC}}$ ）and when a high cur ent is forced into the input．To prevent input curren atchup and ESD damage．unused inputs should be con－ apolied to the inputs until V cc has been applied to the dis－ play．Transient input voltages should be eliminated．

Soldering and Post Solder Cleaning Instructions for the

 HPDL－2416The HPDL－2416 may be hand soldered or wave soldered Witn SN63 solder Hand soldering may be sately pertormed only with an electronically temperature－controlled and securely grounded soldering iron．For best results，the iron tis temperature should be set at $315^{\circ} \mathrm{C}\left(600^{\circ} \mathrm{F}\right)$ ．For wave soldering，a rosin－based RMA flux can be used．The solder
wave temperature should be $245^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}\left(473^{\circ} \mathrm{F}+9^{\circ} \mathrm{F}\right)$ ， and the dwell in the wave should be set at $1 / 2103$ seconds for optimum soldering．Preheat temperature should no asured on the solder side of the P board．
Post solder cleaning may be performed with a solvent or aqueous process．For solvent cleaning．Allied Chemical
Genesolv DES．Baron Blakeslee Blaco－Tron TES or DuPont Freon TE can only de used．These solvents are azeotropes I ：richlorotrifluoroethane $\mathrm{FC}-113$ with low concentrations ot ethanol（ 5% ）．The maximum exposure time in the solvent vapors at boiling temperature should not exceed 2 minutes．
Solvents containing nign concentrations of alconols， alcohols，isopropanol or acetone should not be used as they will chemically altack the nylons lens．Solvents con－ taining trichloroethane FC－111 or FC－112 and trichioro－ etriviene（TCE）are not recommended

An aqueous cleaning process is highly recommended．A
saponitier such as kester－Bio－kleen Formula 5799 or equi－ saponitier，such as kester－Bio－kieen Formula 5799 or equi valent．may be adces the residues．Organic acid flux residues must be thoroughly removed by an aqueous clean－ ing process to prevent corrosion of the leads and solder connections．The optimum water temperature is $60^{\circ} \mathrm{C}$ 241610 wash and rinse cycles should not exceed 15 minutes

Optical Considerations／ Contrast Enhancement
The HPDL－2416 display uses a precision aspheric immer sion lens to provide excellent readability and low oft－axis distortion．The aspheric lens produces a magnitied charac
ter height of 4.1 mm 10.160 in． 1 and a viewing angle of $\pm 50^{\circ}$

These lealures prow de excellent readabily ar distances to 2 metres（ 6 leet）．
Each HPDL－2416 display is tested tor luminous intensil disolay packege To ensure intensity matching for multip package applications．mixing intensity categories tor a given panel is not recommended
The MPDL－2416 display is designed to provide maximum contrast when placed behind an appropriate contras ennancement tilter．Some suggested filters are Panelgraphic Ruby Red 60．Panelgraphic Dark Red 63．SGL Homalite
H100－1650．Ronm and Haas 2423 ．Chequers Engraving 118 ， and 3M R6510．For lurther intormation on contras ennancement．see Hewlett－Packard Application Note 1015

2.18

Pulse Response $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10_{\mathrm{pF}}$

T/H/SBen-4

Application Hints

The LFI 147 is an op amp with an internally trimmed input othset voltage and JFET input devices (B1.FET IITM). These JFETs have large reverse breakdown voltages trom gate to
source and drain eliminating the need tor clamps across the hputs. Theretore, large differential input voltages can easily be accommodated without a large increase in innut current. The maximum difterential input voltage is independent of
should be allowed to exceed the negative supply as this will
cause large currents to flow which can result in a destroyed unit.
Exceerding the negative common-mode limit on either input
will force the reversal of phase to a high state, potentially causing a common-mode limit on both inputs will torce the negative

Application Hints (Continued) output to a high state. In neither case does a latch occur since reising the input back within the common-mode range operating mode. xceeding the will not change the phase of the output, however, it both inputs exceed the limit, the output of the amplifier will be
 see equal to the positive with a common-mode input vollage equal to the positive supply; however, the gain band- width and siew rate may be decreased in this condition. When the negative common-mode voltage swings to within $3 V$ 3V of the negative supply, an increase in input offiset voltage may ocur. may occur.
 ach amplifier is individualy biased by a zener reterence which allows normal circuit operation on ± 4.5 V power sup- plies. Supply voltages less than these may result in lower gain bandwidth and slew rate.
 The LFI147 will drive a 2 kg load resistance to $\pm 10 \mathrm{~V}$ over the tull temperature range. It the amplifier is forced to drive heavier load currents, however, an increase in input oftset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative Pwinges. ply tor the integrated crrcult never becomes reversed in polarity or that the unit is not inadvertently installed back-

wards in a socket as an unilimited current surge through the osulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit. Because these amplifiers are JFET rather than MOSFET A dress, component placement and supply yecoupling in or. der to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the trequency of
the feedback pole by minimizing the capacitance trom the input to ground. A teedoback pole is created when the feedback around any
amplifier is resisitive. The paralleel resistance and capacitance from the input of the device (usually the inverting in.
put) to $A C$ ground set the treauency of the polee. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequenty there is negligible effect on stability margin. However, if the 'eedback pole is less than approximately 6
times the expected 3 di frequency a lead capactior should be placed from the output to the input of the op amp. The value of the added capactior should be such that the RC time constant of this capacitor and the resistance it parallels
is greater than or equal to the original feedback pole time constant.

Typical Applications

T/T/15607-10

A1	A2	A3	V_{0} Attenuation
0	0	0	0
0	0	1	-1 dB
0	1	0	-2 dB
0	1	1	-3 dB
1	0	0	-4 dB
1	0	1	-5 dB
1	1	0	-6 dB
1	1	1	-7 dB

- vor nioh inpul Imposance

Long Time innegrator with Reset, Hold and Staring Threshoid Adjusimen

- Vout starts trom zero and is equal to the integrat 0 t the input voltage mith respect to the incestoit roltage
$\left.V_{\text {out }}-\frac{1}{\text { AC }} \int_{0}^{1} V_{N_{W}}-V_{\text {Tw }}\right) d$
- Output stars when $V_{i N} 2 V_{T H}$
- Smich S2 toestas sysiem to zer

MOTOROLA

 TECHNICAL DATADesigner's Data Sheet
Power Field Effect Transistor
P-Channel Enhancement-Mode

silicon Gate TMOS

These TMOS Power FETs are designed for medium voltage, high speed power switching applications such as switching reguhigh speed power switching applications such
lators, converiers, solenoid and relay drivers.

- Silicon Gate for Fast Switching Speeds - Switching Times
Spocified at $100^{\circ} \mathrm{C}$

Specified at $100^{\circ} \mathrm{C}$
Designer's Data - LDSS. VDS(on). VGS(th) and SOA Specified

- Rugged - SOA is Power Dissipation Limited
- Ruged - SOA is Power Dissipation Limited . Source-to-Drain Diode Characterized for Use With Inductive Loads

MTM8P08
MTM8P10 MTP8P08 MTP8P10

TMOS POWER FET:
8 AMPERES
'DSION)
80.4 OHM
80 and 100 VOLTS

Reting	Symbol	MTM or MTP		Unt
		8 8poe	${ }_{8} 810$	
Drain-Source Voltage	voss	80	100	voc
DrainGate Voltage (AGS - 1 MR)	$\mathrm{v}_{\text {dGA }}$	80	100	vod
	$\begin{aligned} & v_{G S} \\ & v_{G S M} \end{aligned}$	$\begin{aligned} & \begin{array}{c} 20 \\ =40 \\ \hline 40 \end{array} \\ & \hline \end{aligned}$		
$\begin{aligned} & \hline \text { Otsin Current } \text { - Continuous } \\ & \text { - Pulsed } \end{aligned}$	$\begin{aligned} & 10 \\ & 1 \mathrm{IOM}_{2} \end{aligned}$	\% ${ }_{25}^{8}$		Adc
$\begin{array}{\|l} \hline \text { Total Power Dissipation © } \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ \text { Derate above } 25^{\circ} \mathrm{C} \\ \hline \end{array}$	Po	$\begin{aligned} & 75 \\ & 0.6 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { Wotts } \\ & \text { Wfc } \end{aligned}$
Opersting end Storage Temperature Range	TJ. $\mathrm{T}_{\text {stg }}$	-65 to 150		'c
THERMAL CHARACTERISTICS				
Thermal Resistance Junction to Case	$\mathrm{R}_{\text {ANC }}$	1.67		${ }^{\circ} \mathrm{CN}$
Junction to Ambient T0.204	$\mathrm{R}_{\text {a }}$	30		
T0.220		62.5		
Maximum Lead Temperature for Soldering Purposes. 1/8 from case for 5 seconds	T	275		'

Cherecteratic	Srmbat	Min	Max	Unit
оFF CHMACTERASTICS				
Drain-Source Breakdown Voltage	$\mathrm{v}_{\text {IBRIOSS }}$	$\begin{aligned} & 80 \\ & 100 \end{aligned}$	-	vac
Zero Gate Voltage Drain Current ($V_{\text {DS }}=$ Rated $\left.V_{\text {DSS }} . \mathrm{V}_{\text {GS }}=0\right)$ $\mathrm{V}_{\text {DS }}=$ Rated $\mathrm{V}_{\text {DSS }} \mathrm{V}_{\mathrm{GS}}=0, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$)	loss	$=$	$\begin{aligned} & 10 \\ & 100 \end{aligned}$	madc
Gato-Body Loekege Current, Forward (VGSF $=20 \mathrm{Vdc}, \mathrm{V}_{\text {DS }}=01$	IGSSF	-	100	nade
Gato-Bocy Leokogo Current, Reverse ($\mathrm{V}_{\text {GSR }}=20 \mathrm{VdC}$, , VDS $\left.=0\right)$	IGSSR	-	100	nadc
ON CHARACTERISTCS*				
Gate Threshoid Voltage VDS $=V_{G S}, I_{D}=1 \mathrm{~mA}$ $T_{J}=100^{\circ} \mathrm{C}$	$\mathrm{v}_{\text {GS }}(\mathrm{th})$	$\begin{gathered} 2 \\ 1.5 \end{gathered}$	$\begin{gathered} 4.5 \\ 4 \end{gathered}$	vac
Static Drain-Source On-Resistance (VGS $=10 \mathrm{Vac} 10-.4 \mathrm{Adac})$	roston)	-	0.4	Onm
```Drain-Source On-Vottage (VGS = 10 V) (lD = 8 Adc) (10}=4\textrm{Adc},\mp@subsup{T}{J}{}=10\mp@subsup{0}{}{\circ}\textrm{C}```	$\mathrm{V}_{\text {DS }}\left(\frac{0}{}\right.$ )	-	$\stackrel{4.8}{3}$	voc
Forwera Transconductence (VDS $=15 \mathrm{~V}, 10=4 \mathrm{~A}$	9FS	2	-	mnos
OYNAMIC CHARACTERISTCS				
	$\mathrm{C}_{\text {iss }}$	-	1200	pF
	$\mathrm{C}_{038}$	-	600	
Reverse Transter Ceppecience nee Soe figure in	$\mathrm{c}_{\text {css }}$	-	180	
$\begin{gathered} I V_{D D}=25 \mathrm{~V}, 1 \mathrm{D}=0.5 \text { Rated IU } \\ \text { R gen }-50 \text { onms) } \\ \text { Seg figures } 9.13 \text { and } 14 \end{gathered}$	(tion)	-	80	ns
	1	-	150	
	(610(t)	-	200	
Fall Time	4	-	150	
$\begin{aligned} & \left(V_{D S}=0.8 \text { Rated } V_{O S S} .\right. \\ & \left.I_{0}=\text { Reted } I_{0} . V_{G S}=10 \mathrm{~V}\right) \end{aligned}$	$\mathrm{O}_{8}$	33 (Typ)	50	nc
	$0_{08}$	16 (Typ)	-	
Gate-Drain Charge	$0_{80}$	17 (TyP)	-	
SOURCE DRUN DIODE CHARACTERISTTCS*				
$\begin{aligned} & \text { "S }=\text { Reted } 110 \\ & V_{G S}=01 \end{aligned}$	$\mathrm{v}_{\text {S }}$	3 (Ivp)	6	vac
	ton	Limited by stray inductance		
Reverse Recovery Time	t!	300 (Typ)	-	ns
INTERNAL PACKAGE INDUCTANCE (TO-204)				
Internal Drain Inductance (Measured from the contact screw on the header closer to the source pin and the center of the die)	4	5 (Typ)	-	$n+$
Internal Source Inductance   (Measured from the source pin, $0.25^{\circ}$ from the package o the source bond pad)	Ls	12.5 (Typ)	-	
INTERNAL PACKAGE INDUCTANCE (TO-220)				
Internal Drain Inductance (Measured from the contact screw on tab to center of die) (Measured from the drain lead 0.25* from package to center of die)	4	$\begin{aligned} & 3.5(T y p) \\ & \text { Cis (Tyo) } \end{aligned}$	-	nH
Internal Source Inductance   (Measured from the source lead $0.25^{\circ}$ from package to source bond pad.)	Ls	7.5 (Tyo)	-	

TYpICAL ELECTRICAL CHARACTERISTICS


Figure 1. On-Region Characteristics


Agure 3. Transter Charecteristics


\section*{|  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Figure 2. Gate-Threshold Volta
Gate. Threshold Voltage
With Temperatura


Figure 4. Normalized Broskdown Votage
versus Temparature


SAFE OPERATING AREA INFORMATION
 Sate Operating Area

FORWARD BIASED SAFE OPERATING AREA
The FBSOA curves define the maximum drain The FBSOA curves define the maximum drain. 10 .
source voltage and drain current that a device can sately
andie when it is forwerd biased, or when it is on, or source voltage and drain current that a device can sately
handie when it is toward biased, or when it is on, or
being being turned on. Becouse these curves include the limi-
tations of simultaneous high voltage and high current
 up to tere rating of tese device, they are especially usetui
o designiers of linear systems. The curves are based on case temperature of $25^{\circ} \mathrm{C}$ and a maximum junction tem. erature of $150^{\circ} \mathrm{C}$. Limitations for repentitive pulses at var. ous case temperatures can be determined by using the ANS69: "Transien Thersmal Resistance- General Data and
It Use" provides detaiied instrucions. suse" provides detailed instructions
switching safe operating area
The switching sate operating aree (SOA) of figure 8 is the boundary that the load line mar traverse without in.
uurring damage to the MOSFET. The fundamental limits curring damage to the MOSFET. The fundamental limits
are the peak current. IOM and the breakdown volitage MBRIDSS. The switching SOA shown in Figure 8 is ap
witching times less than one microsecond

ure 8. Maximum Rated Switchin Sate Operating Area

The oower averaged over a complete switching cycie
musi be less than: must be less tha
$\frac{T_{2(\text { max })}-T}{R_{\text {AJC }}}$


MTM/MTP8P08, 10



Figure 13. Switching Test Circuit


MOTOROLA TMOS POWER MOSFET DATA
©SPRAGUE $\qquad$ INTEGRATED CIRCUITS • INTEGRATED CIRCUITS

## SERIES 2000 and 2800 DARLINGTON ARRAYS

 - Nil untat leatur



- Output Currens 10600 mA (saturatea)
- Integni Supperssion Diodese loo inouvetive loads
- Inputs Compatiole mith Or., T. Pmos. cmos
- Inputs Pinees Opoosite Outputs-Lower PC Baare Costs
- Able 10 Smilech Loads of $125 \mathrm{Wat}+70^{\circ} \mathrm{C}$
- Hementicall. Sealee Paccage
- High Reliablity Screenine see pase 2.


${ }^{\text {Giasss Meata }}$ Hermetic $H$

	${ }_{\text {Sote }}^{\text {Sote }}$	$\begin{gathered} \text { No. Gates } \\ \text { Peres Pher } \end{gathered}$	$\begin{gathered} \text { Congic } \\ \text { Connection } \\ \text { Diagram } \end{gathered}$	Compatibility	Max. Outout Rating		$\begin{gathered} \text { Operating } \\ \text { Temperature } \\ \text { Range } \end{gathered}$	$\underset{\substack{\text { Pactage } \\ \text { Sple }}}{\text { che }}$	$\begin{aligned} & \text { Relerence } \\ & \text { Engineerng } \\ & \text { Builetin (4) } \\ & \hline \end{aligned}$
					volaze	${ }_{\substack{\text { Current } \\ \text { (mN) }}}$			
Uureoin		!	017	Gmenal Purose	50	500	-200 $10+83^{85}$	$16 \cdot \operatorname{Pin} A$	29304
Uurzeoin	-	,	(017		so	500 500			${ }_{9}^{29304} 1$
Uurezozer		,	017		50	550		$16 \cdot \min$ R	293041
UW2003		,	017	Symicmos	50	500	$-20^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$	$16 \cdot \min A$	
unzeose		,	n17	sumicmos	50	500		$16 . \operatorname{Pin} R$	2930.1
unreoce	-	,	017		50			$16 \cdot \sin A$	29304
wurzocis		,	017		S0	S00	-		${ }_{2904}^{29304}$
Uurzosis		,	017 017		S0	边		${ }_{16}^{16 \cdot \operatorname{Pman} A}$	${ }_{2} 29300.1$
unvorin		,	011	Genexal Pupose	so	${ }^{600}$	-20640 185	$16 . \operatorname{mmA}$	29304
untroili	-	,		Cmmara Puose	S0				${ }_{29304}^{2930.1}$
U142012	-	,	017	15.25 M Mos	So	\$000		${ }_{\text {c }}^{16 \cdot \operatorname{man} A}$	$\xrightarrow{29304}$
Uurevorid	-	;	817		S0	600		${ }_{16-\ln A}$	29304
unvolis		,	011	sum.cmos		600	$-200 \mathrm{cto}+85^{\circ} \mathrm{C}$	$16 \cdot \operatorname{Pin} R$	2930.1
untrolit	-	,	0.17	${ }^{6} .15 \mathrm{~V}$ ciosos Pmos					
uиve2ule	-	,	817	${ }^{6}$ 6.15 515 cruos. Pross	S0	(600		${ }_{\text {c }}^{16}$	${ }_{29304}^{29304}$
Uureols	Z	,	817		S0	600	-	${ }_{\text {cosem }}$	27300.1
unve214							$-200 \mathrm{Clo}+85^{\circ} \mathrm{C}$	16 Pma	29304
UuTze2iR	-	?	0.17	Cemerar pupose	"s	500			Mote1
	-	!	-17\%	${ }^{\text {che }}$	93 ${ }_{\text {95 }}$			${ }_{16}^{16}$	${ }_{\text {cole }}$
U412028	-	1	017 017		95	S50	-20\% $10+85{ }^{\text {c }}$	$16 \operatorname{AnA}$	29504
uиverse	-		017	sym. cuos	\%	500	$-20{ }^{\circ} 100+85^{\circ} \mathrm{C}$	$16 . \operatorname{Pan} 8$	Mratel
Unv2024	-		0017		95	S00			${ }^{29024}$
U172028	-	,	(017		98	S00		${ }_{16 .}^{16 . \operatorname{Pan} A}$	29304
Uurvozs	-	,	0.11	Mugh outed m	${ }_{95}$	500	$-20^{\circ} \mathrm{C} 10-85^{\circ} \mathrm{C}$	$16 \cdot \operatorname{Pma} R$	Note 1
uncreon	-	8	018			${ }^{50}$	-20ctocess	18.8 ma A	29043
UTR23012	-	8		Cemeris Prose	S0	S00		(18.PRmat	293004
U1238232	-	8	018		S0	S	隹	(18.Pant	29304
UTR23238	-	8	${ }_{018} 018$		\%	500	-200cto-85\%	$18 \cdot \mathrm{PmA}$	293013

continued on next page

## 2001 тиви 2025

HIGH-VOLTAGE, HIGH-CURRENT DARLINGTON ARRAYS



2001 TIIRU 2025
IIIGI VOLTAGE, IIIGI-CURRENT DARLINGTON ARRAYS

ULS2001EK/H/R THRU ULS2005EK/H/R
ELECTRICALCHARACTERISTICS over operating temperature range (unless otherwise noted)

Characteristic	Symbol	Applicable Devices	Test Conditions			Limits			
			Temp.	Votage/Current	Fig.	Min.	Typ.	Max.	Units
Output Leakage Current	${ }_{\text {cex }}$	All		$\mathrm{V}_{\mathrm{cE}}=50 \mathrm{~V}$	1 A	-	-	100	$\mu \mathrm{A}$
		ULS2002*		$\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{W}}=6 \mathrm{~V}$	18	-	-	500	$\mu \mathrm{A}$
		ULS2004*		$\mathrm{V}_{\mathrm{cE}}=50 \mathrm{~V}, \mathrm{v}_{\text {w }}=1 \mathrm{~V}$	18	-	-	500	$\mu^{\prime}$
Collector-Emitter Saturation Voltage	$\mathrm{v}_{\text {ctisat }}$	All	${ }^{5} 55^{\circ} \mathrm{C}$	$\mathrm{I}_{c}=350 \mathrm{~mA} \mathrm{I}_{\mathrm{A}}=850 \mathrm{~A}$	2	-	1.6	1.8	$v$
				$\mathrm{I}_{\mathrm{c}}=200 \mathrm{~mA} \mathrm{I}_{\mathrm{I}}=550 \mathrm{HA}$	2	-	13	1.5	$v$
				$\mathrm{I}_{\mathrm{c}}=100 \mathrm{~mA} . \mathrm{I}_{\mathrm{B}}=350 \mathrm{HA}$	$\stackrel{2}{2}$	-	1.1	1.3	$v$
			-25-C	${ }_{\mathrm{c}}^{\mathrm{c}} \mathrm{C}=350 \mathrm{~mA} \cdot \mathrm{I}_{\mathrm{g}}=500 \mu \mathrm{~A}$	2	-	1.25	1.6	$v$
					2	-	1.1	1.3	$v$
				$\mathrm{c}_{\mathrm{c}}=100 \mathrm{~mA} . \mathrm{I}_{\mathrm{s}}=250 \mu \mathrm{~A}$	2	-	0.9	1.1	$v$
			$.125^{\circ} \mathrm{C}$		2	-	1.6	1.8	$v$
				C. $200 \mathrm{~mA} \cdot 1.1 \mathrm{~h}=350 \mathrm{HA}$	2	-	13	1.5	$v$
				Co $100 \mathrm{~mA} . \mathrm{In}_{0}=250 \mathrm{HA}$	2	-	11	1.3	$\checkmark$
Input Current	$I_{\text {mown }}$	ULS2002'		$\mathrm{v}_{\mathrm{s}}=17 \mathrm{~V}$	3	480	850	1300	${ }^{\mu} \mathrm{A}$
		ULS2003*		$\mathrm{v}_{\mathrm{w}}=3.85 \mathrm{~V}$	3	650	930	1350	${ }^{\prime \prime}$
		ULS2004 ${ }^{\text {- }}$		$\mathrm{v}_{\mathrm{w}}=5.0 \mathrm{~V}$	3	240	350	500	$\mu \mathrm{A}$
				$\mathrm{v}_{\mathrm{m}=12 \mathrm{~V}}$	3	650	1000	1450	$\mu \mathrm{A}$
		ULS2005*		$\mathrm{v}_{\text {vV }}=3.0 \mathrm{~V}$	3	-		2400	$\cdots$
	'muafi	All	$+125^{\circ} \mathrm{C}$	$\mathrm{IC}_{\mathrm{c}}=500 \mu \mathrm{~A}$	4	25	50	-	$\mu \mathrm{A}$
Input Votage	$\mathrm{v}_{\text {mom }}$	ULS2002*	${ }^{555}{ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{ct}}=2.0 \mathrm{~V} .1 \mathrm{c}=300 \mathrm{~mA}$	5	-	-	18	$\checkmark$
			+125 ${ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V} . \mathrm{l}_{\mathrm{c}}=300 \mathrm{~mA}{ }^{\text {d }}$	5	-	-	13	$\checkmark$
		ULS2003 ${ }^{\circ}$	${ }^{.55} 5^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V} . \mathrm{l}_{\mathrm{c}}=200 \mathrm{~mA}$	5	-	-	3.3	$v$
				$\mathrm{V}_{\mathrm{cg}}=2.0 \mathrm{~V} . \mathrm{I}_{\mathrm{c}}=250 \mathrm{~mA}$	5	-	-	3.6	$v$
				$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V} . \mathrm{l}_{\mathrm{c}}=300 \mathrm{~mA}$	5	-	-	3.9	$\checkmark$
			+125 ${ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {CE }}=2.0 \mathrm{~V}, 1-200 \mathrm{~mA}$	5	-	-	2.4	$v$
				$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V} . \mathrm{l}_{\mathrm{c}}=250 \mathrm{~mA}$	5	-	-	2.7	$\checkmark$
				$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V} \mathrm{~V}_{\mathrm{c}}=300 \mathrm{~mA}$	5	-	-	3.0	$v$





'Puse Test. t, st is s. see graph.

## 2001 TIRU 2025

IIIGII VOLTAGE, IIIGII-CURRENT DARLINGTON ARRAYS

ULS2001EKH/R THRU ULS2OOSEKH/R ELECTRICAL CHARACTERISTICS Continued

Charceleristic	Symbol	Applicable Devices	Test Condilions			Limins			
			Temp.	Voltage/Current	Fig.	Min.	Typ.	Max.	Units
input Volage (cont)	$\mathrm{v}_{\text {Ituow }}$	ULS2004*	. $55^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{l}_{\mathrm{c}}=125 \mathrm{~mA}$	5	-	-	6.0	$\checkmark$
				$\mathrm{V}_{C E}=2.0 \mathrm{~V}, \mathrm{l}_{\mathrm{c}}=200 \mathrm{~mA}$	5	-	-	8.0	v
				$\mathrm{V}_{\mathrm{CG}}=2.0 \mathrm{~V} \cdot \mathrm{I}_{\mathrm{c}}=275 \mathrm{~mA}$	5	-	-	10	v
				$\mathrm{V}_{\mathrm{ct}}=2.0 \mathrm{~V} \mathrm{I}_{\mathrm{c}}=350 \mathrm{~mA}$	5	-	-	12	$v$
			$\cdot 125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{c}}=125 \mathrm{~mA}$	5	-	-	5.0	$v$
				$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V} . \mathrm{c}_{\mathrm{c}}=200 \mathrm{~mA}$	5	-	-	6.0	v
				$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V} \cdot \mathrm{l}_{\mathrm{c}}=275 \mathrm{~mA}^{\prime}$	5	-	-	7.0	$v$
				$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V} . \mathrm{l}_{\mathrm{c}}=350 \mathrm{mAI}$	5	-	-	8.0	v
		ULS2005*	.55 ${ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V} . \mathrm{l}_{\mathrm{c}}=350 \mathrm{~mA}$	5	-	-	3.0	$v$
			*125 ${ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V} \cdot \mathrm{l}_{\mathrm{c}}=350 \mathrm{~mA}^{\prime}$	5	-	-	2.4	$v$
$\begin{aligned} & \hline \text { D.C Forvaru Current } \\ & \text { Transler Rato } \end{aligned}$	${ }^{\text {f }}$	ULS2001	.55.C	$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{l}_{\mathrm{c}}=350 \mathrm{~mA}$	2	500	-	-	-
			.259 ${ }^{\circ} \mathrm{C}$	$\mathrm{v}_{\mathrm{CE}}=2.0 \mathrm{~V} \cdot \mathrm{l}_{\mathrm{c}}=350 \mathrm{~mA}$	2	1000	-	-	-
Tum.On Delay	${ }^{\text {PaH }}$	All	$\cdot 25^{\circ} \mathrm{C}$		8	-	250	1000	ns
Turnotidelay	${ }_{\text {P Prem }}$	All	+25 ${ }^{\circ}$		8	-	250	1000	ns
Clamp Diode Leakage Curren	${ }_{\text {f }}$	All		$\mathrm{V}_{\mathrm{H}}=50 \mathrm{~V}$	${ }^{6}$	-	-	50	$\mu \mathrm{A}$
Clamp Diode Forward Voltage	$v_{\text {F }}$	All		$1,=350 \mathrm{~mA}^{\prime}$	7	-	:	20	$\checkmark$





'Puse Tes.! frs us. see graph.

2001 TIIRU 2025
IIIGII VOLTAGE, IIGII-CURRENT DARINGTON ARRAYS

ULS2011H/R THRU ULS2O15H/R
ELECTRICAL CHARACTERISTICS over operating temperature range (unless otherwise noted)



NOTE 3: The V vonage umn quaramiees a mminum Oulbul sink currem Dee the soectioe lest cononion
'Puise Test. ts' Ms. see grach

## 2001 TIIRU 2025 <br> IIIGI VOLTAGE, IIIGII-CURRENT DARIINGTON ARRAYS

ULS2011H/R THRU ULS2015H/R ELECTRICAL CHARACTERSTICS continued

Characteristic	Symbol	Applicable Devices	Test Condilitions			Limits			
			Temp.	Voltage Current	Fig.	Min.	Typ.	Max.	Units
Inpul Voltage (cont.)	$v_{\text {maOM }}$	ULS2014*	. $55^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {CE }}=2.0 \mathrm{~V}_{\text {c }} 1_{\mathrm{c}}=275 \mathrm{~mA}$	5	-	-	10	$v$
				$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{l}_{\mathrm{c}}=350 \mathrm{~mA}$	5	-	-	12	v
				$\mathrm{V}_{\text {CE }}=2.0 \mathrm{~V} . \mathrm{l}_{\mathrm{c}}=500 \mathrm{~mA}$	5	-	-	17	$v$
			$\cdot 125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V} \cdot \mathrm{l}_{\mathrm{c}}=275 \mathrm{~mA}$	5	-	-	7.0	$v$
				$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{l}_{\mathrm{c}}=350 \mathrm{~mA}$	5	-	-	8.0	$v$
				$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V} . \mathrm{l}_{\mathrm{c}}=500 \mathrm{~mA}$	5	-	-	9.5	$v$
		ULS2015*	. $55^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{l}_{\mathrm{c}}=350 \mathrm{~mA}$	5	--	-	3.0	$v$
				$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{l}_{\mathrm{c}}=500 \mathrm{~mA}$	5	-	-	3.5	v
			$\cdot 125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V} . \mathrm{t}_{\mathrm{c}}=350 \mathrm{~mA}$	5	-	-	2.4	$v$
				$\mathrm{V}_{\mathrm{ct}}=2.0 \mathrm{~V}, \mathrm{l}_{\mathrm{c}}=500 \mathrm{~mA}^{\prime}$	5	-	-	2.6	v
D. CForward CurrentTranster Ratio	$\mathrm{n}_{\mathrm{rf}}$	Ul:S2011	$-55^{\circ} \mathrm{C}$	$\mathrm{v}_{\text {ct }} \cdot 2.0 \mathrm{~V}, \mathrm{l}_{\mathrm{c}} \cdot 500 \mathrm{~mA}$	2	450	-	-	-
			$\cdot 25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=500 \mathrm{~mA}$	2	900	-	-	-
Tum-On Delay	tan	All	$\cdot 25^{\circ} \mathrm{C}$		8	-	250	1000	ns
Tum-OHD Delay	$\mathrm{l}_{\text {and }}$	All	+25 ${ }^{\circ} \mathrm{C}$		8	-	250	1000	ns
Clamp Diode Leakage Current	$\mathrm{I}_{\mathrm{B}}$	All		$\mathrm{V}_{\mathrm{A}}=50 \mathrm{~V}$	6	-	-	50	$\mu \mathrm{A}$
Clamp Diode Fonward Voltage	$v_{5}$	All		$\underline{1}=350 \mathrm{~mA}$	7	-	1.7	2.0	$\checkmark$
				$l_{\text {F }}=500 \mathrm{~mA}$	7	-	-	2.5	$v$




Puise Test!, s $1 \mu$. see graph

## 2001 TIIRU 2025

IIGII VOLTAGE, IIGCI-CURRENT DARLINGTON ARRAYS

ULS2021H/R THRU ULS2025H/R
ELECTRICAL CHARACTERISTICS over operating temperature range (unless otherwise noted)

Characteristic	Symbol	Applicable Devices	Test Conditions			Limits			
			Temp.	VoltageCUurent	Fig.	Min.	Typ.	Max.	Units
Output Leakage Current	${ }^{\text {cex }}$	All		$\mathrm{v}_{\text {ct }}=95 \mathrm{~V}$	1 A	-	-	100	$\mu \mathrm{A}$
		ULS2022		$\mathrm{V}_{\text {zt }}=95 \mathrm{~V}, \mathrm{~V}_{\mathrm{m}}=6 \mathrm{~V}$	18	-	-	500	$\mu A$
		ULS2024*	. $25 . \mathrm{C}$		18	-	-	500	$\mu \mathrm{A}$
			$\cdot 125^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {EE }}=95 \mathrm{~V} \mathrm{~V}_{\mathrm{N}}=0.5 \mathrm{~V}$	18	-	-	500	$\mu \mathrm{A}$
$\begin{aligned} & \hline \text { Collector-Emitter } \\ & \text { Saturation Votage } \end{aligned}$	$\mathrm{v}_{\text {ctisali }}$	${ }^{411}$	${ }^{55} \mathrm{C}$	$\mathrm{c}_{6}=350 \mathrm{~mA} . \mathrm{lg}_{\mathrm{g}}=850 \mathrm{nA}$	2	-	16	1.8	v
				$\mathrm{I}_{\varepsilon}=200 \mathrm{~mA} \cdot \mathrm{I}_{\mathrm{g}}=550 \mathrm{HA}$	2	-	13	1.5	$\checkmark$
				$\mathrm{I}_{5}=100 \mathrm{~mA}, \mathrm{I}_{\mathrm{g}}=350 \mathrm{nA}$	2	-	11	13	$\checkmark$
			. 25 C	¢ $=350 \mathrm{~mA}, \mathrm{I}_{\mathrm{R}}=500 \mathrm{HA}$	2	-	125	1.6	$\checkmark$
				$\bigcirc 200 \mathrm{~mA} \mathrm{I}_{\mathrm{I}} \cdot 350 \mathrm{HA}$	2	-	11	13	$v$
				$\square 100 \mathrm{~mA}, 1.250 \mathrm{nA}$	?	-	09	11	v
			. 125 C	${ }^{1} \cdot 350 \mathrm{~mA}^{\prime} \mathrm{n}$, 500 uA	2	--	16	${ }^{18}$	$v$
				$\therefore 200 \mathrm{~mA}^{\prime} \cdot \mathrm{p} \cdot 350 \mathrm{u}$ A	2	-	13	1.5	v
				$=100 \mathrm{~mA} \cdot \mathrm{I}_{\mathrm{g}}=250 \mathrm{nA}$	2	-	11	1.3	$v$
Inpul Current	'arow	U.S2022		$\checkmark$, 017 v	3	480	850	1300	$\mu \mathrm{A}$
		ULS2023		$V_{\text {c }} .385 \mathrm{~V}$	3	650	930	1350	иA
		U1.S2024 ${ }^{\text {a }}$		$\mathrm{v}_{\mathrm{N}}=5.0 \mathrm{~V}$	3	240	350	500	$\mu \mathrm{A}$
				$v_{v}=12 \mathrm{v}$	3	550	1000	1450	$\mu \mathrm{A}$
		ULS2025*		$\mathrm{v}_{2}=3.0 \mathrm{~V}$	3	-	1500	2400	$\mu \mathrm{A}$
	${ }^{\text {mioff }}$ I	All	$\cdot 125 \mathrm{C}$	$\mathrm{c}_{6} \cdot 500 \mu \mathrm{~A}$	4	20	50	-	$\mu \mathrm{A}$
Input Voltage	$\mathrm{v}_{\text {mom }}$	ULS2022'	.55 C	$\mathrm{V}_{: i}=2.0 \mathrm{~V} \mathrm{l}_{\mathrm{c}}=300 \mathrm{~mA}$	5	-	-	18	$v$
			$.125^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {IE }}=2.0 \mathrm{~V} \mathrm{~V}_{\mathrm{E}} \mathrm{I}^{2}=300 \mathrm{~mA}$	5	-	-	13	$v$
		ULS2023*	. 55 C	$\mathrm{V}_{5}=2.0 \mathrm{~V}, \mathrm{l}_{\mathrm{c}}=200 \mathrm{~mA}$	5	-	-	33	$\checkmark$
				$\mathrm{V}_{\mathrm{B}}=2.0 \mathrm{~V} \mathrm{c}_{\mathrm{c}}=250 \mathrm{~mA}$	5	-	-	3.6	$v$
				$\mathrm{V}_{\text {: }}=2.0 \mathrm{~V} \mathrm{~V}_{\mathrm{t}}=300 \mathrm{~mA}$	5	-	-	3.9	$\checkmark$
			- 225 C	$\mathrm{V}_{\text {: }}=2.0 \mathrm{~V}, \mathrm{l}_{\mathrm{e}}=200 \mathrm{~mA}$	5	-	-	2.4	$v$
				$\mathrm{V}_{\text {si }}=2.0 \mathrm{~V} \mathrm{~V}_{\mathrm{c}}$ e 250 mA	5	-	-	2.7	$v$
				$\mathrm{V}_{S E}=20 \mathrm{~V} \mathrm{~V}_{\mathrm{c}}=300 \mathrm{~mA}$	5	-	-	30	v



ectined less cononions
Pulse Test. , s 5 I is. se graph

2001 thru 2025
IIIGII VOLTIGE, HIGII-CURRENT DARLINGTON ARRAYS

USS2021H/R THRUULS2025H/R ELECTRICAL CHARACTERISTICS continued

Characteristic	Symbol	$\begin{gathered} \text { Applicable } \\ \text { Devices } \\ \hline \end{gathered}$	Tesi Conditions			Limits			
			Temp.	Votage Current	Fig.	Min.	Typ.	Max.	Units
Input Vollage (conn.)	$\mathrm{v}_{\text {maxan }}$	ULS2024*	.55 ${ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V} .15=125 \mathrm{~mA}$	5	-	-	6.0	v
				$\mathrm{V}_{\text {cE }}=2.0 \mathrm{~V}, 11_{E}=200 \mathrm{~mA}$	5	-	-	8.0	v
				$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{c}_{\mathrm{c}}=275 \mathrm{~mA}$	5	-	-	10	v
				$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=350 \mathrm{~mA}$	5	-	-	12	v
			$\cdot 125^{\circ} \mathrm{C}$	$\mathrm{V}_{C E}=2.0 \mathrm{~V}, 1 t_{e}=125 \mathrm{~mA}$	5	-	-	5.0	v
				$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}_{1} \mathrm{c}_{\mathrm{c}}=200 \mathrm{~mA}$	5	-	-	6.0	v
				$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{c}_{\mathrm{E}}=275 \mathrm{~mA}$	5	-	-	7.0	$v$
				$\mathrm{V}_{\mathrm{ct}}=2.0 \mathrm{~V}, 1_{\mathrm{E}}=350 \mathrm{~mA}$	5	-	-	8.0	v
		ULS2025*	${ }^{5} 55^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{cz}}=2.0 \mathrm{~V} . \mathrm{c}_{\mathrm{c}}=350 \mathrm{~mA}$	5	-	-	3.0	$v$
			$+125^{\circ} \mathrm{C}$		5	-	-	24	v
D.C Forward Curtent Transfer Ratio	${ }^{\text {n }}$ f	ULS2021 ${ }^{\text {- }}$	$5^{55^{\circ} \mathrm{C}}$	$\mathrm{V}_{\mathrm{ct}}=2.0 \mathrm{~V} .1 \mathrm{c}, 350 \mathrm{~mA}$	2	500	-	-	-
			+25 ${ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, 1 \mathrm{E}=350 \mathrm{mk}$	2	1000	-	-	-
Tum.On Delay	${ }_{\text {PM }}$	All	$\stackrel{25^{\circ} \mathrm{C}}{ }$		8	-	250	1000	ns
Tum-OHD Delay	$\mathrm{t}_{\text {pra }}$	All	$\cdot 25^{\circ} \mathrm{C}$		8	-	250	1000	ns
Clamp Diode Leakage Current	$\mathrm{I}_{\mathrm{n}}$	All		$\mathrm{V}_{\mathrm{H}}=95 \mathrm{~V}$	${ }^{6}$	-	-	50	$\mu \mathrm{A}$
Clamp Diode Fonward Voltage	$v_{5}$	AII		I, $=350 \mathrm{~mA}^{\prime}$	7	-	1.7	2.0	v






2001 tilinu 2025
IIGII Voltage, IIGII-CURRENT DARIINGTON arrays
. . . . . . . . . . . . .

test figures




Ficure 6
figure 7



200 no arose

## 2001 turu 2025

IIGII Voltage, megl-curirent daringeton artays



Figures


### 5.10

2001 tiru 2025 , IIGII-CURRENT DARLINGTON ARRAYS

ULS2OXXH
RECOMMENDED PEAK CURENT
AS A FUNCTION OF DUTY CYCLE AT +50 C

recommended peak current

$\left.\begin{array}{l}\text { RECOMMENDED PEAK CURRENT } \\ \text { AS FENGTION OF DUTY CYCLE AT }+100 \mathrm{C}\end{array}\right]$



5.11


2001 THRU 2025
IIGH VOLTAGE, HIGH-CURRENT DARLINGTON ARRAYS

INPUT CURRENT AS A FUNCTION OF INPUT VOLTAGE





[^3]

Applying the AD582

APPLYING THE AD 582
Both the inverting and non-inverting inputs are brought out allow op amp type versatility in connecting and using the AD882. Figure 1 shows the basic non-inverting unity gain con. ection requiring only an external hold capacior and the usul
power supply bypass capacitors. An offser null pot can be added for more critical applications.


Figure 1. Sample and Hold with $A=+1$
Figure 2 shows a non-inverting configuration where volage
ain, Av, is eet by a pair of external resistors. Frequency shap Bein, A A, is est by a piir of oxternal resesistors. Frequency shap.
ing or non linear nerworks can also be used for special applica. ing or non-linear nerworks can also be used for special applict
tions.


Figure 2. Semple end Hold with $A=\left(1+R_{F} / R_{1}\right)$

The hold capacitior, $\mathrm{C}_{\mathrm{H}}$, should be a high quality polystyren
for temperatures below $+85^{\circ} \mathrm{C}$ ) or Teflon type with low dielectric absorption. For high speed, limited accuracy applica tions, capaciors as small as 100 pF may be used. Larger value
are required for accuracies of 12 bits and above in order to are required for accuracies of 12 bits and above in order to
minimize feedthrough, sample to hold ofsser and droop erro see Figure.6). Care should be taken in the circuit layout to minimize coupling between the hold capacitor and the digita or signal inputs.
In the hold mode, the output voltage will follow any change in the - $-V_{s}$ supply. Co
egulated and filtered.
Biasing the + Logic Input anywhere between -6 V to +0.8 V with respect to the -Logic will set he sample mode. the hoid mode will result from any bias between +2.0 V and $\left(+V_{S}-3 V\right)$. The
sapple and hold modes will be controlled differentially wibl sample and hold modes will be controlled differentially with
the absolute voltage at either logic input ranging from $V_{\mathrm{S}}$ to within $3 V$ of $+V_{s}\left(V_{s}-3 V\right)$. Figure 3 illustrates some examples of the flexibility of this feature.


Figure 3A. Standard Logic Connection


Figure 38. Inverted Logic Sense Connection


Figure 3C. High Threshold Logic Connection
definition of terms
Figure 4 illustrates various dynamic characteristics of the
ADS82.


Figure 4. Pictorial Showing Various S/H Characteristics
Aperture Delay is the time required after the "hold" command tive sample timing. Figure $S$ is a ploduces a delay in the effec tive sample timing. Figure 5 is a plot giving the maximum fre-
quency at which the $A D S 82$ can sample an input with a given accuracy (lower curve).
 to-hold command 200 ns with respect to the input signal. The
Aperture Jitter now determines the maximum sampling frequency (upper curve of Figure s).
Acquistion Time is the time required by the device to reach its final value within a given error band after the sample command has been given. This includes switch delay time, slewing time rooop is the change in the output voluage change.
value as a result of device leakage. In the AD 882 , droop can be in either the positive or negative direction. Droop rate may
be calculated from droop current using the following formula:

$$
\frac{\Delta V}{\Delta T}(\text { Volts/sec })=\frac{1(\mathrm{PA})}{C_{H}(\mathrm{PF})}
$$

(Sec also Figure 6. )
Feedtbrougb is that component of the output which follows the input sidnough is switch is open. As a percentage of the through capacitance to the hold capaciance ( $\mathrm{C}_{\mathrm{F}} / \mathrm{C}_{\mathbf{H}}$ ). ample-to.Hold Offset is an output shift or step caused by charge injection into the hold capacitor as the device is switched from sample to hold. The charge transfer generates 2 sample-to-hold offset where:

$$
\mathrm{S} / \mathrm{H} \text { Offset }(\mathrm{V})=\frac{\text { Charge }(\mathrm{PC})}{\mathrm{C}_{\mathrm{H}}(\mathrm{PF})}
$$

This offset also has a dc component as shown in Figure 0


Figure 5. Maximum Frequency of Input Signal for \$LSB


Figure 6. Sampleand Hold Performance as a Function of Hold Capocitance


Figure 7. Droop Current vs Temperature

810 HARRIS
HI-508/509
Single $8 / D$ Differential 4 Channel CMOS Analog Multiplexer


H1-508/509 Specifications


H1-508/509


H1-508/509




## DANALOG

$\pm 10$ Volt Precision Reference Series

## AD2700/AD2701/AD2702

features
Vory High Accursey: 10.000 Volts $\pm 2.5 \mathrm{mV}$ (L and U) Low Temporature Coofticient: 3 Ppm $/ \mathrm{C}$, orformances Guaranteed $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ 0 mA Output Curreont Capability
Short Clirevit Protected

PRODUCT DESCRIPTION
The AD2700 family of precision 10 volt references offer the user excellent accuracy and stability at a moderate price by combining the recognized advantages of thin film technology and active laser trimming. The low temperaure drift
$3 \mathrm{ppm} / \mathrm{C}$ ) achieved with these technologies can be matche onpy by the use of ovens, chip heaters for temperature regur
only ation, or with hand selected componenst and manual trim. ming. In addition, temperature-egulated devices are guaranteed only up to $+85^{\circ} \mathrm{C}$ operation, whereas the C - and S -grade
devices in the AD2700 family are guaranteed to $+125^{\circ} \mathrm{C}$. The AD2700 is a +10 volt reference which is designed to interface with high accuracy bipolar D/A converters of 10 and 12 bit resolution. The 10 mA output drive capability dso makes the AD2700 ideal for use as a general positive ystem reference.
Thigned to interface with CMOS $D$ (A and A/D converters, as
sit hown in the applications. For systems requiring a dual tracking ference. the AD2702 offers both positive and negative preci sion 10 volt outputs in 2 single package. Both are of ten used OV external references for high accuracy over wide emperaure ranges.
All three devices are offered in "J" "nd "L" grades for opera-
tion from $-25^{\circ} \mathrm{Cos}+85^{\circ} \mathrm{C}$ and " s " and " U " grades for the $-5^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperanur
ad2700 SERIES FUNCTIONAL bLock diagrams


PRODUCT HIGHLIGHTS

1. Active laser trimming of both initial accuracy and temper temperature range without external componenss. The AD2700/01/02 LD grades have a maximum output volage efror at $25^{\circ} \mathrm{C}$ of $f 2.5 \mathrm{mV}$ with no external 2.justments.
2. The performance of the AD2700 series is achieved by well-characterized design and precise control over the groes.
3. The AD2700 series is well suited for $a$ broad range of such as high resolution data converers ( 12 or 14 bits) such 25 high resolution data converrers ( 12 or 14 bits).

Model	Output
AD2700	+10.000 V
AD2771	-10.000 V
AD2702	$\pm 10.000 \mathrm{~V}$

SPECIFICATIONS

model		JD	LD	SD	UD
absolute max ratings					
Input Voltage (for applicable supply)   Power Dissipation © $\mathbf{+ 2 5 ^ { \circ } \mathrm { C } - \mathrm { AD } 2 7 0 0 . 0 1}$		$\pm 20 \mathrm{~V}$	-	-	-
		300 mw	:	-	
Operating Temperature Range ${ }^{\text {- AD2702 }}$		450 mw	-		
		$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	:	- $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\cdots$
Speraing Temperaure Range		$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	-		
Lead Temperature (soldering, 10s)		$+300^{\circ} \mathrm{C}$	:	:	:
Short Circaid	uir Protection (ro GND)	Continuous	-		.
OUTPUT VOLTAGE ERROR © $+25^{\circ} \mathrm{C}$					
AD2700	10.000 V	土0.005v	$\pm 0.0025 \mathrm{~V}$	-	..
AD2701	-10.000v	土0.005V	$\pm 0.0025 \mathrm{~V}$		
AD2702	:10.000 ${ }^{\text {V }}$	$\pm 0.005 \mathrm{~V}$	$\pm 0.0022 \mathrm{~V}$	-	..
OUTPUT CURRENT ${ }^{1}$ - © $25^{\circ} \mathrm{C}$   ( $\mathrm{V}_{\mathrm{IN}}= \pm 13$ to $\pm 18 \mathrm{~V}$ ) over op. temp. range		$\pm 10 \mathrm{~mA}$	-		
		$\pm 5 m A$	- $5 \mathrm{~mA} .-2 \mathrm{~mA}$	.	..
OUTPUT VOLTAGE ERROR - AD2700.01		10ppm ${ }^{\circ} \mathrm{C}$	${ }^{3} \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\cdots$	$\cdots$
( $T_{\text {min }}$ to	mex $)^{2}$	$\pm 11.0 \mathrm{mV}$		$\pm 8 \mathrm{mv}$	
	AD2702	$\begin{aligned} & 10 \mathrm{ppm} \mathrm{~m}^{\circ} \mathrm{C} \mathrm{C} \\ & \mathrm{t11.0mV} \end{aligned}$	$\begin{gathered} 5 \mathrm{sppm} \mathrm{~s}^{\circ} \mathrm{CV} \mathrm{C} \end{gathered}$	$\pm 10.0 \mathrm{mv}$	$\begin{aligned} & 3 \mathrm{ppm} m{ }^{\circ} \mathrm{C} \\ & : 5.5 \mathrm{mV} \end{aligned}$
	line regulation				
$\mathrm{V}_{\text {IN }}=11$	5 to 116.5 V	$300 \mu \mathrm{~V} / \mathrm{V}$			
LOAD REGULATION		souvima	-	.	-
OUTPUT RESISTANCE		$0.05 \Omega$	-	.	-
InPUT VOLTAGE, operating		$\pm 13 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	.	.	-
$\begin{array}{r} \text { QUIESCENT CURRENT - AD2700, } 01 \\ -\quad \text { AD2702 } \\ \hline \end{array}$		$\pm 14 \mathrm{~mA}$	-	-	,
		-17mA - 4 mA	.	.	
${ }_{\text {NOISE }}^{\text {(0.1 to 10Hz) }}$			.	.	-
LONG TERM STABILITY ( $\left.\otimes+55^{\circ} \mathrm{C}\right)$		Souv pppryp		-	.
offset Adjust range (See Diagrams)					
		$\pm 20 \mathrm{mV}$ (min)	-	-	-
OFFSET ADJUST TEMP DRIFT EFFECT		$\pm 4 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ per mV of Adjust (typ)	-	-	-
PACKAGE OPTION ${ }^{\text {3,4 }}$		DH-14B	DH-14B	DH-14B	DH-14B
NOTES   "Same as "JD" grade performance   "-Same as "LD" grade performance.		52.65 ea,	61.36ea		
${ }^{\text {S }}$ Specified with resitive lod to common.					
- Output voluge error $x$ a function of eemperaure id determined using the box $m$					
whose meximum Vout vilue is equed to $\mathrm{O}_{\text {OUT }}$ nominat plus or minue the meximum					
below the drift value ueed to calcultet the box.					
ceramic packages for J and L grade parts4 See Section 13 for package outline info					
	swbject to cha				



Pin Designations


Fine Trim Connections


Using AD2702 References with the Fast, High Accuracy
AD5215-12-8it ADC
AD5215-12-8it ADC

USING AD2700 REFERENCE WITH THE AD7320 and an ic amplifier to build a dac The AD2700 series is ideal for use with the AD7520 series of CMOS D/A converters. A CMOS converter in a unipolar app
cation as shown below performs an inversion of the volage reference input. Thus, use of the +10 volt AD 2700 reference will result in a 0 to -10 volt out tut range. Alternatively, usin
the -10 volt $A D 2701$ will reult in a 0 to the -10 volt AD2701 will result in 20 to $0+10$ volt range. Two operational amplifiers are used to give a bipolar output range
of -10 volt to +10 volt, as shown in the lower figure. Either the AD2700 or AD2701 can be used, depending on the trans fer code characteristic desired. For more detailed applications information, refer to the AD7520 Data Sheet.


Unipolar Binary Operation

digital input	analog output
111111111	-


1111111111	$-V_{\text {REF }}\left(1-2^{210}\right)$
1000000001	$-V_{\text {REF }}\left(1 / 2+2^{10}\right)$
1000000000	$\frac{-V_{\text {REF }}}{2}$
011111111	$-V_{\text {REF }}\left(1 / 2 \cdot 2^{1010}\right)$
0000000001	$-V_{\text {REF }}\left(2^{1.10}\right)$
0000000000	0

NOTE: I LSB - $r^{\prime \prime} \mathrm{V}_{\text {REF }}$


Bipolar Operation (4-Quadrant Multiplication)

digital input	analog output
1111111111	$-V_{\text {Rep }}\left(1-2^{-9}\right)$
100000001	$-\mathrm{V}_{\text {REF }}\left(2^{(2,9}\right)$
1000000000	0
0111111111	$\mathrm{V}_{\text {BEF }}\left(2^{-9}\right)$
000000001	$\mathrm{V}_{\text {KEF }}(1-2.9)$
000000000	$\mathrm{V}_{\text {REF }}$

Table II. Code Table - Bipolar (Oftser Binary) Operation

USING THE AD2700 VOLTAGE REFERENCE WITH D/A CONVERTER
An AD2700 Voltege Reference can be used with an inverting
operational amplifier and an $R$ - $2 R$ ladder network. If all bits operational amplifier and an R-2R ladder network. If all bits
but the MSB are off (i.e., grounded), the output voluge is $(-R / 2 R) E_{\text {REF }}$. If all bits but Bit 2 are off, it can be show
 umped resistance of all the less-significant-bit circuitry (t) the leff of Bit 2 is 2 : the Thevenin equivalent looking
back from the MSB towards Bit 2 is the generator, $E_{\text {REF }} / 2$. and the series resistance 2R; since the grounded MSB sries esistance, 2R, has virtually no influence - because the mplifier summing point is at virtual ground - the outpu
volage is therefore $-E_{\text {REF }} / 4$. The same line of thinking be employed to show that the neth bit produces an incremen of output equal to $2^{-n} \mathbf{E}_{\text {REF }}$

a. Basic Circuit

b. Example: Contribution of Bit 2; All Other Bits "0"

c. Simplified Equivalent of Circuit (b.)

## inted

2732

## $32 \mathrm{~K}(4 \mathrm{~K} \times 8)$ UV ERASABLE PROM

- Fast Access Time:
- 390 ns Max. 2732.4
- 450 ns Max. 2732
- 550 ns Max. 2732.6
- Industry Standard Pinout - JEDEC Approved
- Pin Compatible to Intel's EPROM

Family: 2716, 2732A, 2764

- Output Enable for MCS-85 ${ }^{\text {TM }}$ and MCS $86^{\text {i }}$ Compatibility
- Low Power Dissipation
- 150 mA Max. Active Current
- $\mathbf{3 5} \mathrm{mA}$ Max Standby Current
- Single $+5 \mathrm{~V} \pm 5 \%$ Power Supply

The Intele 2732 is a 32,768 -blt ultraviolet erasable and electrically programmable read-only memory (EPROM). The 2732 operates trom a singie 5 -volt power supply, has a standby mode and features an output enambe control. The total programming time for all bits is three and a half minutes. The 2732 family with an access time up to 390 ns enhances
microprocessor system performance. This family, in conjunction with the 250 ns 2732 A family, solves the probiem of WAIT states due to slow memories.
An Important 2732 feature is the separate output control, Output Enable ( $\overline{\mathrm{OE}}$ ) from the Chip Enable control (CE). The OE control elliminates bus contention in multiple bus microprocessor systems. Intel's Appilication Note AP. 72 describes the microprocessor system implementation of the $\overline{O E}$ and CE controis on Intel's 2716 and 2732 EPROMs. AP. 72 is available from Intel's Literature Department.
The 2732 nas a standby mode which reduces the power dissipation without increasing access time. The maximu active current is 150 mA , while the maximum standby
achieved by applying a $T \mathrm{TL}$-high signal to the CE input.


2732

## PROGRAMMING

The programming specifications are described in the Data Catalog PROMIROM Programming instructions Section.

## ABSOLUTE MAXIMUM RATINGS*

 COMMENTTemperature Under Bias $\ldots \ldots \ldots . . .{ }^{-10^{\circ} \mathrm{C}}$ to $+80^{\circ} \mathrm{C}$
Storage Temperature Siorage Temperature $\ldots \ldots \ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ All Input or Output Voltages with
Respect to
Ground $\ldots . . . . . . . . . . . . . . . . . . ~$
V to 0.0 .3 V




## D.C. AND OPERATING CHARACTERISTICS

$T_{A}=0^{\circ} \mathrm{C} 1070^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

## read operation

Symbol	Parameter	Limits			Unit	Conditions
		Min.	Typ. ${ }^{111}$	Max.		
141	Input Load Current (except OE/NPP)			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}$
1 L 2	OE/Vpp Input Load Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{~N}}=5.25 \mathrm{~V}$
120	Output Leakage Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}$
ICCl	$\mathrm{V}_{\text {cc }}$ Current (Standby)		15	35	mA	$\overline{C E}=V_{\text {IT, }} \overline{O E}=V_{\text {IL }}$
$\mathrm{ICC2}$	VCC Current (Active)		85	150	mA	$\overline{\overline{C E}}=\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$
$\mathrm{V}_{\mathrm{LL}}$	Input Low Voltage	-0.1		0.8	v	
VIH	Input High Voltage	2.0		$\mathrm{Vcc}+1$	v	
VoL	Output Low Voitage			0.45	v	$10 \mathrm{~L}=2.1 \mathrm{~mA}$
Vor	Output High Voltage	2.4			v	$1 \mathrm{IOH}^{\prime}=-400 \mu \mathrm{~A}$

Note: 1. Typical valiues are for $\mathrm{T}_{\wedge}=25^{\circ} \mathrm{C}$ and nominal supply voltages

TYPICAL CHARACTERISTICS




## A.C. CHARACTERISTICS

$T_{A}=0^{\circ} \mathrm{C} 1070^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	2732-4 Limits   ( ns )		$\begin{gathered} \text { 2732 Limits } \\ (\mathrm{ns}) \end{gathered}$		$\begin{gathered} \text { 2732-6 Limits } \\ (\mathrm{ns}) \end{gathered}$		$\begin{gathered} \text { Test } \\ \text { Conditions } \end{gathered}$
		Min.	Max.	Min.	Max.	Min.	Max.	
tacc	Address to Output Delay		390		450		550	$\overline{C E}=\overline{\mathrm{CE}}=\mathrm{V}_{11}$
tes	$\overline{\mathrm{CE}}$ to Output Delay		390		450		550	$\overline{O E}=V_{1 L}$
toe	Output Enable to Output Delay		120		120		120	$\overline{C E}=V_{1 L}$
$\mathrm{t}_{\mathrm{of}}$	Output Enable High to Output Float	0	100	0	100	0	100	$\overline{C E}=v_{1 L}$
Tor	Output Hold from Addresses, CE or OE, Whichever Occurred First	0		0		0		$\overline{C E}=\overline{O E}=V_{L I}$

CAPACITANCE ${ }^{[1]} T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

Symbol	Parameter	Typ.	Max.	Unit	Conditions
$\mathrm{Cins}_{1}$	Input Capacitance Except $\overline{0 E}$ /Vpp	4	6	pF	$\mathrm{V}_{1 \times}=0 \mathrm{~V}$
$\mathrm{Cinc}^{2}$	$\overline{\text { OE/VPPP Input }}$ Capacitance		20	pF	$V_{\text {IN }}=0 \mathrm{~V}$
Cout	Output Capacitance		12	pF	Vout $=0 \mathrm{~V}$

## A.C. TEST CONDITIONS

Output Load: 1 TTL gate and $\mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}$ Input Rise and Fall Times: $\leq 20$ ns
Input Pulise Levels: 0.8 VV to 2.2 V Input Pulse Levelis: 0.8 VV to 2.2 V
Timing Measurement Reference Lev $\begin{array}{ll}\text { Iming Measurement } \\ \text { Incuts } & 1 \mathrm{~V} \text { and } 2 \mathrm{~V} \\ \text { Outputs } & 0.8 \mathrm{~V} \text { and } 2 \mathrm{~V}\end{array}$
A.C. WAVEFORMS [2]


[^4]2732

## ERASURE CHARACTERISTICS

The erasure characteristics of the 2732 are such that erasure begins to occur when exposed to light with Avelengths shorter than approximately 4000 Angstroms A. Hhould be noted that sunlight and certain types ol ange. Data show that constant exposure to 100 m level luorescent lighting could erase the typical 2732 in approximately 3 years, while it would take approximately week to cause erasure when exposec to direct sunlight. I conditions for extended periods of time, opaque labels are available from Intel which should be placed over the 2732 window to prevent unintentional erasure
The recommended erasure procedure (see Data Catalog or the 2732 is exposure to shortwave ultraviolet light which has a wavelength of 2537 Angstroms (o). The inte rated dose (i.e., UV Intensity $X$ exposure time) for orasure should be a minimum of $15 \mathrm{~W} \cdot$-sec/cm $\mathrm{cm}^{2}$. The reasutes using an ultraviolotet lamp with a $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$
minter power rating. The 2732 should be placed within 1 inch of he lamp lubes during erasure. Some lamps have a filte

## DEVICE OPERATION

The tive modes of operation of the 2732 are listed in Table 1. A single $5 V$ power supply is required in the read mode. All inputs are TTL levels except tor $\sigma E / N_{\text {pp }}$ during pulsed trom a $T L$ thevel to 25 V .

TABLE 1. Mode Selection

	$\begin{gathered} \bar{c}(16) \\ (16) \end{gathered}$		$ccci(24)$	$\begin{aligned} & \text { OUTPUTS } \\ & (0-11,13-1 n \end{aligned}$
Roso	$\mathrm{v}_{1}$	$\mathrm{v}_{1}$	+5	Dout
Standoy	$\mathrm{v}_{\mathrm{it}}$	Donit Care	+5	Hion 2
Program	$v_{n}$	vpp	+5	$\mathrm{DiN}^{1}$
Proogam Verity	$\mathrm{v}_{11}$	$\mathrm{v}_{16}$	+5	Dout
Program Intiolt	$\mathrm{v}_{\text {IH }}$	$\mathrm{v}_{\text {pp }}$	+5	High 2

## Read Mode

The 2732 has two control functions, both of which musi logically satisfied in order to obtain data at the out.
puts. Chip Enable (CE) is the power control and should be used for device selection. Output Enable (OE) is the output control and should be used to gate data to the output pins, independent or device selection. Assuming
 vailabie at the outputs 120 ns ( (too) atter the talling edge $\sigma E$, assuming that $C E$ has been low and addresses ave been stabie for at least tacc - tos

## Standby Mode

The 2732 has a standby mode which reduces the active power current by $75 \%$, trom 150 mA to 35 mA . The 2732 is placed in the standby mode by applying a TTL high
signal to the $\overline{C E}$ input. When in standby mode, the out.
puts are
OE inpu
Output OR-Tieing
Because EPROMs are usualiy used in larger memory ac rays, Intel has provided a 2 line control function that accommodates this use of multiple memory
The two line control function allows for.
a) the lowest possible memory power dissipation, and a) the lowest possibie memory power dissipation, and
b) complete assurance that output bus contention will not occur.
To most efficiently use these two control lines, it is recommended that $C E$ (pin 18) be decoded and used a the primary device selecting function, while OE (pin 2 ) ray and connected to the READ line from the system control bus. This assures that all deseleceted memor devices ase in mir trom a particular memory device.
programmina (see Programming inaruction Section for Waveforms.)
Initially. and afler each erasure, all bits of the 2732 are the "1" state. Data is introduced by selectively program "O's" will be trogrammed bit locations. Although only presented in the cata word The only way to change a "O" to a " 1 " is by ultraviolet light erasure.
The 2732 is in the programming mode when the $\sigma E N P$ input is at 25 V . It is required that a $0.1 \mu \mathrm{~F}$ capaciior be placed across OENPD and ground to suppress spurious to be programmed is applied 8 bits in parallel to the data output pins. The levels required tor the address and data inputs are TTL.
When the address and data are stable. a 50 msec . active
low. TTL program puise is applied to the $\overline{C E}$ input. 1ow. TTL program pulse is applied to the CE input. A
program pulse must be applied at each address location to be programmed. You can program any location at any lime - either individually, sequentially, or at random. The
program pulse has a maximum width of 55 msec . The 2732 nust not be programmed with a DC signal apolied to the $\overline{C E}$ input.
rogramming or muiple 273ss in paralil win me same data can be easily accomplished due to the simplicity of
he programming requirements. Like inputs of the paralleled 2732s may be connected together when they are programmed with the same data. A low level TTL Puls Program Innibit
Programming of multiple 2732 sin paraller wing a weren inputs (including $\overline{O E}$ ) of the parallel 2732s. may of common. A TTL Level program pulse applied to a 2732 $C E$ input with $\overline{\text { DE/NPp at }} 25 \mathrm{~V}$ will program that 2732 . A hign level $C E$ input innibits the other 2732 strom being programme

## Program Verify

A verity should be performed on the programmed bits to determine that they were correctly programmed. The
verity is accomplished with $\overline{O E} / N_{P P}$ and $\overline{C E}$ at $V$ VI. Data vold be verified tov atter the falling edge of $\overline{C E}$.

### 6.0 APPENDIX

F14 I/O Connector Pin-Signal Assignments:

P1 - Amp 50 pin connector.							
P3,P5,P7 - D825P pin connector.							
P2,P4,P6 - D825s 25 socket connector.							
P1	Signal	P1	Signal	P3,5,7	Signal	P2,4,6	Signal
A	+15v	d	SMA3-	1	Pur Gnd	1	Port Vacuum Mon
B	+5V Gnd	e	DIGI-1-	2	+15V Critical	2	Dewar Vacuum Mon
C	+5V	f	SMA3-Ret	3	-15V Critical	3	$15^{\circ}$ Temp Mon
D	+15V Critical	h	DIGI-1-Ret	4	NA	4	$50^{\circ}$ Temp Mon
E	-15V	j	9.6 Hz	5	Na	5	$300^{\circ}$ Temp Mon
F	+/-Crit Gnd	k	Vac Pump Curr	6	X Command	6	AC Curr Mon
H	DIGO-0-	m	9.6 Hz Ret	7	C Command	7	AB (RCP) Stage 1 Mon
J	-15v Critical	n	He Supp Press	8	H Command	8	AB (RCP) Stage 2 ff Mon
K	DIGO-0-Ret	p	ancgl-0+	9	Band ID Par $\mathrm{P}_{\mathrm{B}}$	9	CD (LCP) Stage 1 Mon
L	Slot B/A- Jmpr	r	He Ret Press	10	NA	10	CD (LCP) Stage 2ff Mon
M	CLKO-0-	$s$	ANLGI-0-	11	Norm Cal Drive	11	LED Volts Mon
$N$	Slot B/A-	t	He Supp-Ret Gnd	12	Solar Cal Drive	12	NA
P	CLKO-0- Ret	u	ANLGI-1+	13	Revr Gnd Ref	13	Qual Gnd
R	SMAD-	$v$	NA	14	Band ID $\mathrm{B}_{0}$	14	SENS Temp Mon
s	STRO-0-	w	ANLGI-1-	15	Band 10 $\mathrm{B}_{1}$	15	NA
T	SMAO-Ret	x	-15V Critical	16	Band $10 \mathrm{~B}_{2}$	16	NA
u	STRO-0-Ret	$y$	ANLGI-2+	17	Band ID $\mathrm{B}_{3}$	17	NA
v	SMA1-	z	+15v Critical	18	Ser ID $\mathrm{S}_{0}$	18	NA
H	STRI-1-	AA	ANLGI-1-	19	Ser $10 \mathrm{~s}_{1}$	19	NA
X	Smal-Ret	BB	+/- Crit Gnd	20	Ser $10 \mathrm{~s}_{2}$	20	$s$ Vac Valve Mon
Y	StRI-1-Ret	CC	ANLGI-3+	21	Ser $10 \mathrm{~s}_{3}$	21	P Pump Req Mon
z	SMA2-	DD	+28V	22	Ser $10 \mathrm{~S}_{4}$	22	M Man Mon
a	CLKI-1-	EE	ANLGI-3-	23	Ser $10 \mathrm{~S}_{5}$	23	X Command Mon
b	SMA2-Ret	FF	+28 Ret	24	$\operatorname{Mod} \mathrm{M}_{0}$	24	c Command Mon
$c$	CLKI-1-Ret	HH	+/-15V Gnd	25	$\operatorname{Mod} M_{1}$	25	H Command Mon

## List of Relevant NRAO Technical Reports, Memos and Supportive Data

VLBA Technical Report No. 1, Low Noise, 8.4 GHz , Cryogenic GASFET Front-End S. Weinreb, H. Dill, R. Harris August 1984

VLBA Technical Report No. 2, 1.5 GHz Cryogenic Front-End, R. Norrod, September 1986
VLBA Technical Report No. 3, 4.8 GHz Cryogenic Front-End, R. Norrod, December 1986
VLBA Technical Report No. 10, Model F104, 2.3 Ghz Cryogenic Front-End R. Norrod, M. Masterman, June 3, 1991

VLA Electronics Memorandum No. 215, Data Set 4 Command and Monitor Data for F14-equipped antennas P. Lilie, October 1989, revised March 1991

VLA Technical Report No. 58, The Data Set, Module Type M1 D. Weber $8 / 22 / 86$
VLA Technical Report No. 62, The Command Simulator, Module Type M5 David Weber 9/9/86
VLA DCS Manual


[^0]:    ${ }^{2}$ In normal operation, this switch is left in the manual COOL position. The F14 X, C and H control bits are ignored by the control logic.

[^1]:    * Usual or normal observing condition. $U=$ can be either 0 or 1 , shown as a for the table hex code.

[^2]:    ${ }^{3}$ The Single-Band, Front End Receivers have a dedicated Helium compressor with its supply and return manifolds. These service several receivers. Supply and return pressures are measured on the manifolds by a single set of pressure transducers; the pressure signals and returns are connected to the F14 Common Analog multiplexers. The A Rack monitors the first (older) Helium supply and return pressures.

[^3]:    

[^4]:    NOTES:

    1. THIS PARAMETER IS ONLY SAMPLED AND I NOT $100 \%$ TESTED.
    2. ALTMMS SHONN IN PARENTHESES ARE MINIMUM TIMES AND
    3. ALL TMEES SHOWN IN PARENTHESES ARE MINIMUM TIMES AND ARE NSEC UNLESS OTHERWISE SPECIFIED
    
