VLA Technical Report No. 70

X-BAND LOCAL OSCILLATOR-MIXER

Module Type F12
Larry Beno and David Weber 9/25/92

Table of Contents

1.0 INTRODUCTION 1
1.1 F12 ROLE IN THE VLA 1
1.2 F12 FUNCTIONS AND CONTROL MODES 3
1.3 FRONT PANEL CONTROLS AND INDICATORS 5
1.4 F12 PHYSICAL DESCRIPTION 7
2.0 THEORY OF OPERATION 11
2.1 YIG TUNING AND SPECIFICATIONS 13
2.2 "A1" CONTROL BOARD 15
YIG Tuning Coil Drive Circuit 15
YIG FM Coil Drive Circuit 16
2.3 HARMONIC MIXER 21
2.4200 MHz PHASE DETECTOR 23
2.5 PHASE-LOCKED CONTROL LOOP 25
Phase-Locked Loop Properties 25
Convergence to the Lock Frequency 25
Loop Parameters 26
Phase Locked Loop Configuration 27
2.6 X-BAND RF TO IF FREQUENCY CONVERSION 31
Isolation 31
Conversion Loss 32
VSWR 32
Intermodulation 32
Noise 32
Compression 33
Out-of-Band Signal Rejection 33
2.7 F12 SIGNAL LEVELS AND SPECTRUMS 35
2.8 FRONT PANEL LED DISPLAY BOARD 37
2.9 "A2" MONITOR AND CONTROL BOARD 39
Data Set Interface 39
Command and Monitor Enable Decode Logic (Sheet 1) 40
Command Register Logic 41
Command Select Multiplexer 41
Digital Monitor Logic 41
Analog Signal Multiplexing and Conditioning (Sheet 2) 44
2.10 COMMERCIAL RF COMPONENTS 47
AVANTEK AV-71251 YIG OSCILLATOR 47
ISOLATORS 47
POWER DIVIDERS 47
ATTENUATORS 48
AMPLIFIERS 48
BANDPASS FILTERS 49
DIRECTIONAL COUPLERS 50
MIXERS 50
3.0 F12 ALIGNMENT AND BENCH TESTS 53
"A2" Control Board Tests 53
"A1" Control Board Tests 54
4.0 DRAWINGS 57
5.0 DATA SHEETS 59
6.0 APPENDIX 65
List of Relevant NRAO Technical Reports and Data 65
NRAO Technical Reports 65
VLA System Drawings 65
X-Band System Drawings 65

List of Illustrations

Figure 1, F12 Right Side View 8
Figure 2, F12 Left Side View 9
Figure 3, F12 Front and Rear Panel Views 10
Figure 4, Quadrature and In-Phase Signals 17
Figure 5, Integrator Sweep Waveform 20
Figure 4, Quadrature and In-Phase Signals 24
Figure 6, Typical Phase-Locked Control Loop 25
Figure 7, YIG Phase-Locked Loop Block Diagram 28
Figure 8, Typical YIG Spectrum 35
Figure 9, LM3914 Block Diagram 37
Figure 10, DIGO-0 And DIGI-1 Timing 42
Figure 11, TST and MW1, DS4 Overlays 46

1.0 INTRODUCTION

This manual describes the VLA $12-15 \mathrm{GHz}$ (X-Band) Local Oscillator-Mixer, module type F12. The emphasis of this manual is on the F12 theory of operation (Section 2) and Alignment and Bench Tests (Section 3). Construction details are not included but all drawings used in F12 fabrication are listed in the BOM (Bill of Materials) drawing. Section 4 contains the drawings and Section 5 contains the Data Sheets for the special-purpose components used in F12. The Appendix (Section 6) lists Vha Technical Reports and other reference data which are relevant to the operation of F12.

1.1 F12 ROLE IN THE VLA

The VLA is equipped to receive seven bands consisting of $P(400 \mathrm{~cm}$ and 90 cm$), \mathrm{L}(1.4 \mathrm{~cm}), S$ $(13 \mathrm{~cm}), \mathrm{C}(6 \mathrm{~cm}), \mathrm{X}(4 \mathrm{~cm}), \mathrm{U}(2 \mathrm{~cm}), \mathrm{K}(1.3 \mathrm{~cm})$ and is being outfitted for the $\mathrm{Q}(0.7 \mathrm{~cm})$ band. F12 is one of the components of the X-Band implementation.

The VLA receiving system uses the superhetrodyne principle. In a superhetrodyne receiver, a local oscillator signal (LO) is mixed with the Received Signal (RF) from a tuned pre-amplifier to create two signals that are the sum and difference of the RF and LO frequencies; these signals are sometimes called side-bands. The lower (difference frequency) side-band is usually amplified as an Intermediate Frequency (IF) signal and is then detected to produce a base-band output. The function of converting an RF signal to another frequency by the superhetrodyne process is sometimes called frequency conversion.

VLA receiver implementation details vary between bands but all bands conform to the superhetrodyne scheme outlined above. In the VLA, the preamplifiers are the older A-Rack receivers, uncooled P-Band receivers and the newer generation, Single-Band, Front End Receivers. The Single-Band, Front End Receiver is typically a Dewar assembly containing cooled, tuned amplifiers and power calibration circuitry. Each band has a dedicated front end and mixer that produces an IF signal which (through a coaxial selector switch) drives the IF system. The IF and Transmission systems in the B-Rack transmit the IF (and other signals) down the waveguide to the Central Control Building where the IF (and the other) signals are detected and processed. Implementation details of the other bands, IF and Transmission systems are beyond the scope of this manual and therefore will not be described; interested readers are referred to the VLA Technical Reports listed in the Apppendix.

The incoming astronomical signal is split into two components (LCP for Left Circular and RCP for Right Circular Polarization) by a polarization transducer between the antenna feeds (usually a feed horn) and the front end receiver. In the A-Rack F4's, the LCP and RCP IF signals are separated into four IF paths (A, B, C and D) for further amplification and processing. These four signals have independant (but identical) paths through the IF, transmission and detector systems. The F12 drawings use the A/B and C/D nomenclature to designate the RCP and LCP signals, respectively.

The local oscillator signals used in the signal conversions at all of the antennas must be coherent in phase to preserve the correletion of the received signals. The 5 Mhz antenna oscillators (L1) in each of the antennas are therefore phase-locked to a 5 Mhz Master Oscillator in the Control Building. ${ }^{1}$ In the F12, the $12-15 \mathrm{GHz}$ local oscillator is phase-locked to a harmonic of the antenna oscillator by the use of 200 MHz and 600 MHz reference signals derived from the 5 MHz antenna oscillator.

The two F12 IF output signals A / B and C / D cover the band of 4.5 to 5.0 GHz and are fed to module F9 in the A-Rack where they are selected for input to the IF system by the coaxial selector switch.

[^0]
1.2 F12 FUNCTIONS AND CONTROL MODES

Drawing C13165B01 is a block diagram of the F12 module. F12 performs two functions: 1) Synthesis of a $12-15 \mathrm{GHz}$, phase-coherent LO signal and 2) Mixing this LO signal with the RF signal from the X -Band front end to produce the two 4.5 to 5.0 GHz IF signals.

The local oscillator is an Avantek AV-71251 YIG (Yttrium/Iron/Garnet) microwave oscillator module purchased as a commercial component. The YIG oscillator uses a YIG sphere as a magnetically tunable resonant cavity; a GaAs FET or Bipolar transistor provides the power to sustain oscillations and drive the LO load. Y/G oscillators exhibit high spectral purity and tuning linearity. YIG oscillation frequency is determined by the cavity size and an external magnetic field created by currents through a Tuning coil and an FM coil. The magnetic field results from the composite sum of the two currents. In the F12 application, current through the Tuning coil sets the approximate oscillation frequency and current through the FM coil is used to phase-lock the oscillator to the reference frequencies. YIG frequency control is an important concern in the design of the F12.

The F12 YIG oscillator must be settable to twelve standard frequencies over a 12 to 15 Ghz band. These frequencies are tabulated below. Using the 200 MHz and 600 MHz reference frequencies, the loop control circuit phase-locks the YIG to harmonics of the antenna 5 MHz oscillator. The standard lock frequencies are given by:
$F_{0}=(N \times 600)+/-200 \mathrm{MHz}$, where N is an integer ranging from 20 to 25 . When the YIG is locked to $\mathrm{a}+200 \mathrm{MHz}$ case, the YIG is defined to be in High Lock. The converse case is defined as Low Lock.

Using the + (High lock) and - (Low lock) symbols as a suffix, YIG lock frequencies are:

$11.8 \mathrm{GHz}-$	$12.4 \mathrm{GHz}^{-}$	$13.0 \mathrm{GHz}^{-}$	$13.6 \mathrm{GHz}^{-}$	$14.2 \mathrm{GHz}^{-}$	$14.8 \mathrm{GHz}-$
$12.2 \mathrm{GHz}^{+}$	$12.8 \mathrm{GHz}^{+}$	$13.4 \mathrm{GHz}^{+}$	$14.0 \mathrm{GHz}^{+}$	$14.6 \mathrm{GHz}^{+}$	$15.2 \mathrm{GHz}^{+}$

Note that the frequency intervals are alternately 400 MHz and 200 MHz .

In commanding F12 to operate at one of the standard frequencies, the Tuning coil current is set to the N value; the FM coil current will be at about a mid-range level. These two currents will cause the YIG to oscillate at a frequency which is approximately $\mathrm{N} \times 600 \mathrm{MHz}+$ or -200 MHz . The phase-lock control circuit then initiates a linear current ramp drive to the FM coil. When the FM coil current reaches the level at which the loop can lock (i.e. a current corresponding to the + or -200 MHz offset frequency), the current ramp is stopped at the lock value and the FM coil current is controlled by the phase-driven loop control circuitry. The "A1" board contains the Tuning current and phase-lock control circuits; these are described in Section 2.4 below.

The YIG Tuning coil current can be set by two means: 1) A front-panel thumbwheel switch or 2) a digital command value from the central control computers via the Monitor and Control system and the Data Set. Controlling the current in the Tuning coil is sometimes referred to as coarse tuning. The front panel thumbwheel control mode is typically used on the test bench for alignment and in the antenna, it is used to verify proper operation of the oscillator and control circuity. Digital control logic on the "A2" board selects either the thumbwheel digital code or a value in a Data Set-controlled command register. The digital logic board contains the Data Set interface, command register and thumbwheel/command register selector logic. This circuitry is described in Section 2.8 below.

The Tuning control argument format is a two digit (eight-bit), BCD code digital value specifying the units and tenth's digit of the commanded YIG frequency in Ghz. This format is common to both

AUTO (central computer) and MAN (thumbwheel) control modes and is described in Section 2.8.
The YIG oscillator output drives two sets of mixers that convert the RCP and LCP RF signals from the X-Band front end to IF signals A / B and C / D that are connected to $F 9$ in the A-Rack. A power divider, band-pass filters and isolators are used in this circuitry which is described in Section 2.6.

The "A2" digital board also contains digital and analog circuitry to monitor the states of F12 control discretes and critical analog signals. The F12 frequency set-point command from the Data Set is read out as command echo monitor data to the Data Set to verify the proper operation of the command path. The command echo and digital monitor data formats and analog signal multiplexing are described in Section 2.9.

1.3 FRONT PANEL CONTROLS AND INDICATORS

F12 has front panel manual controls to select the YIG frequency and to display the FM coil voltage and IF level values. An AUTO/MAN YIG frequency control switch selects either frequency control via the Data Set (AUTO) or frequency control via the two-digit thumbwheel switch (MAN). The thumbwheel setting indicates the one's and tenth's digit (in Ghz) of the selected YIG frequency; the tens digit is implied.

A momentary-action, IF LEV/CONT VOLT toggle switch permits the IF level or YIG FM control voltage levels to be displayed on a front panel, bipolar bar-graph LED display.

A three-digit, numeric LED display shows the state of the command register which contains the computer or manually-commanded YIG frequency. The ten's digit is hard-wired to display "1".

Front Panel discrete LED's show the state of the H LOCK (High Lock) and L LOCK (Low Lock) phase-lock control circuit and the AUTO/MAN switch.

The YIG and phase-locked IF (200 MHz) signal spectrums may be monitored on the front panel LO MON (SMA) and IF MON (BNC) connectors.

1.4 F12 PHYSICAL DESCRIPTION

F12 is a two-wide module with the control and RF components mounted on a center component plate. The control PC board ("A1") and digital logic board ("A2") are mounted on the right side of the plate (viewed from the front of F12) and the RF components are mounted on the left side. Figures 1 and 2 (next two pages) show the two sides of F12 with the covers removed. Figure 3 (following page) shows the front and rear panel views.

A front panel PC board ("A3") contains the display components and circuitry.
The rear panel has an AMP 42 pin (P1) control and power connector and six "OSP" RF connectors (J 7 through J12). These connectors are all blind-mating connectors physically referenced to the module guide blocks.

The YIG oscillator module is mounted on long spacers in front of the component plate. The spacers provide some thermal isolation for the YIG module, which has an internal heater and temperature control system to stabilize the YIG element dimensions.

The YIG Tuning and FM coils are electrically isolated from each other and the YIG internal oscillator circuitry. The oscillator circuitry is powered by +15 Volt power and the heater and temperature control circuitry is powered by +28 Volt power.

In some cases, the commercial modular RF components were ordered with connectors that permit them to be directly connected; this eliminates several semi-rigid coax cable runs. Reducing the number of semi-rigid cables makes the RF circuitry more compact and simplifies fabrication by reducing the number of semi-rigid interconnect cables to be fabricated. The part numbers listed on the BOM are those used in F12. The data sheets contained in Section 5 cover all the normal options for these devices. When additional parts are ordered, the BOM part numbers should be used.

2.0 THEORY OF OPERATION

This section describes the F12 theory of operation. The YIG oscillator characteristics (Section, 2.1) and its frequency control circuitry (Sections 2.2 through 2.5) are the most important aspects of this manual. The RF to IF conversion description (Section 2.6) follows the YIG control circuitry description. Section 2.7 describes F12 power levels and spectrums. Section 2.8 describes the "A3" front panel display board. Section 2.9 describes the "A2" Monitor and Control board. Section 2.10 describes the commercial RF components used in F12; these consist of RF amplifiers, mixers, isolators, directional couplers, splitters and attenuators.

Drawings of interest in the following discussion are the F12 Block Diagram, the Module Wiring Diagram, the "A1" Control Board Schematic, the Harmonic Mixer Schematic, the 200 Mhz Phase Detector Schematic, the Front Panel Meter Circuit Schematic and the M\&C ("A2") Board Logic Diagram. These drawings are found in Section 4.0. Section 5 Data Sheets are also important references.

YIG frequency control is a major emphasis of this manual. The YIG frequency control circuitry consists of three functional blocks: the "A1" control board, the 200 MHz Phase Detector and the Harmonic Mixer. The commercial RF components (amplifiers, filters, attenuators, etc.) used in the frequency control circuitry are important but straightforward elements; these components are briefly described in the context of their function in the YIG frequency control circuitry. They are more completely described in Section 2.10.

The "A1" Control Board (Section 2.2) is described first (after the YIG description) because it contains the Tuning coil and FM coil drive circuitry and the mode control logic. This circuitry sets the Tuning coil current level, determines the FM coil control modes (Search/Track), and drives the FM coil in both modes.

The 200 MHz Phase Detector (Section 2.3) is described next because the two output signals determine the operation of the FM coil control circuitry. The Quadrature-Phase signal determines the FM coil control modes (Search/Track). The phase-lock circuitry uses the In-Phase signal to control the FM coil current in the Track mode.

The Harmonic Mixer description (Section 2.4) follows the phase detector description. The Harmonic Mixer mixes the YIG output (11.8 to 15.2 GHz) with the 600 MHz reference to produce a 200 MHz signal which is the YIG signal $\mathrm{N} \times 600 \mathrm{MHz}+$ or -200 MHz , where $\mathrm{N}=20, \ldots 25$.

Following these three descriptions, Section 2.5 describes the operation of the phase-locked frequency control loop.

2.1 YIG TUNING AND SPECIFICATIONS

The Avantek AV-71251 YIG oscillator operates over a 12 to 18 GHz range; the upper 3 Ghz of this range is not used in the F 12 application. At this point the reader should review the AV- 71251 Specification and Data Sheets in Section 5.

Although the AV-71251 data sheet does not specifically cite the oscillator's Q, the Avantek catalog states that Avantek YIG oscillators have a Q ranging between 1000 and 8000 . This high Q provides a high frequency stability and the output has very low AM and FM noise components.

Avantek Data Sheets for each YIG characterize the YIG's Tuning current at frequencies of 12.0 GHz and 18.0 GHz . From the YIG Specification Sheet, typical Tuning coil sensitivity is $18 \mathrm{MHz} / \mathrm{mA}$ and linearity is $+/-0.1 \%$. For the 12.0 to $15.2 \mathrm{GHz}(3200 \mathrm{MHz})$ tuning range, the current span is thus $3200 / 18=177.77 \mathrm{~mA}$. Average values of Tuning coil current for three randomly selected YIG's are $625.33 \mathrm{~mA} @ 12.0 \mathrm{MHz}$, $947 \mathrm{~mA} @ 18.0 \mathrm{GHz}$ and the average sensitivity is $18.65 \mathrm{MHz} / \mathrm{mA}$, in reasonable agreement with the Specification Sheet.

From the YIG Specification Sheet, typical FM coil sensivity is $450 \mathrm{kHz} / \mathrm{mA}$. This parameter is not characterized on the individual YIG Data Sheets.

The YGG Tuning coil has a $5 \mathrm{KHz}, 3 \mathrm{~dB}$ bandwidth; that is, when the Tuning coil current is changed, the YIG output frequency cannot change faster than permitted by this bandwidth. This response is not a concern because after a commanded frequency change, the YIG Tuning coil is a DC drive.

The YIG FM coil has a 400 kHz bandwidth and is analagous to the Tuning bandwidth described above. Since the FM coil is driven by the phase-lock circuitry, this response is a concern in the phaselock loop dynamics. This concern is discussed in Section 2.5.

The YIG has a Pulling Figure of 1.0 MHz with a return loss of 12 dB . This means that a VSWR of 1.7:1 on the YIG output resulting from an impedance mis-match can shift the YIG frequency by 1.0 MHz . An isolator on the YIG output reduces the YIG sensitivity to output mismatches.

The Magnetic Susceptability (sensitivity to influence by extemal magnetic fields) at 60 Hz is 50 $\mathrm{kHz} / \mathrm{Gauss}$. The earth's magnetic field flux density is about 1 Gauss, so variations in the orientation of the YIG relative to the earth's field could change the frequency by about 50 kHz . The steel walls of the Vertex Room provide some magnetic shielding from the earth's magnetic field. The intensity of the 60 Hz magnetic fields in the Vertex room has probably never been measured but the bandwidth of the phaselock control circuit is adequate to remove this perturbation.

The YIG output 2nd harmonic is specified to be 12 dB below the output frequency; bench tests show that it is typically 20 dB below the output.

Over the 11.8 to 18.0 GHz operating frequency range, the YIG output power is $40 \mathrm{~mW}(+16$ dBm) and the output varies no more than $+/-3 \mathrm{~dB}$ over this range.

2.2 "A1" CONTROL BOARD

The main functions of the "A1" board are to control the YIG Tuning and FM coil currents. The two coil drive circuits are described below. The Tuning coil is driven by an open-loop driver that has scaling and offset controls to scale the frequency to the commanded digital values. This circuit is described first. The FM coil is driven by a phase-locked, closed-loop controller which is described after the Tuning description.

YIG Tuning Coil Drive Circuit

The Tuning coil drive circuit consists of a DAC (U3), an operational amplifier (U4) to scale and offset the DAC drive, and a current source consisting of a non-inverting power operational amplifier (U5) which drives a power buffer transistor (Q1). Q1 is inside the U5 feedback loop and provides a currentsourcing drive to the Tuning coil.

The DAC is a three-digit, Binary-Coded Decimal, Digital-to-Analog converter which converts the BCD Tuning coil command to an analog value. The DAC is an Analog Devices DAC-12QZ/CDB, a complementary code, unipolar 12-bit unit that is jumpered to operate over an output range of 0.00 to +10.00 Volts. The two-digit BCD command value is converted to a high-true, 1's complement code by the eight 74L04 inverters on the two upper DAC inputs. The lower digit is not used and the four LSD lines float. This usage scales the units (MSD) digit to 1.00 Volt/count and the tenth's digit to 0.10 Volt/count. Since the DAC uses a complementary code, the four floating LSD lines are all logical " 0 's"; the resultant converted LSD value is thus 0.00 Volts. Settling time is 5 usec and a load strobe is not required. Two 20 kOhm potentiometers (R42 "Offset Adj" and R43 "Gain Adj") trim the DAC offset and scaling.

With this scaling, the DAC outputs are +2.00 Volts for a 12.0 GHz frequency setting and +5.00 Volts for a 15.0 Ghz frequency setting. The YIG tuning is a linear function of Tuning coil current with an offset current. Therefore, the DAC output must be scaled and offset to properly drive the Tuning coil. U4 is a FET-input, operational amplifier (LHOO22CD) that performs this function.

Potentiometer R45 is the "Frequency Slope" adjustment for the Tuning coil; this pot adjusts amplifier U4's gain to match the individual YIG's Tuning coil GHz/Ampere scaling. U4's gain is determined by ($\mathrm{R} 6+\mathrm{R} 45$)/R2. Taking into account resistance tolerances and the setting of R45, the gain may be adjusted over a range of 0.238 to 0.301 . These gains thus scale the 3.2 Volt DAC range (12.0 to 15.2 GHz) to -0.762 and -0.963 Volts, respectively.

Potentiometer R44 is the "Frequency Offset" adjustment that offsets the output of amplifier U4. At a frequency setting of 12.0 GHz , the DAC output is +2.000 Volts. It is necessary to offset the Tuning coil drive so that at 12.0 GHz , the YIG is driven with the appropriate current. Each YIG requires a slightly different Tuning current at 12.0 GHz ; R44 is adjusted to set the drive to the Data Sheet value.

Tuning coil offset is provided by biasing the U4 + input to a value of about -2.0 volts. This pulls the U4 output negative because the U4 negative input (the summing junction) will be driven to this negative value by the feedback. The offset voltage is determined by a resistive voltage divider (R44, R3, and R4) driven by a 6.2 Volt precision voltage reference diode (D1, a Motorola 1N827A). R44 (500 Ohms) is the offset adjustment. Taking into account resistance tolerances and extreme settings of R44, the amplifier offset may be adjusted between about -2.1 to -1.9 Volts.

U5, an LH0041, is a 0.200 Amp power operational amplifier with overload protection features on
both the inputs and output. U5 is configured as a voltage follower with PNP power transistor Q1 (2N3792) inside the feedback loop.

Capacitor $\mathrm{C} 2(3.3 \mathrm{nF})$ is a frequency compensation capacitor to eliminate oscillations. With this capacitor and the 150 Ohm load (R8), U5 is capable of a signal swing of about 14 volts at 12 kHz .

The YIG Tuning coil current path is: (1) from ($+/-15$ Volt) common, (2) through R10 (5 Ohms) to the emitter of Q1 (2N3972), (3) out the collector to the Tuning coil + terminal, (4) through the coil and out the - terminal, (5) off the "A1" board via J1-D and through R11 (5 Ohms) to - 15 volts. If Q1 was a short, the Tuning coil current would be limited to 0.937 Amp by the 16 Ohms series path resistance (e.g. coil resistance is 6 Ohms and R11 and R10 are each 5 Ohms). The maximum Tuning coil current is about $800 \mathrm{~mA} @ 15.2 \mathrm{GHz}$ (about $620 \mathrm{~mA} @ 12.0 \mathrm{GHz}$, linearly increasing by about 180 mA to $800 \mathrm{~mA} @ 15.2 \mathrm{GHz}$). The YIG tuning coil is thus inherently protected from overcurrent drive.

The 2 N 3972 data sheet shows a Beta ranging between a minimum of 50 to about 100 at a collector current of 1 Amp and a junction temperature of 25 degrees C. Beta increases slightly at a Junction temperature of +175 C . With the 2 N 3972 minimum Beta, the LH0041 must drive (i.e. sink) the 2N3972 base with 16 mA to cause a collector current of 800 Ma , the required 15.2 GHz Tuning current. The Base-to-Emitter voltage will be about -0.7 volts so the LH0041 output will be 1.5 Volts more negative than the Emitter. Since the 2 N 3972 is inside the LH0041 feedback loop, the Base-to-Emitter bias is not a value of great concern.

Consider the safety features of the Tuning coil drive circuit. Current limiting was covered above.
When the thumbwheel switches are being actuated, switch transitions and contact bounce can cause transient erratic digital values which will be fed through the DAC to the Tuning coil analog circuits. Single-pole RC filter R7-C1 has a time-constant of about 30 mS to reduce the effects of these transients. Capacitor C5 from the Q1 collector to ground also limits these transients.

Diode D2 inhibits the U4 output from going more positive than about +0.6 Volts. Zener diode D3 $\left(V_{Z}=6.8\right.$ Volts) clamps the U5 + input to -6.8 volts in the event of an over-range U4 output. Diode D4 (1 N 4007) clamps the Q1 base to about +0.6 volts in the event of a positive output malfunction of U5. Zener diode D5 $\left(V_{2}=20\right.$ Volts) limits Tuning coil current in the event that Q1 fails open and the -15 Volt supply exceeds -20 Volts (e.g. a power supply failure).

The Tuning coil circuit has two analog monitor readout signals, Tuning Voltage and Tuning Current (octal mux addresses 50 and 53, respectively). The Tuning Voltage monitor is the output of U4 (LHOO22) and the Tuning Current is the Emitter of Q1 through 10 kOhm isolation resistors. The 10 kOhm resistors reduce the effect of charge transfers caused by analog multiplexer switching. This effect is described in Section 2.8.

Section 5 contains data sheets for the DAC-12QZ/CBD, LH0022, LH0041 and 2N3792.

YIG FM Coil Drive Circuit

FM coil current is controlled by a phase-locked control loop (described in Section 2.5); the FM coil driver circuit is a major component of the control loop. The FM coil drive circuitry is similar to the Tuning coil drive circuit in that it uses an operational amplifier (configured as an integrator) for phasetracking control and a current source to drive the FM coil. Unlike the Tuning coil, which operates at a fixed current level, the FM coil drive circuit must provide a varying current as a function of the two operating modes. The Quadrature-Phase signal from the 200 MHz Phase Detector determines the operating mode.

The two modes are Search and Track. In the Search mode the control circuit generates an FM Coil linear current ramp that causes the YIG oscillating frequency to increase in a corresponding manner. When the YIG frequency reaches a Low or High lock point, logic in the control circuit stops the current ramp and the FM coil current is controlled by the phase-lock loop which tracks the phase of the 200 MHz reference frequency. This is the Track mode. If the phase lock is lost, the control logic reverts to the Search mode to re-acquire phase-lock.

The 200 MHz Phase Detector signals are described in Section 2.4. Briefly, as a function of phase error, the In-Phase signal is a sine wave with an axis crossing at a phase error of zero degrees and the Quadrature-Phase signal is a cosine wave with a peak at zero phase error. The Quadrature-Phase signal can have either a plus or minus polarity depending upon the selection of either the + or -200 MHz frequency case in the $\mathrm{F}_{0}=(\mathrm{N} \times 600)+/-200 \mathrm{MHz}$ equation. The sine-cosine relationship of the . InPhase and Quadrature-Phase signals are shown on Figure 4, above.

When the loop is locked, the FM coil is driven by the In-Phase signal and integrated by U9.
Referring to Figure 4, it is evident that if the control loop is opened so that the phase error is free to drift, the error would probably increase in either a positive or negative direction. This is the usual behavior of control loops that lose their feedback. As the error increases, the In-Phase signal increases. Also, the Quadrature-Phase signal decreases from either a + or - maximum at zero error. When the phase error is + or -90°, the Quadrature-Phase signal becomes zero. The FM coil mode control circuitry has threshold comparators that sense a low-level condition (at a phase error of about $+/-77$ degrees). When the Quadrature-Phase signal diminishes to this threshold, the loop is considered to be out of lock and the FM coil control circuitry is set to the Search mode.

Operational amplifier U6 (RC4136DC, a quad 741) functions as a high-gain threshold comparator operating on the Quadrature-Phase signal. The first stage is an inverting amplifier with a gain of 19.6. It also functions as a low pass filter with a 1 mS time constant.

The first U6 stage drives two other stages of U6 configured as threshold comparators (no feedback resistors, hence open loop operation) with reference voltages of + and -1.07 Volts. The comparator outputs drive five 7406 open-collector buffers through a 1 kOhm resistor and a 4.7 volt Zener diode. Three of the buffer's outputs are wire-Or'ed with a common pull-up resistor. (Ignore the U7-9 output for the moment; the functions of the two other buffers are described below.) The reference voltages are + and -55 mV , referred to the first stage of U6 (i.e. $1.07 / 19.6=0.055 \mathrm{~V}$). If the QuadraturePhase signal is outside the + or -55 mV threshold window, one of the comparator outputs will swing largely positive, which puts a logic low on the 7406 wired-Or output. This low holds the sweep oscillator U8 reset.

If the Quadrature-Phase signal is inside the + or $\cdot 55 \mathrm{mV}$ threshold window, the U7 wired-Or goes to +5 volts, which lifts the reset from U8 so that it can oscillate. The square-wave output of the 555 drives inverting operational amplifier U9 (OP27EP) which is an integrator. The integrator output is a voltage ramp that provides a frequency sweeping drive to the FM coil. This ramping drive in the Search mode is described below.

The two paragraphs above describe the logic of the comparator-555 reset circuit. A high Quadrature-Phase signal does

Figure 4, Quadrature and In-Phase Signals
not guarantee that the loop is locked but it is an indication that it could be locked. (Phase-lock acquisition is described in Section 2.5.) The integrator is always driven by the In-Phase signal; the comparator- 555 reset logic enables the 555 square-wave drive to be injected into the integrator summing junction. This square-wave drive (ignoring the In-Phase drive for the moment) induces a voltage ramp on the integrator output.

If the 1 kOhm resistors and Zener diodes were not present, the comparator outputs would swing to either the + or - rail, typically about + or -13 Volts. The amplifier output resistance (about 100 ohms), 1 kOhm resistor and Zener diode load the outputs which reduce the swing to about 10 Volts; the level is not critical. When a comparator output is positive, it sources current to the 1 kOhm resistor and 4.7 Volt Zener diode so the 7406 (U7) sees a logic high input. When a comparator output is negative, the Zener diode is forward biased (about 0.6 volts) and the 7406 input (emitter) sinks current to the Zener. The -0.6 volt level is a logic low input to the 7406 ; if all three of the wired-Or 7406 inputs are low, the open-collector outputs rise to +5 volts via the pull-up resistor.

The third 7406 (U7 9-8) is used to force the wired-Or low to inhibit the sweep oscillator (U8) for bench alignment purposes. When S1 ("Sweep" switch) is set to "Off", the U7 9-8 input goes to +5 V through the pull-up resistor which forces the wired-Or low, holding the oscillator reset.

Two other U7 buffers are used to sink current to front panel H LOCK (High Lock) and L LOCK (Low Lock) LED's. If the Quadrature-Phase signal is more negative than the - 55 mV threshold, the H LOCK LED is powered. If the Quadrature-Phase signal is more positive than the +55 mV threshold, the L LOCK LED is powered.

The sweep oscillator U7 is an LM555CN timer configured as an astable oscillator with a TTL logic level output. The period of the oscillator is given by $T=0.693\left(\mathrm{R}_{28}+2 \mathrm{R}_{29}\right) \mathrm{C}_{6}$ and is about 37.7 mS . In this configuration, the capacitor charges to $2 / 3 \mathrm{~V}_{\mathrm{cc}}$ at which point the Threshold input is triggered and the capacitor begins to discharge. When it reaches $1 / 3 \mathrm{~V}_{c c}$, it activates the Discharge input which causes the capacitor to resume charging. The 555 output is high during the charge period and low during the discharge period. Charge time is given by $T_{C H}=0.693\left(R_{28}+R_{29}\right) C_{6}$ and is 19 mS . Discharge time is given by $T_{\text {DIS }}=0.693\left(R_{28}\right) C_{6}$ and is 18.7 mS . C7 is connected to the Control Voltage input. This input can be used to modulate the 555 frequency and in this application, should not be allowed to float. The capacitor charges to $2 / 3 \mathrm{~V}_{\mathrm{cc}}$. The 0.01 uf value is recommended by the 555 data sheet. For additional details on the 555, see the LM555CN data sheet in Section 5.

When the 555 is oscillating, the output is a 3.3 Volt, 27 Hz square-wave. When the 555 output is a logic low (during the reset state or low periods when it is oscillating), the level is less than +0.01 volts under the conditions imposed by the integrator drive.

When the Reset input is raised high, the 555 is enabled to oscillate and the output immediately jumps to a logic high; when it is set low, the output reverts to logic low within about 500 nS .

The FM coil drive circuit consists of the integrator U9 (OP27EP) that drives a second operational amplifier U10 (OP27EP) which functions as a current source. U10 is configured as a voltage follower with a power Darlington transistor Q2 (D44C8) inside the feedback loop.

Setting aside for the moment the In-Phase drive, consider the integrator response to the 555 square wave drive. In this mode, the integrator has two time constants, $T_{R D 1}$ and $T_{R D 2}$; the first time constant is the dominant factor in ramping as is shown below. $T_{R D 1}$ is $3.0 \mathrm{mS}\left(\mathrm{T}_{\mathrm{RD} 1}=\mathrm{R}_{31} \times \mathrm{C}_{9}\right)$ where R_{A} is the resistance of $R 30$ paralleled with $R 31$. The second time constant $T_{R D 2}$ is $4.5 u S \quad\left(T_{R O 2}=R_{36}\right.$ $x \mathrm{C}_{9}$).

The 3.3 Volt 555 output is AC-coupled to the integrator via capacitor C8. C8 will be charged to about +0.010 volts (a negligible value) when the oscillation starts because the 555 output will have been low for an indefinite period. Since R31's low side is connected to the summing junction of U9, it is effectively in parallel with R30. Taking this paralleled resistor shunting effect into account, the C8 x R30||R31 time-constant is 0.424 Seconds. Time-constant arithmetic shows that during the first 19 mS high output period, the voltage at the C8-R31 junction droops about 90 mV (from the initial 3.3 Volts) because C8 is slowly charging. During the next 19 mS low period, C 8 discharges slightly so the C8-R31 junction voltage rises slightly. If the 555 were to continue to oscillate (it doesn't), C8 would charge to +1.65 volts in about 75 cycles of oscillation. The effect of the small droop and rise on the integrator operation is negligible.

The most important aspect of this AC coupling is that when the 555 starts to oscillate, its output immediately jumps from a logic low to logic high (about +3.3 volts) because C 8 is not charged. The initial input to the integrator is a 3.3 Volt high signal with a duration of 19 mS . Following this high level is a low level (about +0.01 volts) of about 19 mS duration. As will be shown below, during the 19 mS low period, the integrator output ramps positively, sweeping the FM coil through the 63 MHz lock point range.

If the input to a simple (first order) integrator is a constant voltage, the integrator output is given by: $V_{\text {out }}=-\left(V_{\text {in }} / T\right) \times t$, a constant slope ramp voltage where T is the time constant. The $U 9$ integrator is a second-order integrator which has two time constants, $T_{R D 1}=R_{31} C_{9}(3 \mathrm{mS})$ and $T_{R D 2}=R_{36} C_{9}$ (4.5 uS). If the input to this second order integrator is a constant voltage, the integrator output is given by: $\mathrm{V}_{\text {out }}=-\mathrm{V}_{\mathrm{in}}\left(\mathrm{t} / \mathrm{T}_{1}+\mathrm{T}_{2} / \mathrm{T}_{1}\right)$. The $\mathrm{T}_{\mathrm{RD} 2} / \mathrm{T}_{\mathrm{RD} 1}$ ratio is 0.0015 , so that (for the ramping function) the second time constant is negligible and the integrator can be considered to be of first order.

If diode D10 is not in the circuit, U9's output is (for the initial high period output of the 555) a negative-going linear ramp having a slope of $-1.1 \mathrm{~V} / \mathrm{mS}$. At 3 mS after ramp start, the output is -3.3 volts and at 19 mS (the end of the high period), the output would be -20.9 volts but the operational amplifier will be limited at about -13 volts. Now consider the effect of D10. D10 limits the integrator output when it tries to go more negative than -0.6 volts; the circuit then stops being an integrator and becomes a simple diode-limited operational amplifier. The amplifier output remains in this limited state for about 18.5 mS , the balance of the 19 mS period.

During the 555 low period following the 555 high output period, the integrator ramps positively with a $+1.1 \mathrm{~V} / \mathrm{mS}$ slope from the -0.6 volt level. The integrator output rises linearly to about +13 volts, the positive limit of output. This limit is reached about 12.4 mS after the ramp starts. Zener diode D13 and R37 limit the drive to U10 (another OP27EP) to +12 volts. If the phase-lock circuit did not manage to capture lock during this positive ramp, at the end of the 19 mS low period, the integrator would ramp negatively to the -0.6 level and the cycle would repeat. The integrator output signal (at TP2) is depicted in Figure 5.

During the positive slope current ramp, the YIG FM coil is swept to the lock-point frequency; it would continue through the 63 MHz range if the loop fails to lock. Since the FM coil is rapidly driven to the lockpoint by ramping, the acquisition is faster and more certain than would be the case if the lock circuitry had to do a long range frequency slew. Bench tests show that phase lock is acquired during the first 555 cycle.

Operational amplifier U10 (OP27EP) and transistor Q2 are the current source for the FM coil. U10 is configured as a voltage follower and Q2 is included inside the feedback loop of U10. Q2 is a D44C8, a NPN power Darlington transistor having a minimum Beta of 1000 and a low Collector-Emitter saturation voltage. $\mathrm{V}_{\mathrm{CE}(\text { sat })}$ voltage $=2.0 \mathrm{~V} @ 10 \mathrm{~A}$. With a collector current of 1 Amp and at a Junction Temperature of 25 C , typical Beta is 10,000 . This high Beta enables U10 to comfortably provide the
fraction of a milliamp required to drive Q2's base.
Diode D14 limits the U10 drive to Q2 to about -0.6 volts, the lowest level from the integrator when it is sweeping. Zener diode D15 (1N4747A, $\mathrm{V}_{2}=20$ volts) limits the FM coil current in the event that Q2 fails open and the +15 volt power exceeds about 20 volts (e.g. a power supply failure). Capacitor C14 (0.001 uF) is used to prevent oscillation of the driving circuit.

Figure 5, Integrator Sweep Waveform

The FM coil current path is from the +15 V power supply to the FM coil + terminal, through the coil, out the - terminal, and through Q2 to common via R39. R39 limits the FM coil current to about 150 mA . The FM tuning drop across R39 is divided by 10 kOhm resistors R25-R26 and the output drives the front panel bar-graph display.

From the above description, the drive to the unity-gain voltage-follower is first a -0.6 volt level followed by a positive ramp with a $+1.1 \mathrm{~V} / \mathrm{mS}$ slope ramps from -0.6 volts to +12 volts. We now consider the frequency sweep caused by the ramp. During the -0.6 V portion of the Q 2 input, no FM coil current flows because Q2 is negative biased; when the positive-going ramp reaches about +1 volts, Q2 begins to sink current through the FM coil. The Q2 Collector-to-Emitter voltage is about 1 volt over the current range of the ramp drive. 10 volts is the nominal voltage sweep range above the Q2 conduction threshold. The FM coil resistance is 1 Ohm so resistor R39 (100 Ohms) limits the FM coil current. Considering the series resistance of the FM coil, the Q2 Collector-Emitter drop and the 100 Ohms of R39, the maximum FM coil current is about 140 mA and zero mA is the mimimum. The typical YIG FM sensitivity (from the Specification Sheet) is $450 \mathrm{kHz} / \mathrm{mA}$ so the frequency sweep caused by the integrator ramp is about 63 MHz . This is about a $5 \mathrm{MHz} / \mathrm{mS}$ sweep rate.

Figure 5 depicts the integrator sweep waveform.
Remember that the lock-point frequency intervals are alternate 200 MHz and 400 MHz ; since the frequency sweep is 63 MHz , the phase-lock circuitry cannot lock on an undesired lock point.

R46 ("Bal") is the integrator zero offset adjustment. The potentiometer is connected across two 10 Ohm resistors on the lower side of two voltage dividers to +15 volts. The potentiometer ends are connected to +0.003 and -0.003 volts, providing a 6 mV range of offset adjustment.

The operation of the integrator in the Track mode is described in Section 2.5.
Section 5 has data sheets for the OP27EP, D44C8, LM555CN and RC4136DC.

2.3 HARMONIC MIXER

The Harmonic Mixer is an important component of the phase-lock loop and is a micro-stripdiscrete components PC board circuit housed in an NRAO-designed enclosure (listed in the Drawing List in Section 4). The reader should refer to the schematic diagram (in Section 4) during the following description.

The Harmonic Mixer mixes harmonics of the 600 MHz reference signal with the YIG output to produce a 200 MHz signal, which is either a $\mathrm{N} \times 600+200$ (High Lock) case or a $\mathrm{N} \times 600-200$ (Low Lock) case. After filtering and amplification, the 200 MHz IF signal drives the 200 MHz Phase Detector (described in Section 2.4). If there is a phase difference between the 200 MHz reference signal and the 200 MHz signal from the Harmonic Mixer, the phase control circuitry on board "A1" adjusts the drive to the FM coil which shifts the YIG frequency so as to minimize the phase error.

Following the usual mixer conventions, the 600 MHz signal is input via the LO port, the YIG is input via the RF port and the 200 MHz sum and difference output is fed out the IF port. The mixer is biased by a DC bias signal from the +15 volt power supply. The "A1" board has a 5 kOhm potentiometer (R47) that is used as an adjustable bias source; R1 is a current limiter for the bias input.

D1 is Schottky high barrier mixer diode (sometimes called a "Hot Carrier" diode) that is the nonlinear element that mixes the 600 MHz and $12-15 \mathrm{GHz}$ YIG signals. Schottky diodes have a low forward drop, fast recovery, a low junction capacitance and a low noise figure. D1 has a forward drop of about 0.5 volts at 1 mA , a junction capacitance of 0.10 pF , a noise figure of 6.5 dB and is tested at 16 GHz . Section 5 contains a data sheet for the TRW A2S124 Schottky mixer diode.

The schematic diagram shows a number of frequency-dependent components such as micro-strip stubs and parallel-resonant traps. These provide isolation between inputs and outputs and to suppress unwanted harmonic outputs. Mixer circuits have both the input frequencies, the sum and difference frequencies of the inputs, and can also have frequencies that are harmonics of the sum and difference frequencies. Proper operation of the phase-lock loop requires that unwanted signals be suppressed on the Harmonic Mixer inputs and output. The function of these frequency-dependent elements is described below.

Parallel-resonant traps are placed in the 600 MHz LO input and IF output paths. The left-most trap is tuned to about 200 MHz to keep 200 MHz out of the 600 MHz LO input port. The right-most trap is tuned to about 600 MHz to keep 600 MHz out of the IF output port.

Capacitors C1 and C5 are DC blocks to keep the mixer DC bias out of the LO and IF ports. The RF port (YIG) input is isolated by an external 10 dB attenuator that is unaffected by the DC bias.

In the LO input-to-mixer diode path, three series 50 Ohm micro-strip lines interconnect the LO input (J 1), the blocking capacitor (C1), the 200 MHz parallel-resonant tank circuit (L1 and C2) and two $1 / 4$ wave (at 13.5 GHz) micro-strip stubs. (The $1 / 4$ wave micro-strip stubs are designated Lambda/4 on the schematic diagram.) The first $1 / 4$ wave stub (shown vertically on the drawing) is open at the bottom which forces a short circuit at the junction of the two $1 / 4$ wave stubs and the microstrip line from the tank. The short-circuit at this junction forces an open-circuit condition at the junction of D1 and the three $1 / 4$ wave stubs. The IF output-to-mixer diode path is identical to the LO input-to-mixer path with a 600 MHz parallel resonant tank. The $1 / 4$ wave stubs and the parallel-resonant tank circuits isolate the YIG signal from the LO input and IF output.

A series micro-strip line is also placed in the RF port-to-mixer diode path to isolate the RF port from the mixer products. A stub with a shorted end is tapped onto this stub to provide a DC path for the diode bias current.

The 200 MHz IF signal level from the Harmonic Mixer varies as a function of the set-up of the bias on the mixer diode and the 600 MHz reference signal level. The 200 MHz IF level should be between - 50 and -60 dbm . During F12 alignment, this level should be measured at all the standard frequencies.

Although it is not a Harmonic Mixer component, the function performed by the $600 \mathrm{MHz} \mathrm{K} \mathrm{\& L}$ bandpass filter should be mentioned in this section. The Antenna LO system 600 MHz reference signal that drives the LO input of the Harmonic Mixer also carries other LO system signals at low levels, 50 MHz being particularly prominant. If these other signals were input to the Harmonic Mixer, the resultant IF output spectrum would be much more complex which would complicate the design of the 200 MHz phaselock control circuitry.

2.4200 MHz PHASE DETECTOR

The 200 MHz Phase Detector is a subassembly consisting of a Directional Coupler, a two-way Power Splitter, two Double-Balanced Mixers and a 90 Degree Power Divider. The reader should review the schematic in Section 5. These five components are commercial units manufactured by Mini-Circuits and are installed on an NRAO-designed micro-strip PC board. The micro-strip PC board and board I/O OSM connectors are housed in an NRAO custom enclosure (listed in the Drawing List in Section 4). Data Sheets for these components are included in Section 5 and the components are described in Section 2.10.

The phase detector inputs are the 200 MHz reference frequency from the Antenna Local Oscillator System and the 200 MHz signal from the Harmonic Mixer, filtered by a 16 MHz -wide 200 MHz bandpass filter and amplified by a 66 dB gain amplifier. The 200 MHz input from the Harmonic Mixer is at a + 3 dbm level and the 200 MHz reference signal is at $\mathrm{a}+10 \mathrm{dbm}$ level. The phase detector outputs are the Quadrature-Phase and In-Phase signals mentioned in Section 2.2 above. The directional coupler on the phase detector input taps off a low-level sample (at - 9 dbm) of the Harmonic Mixer input for front panel spectrum monitoring.

The two-way power splitter equally divides the +3 dbm 200 MHz signal from the Harmonic Mixer into two signals which drive the RF ports of the two double-balanced mixers. The power splitter loss is less than $1 / 2 \mathrm{dbm}$ and the two outputs have the same phase. Phase angle is important in the following discussion and the phase angle of the splitter outputs are defined as zero phase.

Conventional mixers form the product of two signals in a nonlinear circuit. The outputs contain both the input's sum and difference signals, the two input signals, and may also include harmonics of the input signals resulting from the action of the mixer's nonlinear elements. In contrast, a properly constructed, double-balanced mixer output contains only the sum and difference terms; the input signals are about 30 dB below the sum and difference signals. The double-balanced mixer is constructed of transformers and a diode bridge. Review the description of the Double-Balanced Mixers in the Data Sheets of Section 5.

The 200 MHz reference signal from the antenna LO system drives the 90 Degree Power Divider. One port is terminated by a 51 Ohm resistor. Two output ports drive the double-balanced mixers at a power level of +7 dbm . A very important property of the 90 Degree Power Divider is that one of the outputs leads the 200 MHz input by 45 degrees (relative to the 200 MHz reference signal) and the other lags by 45 degrees. The net effect is a 90 degrees phase difference between the outputs. The leadingphase output drives the In-Phase double-balanced mixer and the lagging-phase output drives the Quadrature-Phase double-balanced mixer. The mixer output signals are the sum and difference of the two 200 MHz inputs. The sum signal is about 400 MHz and the difference signal is a low frequency signal that converges to a DC value when the difference frequency is zero. The sum signal is not used in the phase lock circuitry and the level is reduced by low-pass filters between the mixers and the output ports.

When the loop is out of lock, the difference signals of both the In-Phase and Quadrature-Phase mixers are AC signals, which is the frequency difference of the two 200 MHz inputs.

When the loop is in lock, the In-Phase and Quadrature-Phase mixer difference signals are a DC value which is a function of the phase difference between the two inputs.

Although the above difference signals sound identical, the functional relationships differ. When the loop is locked, the difference component of the In-Phase output is a Sine function of phase difference and the difference component of the Quadrature-Phase output is a Cosine function of phase difference.

The Cosine output can have two polarities, depending upon whether lock frequency is $a+200 \mathrm{MHz}$ or -200 MHz case. The sine and cosine relalationship is the result of the two mixer outputs being 90 degrees out of phase (+ and - 45 degrees) relative to the mixer RF port inputs. Figure 4 has been repeated to show the relationships of these two signals.

The 400 MHz mixer sum signals are reduced by two sections of cascaded low-pass RC filters. The cut-off frequency of the In-Phase filter is about 1 MHz and the cut-off frequency of the Quadrature-Phase filter is about 300 kHz . The difference components of these two signals drive the "A1" board phase-lock control circuits described in Section 2.2.

Note Figure 4. As a result of the Cosine character of the Quadrature-Phase signal, when the phase error is low (or near zero), the Quadrature-Phase signal is at a positive or negative peak.

Figure 4, Quadrature and In-Phase Signals When the phase error increases, the level decreases to zero at + or - 90 degrees of phase angle. This behavior provides a convenient way of determining when the loop is out of lock. The Quadrature-Phase input to board "A1" drives a comparator (U6) that operates upon both the level and polarity of this signal as described in Section 2.2. The comparator first stage amplifier also acts as a single-pole, low-pass filter with a -3 dB cutoff frequency of 1000 Hz . This filter further reduces the AC component of the Quadrature-Phase mixer output. Note from Figure 4 that it is not desirable to permit the threshold voltage values to be very close to zero volts; component tolerance effects could introduce ambiguities in the logic decisions.

Note also from Figure 4 that as a result of the Sine character of the In-Phase signal, the signal level is zero (or low) when the phase error is zero. The signal increases positively or negatively as the error increases and the slope of the sine function is high (at small angles) so that small phase errors are indicated by a relatively large change in the signal. This portion of the sine function is an approximately linear function of the angle so that the magnitude and polarity of the signal are a convenient measure of the phase error. The linear behavior, high slope and phase-polarity detection of the In-Phase signal provide a convenient way to control the frequency of an oscillator in a closed-loop system. The closedloop system alters the frequency of the oscillator so as to null the phase error.

The 200 MHz IF signal level from the Harmonic Mixer varies as a function of the set-up of the bias on the mixer diode and the 600 MHz reference signal level. The 200 MHz IF level should be between -50 and -60 dbm .
V_{p}, the peak level of the In-Phase and Quadrature-Phase signals at the output ports, is about 250 mV .
K_{p}, the phase detector gain, is V_{p} /radian and is a parameter important in the phase lock control loop. A conservative value of K_{p} is $0.2 \mathrm{~V} / \mathrm{rad}$. The phase gain is discussed in Section 2.5.

Section 5 has data sheets for the Directional Coupler (MCL PDC-10-1), the Power Divider (MCL PSC-2-1), the Mixer (MCL SRA-1) and the 90 Degree Power Divider (MCL PSCQ-2-250).

2.5 PHASE-LOCKED CONTROL LOOP

This section describes the operation of the YIG oscillator frequency control circuitry in the Track mode. In this mode, the YIG frequency is controlled by adjusting the current in the FM coil so as to null the phase error between the 200 MHz reference signal and the 200 MHz output of the Harmonic Mixer.

Phase-Locked Loop Properties

In a phase-locked loop, phase error is measured but frequency is adjusted. Phase is the timeintegral of frequency. Integrator U9 integrates phase error to correct the VCO control voltage.

YIG frequency is controlled by a second-order phase-locked loop. Compared to a first order loop, a second order loop has additional low-pass filtering which reduces instabilities. This additional filtering provides "fly-wheel action" (analogous to inertial behavior) and the ability to smooth out fluctuations and noise on the inputs. Also, relative to the first order loop, the second-order loop reduces capture range and increases capture time. Capture means that the control loop has sensed and nulled the phase error and is in control of frequency. Second order loops also permit high loop gain at low frequencies; this is directly analagous to the effects of negative feedback in operational amplifier circuits.

Figure 5 is a block diagram of a phase-locked loop with the VCO (voltage-controlled oscillator) output phase fed back to the phase detector. The phase detector converts phase error to voltage and the VCO converts voltage to the time-derivative of phase (i.e. frequency). K_{p} is the phase detector constant mentioned in 2.4 above. $\mathrm{K}_{\mathrm{vco}}$ is the VCO constant.

The filter smooths variations in the phase error voltage.
The YIG oscillator is a form of VCO in that the output frequency is a linear function of FM coil current. $\mathrm{K}_{\mathrm{vco}}$, the VCO constant, is $36 \times 10^{6} \mathrm{rad} / \mathrm{Sec}$-volt.

The lock points are alternately 400 MHz and 200 MHz along the operating range of the F12. In setting the YIG to a new operating frequency, the Tuning and FM coil currents are set to a value close to the desired lock frequency. The mid-range value of FM coil current in conjunction with the Tuning coil current will produce a frequency close to the lock frequency. Since the sweep range is only 63 MHz (from 2.2 above), it is not possible for the loop to lock onto an undesired frequency.

Convergence to the Lock Frequency

In the Search mode, the integrator ramp slope is about $1.1 \mathrm{~V} / \mathrm{mS}$ which produces a frequency sweep range of 63 MHz in about 12 mS . The frequency sweep rate is thus $63 \mathrm{MHz} / 12 \mathrm{mS}$ or about 5 $\mathrm{MHz} / \mathrm{mS}$.

Since the FM coil produces a frequency sweep through the desired lock frequency, it is not necessary for the phase-lock circuitry to search for lock over a large frequency range but when the swept frequency approaches the lock frequency, the phase lock circuitry must capture phase lock by assuming control of the FM coil current. The time-response of the

Figure 6, Typical Phase-Locked Loop
threshold comparators and response of the 555 reset (about 500 nS) must be fast enough to shut off the current ramping within the capture range of the phase-locked loop. During the sweep, as the sweep frequency approaches the lock frequency, the frequency difference decreases and then becomes zero. At a zero difference frequency, the Quadrature-Phase signal goes through zero volts and then begins to increase, either negatively or positively, following the cosine function. When the Quadrature-Phase signal reaches the + or -55 mV threshold, one of the comparators resets the 555 and the output drops to a logic low within about 500 nS . This stops the current ramping. The comparator circuit is an AM detector; thus it performs a logic function and is not a factor in the phase-lock loop operation.

Since the 555 output is at a low level, the 555 reset has a minimal effect upon the integrator. If there is no time delay in the comparator circuitry, the 555 would be reset at the + or - 55 mV threshold. The first stage of the comparator is a combination amplifier-low pass filter with a -3 dB cutoff frequency of 159 KHz . The amplifier functions as a simple lag circuit that adds about 0.8 mS time lag to the comparator time response.

Consider the current drive to the summing junction from the two signal sources. The 3.3 volt drive from the 555 is input through a 200 kOhm resistor and the 225 mV drive from the In-Phase port is input through a 3.3 kOhm resistor. The ratio of In-Phase current span to ramping current span is about 4.5; thus the In-Phase signal is the dominant input to the integrator.

Until the difference frequency is zero, the two mixer's difference signal outputs are AC signals. The integrator's response to this AC signal is zero because it simply averages the input AC.

Loop Parameters

The performance of the phase-locked loop is a function of W_{N} (the loop natural frequency), K_{0}, K_{p}, T_{1}, T_{2}, D (the Damping Factor) and P_{E} (the maximum permissable phase error response to loop perturbations).
K_{p}, the phase detector constant, is determined by the characteristics of 200 MHz phase detector and is $0.2 \mathrm{rad} /$ volt. K_{0}, the VCO constant, is determined by the characteristics of the FM coil drive circuit and YIG FM sensitivity. K_{0} is $56.5 \times 10^{6} \mathrm{rad} / \mathrm{sec}$.

The loop should have high gain at the natural frequency W_{N}; this determines the loop's timeresponse to phase errors. $A W_{N}$ of $314 \times 10^{3} \mathrm{rad} / \mathrm{sec}(50 \mathrm{KHz})$ was chosen. The OP27 has a gainbandwidth product of 8 MHz . The switching characteristics of the current driver (D44C8) are a rise and delay time of 0.6 uSec , a storage time of 2.0 uSec and a fall time of 0.5 uSec . The characteristics of these two devices suggest that they are capable of operation at a loop bandwidth well over 100 KHz .

Using the selected W_{N}, T_{1} was calculated from $W_{N}=\left(K_{0} K_{P} / T_{1}\right)^{1 / 2} . \quad T_{1}=49.5 \mathrm{uSec}$.
T_{2} was calculated from $\mathrm{T}_{2}=2 \mathrm{D} / \mathrm{W}_{\mathrm{N}} . \mathrm{D}$ was chosen to be 1.1 which made $\mathrm{T}_{2}=4.5 \mathrm{uSec}$.
Stability is a concern in any closed-loop system. Horowitz ${ }^{2}$ states that if the loop gain falls off at $-20 \mathrm{~dB} /$ decade in the neigborhood of unity gain, the loop will be stable. The integrator has two time constants. T_{1} is 49.5 uS and is a pole. T_{2} is 4.5 uSec and is a zero. T_{2} alters the integrator's frequency response by reducing the rolloff near unity gain; this improves the phase margin, the difference between 180 degrees and the phase shift around the loop at unity-gain frequency.

[^1]Plotting open-loop gain (the composite of the OP27 open-loop gain vs frequency and the frequency response of T_{1} and T_{2}) shows a unity-gain frequency of about 90 kHz and the slope is $-20 \mathrm{~dB} /$ decade at unity gain.
W_{N} may be calculated from the phase stability specification, P_{E}. A basic VLA specification is that the LO system phase error should be no greater than 1 degree/ GHz of the observing frequency. F12 is the X-Band Local Oscillator (8.4 GHz).

Since the YIG and driving circuitry are a VCO, the phase error induced by perturbations is a concern. 120 Hz power supply ripple is probably the most dominant perturbation. If the YIG were not controlled by a phase-locked loop, the phase error induced by power supply (and other) perturbations would be excessive.

A specification of 1 degree was used in the design of the L6 phase-locked loop. Estimating the 120 Hz ripple of the +15 power supply to be 15 mV (0.1%) and using Thompson's model ${ }^{3}, \mathrm{~W}_{\mathrm{N}}$ may be calculated using a P_{E} of 1 degree ($\mathrm{pi} / 180$) in the following formula from Gardner.

$$
P_{E}=D_{W} W_{N}\left(W_{N}\right)^{2}
$$

W_{m} is 120 Hz ($754 \mathrm{rad} / \mathrm{sec}$). $\mathrm{D}_{\mathrm{w}}=\mathrm{K}_{0} \times 0.015 \mathrm{~V}$ and is $0.834 \times 10^{6} \mathrm{rad} / \mathrm{sec}$. Using pi/180 as the phase specification in this equation, W_{N} is found to be $3.59 \times 10^{5} \mathrm{rad} / \mathrm{sec} \cdot\left(\mathrm{F}_{\mathrm{N}}=114 \mathrm{kHz}\right)$ which is a bit higher than the 76 kHz chosen. This estimate is perhaps unduly pessimistic but does illustrate the loop bandwidth concern. Careful spectral analysis of the F12 LO signal shows no discernable phase error. For comparison, an F_{N} of 140 kHz was chosen for the L104 which is the VLBA $2-16 \mathrm{GHz}$ Synthesizer. ${ }^{4}$

F12 has RFI feedthrough filters on the +5 and 15 volt power to reduce high-frequency noise on these lines.

Phase Locked Loop Configuration

Figure 7 (next page) is a block diagram of the YIG phase-locked loop. The YIG Tuning control circuits (described in Section 2.2) have been been included for completeness.

The loop contains several RF components (amplifiers, isolator, directional couplers and attenuators) which are vital but essentially transparent elements in the loop performance. These components establish the proper RF operating conditions for the phase-locked loop. For example: the two amplifiers (WJ A771 and Aydin-Vector AY-5037-4) raise the 600 MHz and 200 MHz signals to the levels required by the mixers in the Harmonic Mixer and 200 MHz Phase Detector. The Midwest 263 attenuator isolates the Harmonic Mixer from cable and connector reflections on the line to the Triangle Microwave directional coupler that samples the YIG output.

The 200 MHz and 600 MHz bandpass filters are important to the operation of the phase-locked loop. Since the loop operates upon the frequency and phase relationships between the 200 MHz LO reference signal and the 200 MHz IF output of the Harmonic Mixer, it is desirable to remove signals that could obscure the operation of the control loop.

The 600 MHz K\&L bandpass filter in the 600 MHz reference signal line remove other (B-Rack)

[^2]

LO signals which are present on the 600 MHz line at residual levels. A notable example is 50 MHz which is extensively used in the B-Rack. The presence of these other signals (e.g. 50 MHz) on the Harmonic Mixer's RF port would complicate the Harmonic Mixer's IF spectrum and add 200 MHz components which are unrelated to the operation of the 200 MHz phase-locked loop.

The K\&L $200 / 16$ bandpass filter is used to filter the 200 MHz output of the Harmonic Mixer. The Harmonic Mixer mixes the YIG output with the 600 MHz reference signal; this generates an IF which may have a number of complex sum and difference terms, one of which is the 200 MHz signal. Since the phase-locked loop operates upon the phase relationship between this 200 MHz signal and the LO system 200 MHz reference signal, it is important that the Harmonic Mixer's 200 MHz output be filtered to remove these other unwanted signals before it is input to the 200 MHz Phase Detector.

A Triangle Microwave CA-912 Directional Coupler on the YIG output line picks off a low level signal (-20 dB below the line level) for input to the RF port of the Harmonic Mixer. A second CA-912 DC picks of a sample which is connected to the front panel LO MON connector. The isolation provided by these directional couplers minimizes the effect of cable and connector reflections between the YIG and the mixer and connector.

These RF components are described in Section 2.10 and their data sheets are included in Section 5.

2.6 X-BAND RF TO IF FREQUENCY CONVERSION

This section describes the second function of F12, which is the conversion of the two RF (A/B and C / D) signals from the X-Band Front End Receiver to two (A / B and C/D) IF signals that are routed to the F9 module for further amplification and conversion to the A, B, C and D IF signals.

The Local Oscillator is the YIG Oscillator that (with its frequency control circuitry) was described above. The YIG oscillator tunes over the range of 11.8 to 15.2 GHz and has an output power of +13 dbm . The power splitter separates the LO signal into two +10 dbm signals that drive the LO port on the mixers. The RF inputs from the Front End covers an 8.0 to 8.8 GHz band and have a power level of $-47 \mathrm{dbm} / \mathrm{GHz}$. The IF outputs are two 4.5 to 5.0 GHz signals (A / B and C / D) at a power level of -57 $\mathrm{dbm} / \mathrm{GHz}$.

A 16 GHz low-pass filter is shown on the Module Wiring Diagram (D13165S09). This filter was not used in the production versions of F12.

The mixer components are the following commercial modules:
A Passive Microwave PTB2007 isolator that minimizes reflections from the mixer back into the YIG. The Module Wiring Diagram shows a PTB 1091 isolator on the YIG output; the PTB 2007 is actually used because it has a more convenient connector configuration than the PTB 1091.

A Triangle Microwave YL-2133 two-way power divider that provides two isolated LO signals to the mixers. The YL-2133 splits the LO signal into two +10 dbm signals that drive the two mixers (W-J M88C). The YL-2133 has excellent amplitude and phase balance; both are important considerations in the VLA system which must maintain the integrity of two independent RF signal paths.

Two Watkins-Johnson M88C double-balanced mixers that mix the two RF signals with the LO signal to produce two IF signals.

Two Trak 61A6071 isolators that minimize the effect of reflections caused by discontinuities in the cables and connectors between the mixers and the F6 inputs.

Two isolator-bandpass filter combinations (Trak 21A9271 Isolator and Reactel 4CO-8400-1000$\mathrm{S} 12,8.4 \mathrm{GHz}$ bandpass filter) that reject out-of-band outputs of the broadband Front End and minimize the effect of reflections caused by discontinuities in the cables and connectors.

Section 5 has data sheets for these components and Section 2.10 describes their important characteristics.

The configuration of these components is depicted in the Module Wiring Diagram (D13165S09). Figure 1 provides a photographic view of the RF side of the module. Note that the mixer components occupy a major portion of the F12 RF space.

Important considerations in frequency conversion are isolation, conversion loss, VSWR, the noise content of the mixer output, compression, and rejection of out-of-band signals.

Isolation

Isolation is a measure of the circuit balance within a mixer. When the isolation is high, the amount of "leakage" or "feed through" between the mixer ports will be small. The Isolation vs Frequency
charts on page 558 of the M88C data sheet show that at an LO level of +13 dbm , an RF of 8 GHz and an IF of 5 GHz , the LO to IF isolation is about 37 dB and the LO to RF isolation is about 23 dB . The RF to IF isolation is not plotted for an IF of 5 GHz but is typically about 23 dB .

In Section 2.1, the YIG Pulling Figure was described and is a measure of the influence of output mismatches upon the YIG frequency. The AV-71251 has a Pulling Figure of 5 MHz for a return loss of 12 dB (a VSWR of 1.7:1). The PTB-2007 isolator has a max VSWR of $1.15: 1$ and an isolation of 23 dB which protects the YIG from cable and connector mismatches.

Conversion Loss

A mixer's conversion loss is the ratio of the mixer's IF power (in an upper or lower sidebnd) to RF input power and is normally expressed in dB .

The Watkins-Johnson M88C mixer is a double-balanced mixer and page 557 of the data sheets shows that the typical conversion loss is about 7.5 dB and the max is 10.0 dB . Page 559 of the data sheet shows plots of conversion loss versus LO power for four combinations of LO and RF frequencies. The third plot (down) shows that conversion loss is essentially constant for LO levels above 10 dbm .

A manufacturer's test data sheet (in Section 5) shows a Conversion Loss is typically of about 7 dB for IF's of 4 to 6 GHz .

VSWR

Page 559 of the M88C data sheet shows that with an RF of 8 GHz and an IF of 5 GHz , the RF port VSWR is about 1.5:1. Page 560 shows that the LO port VSWR is about $2: 1$ for an LO level of +13 dbm and a frequency of about 13 GHz .

Intermodulation

Ideal mixers generate only the desired IF output of $F_{L O}+/-F_{R F}$. Practical diode mixers generate harmonics of the LO and RF input signals which mix and cause the harmonic modulation products $\mathrm{NF}_{\mathrm{RF}}$ $+/-\mathrm{MF}_{\mathrm{LO}}$ in the output frequency spectrum.

The double-balanced mixer (DBM) is a circuit that theoretically has only the sum and difference signals to the output. Practical double-balanced mixers have a 20 to 30 dB suppression of internally generated, even-order harmonic products compared to a single diode mixer.

Page 558 of the M88C data sheet shows that the intermodulation product levels for low-order combinations of RF and LO frequencies are more than 45 dB below the 1×1 product level. This data is for an LO of 18 GHz at a level of +13 dbm and an RF of 10.1 GHz .

Noise

Noise Figure is a measure of the noise content of a device's output. For a mixer, the Noise Figure is the ratio (in dB) of the signal-to-noise ratio at the mixer's $R F$ input divided by the signal-to-noise ratio of one mixer IF sideband output.

Page 557 of the M88C data sheets shows that the mixer's typical Noise Figure (NF) is 8.0 dB and the maximum is 10.5 dB for an RF of 10 to 18 GHz and an LO of 10 to 18 GHz .

Compression

The M88C data sheet cites a 1 dB compression specification for an $R F$ level of +7 dbm and an LO level of +13 dbm . Compression is a measure of a Double-Balanced Mixer's dynamic range. In a DBM, as the RF level is increased, the IF output should correspondingly increase in a linear manner. At some point, IF outputs begin to depart from this linear behavior; further increases in RF input produce smaller increases in IF output and eventually the IF output becomes fairly constant. Additional increases in RF input do not produce additional IF output. The 1 dB compression point is where the IF output cannot linearly follow the input RF and deviates from linearity by 1 dB .

In the F12 mixer, LO power is about +10 dbm but RF power is about $-47 \mathrm{dbm} / \mathrm{GHz}$ so the mixer is operating far below the $\mathrm{RF}+7 \mathrm{dbm}$ compression point.

Out-of-Band Signal Rejection

In the F12, out-of-Band signals from the Front-Ends are rejected by the 8.4 GHz Reactel 4 CO -8400-1000-S12 Bandpass filters.

The M88C mixer's outputs contain RF and LO sum and difference signals. The difference signal (a band covering 4.5 to 5.0 GHz) is the signal used by the LO system for amplification and further frequency processing. The sum signal (about 21 GHz) is present in the mixer's outputs but are rejected by the $4750 \mathrm{GHz}(4750 / 795)$ bandpass filter in F4.

2.7 F12 SIGNAL LEVELS AND SPECTRUMS

This section lists F12 signal levels. A photograph of the typical YIG spectrum at the front panel LO MON connector is shown below.

Reference Signal Inputs

The level of the 200 MHz Reference Signal at J 10 is +10 dbm .
The level of the 600 MHz Reference Signal at J 9 is -3 dbm .

RF to IF Mixer

The level of the LO input to the (M88C) mixer is +13 dbm .
The levels of the X-band Front-End outputs at J11 and J12 are $-47 \mathrm{dbm} / \mathrm{GHz}$.
The levels of the (M88C) Mixer outputs at J7 and J8 are $-57 \mathrm{dbm} / \mathrm{GHz}$.

Harmonic Mixer

The level of the RF input to the Harmonic Mixer is -14 dbm .
The level of the 200 MHz IF output of the Harmonic Mixer is -50 to -60 dbm .
The level of the RF input (YIG LO signal) to the Harmonic Mixer is -14 dbm .

200 MHz Phase Detector

The 200 MHz level at the IF input is +3 dbm .

The 200 MHz level at the LO input is +10 dbm .

The level of the In-Phase and Quad-Phase outputs of the 200 MHz Phase Detector is 250 mV .

The MCL PSCQ-2-250 Quad Power Splitter output level is +7 dbm .

Figure 8, Typical YIG Spectrum

2.8 FRONT PANEL LED DISPLAY BOARD

This section describes the operation of the front panel display circuitry that is contained on board "A3". This board contains an alphanumeric display of the commanded YIG frequency and a bar-graph display that indicates the level of bipolar analog signals. A center-off, momentary-action, front panel switch selects either the CONT VOLT (YIG FM coil drive voltage) or the IF LEV (YIG output) level for the bargraph display. The L LOCK and H LOCK display LED's are also installed on this board.

The YIG frequency display shows the YIG frequency command selected by the command select multiplexer on "A2", the digital control board. When the front panel mode switch is in the AUTO position, the display shows the Data Set frequency command from the central control computers. When the switch is in the MAN position, the display shows the Thumbwheel switch frequency command.

The YIG frequency display uses three Hewlett-Packard 5082-7300 numeric BCD-code LED display chips with an internal decoder/driver and memory. The display chips show digits 0 through 9 plus a right-hand decimal point. The BCD input lines are high-true TTL levels. The state on the four inputs is loaded into the chip memory by dropping pin 5 to ground and then raising it high. If pin 5 is held low, the four input states drive the display decoder to indicate the input state. Pin 5 is hard-wired low on this diplay board so the display continuously reflects the BCD command value.

The ten's digit is hardwired to show the " 1 " digit; this digit is not commanded and is implicit in the command argument. The decimal point input on the units digit is hard-wired to logic ground to illuminate this LED. The units digit is driven by the command argument units nibble (MSD) and the tenth's digit is driven by the command argument tenth's nibble (LSD).

The bargraph display uses two National Semiconductor LM3914 Dot/Bar Display Driver chips connected to drive two side-by side, 10 -element Bar Graph LED array chips (HewlettPackard HDSP-4820). The display forms a twenty-state bargraph that indicates the level of the selected bipolar analog signal.

A data sheet for the LM3914 driver chip is contained in Section 5.

Figure 9 shows a simplified block diagram of the LM3914. This device has ten analog comparators to perform parallel comparisons of the input analog signal with taps on a ten-element voltage divider powered by an internal +1.25 reference supply connected to the top of the voltage divider $\left(R_{H I}\right)$. The low (- , Ref Adj) side of the supply is connected to ground. When the analog signal is more positive than a tap point, the associated comparator output will switch low and sink current from an external LED. Comparators with tap voltages less than the input signal will power LED's; those that exceed the signal will not. If the LED's are a linear array as is the case in the F12 display, the display is a bargraph representation of the analog signal with 125 mV increments. This simple configuration provides a bargraph for an input signal ranging from 0.0 to +1.25 volts.

Figure 9, LM3914 Block Diagram

A voltage-follower buffers the input signal to provide a high input impedance.
A second 3914 may be added to provide a 20-element bipolar display of an analog signal level ranging from -1.25 to +1.25 volts. This is the configuration used in the F12 display. The display driver chips are connected to power the LED's in a left-to-right right manner; as the signal increases positively, LED's will be incrementally illuminated in a right-ward direction. If the signal is more negative than -1.25 volts, none of the LED's will be powered. If the signal is slightly more positive than -1.25 volts, the left-most LED will be powered. If the signal is more positive than -1.125 volts, the two leftmost LED's will be powered, etc. If the signal is more positive than +1.25 volts, all LED's will be powered.

Drawing B13165S04 shows the bargraph display circuitry. Data Sheet page $9-170$ shows this configuration. Note that a voltage divider reduces the signal level by 0.247 . An LM337T voltage regulator provides a -1.3 volt reference level which is connected to $R_{L O}$, Ref Adj and to $R_{H I}$ and Ref Out through a 750 Ohm resistor. These connections translate the top of the voltage divider to ground potential and the bottom to -1.3 volts. Potentiometer R12 is used to adjust the regulator to a -1.3 volt output.

The negative voltage LED drivers sink current through a resistor to +5 V ; this steals current from the LED's because the driver output levels are below the LED's minimum forward voltage. When the outputs rise, the associated LED's are powered by +5 volts through the current-limiting resistors. The positive voltage LED current is controlled by R16. The LM3914 data sheet describes this current control scheme.

The "A3" BOM is included in Section 4.

2.9 "A2" MONTTOR AND CONTROL BOARD

Data Set Interface

This section describes the operation of the "A2" board which interfaces the F12 circuitry to the Data Set.

All F12 monitor data operations are a response to monitor data message stimulus signals from the Data Set. In both the AUTO and MAN modes, the Data Set command stimulus signals can store a frequency command value in the "A2" Command Storage Register. In the AUTO mode, the YIG frequency is determined by this value. In the MAN mode, the YIG frequency is determined by the setting of the front panel Thumbwheel switches but the Command Storage Register value is not altered. When the AUTO/MAN switch is returned to AUTO, YIG frequency control will revert to the state stored in the Command Storage Register.

The Data Set interface signals are described first since they control the operation of the " A 2 " board.

Multiplex Address

The Multiplex Address is conveyed by the state of four (SMA-0, ... SMA-3), low-true, TTL logic signals having binary weights of 2^{0} through 2^{3}. These lines permit sixteen command and data addresses to be decoded; one command and two monitor enables are decoded by the "A2" board logic. SMA-0,.. SMA-3 are the lower portion of the eight-bit address byte of Data Set command and data messages. The Data Set decodes the upper four bits to select a Data Set digital output or input to/from a device controlled by the Data Set.

The SMA-0, ... SMA-3 lines also control the channel selection logic of the "A2" analog multiplexers.
Between command or data operations, the Multiplex Address lines are quiescent high (logic " $0^{\prime \prime}$ state).

Two low-true enables (ENO and EN1) from decoder L21 are used by the command and digital monitor logic. ENO is used to enable commands (address 320_{8}) to be loaded into the Command Register and to enable the Command Echo data (address 220_{8}) to be read out to the Data Set. EN1 (address 221_{8}) is used to enable digital monitor data to be read out to the Data Set.

Digital Command Output, DIGI-0

The Data Set digital command output used by F12 is DIGO-0, which consists of three low-true lines: DIGO-0, CLKO-0 and STRO-0. The DIGO-0 signal is a serial data line, clocked into an F12 serial input command register by CLKO-O. After 24 shift clocks, the data is parallel-loaded into a static storage register by the STRO-0 signal. In the interval between command messages directed to DIGO-0, the Data Sets sets the DIGO-0 lines high. DIGO-0 addresses are $320_{8}-337_{8}$.

Digital Monitor Data Input, DIGI-1

The Data Set digital monitor data input used by F12 is DIGI-1, which consists of three low-true lines: DIGI-1, CLKI-1 and STRI-1. The STRI-1 signal parallel-loads an F12 monitor register. The DIGI1 signal is a serial data line, the output of a serial monitor data register. The DIGI-1 line is clocked into the Data Set monitor register by CLKI. In the interval between monitor messages evoked from DIGI-1, the Data Set sets the DIGI-1 lines high. DIGI-1 addresses are $2208_{8}-237_{8}$.

Analog Monitor Inputs, ALGI-2

F12 analog data is connected to the Data Set ALGI-2 analog multiplexer input. The associated addresses range from 40_{8} through 57_{8}.

The Data Set analog multiplexer is a differential multiplexer and accepts differential or singleended signals from up to eight sources. The multiplexer has a common-mode noise rejection ratio >80 db . Input impedance is greater than 10^{10} ohms. Settling time to less than one bit error is less than 18 microseconds but the Data Set provides 30 microseconds of settling time. 30 microseconds after the start of an analog to digital conversion sequence, the Analog to Digital converter sample/hold is set to the hold mode and the conversion sequence is started.

Analog inputs from single-ended sources must have a low (-) signal return line connected to analog common at the signal source. Since the Data Set is a differential multiplexer, the low signal returns from different devices are isolated from each other and common-mode noise rejection is not reduced.

Command and Monitor Enable Decode Logic (Sheet 1)

The four (low-true) Mux address bits (SMAO- through SMA3-) are inverted to high-true format by open-collector buffer C01. The buffer output levels swing between 0 and +5 volts. A 7406 buffer and pull-up resistors are used in place of a simple inverter in the event that it becomes necessary to use analog multiplexer chips with overvoltage protection (typically an HI 508A). These multiplexers require a logic 1 greater than 4.0 volts.

The Command and Digital Monitor enables are decoded by a 1 -of-eight decoder L21, a 74LS138. (See a TTL data book for details on the operation of the 74LS138.) The low-true ENO and EN1 outputs are decodes of mux addresses 00_{8} and 01_{8}, respectively.

Enable ENO permits the CLKO-O clock to load the DIGO-O command data into the Command Storage Register as described below.

Enables EN0 and EN1 permit the CLKI-1 clock to unload the Command Echo and Monitor Data registers to the Data Set DIGI-1 input as described below.

The Command Echo address 220_{8} is 100_{8} less than the command address 320_{8}. This assignment is for convenience in remembering the Command Echo address.

The Data Set Command format is shown below.

Data Set Command Format

CBO, CB1, etc. are Command Bits 0,1 , etc. SBO, etc. denotes spare, unassigned command bits. NU denotes unused command bits. - denotes that the bit has no weighted value.

Command Register Logic

The command register logic consists of two serial-in parallel-out shift registers and two parallelinput storage registers. Three sets of gates, enabled by ENO (described above), load the registers under control of the Data Set DIGO-0 lines. Two 74LSO2 low-true AND-gates (C9-10 and C9-4) enable the lowtrue serial data (DIGO-0) and the low-true clock (CLKO-0) to serially shift the 24 command argument bits into 74LS164's E41 and E49. The DIGO-0 state on the A-B inputs and the contents of the 74LS164's are shifted to the right on the rising (trailing) edge of the register clock. The command MSD shifts completely through the register and is not used.

5 microseconds after the serial loading has been completed, the trailing edge of the 5 microsecond low-true strobe STRO-0 parallel-loads the 16 -bit contents of the serial register (E41 and E49) into the static storage registers E30 and E19. Figure 10 (next page), depicts the digital command timing operations.

Command Select Multiplexer

Two quad, 2:1 parallel multiplexers (E10 and E01, 74LS157's) select either the Command Storage Register value or the Thumbwheel command value for control of the F12 Tuning Coil current.

When the Select input to these multiplexers is low, the $1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}$ and 4 A inputs (Command Register bits) are selected for output to the $1 Y, 2 Y, 3 Y$ and $4 Y$ outputs. A high on the Select input selects the B1, B2, B3 and B4 (Thumbwheel switch) inputs. The front panel AUTO/MAN switch provides a logic ground to the 74LS157's Sel inputs (pin 1) when the switch is in the AUTO position. The multiplexer STRB (strobe) input is tied to logic ground to continuously enable the multiplexers. The state of the Command Select Multiplexer output is read back to the control computers on the MSD of the Command Echo data. The Command Echo format is described below.

Digital Monitor Logic

Two types of Digital Data are read from the " A 2 " board by the Data Set, Command Echo and Digital Monitor data.

The lowest two bytes of the Command Echo are readouts of the contents of the command storage registers, E10 and E01 (E01's contents are spare command bits). The upper byte (MSB) is the output of the Command Select Multiplexer described above. This byte reflects the actual command applied to the YIG Tuning coil circuit and will be either the (Data Set) Command Register or Thumbwheel Switch value, depending upon the state of the AUTO/MAN switch. The Command Echo readout provides a confirmation to the central control computers that the command issued by the control computers is correctly loaded into the command register.

Digital Monitor Data is read out of the F12 to indicate the status of the Phase Lock loop and the state of the AUTO/MAN switch. This data is indicated by three discretes: LOW LOCK WARN, HIGH LOCK WARN and A / M (the state of front panel AUTO/MAN switch). The balance of the digital monitor bits are available for future use but at present are not used.

The Data Set Digital Monitor Data and Command Echo formats are shown below.

Data Set Digital Monitor Data Format

LSD MSD																								
Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Funct	MO	M1	M2	M3	M4	M5	M6	M7	M10	M11	M12	M13	M14	M15	M16	M17	M20	M21	M22	M23	M24	LLW	HLW	A/M
Weight	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	DM	DM	DM

MO, M1, etc., are spare Monitor Data Bits $0,1, \ldots 24$, not assigned to any functions.
DM denotes discrete monitor bits as follows: LLW = Low Lock Warn, $1=$ Warn, HLW denotes High Lock Warn, $1=$ Warn, A/M denotes AUTO/MAN switch mode, 1 = Manual mode.

Command Echo Monitor Data Format

CBO, CB1, etc. are Data Set Command Bits 0 , 1, etc. SBO, etc. denotes spare command bits, no assigned function. CSO, CS1, etc. denotes the Command Select Multiplexer output bits.

The Command Echo and Digital Monitor data readout logic are identical except for the enables; Command Echo is enabled by ENO and Digital Monitor data is enabled by EN1.

The monitor data readout logic is similar to the digital command logic - a set of three serial shift registers. Three parallel-input, serial-output shift registers (74LS165's) are parallel-loaded and serially unloaded to the Data Set under control of the Data Set DIGI-0 input lines. Three gates, enabled by ENO or EN1, permit the low-true STRI-1, DIGI-1 and CLKI-1 signals to read the selected digital data. If enabled by ENO (or EN1), Gate C17-1 (or C17-13) impresses the 20 microsecond STRI-1 strobe on either of the two sets of 74LS165 Shift/Load (S/L) inputs. This loads the register with the state on the three register's A through H inputs. 100 microseconds after the rise of STRI-1, the CLKI-1 shift clocks on gate C9-13 (or C17-4) start the serial unload of the 24 monitor data bits in the register to the Data Set DIGI-1 input via gate C49-3 (or C49-6).

Since 21 of the 24 bits of the Digital Monitor data register (L12, J12 and G12, Mux 221_{8}) are not tied to ground or to a pull-up resistor, they may be either a high or low, but will probably be read out as 1's.

Figure 10 (previous page) shows the timing of the digital monitor data logic.
The DIGI line is driven by open-collector buffers (7406 's) that are driven by gates C49-6 or C493) which are enabled by ENO or EN1. The buffer pull-up resistor is in the Data Set and all the other monitor data sources (e.g. F-Rack F14's) on the DIGI-1 line sink current through this resistor as they input digital monitor data to the Data Set. The 74LS165 Clock Inhibit inputs are tied to logic ground which permits the shift clocks to unload the register. The LSB serial inputs L3-10 and L12-10 are connected to ground so that the registers fill with zero's during unload. This would not be a problem as the shift register is always parallel-loaded by STRI-1 at the start of a new shift sequence.

If the CLK-1 signal is viewed on an oscilloscope, a curious feature will be seen: there are two pauses in the clock train. These have a duration of one bit period and occur after eight shift clocks. This pause is an artifact of the Data Set monitor shift logic. The monitor data is not stored in a register in the Data Set. The serial stream of data from the F14 is merged directly into the Data Set's message output logic. The pause is used to inject the Data Set's serial parity bit into the message data stream.

A natural question is: is there a possibility of time contention between Data Set command and monitor operations which could obscure the readout of the command echo monitor data? The answer is "no"; the Data Set command and monitor operations are widely separated in time so there is no possibility of conflict.

Analog Signal Multiplexing and Conditioning (Sheet 2)

The "A2" board has sixteen channels of analog signal conditioning and multiplexing that are read out as analog monitor data by the Data Set. This data is indicative of the performance of the F12 module. The following is a description of the signal conditioning and multiplexing. The analog signals are tabulated at the end of this section.

The Data Set uses a dual-stage analog multiplexing scheme; an 8 -input Data Set analog multiplexer selects analog data from up to 8 analog multiplexers in modules such as F12. The upper four (of 8) address bits enable one of the eight Data Set analog multiplexer inputs and the SMA-0, ... SMA-3 lines control the selection logic of the " A 2 " analog multiplexers.

Analog Signal Conditioning

Each analog multiplexer channel has an RC filter that provides charge-transfer isolation to reduce perturbations to signal sources during sampling. The multiplexer chips (HI-508's) have break-beforemake properties but circuit wiring and chip capacitances (although small) can retain charges between actuation of the multiplexer channels. The Data Set defaults the four multiplex address lines to address 15_{10} (Hex F) between command or monitor operations; the stored charge associated with this address state is the charge that exists on this capacitance when an analog signal is selected. The 0.1 uF capacitors in the RC filter will be charged to the signal source voltage; this capacitor must charge the multiplexerwiring capacitances. The worst-case scenario would be to assume that a channel filter capacitor is charged to +10 volts and the multiplexer default address (F_{16}) had selected a -7.5 volts source; the worst case signal swing on a multiplexer output is thus 17.5 volts. Estimating 50 pF for the HI-508 chip and wiring capacitances and using a Data Set multiplexer "on" capacitance of 100 pF , the filter capacitor charge is reduced by about 2.5 mV , about a $1 / 2$ count error in the converted value. This (worst case) 2.5 mV charge must be replaced by the signal source through the 1000 ohm filter resistor. The charge time constant is about 50 ns so the output, wiring and Data Set input capacitance is charged within about 1 uS. The Data Set A/D shifts to the "Hold" mode 30 us after the multiplex address goes true; thus there is more than adequate time for analog settling before A/D conversion is initiated.

It is particularly important to protect the YIG frequency control circuitry from multiplexer chargetransfer perturbations.

Voltages greater than 10 volts are divided by a resistive divider across the filter capacitor. These are 15 and 28 volt power supply voltages.

Clamping diodes on the HI-508 inputs and outputs clamp over-range inputs or outputs to the +15 V or -15 V chip inputs. Chip damage under these conditions is unlikely because the 1000 ohms (or 5110) ohm resistors in the RC filter circuits will limit "On" channel current to less than the 20 mA limit.

Analog Signal Multiplexing

The "A2" board has two 8-channel, single-ended, analog multiplexer chips which sample sixteen F12 analog signals. One multiplexer chip selects one of the lower eight signals and the second selects one of the upper eight signals. The multiplexer chips have internal one-of-eight decoders which drive the analog switches. The decoder has an enable input which permits the decoder outputs to drive the analog switches. The three lower Multiplex Address bits SMA-0, SMA-1 and SMA-2, respectively activate (via the one-of-eight decoder) one of the channels on each multiplexer and the most significant bit SMA-3, enables either the lower or upper multiplexer decoder as a function of the logic level. The two multiplexer outputs are tied together and drive the + (signal high) input of the Data Set multiplexer.

The negative (signal low) input to the Data Set multiplexer is connected to the F12 $+/-15 \mathrm{~V}$ Common. Since the Data Set is located in another slot, there is probably a small common-mode difference between the F12 and Data Set analog common. Since the Data Set analog inputs are differential and have a high common-mode rejection (about 80 db), the use of the F12 analog common signal for the signal low input to the Data Set multiplexer has a negligable effect upon the converted values. An HI-508 data sheet is included in Section 5.

10 Volt Reference

A precision +10 volt reference on the "A2" board provides a means of checking the Data Set A/D converter gain drift. The Harris HA1608 +10 volt reference and trim circuitry are installed on dip header L48. The +10 volt output is connected to the Channel 2 input of multiplexer L30. Analog ground is connected to channel 1 of L30. The signal levels read via these two channels provide a means of checking the Data Set A/D converter gain and zero drifts.

F12 Analog Signals

Mux Address ${ }_{8}$	Function	Normal Value	Data Range
40	Analog Gnd.	0.000 Volts	$+/-20 \mathrm{mV}$
41	+10 Volt Ref.	+10.000	+/- 20 mV
42	+5 Volt PS	+5.000	+/- 100 mV
43	+15 Volt PS (+15/2)	+7.500 Volts	+/- 200 mV
44	-15 Volt PS (-15/2)	-7.500 Volts	+/- 200 mV
45	+28 Volt PS (+28/4)	+7.000 Volts	+/- 400 mV
46	Not used, Gnd.	0.000 Volts	
47	If Level	+/-3 Volts	+/-1 to +/-5 Volts
50	YIG Tuning Voltage	-3 to - 4 Volts	
51	FM Coil Control Voltage	+5 Volts	0 to +10 Volts
52	Phase detector In-Phase	0.0 Volts	+/- 20 mV
53	YIG Tuning Current (V/5)	-3 to -4 Volts	
54	Spare		
55	Spare		
56	Spare		
57	Spare		

Two data overlay print-outs (next page) show typical F12 analog and digital values. The TST overlay shows IF level, YIG Tuning Voltage and current, FM Voltage and 200 MHz Phase Detector InPhase level.

The Monitor Word $1 \mathrm{DCS}=01 \mathrm{DS}=4$ overlay (next page) shows all analog and digital monitor data from Data Set 4 which controls the F12 and F14 modules. The (decimal) level of the F12 analog data is listed in rows A 040 and A050. Unassigned multiplexer channels are not printed. Rows D220 are Hexadecimal values of the Command Echo (D220) and Monitor data (221).

00040091

Figure 11, TST and MW1, DS4 Overlays

2.10 COMMERCIAL RF COMPONENTS

Data Sheets for the commercial RF components used in F12 are included in Section 5. This section summarizes the important characteristics of these components. Internal circuit details are not described; interested readers should refer to the manufacturer's catalogs and application notes.

AVANTEK AV-71251 YIG OSCILLATOR

The Avantek AV-71251 characteristics were described in Section 2.1.

ISOLATORS

Trak PTB2007

The YIG output is isolated by a Passive Microwave PTB2007 Isolator. The PTB2007 isolator is specified to operate over a frequency band of 12.4 to 18.0 GHz and have a minimum isolation of 23 dB . The isolator's maximum insertion loss (loss caused by its loading of the input) is 0.3 dB and the maximum VSWR is 1.15. From Section 2.1 remember that the YIG has a Pulling Figure of 1.0 MHz with a return loss of 12 dB (i.e. a VSWR of 1.7:1). This is the frequency sensitivity of the YIG to mismatches on its output. The 23 dB of isolation and low VSWR provided by the PTB2007 eliminates this perturbation of YIG frequency. PAMTEK's test data sheets for eleven PTB2007's in the Data Sheet Section (5) show input and output VSWR's ranging from 1.06 to 1.15 and an isolation ranging from 24 to 30 dB . NRAO lab tests of eleven PTB2007's (not all units were from the same lot as above) show an isolation $>30 \mathrm{~dB}$ and an insertion loss $<0.3 \mathrm{~dB}$.

Trak 21A9271

The 21A9271 Isolator is characterized over a frequency range of 8.0 to 12.4 GHz . This isolator is used between the J11 and J12 inputs from the X-Band receiver and the mixer's RF inputs. The X-Band receiver's outputs cover the 8.0 to 8.8 GHz . The 21 A 9271 impedance is 50 Ohms. Maximum insertion loss is specified to be 0.5 dB and isolation is specified to be 20 dB , minimum. VSWR is specified to be 1.3:1, maximum. A manufacturer's test data sheet (in Section 5) for 3 units shows an insertion loss of 0.45 dB , an isolation of 21 dB and input and output VSWR's of 1.25:1.

Trak 61A6071

The 61A6071 Isolator is characterized over a frequency range of 4.0 to 8.0 GHz . The 61A6071 impedance is 50 Ohms. Maximum insertion loss is specified to be 0.5 dB and isolation is specified to be 18 dB , minimum. VSWR is specified to be $1.3: 1$, maximum. A manufacturer's test data sheet (in Section 5) for 22 units shows an insertion loss of 0.5 dB , an isolation of 18 dB and a VSWR 1.30:1.

POWER DIVIDERS

Triangle YL-2133

The YL-2133 two-way power divider is characterized over the 12.0 to 18.0 GHz frequency range and has excellent amplitude and phase balance - important considerations in the VLA system which must retain the integrity of two independent RF signal paths. The YL-2133 uses stripline construction and the resistive element is a ceramic pad. The YL- 2133 impedance is 50 Ohms. The maximum input and output VSWR are specified to be 1.50 and 1.40 , respectively. The maximum insertion loss is specified to be 0.6 dB and the minimum isolation is specified to be 20 dB . Phase and amplitude balance are specified to be within $+/-6$ degrees and 0.3 dB , respectively.

A YL-2133 manufacturer's test data sheet (in Section 5) for eight YL-2133's shows that these unit's VSWR's were less than $1.5: 1$, the insertion loss was less than 0.5 dB and the isolation was greater than 19 dB . Amplitude balance was $+/-0.2 \mathrm{~dB}$ and the maximum phase unbalance (for one unit) was $+/-$ 5 degrees with an average of $+/-3.6$ degrees.

MCL PSC-2-1
The Mini-Circuit PSC-1 is a two-way, 0-degrees power splitter that is used to generate the InPhase signal in the 200 MHz Phase Detector module. The PSC- 1 is characterized over a frequency range of 0.1 to 400 MHz . At an input power level of 0 dbm and frequency of 200 MHz , the insertion loss is specified to be 3.3 and 3.1 dB , input to outputs 1 and 2, respectively. The amplitude unbalance (between outputs 1 and 2) is 0.02 dB . Isolation (output to output) is 29 dB . Input VSWR is $1.15: 1$ and outputs 1 and 2 output VSWR's are each 1.09:1.

In the 200 MHz Phase Detector, the PSC-2-1 input level is +3 dbm .

MCL PSCQ-2-250

The Mini-Circuits PSCQ-2-250 is a two-way, 90 degrees power splitter that is used to generate the Quadrature-Phase signal in the 200 MHz Phase Detector module. The PSCQ-2-250 is characterized over a frequency range of 150 to 250 MHz . At an input power level of 0 dbm and frequency of 200 MHz , the insertion loss is specified to be 2.89 and 3.46 , input to outputs 1 and 2, respectively. The amplitude unbalance (between outputs 1 and 2) is 0.57 dB and isolation (output to output) is 38 dB . Output 1-2 phase is 89.60 degrees.

In the 200 MHz Phase Detector, the PSCQ-2-250 input level is +10 dbm and the output levels to the MCL SRA-1 mixers are +7 dbm .

The PSCQ-2-250 is packaged in a small case with projecting pins, suitable for installation on a PC board.

ATTENUATORS

Midwest 263 Attenuator (10 dB)

The Midwest 263 attenuator is characterized for frequencies up to 18 GHz . The attenuation is $10 \mathrm{~dB},+/-0.3 \mathrm{~dB}$. Maximum VSWR is $1.15: 1$ for frequencies up to 4.0 GHz .

Midwest 294 Attenuator (3 dB)

The Midwest 294 attenuator is characterized for frequencies up to 2.0 GHz . The attenuation is $3 \mathrm{~dB},+/-0.3 \mathrm{~dB}$. Maximum VSWR is $1.15: 1$ for frequencies up to 2.0 GHz .

AMPLIFIERS

Aydin-Vector AY5037-4

The Aydin-Vector AY5037-4 amplifier is used to amplify the 200 MHz IF signal from the Harmonic Mixer. The amplifier is specified to have a gain between 62 and 70 dB gain at 200 MHz , deliver an output power of +9 dbm and have maximum input and output VSWR's of $1.6: 1$ and a maximum noise figure of 5 dB .

A typical manufacturer's test data sheet (in Section 5) shows a gain of 67.9 dB and an output power of +10.6 dbm . The input VSWR is $1.17: 1$ and the output VSWR is $1.60: 1$. Noise figure is 4.5 dB .

Watkins-Johnson AT7-1

The Watkins-Johnson A77-1 amplifier is used to drive the LO input of the Harmonic Mixer. The guaranteed specifications cover operation over a 2 to 700 MHz frequency range. The small signal gain is 16.0 dB , with a gain flatness of $+/-0.3 \mathrm{~dB}$. Power output is rated at +16.5 dbm with 1 dB of compression. Max input and output VSWR is less than 1.5:1.

The A77-1 is packaged in a TO-8 can that is installed on an Avantek TB1 printed circuit board mounted in an Avantek TC2 case.

BANDPASS FILTERS

Reactel 4CO-8400-1000-S12

The Reactel 4CO-8400-1000-S12 filter is used in the RF input paths from the X-Band receivers and is used to reject out-of-band signals from the wide-band receivers.

The Reactel 4CO-8400-1000-S12 bandpass filters are specified to have a center frequency of 8.4 GHz , a bandwidth of 1.0 GHz (at $+/-1 \mathrm{~dB}$ response frequencies), and a VSWR less than 1.5:1 over this band. The insertion loss is specified to be 1 dB at the center frequency. The filter's impedance is 50 Ohms.

A manufacturer's test data sheet for twenty-four units shows a $+/-1 \mathrm{~dB}$ bandwidth of 7.9 to 8.9 GHz and a VSWR less than $1.5: 1$ over a bandwidth of 7.93 to 8.84 GHz . Section 5 contains this data sheet and an associated plot of frequency response and VSWR.

K8L 4B120-600/50-OP

The K\&L 4B120-600/50-OP Bandpass Filter is used to filter the 600 MHz reference signal from the Local Oscillator system to insure that this signal is free from residual components that might affect the Harmonic Mixer's output spectrum.

The Manufacturer's specifications for this filter are: a center frequency of 600 MHz , a 3 dB bandwidth of 574 to 625 MHz and a VSWR of 1.5:1. Manufacturer's test data for two units show an average bandwidth of 581 to 618 MHz and an insertion loss of 0.85 dB . A Data Sheet and frequency response plot for these two filters are included in the Data Sheet Section (5).

K\&L 4B120-200/16-OP

The K\&L 4B120-200/16-OP Bandpass Filter is used to filter the 200 MHz output of the Harmonic Mixer. In addition to the 200 MHz IF signal, the Harmonic Mixer may generate a number of complex signals that must be removed by filtering so that the 200 MHz Phase Detector input is only this single mixing product.

The Manufacturer's specifications for this filter are: a center frequency of 200 MHz , a 3 dB bandwidth of 192 to 208 MHz and a VSWR of 1.5:1. Manufacturer's test data for two units show an average bandwidth of 189.5 to 209.5 MHz and an insertion loss of 1.2 dB . A Data Sheet and frequency response plot for these two filters are included in the Data Sheet Section (5).

DIRECTIONAL COUPLERS

MCL PDC-10-1

The Mini-Circuit MCL PDC-10-1 Directional Coupler is used in the 200 MHz Phase Detector module to provide a sample of the 200 MHz signal from the Harmonic Mixer for monitoring on the front panel IF MON connector.

The PDC-10-1 is characterized over a 0.5 to 500 MHz frequency range. Coupling to the CPL output is $-11.5+/-0.5 \mathrm{~dB}$ with a flatness of $+/-0.6 \mathrm{~dB}$. Directivity is 32 dB typical and 25 dB , minimum. Typical VSWR is 1.2 . The PDC-10-1 is packaged in an extremely small metal case with pin connections to the phase detector PC board.

In the 200 MHz Phase Detector, the PDC-10-1 input level is +3 dbm .
The PDC-10-1 is packaged in a small case with projecting pins, suitable for installation on a PC board.

Triangle Microwave CA-912

Two Triangle Microwave CA-912 Directional Couplers are used to sample the YIG oscillator outputs to drive the Harmonic Mixer and the front-panel LO MON OSM connector.

CA-912 Directional Couplers are sub-miniature stripline components featuring a high directivity and low VSWR. The impedance is 50 Ohms. The CA-912 is specified to operate over a 12.4 to 18.0 GHz frequency band and has a $-20 \mathrm{~dB}+/-0.8 \mathrm{~dB}$ coupling of the input to the CPL output, a minimum directivity of 15 dB , a maximum VSWR of $1.40: 1$ and a maximum insertion loss of 0.4 dB .

MIXERS

MCL SRA-1 Double Balanced Mixer
The Mini-Circuits SRA-1 double-balanced mixer is used in the 200 MHz Phase Detector to generate the In-Phase and Quadrature-Phase signals.

The SRA-1 is characterized over a 0.5 to 500 MHz frequency range at an LO input level of up to +7 dbm and an RF input of up to +1 dbm . The conversion loss is 5.5 dB , typical and 7 dB , maximum. The LO-RF isolation is 50 dB , typical and 30 dB , minimum. The LO-IF isolation is 40 dB , typical and 25 db , mimimum. With a 200 MHz RF input at a 4 dbm level, the RF port VSWR is $1.28: 1$, the LO port VSWR is $1.35: 1$ and the IF port VSWR is $1.86: 1$. The maximum DC output is 261 mV with an offset of 0.13 mV .

The SRA-1 is packaged in a small case with projecting pins, suitable for installation on a PC board.

Watkins-Johnson M88-C

The Watkins-Johnson M88C double-balanced mixers are used to convert the two front end RF signals to IF signals using the YIG signal as an LO.

Since the M88C mixers are double-balanced mixers, the RF-LO sum and difference frequencies are the dominant outputs. The RF and LO signals and products of combinations of these two signals are
present at minimal levels. (See the double-balanced-mixer discussion in Section 2.4) The M88C is specified to operate over an IF range of 1 to 8 GHz , an LO up to 18 GHz and an RF up to 18 GHz . The M88C may operate as an up-converter or a down-converter. The YIG 11.8 to 15.2 GHz LO drive to the M88C is a +10 dbm level. The resultant IF signal is a 4.5 to 5.0 GHz signal. Referring to the M88C data sheets for up-conversion under these conditions, the typical conversion loss is 8.0 dB and the max conversion loss is 10.0 dB . The typical noise figure for these conditions is 8.0 dB and the maximum noise figure is 10.5 dB . The minimum LO to RF isolation is 15 dB and the typical is 28 dB . The minimum LO to IF isolation is 16 dB and the typical is 32 dB .

The RF port VSWR is about 2.5:1 and the LO port VSWR ranges from about 2:1 at an LO of 12 GHz to $3.3: 1$ at an LO of 15 GHz .

At the frequencies cited above, the second harmonic of the LO at the RF port is about -29 dbm with an LO signal level of +13 dbm .

There are many combinations of RF and LO frequency combinations that may be considered for intermodulation effects. From the bottom table on data sheet page 558, intermodulation products are seen to be below 58 dB relative to the 1×1 ($\mathrm{RF} \times \mathrm{LO}$) at an RF level of -10 dbm and an LO level of +13 dbm . These minute intermodulation products are probably of no concern as they would probably be removed by filters further down the LO system path.

TRW/AERTECH A2S124 Mixer Diode

The TRW/AERTECH AS124 mixer diode is a Schottky high barrier mixer diode (sometimes called a "Hot Carrier" diode) that is the non-linear element in the Harmonic Mixer which mixes the 600 MHz and $12-15 \mathrm{GHz}$ YIG signals. Schottky diodes have a low forward drop, fast recovery, a low junction capacitance and a low noise figure. The AS124 has a forward drop of about 0.5 volts at 1 mA , a junction capacitance of 0.10 pF , a noise figure of 6.5 dB and is tested at 16 GHz .

3.0 F12 ALJGNMENT AND BENCH TESTS

This section describes the bench alignment tests that are principally concerned with the "A1" board and the RF components.

Check the power wiring before applying power to the module. The YIG and other components are expensive.

Apply DC power to the module and verify that it is within the F-Rack tolerances.

"A2" Control Board Tests

Before testing the "A1" board, it is necessary to verify that the digital board is functioning properly. Malfunctions in the digital board could confuse tests of the "A1" board and module.

Testing the digital board entails verifying that the command, address and monitor data data circuitry are functioning properly.

1) All eight outputs of the address decoder outputs should be tested (even though some of them are not used) by setting address states which range over all eight addresses. Testing all eight states verifies that the address wiring is correct and that the decoder chip internal logic is functioning correctly.
2) The command register should be checked to verify that the Data Set commands are correct. All command register bits should be exercised to verify that there are no stuck bits, etc. Suggested arguments are all 1's, all O's, alternate 1's and 0's and the complement of the alternate 1's and O's.
3) The digital monitor data outputs should be checked for proper operation. Since the command argument is output as an echo on the two LSB's, this data should be checked in conjunction with the command argument tests above.
4) The command select multiplexer should be checked by verifying that both the command register and Thumbwheel states are properly selected. Verify that the Auto/Man switch selects the designated command source. This verifies module and switch wiring. The command select multiplexer should be tested with the command register arguments suggested above. Verify that all Thumbwheel states are properly routed through the multiplexer.

The command select multiplexer outputs are read out as digital monitor data on the MSB of the command echo. Verify that these eight bits are correct.
5) Verify that the states of the Man/Auto, High Lock Warn and Low Lock Warn discretes are correct on the digital monitor data output.
6) Set the +10 volt reference to +10.000 by adjusting the 100 kOhm potentiometer on Dip Header L48.
7) Verify that all sixteen channels of analog monitor data are properly read out by the analog multiplexer. After setting up the RF circuitry, check the multiplexer again to verify that the IF Level, YIG Tuning coil voltage and current, the FM voltage and In-Phase level are correctly multiplexed.

"A1" Control Board Tests

Verify the 200 MHz and 600 MHz reference signal levels. The 200 MHz level should be -3 dbm and the 600 MHz level should be +10 dbm .

1) Set the AUTO/MAN switch to Manual.
2) Monitor the TP1 voltage with a DVM. Set the Thumbwheel switches to 0.0 (i.e. the setting for a command of 10.0 GHz). Adjust the "OFFSET ADJ" potentiometer (R42) for 0.000 Volts, $+/-0.001$ volts.
3) Set the Thumbwheel switches to 5.0 (i.e. the setting for a command of 15.0 GHz). Adjust the "GAIN ADJ" potentiometer (R43) for +5.000 volts $+/-0.001$ volts at TP1.
4) Connect a frequency counter to the front panel LO MON connector. Set the Thumbwheel switches to 2.0 (i.e. the setting for a command of 12.0 GHz) and turn off the ON/OFF sweep select switch on the PC board.

Adjust the "FREQ OFFSET" control (potentiomenter R44) for a 12.0 GHz reading on the frequency counter.

Set the Thumbwheel switches to 5.0 (i.e. the setting for a command of 15.0 GHz).
Adjust the "FREQ SLOPE" control (potentiometer R 45) for a 15.0 GHz reading on the frequency counter.

Repeat the "FREQ OFFSET" and "FREQ SLOPE" adjustments until the two frequencies are within $+/-5.0 \mathrm{MHz}$ of the commanded values.
5) Monitor TP3 with an oscilloscope (5VDC/div, $10 \mathrm{mS} /$ div). Turn on the PC board ON/OFF sweep select switch.

Set the Thumbwheel to 5.1 (i.e. the setting for a command of 15.1 GHz , not a standard frequency).

Adjust the "BAL" control (potentiometer R46) for a symmetrical ramping waveform on the oscilloscope.
6) Verify that the frequency counter is still connected to the LO MON connector.

Set the Thumbwheel switches to 1.8 (i.e. the setting for a command of 18 GHz , not a standard frequency but within the YIG operating range).

Adjust "H.M. BIAS" potentiometer (R47) for a LOW LOCK indication on the front panel. If the loop does not lock, adjust "FREQ OFFSET" potentiometer (R44) plus or minus $1 / 2$ turn for a proper lock.

Adjust "FREQ OFFSET" (R44) for a middle scale reading on the bargraph display while holding the I.F. LEV/CONT VOLT switch in the CONT VOLT position.

Adjust the H.M. BIAS potentiometer (R47) for a maximum scale reading while holding the I.F. LEV/CONT VOLT switch in the I.F. LEV position.
7) Check all the standard frequencies listed below for correct High or Low Lock.

Adjust the H.M. BIAS control (R47) for an optimum IF level at all the frequencies. It may be necessary to repeat the sequence through the frequency list to determine the best H.M. BIAS setting.
8) With a power meter, check the power level at the LO MON connector at all the frequencies listed below. The power level should be -3 dbm over these standard frequencies. This test measures the YIG output level over the operating frequency range.
9) With a power meter, check the power level at the IF MON connector at all frequencies listed below. The power level should be -13 dbm . This test measures the 200 MHz level input to the 200 MHz Phase Detector over the operating frequency range.

F12 Standard Lock Frequencies

Using the + (High Lock) and - (Low Lock) symbols as a suffix, YIG lock frequencies are:

11.8 GHz-	12.4 GHz-	13.0 GHz-	13.6 GHz-	14.2 GHz-	14.8 GHz-
12.2 GHz+	12.8 GHz+	13.4 GHz+	14.0 GHz+	14.6 GHz+	15.2 GHz+
F12 output Frequency (in MHz $)=N \times 600+/-200$, where $N=20,21,22,23,24$ and 25.					

10) The following alignment procedure adjusts the YIG drive circuitry so that all F12's have similar tuning-frequency characteristics. This procedure normalizes the individual YIG's characteristics to a uniform operating range.

With the side plate covers installed and at a stabilized operating temperature, plot the FM coil control voltage against YIG frequency for the standard frequencies listed above. The FM coil control voltage is read from the analog monitor data (address 51_{8}).

Plot the FM coil voltage values as a function of YIG frequency on linear graph paper. Frequency is plotted along the horizontal axis and control voltage along the vertical axis. Draw a curve through each of the data points; the curve may not be smooth and in some cases may be concave or convex. Draw a best-fit (by eye) straight line through the above curve. Since the circuits that drive the Tuning and FM coils are very linear, the curve represents the tuning characteristics of the YIG oscillator.

The straight line drawn above represents the average value of YIG frequency versus FM coil current. Ideally, this straight line should have a zero slope and should be +5 Volts $+/-1$ Volt.
11) If the straight line in 10) above exceeds the +5 Volt $+/-1$ Volt tolerance, the potentiometer settings described above may have to be readjusted.
A) Remove the module left plate for access to the "A1" control PC board. First attempt to reduce the slope of the straight line by adjusting R43 ("Gain Adjust"). If the straight line slopes up with increasing frequency, it indicates that the YIG's differential sensitivity to the applied magnetic field (delta frequency/delta magnetic field) is less than the nominal value. U4's gain is thus too low and increasing amounts of current drive are required as frequency is increased. If the straight line slopes down with increasing frequency, the YIG's differential sensitivity is greater than the nominal value. Slightly increase (or decrease depending upon the slope) U4's gain by adjusting R43 and record a new set of FM coil voltage versus frequency values. Plot them on a new piece of graph paper and construct a new curve and best straight line through the curve. Repeat the procedure until the straight line slope is small.
B) After reducing the straight line slope, adjust R44 ("Freq Offset") to move the straight line up or down so that all frequency versus FM coil voltages are within the +5 Volt $+/-1$ Volt tolerance band.
C) After completing A) and B) above, install the module left plate. To verify the settings at the operating temperature, after the module temperature has stablized, repeat the measurements of 10) above and plot the curve and straight line. Save this data in the module maintenance files.

4.0 DRAWINGS

This section contains F12 functional drawings such as the module block diagram, module wiring diagram, PC board schematics, BOM's, etc. These drawings are listed below. For convenience, C and D size drawings have been reduced to B-size, foldout sheets. A-size drawings have not been reduced.

A list of F12 fabrication drawings follows the list of functional drawings. Fabrication drawings are not included in this manual.

X-Band system drawings are listed in Section 6.

F12 Functional Drawings

C13165B01	$12-15 \mathrm{GHz}$ L.O. Module Block Diagram
D13165S09	$12-15 \mathrm{GHz}$ L.O. Module Wiring Diagram
A13165Z05	$12-15 \mathrm{GHz}$ Module BOM
C13165S01	$12-15 \mathrm{GHz}$ L.O. Cont. P.C. Schematic
C13165P01	$12-15 \mathrm{GHz}$ L.O. Control P.C. Assembly
A13165Z04	$12-15 \mathrm{GHz}$ L.O. Control PCB BOM
B13165S06	$12-15 \mathrm{GHz}$ L.O. Harmonic Mixer Schematic
A13165Z07	$12-15 \mathrm{GHz}$ L.O. Harmonic Mixer BOM
B13165S03	$12-15 \mathrm{GHz}$ L.O. 200 MHz Phase Detector Schematic
A13165Z06	$12-15 \mathrm{GHz}$ L.O. 200 MHz Phase Detector BOM
B13165S04	$12-15 \mathrm{GHz}$ L.O. Front Panel Meter Schematic
B13165P04	$12-15 \mathrm{GHz}$ L.O. Front Panel Assembly
A13165Z03	$12-15 \mathrm{GHz}$ L.O. Front Panel Meter BOM
D13165L02	$12-15 \mathrm{GHz}$ L.O. M and C Board Logic Diagram
C13165P02	$12-15 \mathrm{GHz}$ L.O. M and C Board Wire Wrap Assembly
A13165P11	$12-15 \mathrm{GHz}$ Dip Header Assembly

F12 Fabrication Drawings

B13165AB02	$12-15 \mathrm{GHz}$ L.O. Front Panel PCB Artwork
B13165M06	$12-15 \mathrm{GHz}$ L.O. Front Panel Drill Drawing
B13165M38	$12-15 \mathrm{GHz}$ L.O. Front Panel Meter Lens Drawing
C13165AA06	$12-15 \mathrm{GHz}$ L.O. Front Panel Silkscreen
C13165A0B7	$12-15 \mathrm{GHz}$ L.O. Front Panel Silkscreen Dimensions
B13165P05	$12-15 \mathrm{GHz}$ L.O. 200 MHz Phase Detector Assembly Drawing
B13165AB05	$12-15 \mathrm{GHz}$ L.O. 200 MHz Phase Detector Artwork
B13165M10	$12-15 \mathrm{GHz}$ L.O. 200 MHz Phase Detector Drill Drawing
B13165AA20	$12-15 \mathrm{GHz}$ L.O. 200 MHz Phase Detector Decal
C13165M08	$12-15 \mathrm{GHz}$ L.O. 200 Mhz Phase Detector Chassis, Lids
B13165M07	$12-15 \mathrm{GHz}$ L.O. Harmonic Mixer Chassis Chassis and Lid
B13165AB03	$12-15 \mathrm{GHz}$ L.O. Harmonic Mixer P.C. Artwork

D13165AB01	12-15 GHz L.O. Control P.C.B Artwork
C13165M05	$12-15 \mathrm{GHz}$ L.O. Control P.C. Board Drill Drawing
B13165M04	$12-15 \mathrm{GHz}$ L.O. OSP Rear Module Panel
B13165M30	$12-15 \mathrm{GHz}$ L.O. Wire Wrap Support Block
B13050M18	Module Side Plates
B13165M15	$12-15 \mathrm{GHz}$ L.O., Ay-Vector Mounting Bracket
B13165M14	$12-15 \mathrm{GHz}$ L.O., P.C. Card Brackets
B13165M16	$12-15 \mathrm{GHz}$ L.O., YIG Osc Mount Bracket
C13050M22-1	Module Cover, Perforated
C13165M17	$12-15 \mathrm{GHz}$ L.O., Module Center Plate
D13165M09	$12-15 \mathrm{GHz}$ L.O., Front Panel Mech Drawing
D13165M18	$12-15 \mathrm{GHz}$ L.O., Module Bar Supports
C13165M70	Module Pull
B13165M03	

Remsows				
Rev	Dute	Drawn er	APPRYO ${ }^{\text {Pr }}$	DEECAPAION

BILL OF MATERIAL
NATIONAL RADIO ASTRONOMY OBSERVATORY

ITEM \#	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	total QTY.
1		K\&L MICROWAVE	48120-600/50-0/OP	BANDPASS FILTER, 600 MHZ	1
2		WATKINS JOHNSON	A77-1	AMPLIFIER, L.O.	1
3		AVANTEK	TC2 \& TB1	CASE \& P.C.B. FOR A77-1	1
4		OMNI SPECTRA	OSM-218	ADAPTER, SMA	2
5		NRAO	DWG \#B13165S06	MIXER, HARMONIC	1
6		MIDWEST	294-3	ATTENUATOR, 3db	1
7		K\&L MICROWAVE	4B120-200/16/0/OP	BANDPASS FILTER, 200 MHZ	1
8		OMNI SPECTRA	OSM-219	ADAPTER, SMA	1
9		AYDIN VECTOR	AY-5037-4	AMPLIFIER, I.F.	1
10		NRAO	DWG \#B13165S03	PHASE DETECTOR, 200 MHZ	1
11		MIDWEST	263-10	ATTENUATOR, 10db	1
12		TRIANGLE MICROWAVE	CA-912	DIR. COUPLER , 12-18 GH2	2
13		ASTROLAB	29519	ADAPTER, RIGHT ANGLE SMA	1
14		TRAK MICROWAVE	6146071	ISOLATOR, 4.8 GHZ	2
15		TRAK MICROWAVE	21 99271	ISOLATOR, 8-12 GHZ	2
16		REACTEL	4C0-8.4G-1GS12	BANDPASS FILTER, 8.4 GHZ	2
17		WATKINS JOHNSON	M88C	MIXER	2
18		TRIANGLE MICROWAVE	YL-2133	POWER SPLITTER, 12-15 GHZ	1
19		PAMTECH	PTB2007	ISOLATOR, $12-15 \mathrm{GHZ}$ (INPUT SMA MALE, OUTPUT SMA FEM.)	1
20		AVANTEK	AV-71251	YIG OSCILLATOR, 12.18 GHZ	1

BILL OF MATERIAL

NATIONAL RADIO ASTRONOMY OBSERVATORY

bill of material
NATIONAL RADIO ASTRONOMY OBSERVATORY

ITEM \#	Ref des	MANUFACTURER	Part number	description	total QTY.
43		OMNI SPECTRA	RG-402/J	CABLE, SEMI-RIGID COAXIAL	8 FT .
44		AMP	200833-4	PIN, GUIDE	2
45		AMP	203964-6	SOCKET, GUIDE	2
46		AMP	204186-5	BLOCK, 42-PIN	1
47		AMP	202394-2	H00D	1
48		AMP	201578-1	PIN, CRIMP	25
49		AMP	201334-1	PIN, CRIMP	1

bill of material
national radio astronomy observatory

BILL OF MATERIAL
NATIONAL RADIO ASTRONOMY OBSERVATORY

X	Electrical	MECHANICAL BOM \# Al3165Z04			DATE 09-10-92 PAGE	OF 4
ITEM \#	REF DES	MANUFACTURER	PART NUMBER		DESCRIPTION	total QTY.
21	R44, R45	BOURNS	3262W		TRIM POT, 500, 1/4W, 10\%	2
22	R46,R47	BOURNS	3262W		TRIM POT, 5K, 1/4W, 10\%	2
23	R48, R49	ALLEN-BRADLEY	RC07GF100J		RESISTOR, 10, 1/4W, 5\%	2
24	C1, 88	SPRAGUE	CSR-13, 2289		CAPACITOR, $15 \mu \mathrm{f}, 20$ VDC	2
25	C2	MALLORY	CK05BX332K		CAPACITOR, . $0033 \mu \mathrm{f}$	1
26	C3, C4, C6, C10-C12, C15	MALLORY	CK05BX104K		CAPACITOR, $0.1 \mu \mathrm{f}$	7
27	C5, c7, Cl 7	MALLORY	CK05BX103K		CAPACITOR, . $01 \mu \mathrm{f}$	3
28	C9	C.D.E.	WMF1S15		CAPACITOR, . $015 \mu \mathrm{f}, 100 \mathrm{VDC}$	1
29	C14	MALLORY	CK05BX102K		CAPACITOR, . $001 \mu \mathrm{f}$	1
30	C16	SPRAGUE	CSR13E106KL		CAPACITOR, $10 \mu \mathrm{f}, 25$ VDC	1
31	D1	MOTOROLA	1N827A		DIODE, REFERENCE, 6.2 V	1
32	D2, D10	G.E.	$1 N 4148$		DIODE	2
33	D3	MOTOROLA	1N5235B		DIODE, ZENER, 6.8V	1
34	D4	MOTOROLA	1N4005		DIODE, 2ENER, 6.8V	1
35	D5	MOTOROLA	1N5357B		DIODE, 2ENER, 20V	1
36	D6, D7	MOTOROLA	1N5230B		DIODE, 2ENER, 4.7V	2
37	D13	MOTOROLA	1N5242B		DIODE, ZENER, 12V	1
38	D14	G.E.	1N456		DIODE	1
39	D15	motorola	1N4747A		DIODE, 2ENER, 20V	1
40	Q1	THERMALLOY	6001B-2		HEAT SINK	1
41	Q2	THERMALLOY	6073B		HEAT SINK	1
42	Q1	MOTOROLA	2N3792		TRANSISTOR	1

NATIONAL RADIO ASTRONOMY OBSERVATORY

X	ELECTRICAL	MECHANLCAL BOM	A13165Z04	REV	DATE 09-10-92	PAGE 4 __OF_ 4
ITEM \#	REF DES	MANUFACTURER	PART NUMBER		DESCRIPTION	total QTY.
43	Q2	G.E.	D44C8		TRANSISTOR	1
44	U1, 22	T.I.	SN74L04N		INTEGRATED CIRCUIT	2
45	U3	ANALOG DEVICES	DAC-12Q2/CBD		HYBRID MODULE	1
46	U4	National	LH002CD		INTEGRATED CIRCUIT	1
47	US	NATIONAL	LH0041CJ		INTEGRATED CIRCUIT	1
48	U6	RAYTHEON	RC4136DC		INTEGRATED CIRCUIT	1
49	U7	FAIRCHILD	F-7406PC		INTEGRATED CIRCUIT	1
50	U8	NATIONAL	LM555CN		INTEGRATED CIRCUIT	1
51	U9, U10	P.M.I.	OP-27EP		INTEGRATED CIRCUIT	2
52	TP1, TP2, TP3	KEYSTONE ELEC.	1559-2		TERMINAL	3
53	S1	ALCO SWITCH	DSS-101		SWITCH	1

bill of matertal
national radio astronomy observatory

bill of material
NATIONAL RADIO ASTRONOMY OBSERVATORY
\qquad ELEGTRICAL X_X_ MECHANICAL BOM \#_A13165Z06 \qquad REV_ _ DATE 09-10-92 PAGE_2_OF_2 MODULE F12 F12 NAME SUB ASSY \qquad DWG\# \qquad SCHEM. DWG非_B13165SO3 LOCATION \qquad QUA/SYS. \qquad PREPRD BY K. TATE APPRVD BY \qquad

ITEM \#	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	total QTY.
1		MINI-CIRCUITS LAB	PDC-10-1	COUPLER, DIRECTIONAL	1
2		MINI-CIRCUITS LAB	PSC-2-1	DIVIDER, POWER	1
3		MINI-CIRCUITS LAB	SRA-1	MIXER	2
4		MINI-CIRCUITS LAB	PSCQ-2-250	DIVIDER, POWER, 90°	1
5	J1, J5	OMNI SPECTRA	OSM-244-2	CONNECTOR, SMA	5
6	R1-R3	ALLEN-BRADLEY	RC05GF510J	RESISTOR, 51, 1/8W, 5\%	3
7	R4, R5	ALLEN-BRADLEY	RC05GF511J	RESISTOR, $510,1 / 8 \mathrm{~W}, 5 \%$	2
8	C1, c2	AMERICAN TECHNICAL CERAMICS	ATC-100B-101-JP300X	CAPACITOR, CHIP	2
9	c4	AMERICAN TECHNICAL CERAMICS	ATC-100B-151-JP300X	CAPACITOR, CHIP	1
10	C5	AMERICAN TECHNICAL CERAMICS	ATC-100B-751-JP50X	CAPACITOR, CHIP	1

NATIONAL RADIO ASTRONOMY OBSERVATORY
\qquad ELECTRICAL \qquad X MECHANICAL BOM 韭 A13165Z03 \qquad REV A DATE 09-09.92 PAGE_2_OF 3 _ MODULE \qquad F12 \qquad NAME FRONT PANEL METER DwG\# \qquad SUB ASSY \qquad DWG\# \qquad SCHEM. DWG\#B13165S04 \qquad LOCATION \qquad QUA/SYS. \qquad PREPRD BY K TATE APPRVD BY \qquad

ITEM \#	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
1	C1	SPRAGUE	196D47SX9035JAL	CAPACITOR, 4.7uf TANTALUM	1
2	C2	CENTRALAB	C2 TYPE 30C105M	CAPACITOR, luf MONOLITHIC	1
3	D1, D2	DIALIGHT	521-9250	LED, GREEN DIF	2
4	P1	TEXAS INSTRUMENTS	C931602	IC SOCKET, 16-PIN, LW PROF	1
5	R1	ALLEN-BRADLEY	RC42GF200J	RESISTOR, 22, 2W, 5\%	1
6	R2-R11	ALLEN-BRADLEY	RC07GF471J	RESISTOR, 470, 1/4W, 5\%	10
7	R12	BOURNS	3339P-1-102	TRIM POT, 1K	1
8	R13	ALLEN-BRADLEY	RC07GF270J	RESISTOR, 27, 1/4W, 5\%	1
9	R14	ALLEN-BRADLEY	RC07GF121J	RESISTOR, 120, 1/42, 5\%	1
10	R15	ALLEN-BRADLEY	RC07GF751J	RESISTOR, 750, 1/4W, 5\%	1
11	R16	ALLEN-BRADLEY	RC07GF222J	RESISTOR, 2. $2 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$	1
12	R17	ALLEN-BRADLEY	RC07GF102J	RESISTOR, 1K, 1/4W, 5\%	1
13	R18, R19	ALLEN-BRADLEY	RC07GF151J	RESISTOR, 150, 1/4W, 5\%	2
14	R20	ALLEN-BRADLEY	RC07GF105J	RESISTOR, 1M, 1/4W, 5\%	1
15	R21	ALLEN - BRADLEY	RC07GF364J	RESISTOR, 360, 1/4W, 5\%	1
16	U1, U2	NATIONAL	LM3914N	LED BAR GRAPH DRIVER	2
17	U3	NATIONAL	LM337T	NEG. VARIABLE REG.	1
18	U4-U6	HEWLETT PACKARD	5082-7300	DISPLAY, MULT. SEGMENT	3
19	U7, U8	GENERAL INSTRUMENT	MV54164	IO SEGMENT LED BARD GRAPH	2
20	P2	ROBINSON NUGENT	ICA-246-S-G	SOCKET, 24-PIN, ICA SERIES	1

BILL OF MATERIAL
NATIONAL RADIO ASTRONOMY OBSERVATORY

	\#unt	$\operatorname{momemaxam}$	merr measa	meameme	mmm
a	-		${ }^{\text {mann } 2}$	sumom, rameas	
${ }^{3}$				and	

5.0 DATA SHEETS

This section contains Data Sheets for specialized components. For convenience, the data sheets are grouped into major sub-assembly sets as follows: Control Board ("A1"), Monitor and Control Interface ("A2"), Front Panel Meter Board ("A3"), 200 MHz Phase Detector, Module Plate RF Components and Harmonic Mixer. Each set is headed by a cover sheet which lists the sub-assembly data sheets.
"A1" Board
DAC-12QZ/CBD D/A Converter, Analog Devices
LH0022CD High Performance FET Op Amp, National
RC4136DC, Quad 741 General Purpose Operational Amplifier, Raytheon
LH0041CJ Power Operational Amplifier, National
2N3792 Silicon PNP Power Transistor, Motorola
LM555CN Timer, National
OP27EP, Precision Operational Amplifier, Precision Monolithics
D44C8 Power Darlington Transistors, NPN Silicon, Motorola

Low Cost General Purpose Digital to Analog Converter

or both, either in series to provide 10k, or parallel to provide or both, either in series to provide 10 k , or parallet to provide
2.5k. Offset of exacty one-half full seale for bipolar applications is provided by connecting another jumper to the sumload on the reference zener, the bipolar offset output should be grounded when using the module in 2 unipolar mode.

DAC-120Z Block Diagram

SPECIFICATIONS
(typical @ $+25^{\circ} \mathrm{C}$ and rated supply voltages, unless otherwise noted

OUTLINE DIMENSIONS AND PIN CONNECTIONS

POTENTIOMETER CONNECTIONS

OUTPUT PROGRAMMING

Output Renge	External Pin Connections		
$\pm 2.5 \mathrm{~V}$	$21,23, \& 27$	$24 \& 26$	
$\pm 5 \mathrm{~V}$	$21 \& 27$	$24 \& 26$	
$\pm 10 \mathrm{~V}$	$21 \& 27$	$23 \& 26$	
+5 V	$23 \& 27$	$24 \& 26$	$21 \& 5$
+10 V	$24 \& 26$	$21 \& 5$	

Figure 1. Output Amblifier

Model DAC-12QZ/XXX $L_{C B D}^{C B}$

Absolute Maximum Ratings

Supoly Voltage	$\pm 22 \mathrm{~V}$
Power Dissipation (see graph)	500 mW
Input Voltage (Note 1)	V
Differential Input Voltage (Note 2)	$\pm 30 \mathrm{~V}$
Voltage Between Offset Null and V^{-}	$\pm 0.5 \mathrm{~V}$
Short Circuit Duration	Continuous
Operating Temperature Range	
LH0022, LH0042, LH0052	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH0022C, LH0042C, LH0052C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

DC Electrical Characteristics for LH0022LH0022C (Note 3)

DC Electrical Characteristics for LH0042/LH0042C (Note 3)

DC Electrical Characteristics For LH0052/LH0052C (Note 3)

Parameter	Conditions	Lumits						Unita
		LH0052			LH0052C			
		Min.	Typ.	max.	Min.	Typ.	Max.	
Input Offset Voltage	$\begin{aligned} & R_{s}<1000 \mathrm{~K}, \mathrm{~V}_{\mathrm{s}}=+15 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C} . \end{aligned}$		0.1	0.5		0.2	1.0	mv
	$\mathrm{A}_{\mathrm{g}}<100 \mathrm{kQ}, \mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{VV}$			1.0			1.5	mv
Temperature Coefficient of Input Offset Voltage	$R_{s}<100 \mathrm{kR}, \mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}$		2.0	5.0		5.0	10	${ }^{\sim} \mathrm{NFC}$
Otrset Voltage Dritit with Time			2.0			4.0		W/weok
input Othsot Current	(Note 4)		0.01	500 500		0.02	1.0	${ }_{\text {pa }}^{\text {pA }}$
Temperature Coefficient of Input Offset Current		Double	es ever			les ever		
Oftsot Current Dift with Time		<0.1			<0.1			DAweok
Input Blas Current	(Note 4)		0.5	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$		1.0	5.0 0.5	$\stackrel{p}{\mathrm{pA}} \mathrm{A}$
Temperature Coefficient of Input Bias Current					Double	os every		
Differential Input Resistance			1012			1012		\bigcirc
Common Mode input Resistance			1012			1012		8
Input Capacitance			4.0			4.0		pF
Input Voltage Range	$\mathrm{V}_{\mathrm{s}}- \pm 15 \mathrm{~V}$	± 12	± 13.5		± 12	± 13.5		,
Common Mode Rejection Ratio	$\mathrm{R}_{\text {s }}<10 \mathrm{kQ}, \mathrm{V}_{1 \mathrm{I}}= \pm 10 \mathrm{~V}$	74	90		70	90		${ }^{88}$
Supply Voitage Rejection Ratio	$\mathrm{R}_{s}<10 \mathrm{kQ}, \pm 5 \mathrm{~V}<\mathrm{V}_{s} \leqslant \pm 15 \mathrm{~V}$	74	90		70	90		dB
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{KQ}, \mathrm{~V}_{\text {out }}= \pm 10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	100	200		75	160		vimv
	$\begin{aligned} & \mathrm{P}_{\mathrm{L}}=2 \mathrm{kR}, \mathrm{~V}_{\text {our }}= \pm 10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}= \pm 15 \mathrm{~V} \end{aligned}$	so			50			vimv
Output Votago Swing	$\begin{aligned} & \mathbf{P}_{\mathrm{L}}=1 \mathrm{kQ} \mathrm{Q}_{\mathrm{T}}=25^{\circ} \mathrm{C} \end{aligned}$	± 10	± 12.5		± 10	± 12		v
$\cdots{ }^{-}$.	$\mathrm{R}_{2}=2 \mathrm{kQ}, \mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}$	± 10			± 10			\checkmark
Output Current Swing	$\mathrm{V}_{\text {Out }}= \pm 10 \mathrm{~V}, \mathrm{is}_{\mathrm{s}}=25^{\circ} \mathrm{C}$	± 10	± 15		± 10	± 15		ma
Output Resistance			75	-		75		$\stackrel{\square}{\circ}$
Output Short Circuit Current			25			25		mA
Supopy Current	$\mathrm{v}_{\mathrm{s}}= \pm 15 \mathrm{~V}$		3.0	3.5		3.0	3.8	mA
Power Consumption	$v_{s}= \pm 15 \mathrm{~V}$			105			114	mw

AC Electrical Characteristics For all amplifiers $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

parameter	conoitions	Limits						units
		LH0022/42/52			LH0022C/122/52			
		min	TVP	max	MIN	TVP	max	
	Vothese follower	15	3.0		0	3.0		V/us
Luree Sipnel Bemamidet	Vothese follower		40			40		kHz
Smal Signal Benowist			1.0			10		MHz
Risp Time			0.3	1.5		03	1.5	4
Ourucot			10	30		15	40	*
Sotting Time (0.1 \% 1	- 10 V		45			45		us
Owerios Recover			4.0			4.0		${ }^{\mu 8}$
Inout Noise Voties	$\mathrm{R}_{3} \cdot 10 \mathrm{kR}, 10 \cdot 10 \mathrm{~Hz}$		150			150		nv/ $\sqrt{\mathrm{H}_{2}}$
Inout Noise Votioge	$\mathrm{R}_{3}=10 \mathrm{kR} .10 \sim 100 \mathrm{~Hz}$		${ }_{5}^{55}$			55		nv/ $\sqrt{M_{2}}$
Input Noise Votrose	$\mathrm{B}_{3}=10 \mathrm{kN}, \mathrm{t}_{0}=1 \mathrm{kHz}$		35			35		$\mathrm{NV} / \sqrt{\mathrm{H}_{2}}$
Input Noise Votisese	$\mathrm{R}_{3}=10 \mathrm{kS}. \mathrm{O}_{0}=10 \mathrm{kHz}$		30			30 12		nVV/ ${ }^{\text {H2 }}$
Input Noise Voltage	ew - $10 \mathrm{~Hz} 1010 \mathrm{kHz}, \mathrm{Rg}_{\mathrm{s}}-10 \mathrm{ks} 2$ aw. $10 \mathrm{H}_{2} 1010 \mathrm{kHz}$		${ }^{12}$					«VMs oAms
Inout Noin Currmi	$\mathrm{BW}, 10 \mathrm{~Hz} 21010 \mathrm{kHz}^{1}$							
Note 1: For supply voltages less then $\mathbf{2 1 5 V}$, the absolute maximum input voitage is equar to the suppiy voirage. Note 2: Rating applie Note 3: Unless otherwise specified, thase specifications apply for $: 5 \mathrm{~V} \leqslant \mathrm{~V}_{S}<220 \mathrm{~V}$ and $-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<2125^{\circ} \mathrm{C}$ for the Note 3: Unless otherwise specified, thase apecifications apply for a LH0022 and LHOO52 and $-25^{\circ} \mathrm{C}<\mathrm{T}_{A} \leqslant+85^{\circ} \mathrm{C}$ for the LH0022C and LHOO52C Typical values are given for $T_{A}=25^{\circ} \mathrm{C}$. Note 4: Input currenta are a strong function of temperature. Oue to high speed testing they are specified a iunction temperature Note 4: Input currents are astrong increase in current in manual tests.								

Auxiliary Circuits (Shown for TO-5 pin out)

Oftren Null

Boosting Output Drive to $: 100 \mathrm{~mA}$
Typical Applications

Procision Voltage Comparator

Typical Applications (Cont'd)

Typical Performance Characteristics

Typical Performance Characteristics (Contio)

GENERAL DESCRIPTION

The RM4 136 and RC4136 include four independent high gain operational amplifiers internally compensated and constructed on a single silicon chip using the planar epitaxial processes. These amplifiers meet or exceed all specifications for 741 type amplifiers. Excellent channel separation allows the use of the 4136 quad amplifier in all 741 operational amplifier ap plications providing the highest possible packaging density. The specially designed low noise input transistors allow the 4136 to be used in low noise signal processing applications such as audio preamplifiers and signal conditioners.

SCHEMATIC DIAGRAM

CONNECTION INFORMATION

DESIGN FEATURES

Unity Gain Bandwidth, 3MHz

- Continuous Short Circuit Protection
- No Frequency Compensation Required
- No Latch-up
- Large Common Mode and Differential Voltage Ranges
- Low Power Consumption
- Parameter Tracking Over Temperature Range
- Gain and Phase Match Between Amplifiers

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	$\begin{aligned} & \ldots \ldots . \text { RM4 136: }^{ \pm 22 V} \\ & \text { RV4 136, RC4 136: } \pm 18 \mathrm{~V} \end{aligned}$	Storage Temperature Range Operating Temperature Range . RM4136:	$\begin{aligned} & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125{ }^{\circ} \mathrm{C} \end{aligned}$
Internal Power Dissipation (Note 1)	800 mW	RC4136:	$0^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$
Differential Input Voltage	V	RV4136:	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$	Lead Temperature (Soldering, 60s) Output Short-Circuit Duration (Note 3)	\ldots.... $300^{\circ} \mathrm{C}$

ELECTRICAL゙CHARACTERISTICS (VCC $= \pm 15 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

PARAMETER	CONDITIONS	RM4136			RV4136, RC4136			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	RS $\leqslant 10 \mathrm{k} \Omega$		0.5	5.0		0.5	6.0	mV
Input Offset Current			5.0	200		5.0	200	nA
Input Bias Current			40	500		40	500	nA
Input Resistance		0.3	5.0		0.3	5.0		$\mathrm{M} \Omega$
Large-Signal Voltage Gain	$\begin{gathered} R_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega \\ \mathrm{v}_{\text {out }}= \pm 10 \mathrm{~V} \end{gathered}$	50,000	300,000		20,000	300,000		V/V
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geqslant 10 \mathrm{k} \Omega$	± 12	± 14		± 12	± 14		V
	$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega$	± 10	± 13		± 10	± 13		V
Input Voltage Range		± 12	± 14		± 12	± 14		V
Common Mode Rejection Ratio	R ${ }_{\text {S }} \leqslant 10 \mathrm{k} \Omega$	70	100		70	100		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		10	150		10	150	$\mu \mathrm{V} / \mathrm{V}$
Power Consumption	$\mathrm{R}_{\mathrm{L}}=\infty$, All Outputs		210	340		210	340	mW
Transient Response (unity gain) Risetime Overshoot	$\begin{gathered} v_{\text {in }}=20 \mathrm{mV} \\ R_{L}=2 \mathrm{k} \Omega \\ c_{L} \leqslant 100 \mathrm{pF} \end{gathered}$		$\begin{gathered} 0.13 \\ 5.0 \\ \hline \end{gathered}$			$\begin{gathered} 0.13 \\ 5.0 \\ \hline \end{gathered}$		$\begin{aligned} & \mu \mathrm{s} \\ & \% \\ & \hline \end{aligned}$
Unity Gain Bandwidth			$\cdot 3.0$			3.0		MHz
Slew Rate (unity gain)	$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega$		1.5			1.0		$\mathrm{V} / \mathrm{\mu s}$
Channel Separation (open loop) (Gain = 100)	$\begin{aligned} & f=10 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega \end{aligned}$		105			105		dB
	$\begin{aligned} & f=10 \mathrm{kHz} \\ & \mathrm{RS}=1 \mathrm{k} \Omega \end{aligned}$		105			105		dB

Input Offset Voltage	RS $\leqslant 10 \mathrm{k} \Omega$			6.0			7.5	mV
Input Offset Current				500			300	nA
Input Bias Current				1500			800	$n A$
Large-Signal Voltage Gain	$\begin{aligned} \mathrm{R}_{\mathrm{L}} & \geqslant 2 \mathrm{k} \Omega \\ \mathrm{~V}_{\text {out }} & = \pm 10 \mathrm{~V} \end{aligned}$	25,000			15.000			V/V
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega$	± 10			± 10			V
Power Consumption	$\mathrm{T}_{\mathrm{A}}=\mathrm{High}$		180	300		180	300	mW
	$\mathrm{T}_{A}=$ Low		240	400		240	400	mW

[^3]RAYTHEON
RAYTHEON COMPANY - SEMICONDUCTOR DIVISION • 350 ELUS STREET • MOUNTAIN VIEW. CALIFORNIA

TYPICAL ELECTRICAL DATA

RAYTHEON
RAYTHEON COMPANY - SEMICONDUCTOR DIVISION - 350 EUS STREET • MOUNTAIN VIEW, CALIFORNIA

4136 vs. 741
Athough the 324 is an excellent device for single-supply applications where ground-sensing is important, it is a poor substitute for four 741's in split-supply circuits.

The simplified input circuit of the 4136 exhibits much lower noise than that of the 324 and exhibits no crossover distortion as compared with the 324 (see illustration). The 324 shows serious crossover distortion and pulse delay in attempting to handle a large-signal input pulse.

RIAA Proampllfor

Triangular-Wave Generator

RAYTHEON RATTHEON COMPANY - SEMICONDUCTOR DIVISION • 350 ELUS STREET • MOUNTAIN VIEW, CALIFORNLA

Quad 741 General Purpose Operational Amplifier

RAYTHEON RAYTHEON COMPANY - SEMICONDUCTOR DIVISION • 350 ELLIS STREET • MOUNTAIN VIEW, CALIFORNIA

RAYTHEON
RAYTHEON COMPANY - SEMICONDUCTOR DIVISION • 350 ELUS STREET - MOUNTAIN VIEW, CALIFORNIA

National

 Semiconductor
LH0021/LH0021C 1.0 Amp Power Operational Amplifier LH0041/LH0041C 0.2 Amp Power Operational Amplifier

General Description

The LH0021/LH0021C and LH0041/LH0041C are general purpose operational amplifiers capable of ciated with conventional IC Op Amps. The LHOO21 will provide output currents in excess of one ampere at voltage levels of $\pm 12 \mathrm{~V}$: the LH0041 delivers currents of 200 mA at voltage levels closely approaghing the available power supplies. In addition, both the inputs and outputs are prosated with a single external capacitor and are free of any unusual oscillation or latch-up problems.

Features

- Output current
1.0 Amp (LH0021)
- Output voltage swing $\pm 12 \mathrm{~V}$ into 10Ω (LH0021) - Wide full power bandwidth 15 kHz
- Low standby power $\quad 100 \mathrm{~mW}$ at $\pm 15 \mathrm{~V}$

Low input offset
1 mV and 20 nA

- High slew rate
- High open loop gain
$3.0 \mathrm{~V} / \mathrm{ms}$

The excellent input characteristics and high output capability of the LH0021 make it an ideal choice for power applications such as DC servos. capstan drivers, deflection yoke drivers, and pro
grammable power supplies. grammable power supplies
The LH0041 is particularly suited for applications such as torque driver for inertial guidance systems,
diddle yoke driver for al pha-numeric CRT displays, diddle yoke driver for alpha-numeric CRT displays,
cable drivers, and programmable power supplies for automatic test equipment.
The LHOO21 is supplied in a 8 pin TO. 3 package rated at 20 watts with suitable heatsink. The LH0041 is supplied in both 12 pin TO. 8 (2.5 watts with clip on heatsink) and a power 8 pin ceramic DIP (2 watts with suitable heatsink). The LHOO21 and LHOO41 are guaranteed over the temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ while the
 to $+85^{\circ} \mathrm{C}$

Supply Voltage
Power Dissipation
Differential Input Voltag
Input Voltage (Note 1)

nput Voltage (Note 1)	$\begin{array}{r}\text { See curves } \\ \pm 30 \mathrm{~V}\end{array}$
15	

Peak Output Current (Note 2) LH0021/LH0021C $\quad \pm 15 \mathrm{~V}$
Output Short Circuit Duration (Note 3) $\begin{array}{ll}\text { Operating Temperature Range LH0021/LH0041 } & -55^{\circ} \mathrm{C} \text { Continuous }+125^{\circ} \mathrm{C}\end{array}$
$\begin{array}{lll} & \text { LHOO21 } \mathrm{C} / \mathrm{LH} 0041 \mathrm{C} & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \text { Storage Temperature Range } & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}\end{array}$
Storage Temperature Range

DC Electrical Characteristics for LH0021/LHOO21C (Note 4)

AC Electrical Characteristics for LH0021/LH0021C $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{C}}=3000 \mathrm{pF}$)

Slew Rate Power Bandwidth Small Sighal Transient Riesponst Small Signal Overshoot . Settling Time (0.1\%) Overloed Recovery Time Harmonic Distortion Input Noise Voltage Input Noise Current	$\begin{aligned} & A_{V}=+1, R_{L}=100 \Omega \\ & R_{\mathrm{L}}=10082 \\ & \\ & \Delta V_{\mathrm{IN}}=10 \mathrm{~V}, A_{V}=+1 \\ & 1=1 \mathrm{kHz}, P_{\mathrm{O}}=0.5 \mathrm{~W} \\ & R_{\mathrm{g}}=50 \Omega, \text { B.W. }=10 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \\ & \text { B.W. }=10 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \end{aligned}$	0.8	$\begin{array}{\|c\|} \hline 3.0 \\ 20 \\ 0.3 \\ 5 \\ 4 \\ 3 \\ 0.2 \\ 0.2 \\ 0.05 \\ \hline \end{array}$	${ }_{20}{ }^{10}$	1.0	30 20 0.3 10 4 3 0.2 5 0.05	$\begin{aligned} & 15 \\ & 30^{15} \end{aligned}$	

AC Electrical Characteristics for LH0041/LH0041C $\left.\pi_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{C}}=3000 \mathrm{pF}\right)$

Now 1: Rating applies for supply voltages above $\mathbf{1 5 V}$. For supplies less than I I5V, rating is equal to suppir woliage.
No : A Ho ies 1
Note 4: Specifications apply for $\mathbf{t 5 V} \leq \mathrm{V}_{\mathrm{S}}: 18 \mathrm{VV}$, and $-55^{\circ} \mathrm{C} \leq \mathrm{T}^{\top} \mathrm{C}=\leq 125^{\circ} \mathrm{C}$ for LH002 1 K and LH004 1 G , and $-25^{\circ} \mathrm{C} \leq$ $\mathrm{T}^{\mathrm{T}} \mathrm{C} \leq+85^{\circ} \mathrm{C}$ for LH0021CK, LHOO41CG and LHOO41CJ unless otherwise specified. Typical values are for $25^{\circ} \mathrm{C}$ onlv,
peckages onlv.

Typical Performance Characteristics
Power Derating-LHO021

${ }_{\text {ereouency }}\left(\mathrm{H}_{\mathrm{s}}\right)$

Typical Performance Characteristics (Cont'd)

Typical Applications

Typical Applications (Cont'd)

Programmable High Current Sourco/Sink

2N3789 thru 2N3792
2N3789 thru 2N3792
figure 3 - curbent gain variations

figure s-saturation voltages
figure t - temperature coefficients

Absolute Maximum Ratings

Supply Voltage	+18 V
Power Dissipation (Note 1)	600 mW
Operating Temperature Ranges	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
\quad LM555C	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM555	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V}\right.$ to +15 V , unless otherwise specified)

parameter	CONOITIONS	limits						units
		LM555			LM555C			
		MIN	TYP	MAX	MIN	TYP	MAX	
Supply Voitage		4.5		18	4.5		16	v
Supply Current	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$		3	5		3	6	ma
Supply current	$\mathrm{v}_{\text {cc }}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$		10	12		10	15	$\mathrm{ma}^{\text {ma }}$
	(Low State) (Note 2)							
Timing Error, Monostable Initial Accuracy Drift with Temperature								
			0.5			1		\%
	$\mathrm{R}_{\mathrm{A}} . \mathrm{R}_{\mathrm{B}}=1 \mathrm{k}$ to 100 k,		30			50		pom $\%^{\circ} \mathrm{C}$
Accuracy over Temperature			1.5			1.5		*
Drift with Supoly			0.05			0.1		*/v
Timing Error, Astable Initial Accuracy Drift with Temperature Accuracy over Temperature Drift with Supply								
			1.5			2.25		\%
			90			150		
			2.5 0.15			3.0 0.30		\% ${ }^{*}$
Threshold Voltage			0.667			0.667		$\times \mathrm{vcc}$
Triper Volitage	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.8 \\ & 1.45 \end{aligned}$	5	5.2				v
			1.57	1.9		1.67		v
Trigeer Current			0.01	0.5		0.5	0.9	$\mu \mathrm{A}$
Reset Voltage		0.4	0.5	1	0.4	0.5	1	v
Reset Current			0.1	0.4		0.1	0.4	mA
Threshold Current	(Note 4)		0.1	0.25		0.1	0.25	$\mu \mathrm{A}$
Control Voltage Level	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{VV} \end{aligned}$	9.6	10	10.4	9	10	11	v
		2.9	3.33	3.8	2.6	3.33	4	v
Pin 7 Leakage Output High			1	100		1	100	nA
Pin 7 Sat (Note 5) Output Low			150			180		mv
Output Low	$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, 1,=4.5 \mathrm{~mA}$		70	100		80	200	mv
Output Voltage Drop (Low)	$\mathrm{v}_{\mathrm{cc}}=15 \mathrm{~V}$							
	$1 \mathrm{Isink}=10 \mathrm{~mA}$		0.1			0.1	0.25	v
	$\mathrm{s}_{\text {sink }}=50 \mathrm{~mA}$		0.4	0.5		0.4	${ }^{0.75}$	v
	$\mathrm{I}_{\text {sink }}=100 \mathrm{~mA}$		${ }_{2}^{2}$	2.2		${ }_{2} 2$	2.5	v
	$\begin{aligned} & \operatorname{linkx}=200 \mathrm{~mA} \\ & \mathrm{~V}_{c c}=5 \mathrm{~V} \end{aligned}$		2.5			2.5		v
			0.1	0.25		0.25	0.35	v
Output Voltage Drop (High)	$\begin{aligned} & I_{\text {SOUACE }}=200 \mathrm{~mA}, \mathrm{~V}_{\text {cc }}=15 \mathrm{~V} \\ & I_{\text {SOUACE }}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{cc}}=15 \mathrm{~V} \end{aligned}$		12.5 13.3			12.5 13.3		v
		,	3.3		2.75	3.3		v
Rise Time of Output			100			100		ns
Fall Time of Output			100			100		ns

Note 1: For operating at elevated temperatures the device must be derated based on a $+150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal
Note 1: For operating ar eleverod remperaturos the device must be derated based on a $150^{\circ} \mathrm{C}$ maxi
resistance of $+45^{\circ} \mathrm{C} / \mathrm{W}$ junction to case for $T 0-5$ and $+150^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient for both packages.
Note 2: Supply current when output high typically 1 mA less at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: Tested at $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{V}_{C C}=15 \mathrm{~V}$.
Note 3: Tested at $\mathrm{Vcc}=5 \mathrm{~V}$ and $\mathrm{VcC}=15 \mathrm{~V}$.
Note 4: This will determine the maximum value of $R_{A}+R_{B}$ for $15 V$ operation. The maximum total ($R_{A}+R_{B}$) is $20 \mathrm{M} \Omega$ Note 5: No protection against excessive pin 7 current is necessery providing the peckage dissipation rating will not be exceeded.

Applications Information

MONOSTABLE OPERATION

In this mode of operation, the timer functions as ne-shot (Figure 1). The external capacitor is initially held discharged by a transistor inside the timer. Upon ap plication of a negative trigger pulse of less than $1 / 3 \mathrm{~V}_{\mathrm{c}}$ pin 2, the flip-flop is set which both releases the sho arcuit across the capacitor and drives the output high.

The voltage across the capacitor then increases exponentially for a period of $t=1.1 R_{A} C$, at the end of which ime the voltage equals $2 / 3 \mathrm{~V}_{\mathrm{cc}}$. The comparator the esets the flip-flop which in turn discharges the capacito the waveforms generated in this mode of operation. Since the charge and the threshold level of the com parator are both directly proportional to supply voltage, the timing internal is independent of supply.

During the timing cycle when the output is high, the further application of a trigger pulse will not effect the circuit. However the circuit can be reset during this time y the application of a negative pulse to the rese erminal (pin 4). The output will then remain in the low tate until a trigger pulse is again applied.
When the reset function is not in use, it is recommended halse triggering.
Figure 3 is a nomograph for easy determination of R,C values for various time delays.
NOTE: In monostable operation, the trigger should be driven high before the end of timing cycle.

ASTABLE OPERATION

f the circuit is connected as shown in Figure 4 (pins 2 and 6 connected) it will trigger itself and free run as a

FIGURE 3. Time Dolay
multivibrator. The external capacitor charges through $R_{A}+R_{B}$ and discharges through R_{B}. Thus the duty cycle may be precisely set by the ratio of these two resistors.

In this mode of operation, the capacitor charges and discharges between $1 / 3 \mathrm{~V}_{\mathrm{cc}}$ and $2 / 3 \mathrm{~V}_{\mathrm{cc}}$. As in the triggered mode, the charge and discharge times, and there-

Figure 5 shows the waveforms generated in this mode of operation.

C.

FIGURE 5. Astable Wevotorms
The charge time (output high) is given by: $\mathrm{C}_{1}=0.693\left(\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}\right) \mathrm{C}$
And the discharge time (output low) by: $\mathrm{t}_{2}=0.693\left(\mathrm{R}_{\mathrm{B}}\right) \mathrm{C}$

Thus the total period is:

Applications Information (Continued)

The frequency of oscillation is:

$$
f=\frac{1}{T}=\frac{1.44}{\left(R_{A}+2 R_{B}\right) C}
$$

Figure 6 may be used for quick determination of these RC values.
The duty cycle is: $\quad \mathrm{D}=\frac{\mathrm{R}_{\mathrm{B}}}{\mathrm{R}_{\mathrm{A}}+2 \mathrm{R}_{\mathrm{B}}}$

FIGURE 6. Froe Running Froquency

FREQUENCY DIVIDER

The monostable circuit of Figure 1 can be used as a frequency divider by adjusting the length of the timing cyequency figure 7 shows the waveforms generated in a
cycle.
divide by three circuit.

$$
\begin{aligned}
& \text { FIGURE 7. Froquency Divider }
\end{aligned}
$$

PULSE WIDTH MODULATOR
When the timer is connected in the monostable mode and triggered with a continuous pulse train, the output pulse width can be modulated by a signal applied to pin 5. Figure 8 shows the circuit, and in Figure 9 are some waveform examples.

PULSE POSITION MODULATOR
This application uses the timer connected for astable operation, as in Figure 10, with a modulating signal again applied to the control voltage terminal. The pulse position varies with the modulating signal, since the
threshold voltage and hence the time delay is varied. Figure 11 shows the waveforms generated for a triangle wave modulation signal.

FIGURE 10. Pulse Position Modulator

FIGURE 11. Pulso Position Modulator

LINEAR RAMP
When the pullup resistor, \mathbf{R}_{A}, in the monostable circuit When the pullup resistor, R_{A}, in the monostable circuit
is replaced by a constant current source, a linear ramp is

Applications Information (Continued)
generated. Figure 12 shows a circuit configuration that will perform this function.

Figure 13 shows waveforms generated by the linear ramp.
The time interval is given by:

$$
T=\frac{2 / 3 V_{C C} R_{E}\left(R_{1}+R_{2}\right) C}{R_{1} V_{C C}-V_{B E}\left(R_{1}+R_{2}\right)}
$$

$\mathrm{V}_{\mathrm{BE}} \simeq 0.6 \mathrm{~V}$

50\% DUTY CYCLE OSCILLATOR

For a 50% duty cycle, the resistors R_{A} and R_{B} may be connected as in Figure 14. The time period for the out-
put high is the same as previous, $t_{1}=0.693 \mathrm{R}_{\mathrm{A}} \mathrm{C}$. For the output low it is $\mathrm{t}_{2}=$
$\left[\left(R_{A} R_{B}\right) /\left(R_{A}+R_{B}\right)\right] C L n\left[\frac{R_{B}-2 R_{A}}{2 R_{B}-R_{A}}\right]$
Thus the frequency of oscillation is $f=\frac{1}{t_{1}+t_{2}}$

FIGURE 14. 50X Duty Cyele Oxillator
Note that this circuit will not oscillate if R_{8} is greater than $1 / 2 R_{A}$ because the junction of R_{A} and R_{B} cannot bring pin 2 down to $1 / 3 \mathrm{~V}_{\mathrm{cc}}$ and trigger the lower
comparator. comparator.

ADDITIONAL INFORMATION
Adequate power supply bypassing is necessary to protect associated circuitry. Minimum recommended is $0.1 \mu \mathrm{~F}$ in parallel with $1 \mu \mathrm{~F}$ electrolytic.

Lower comparator storage time can be as long as $10 \mu \mathrm{~s}$ when pin 2 is driven fully to ground for triggering. This limits the monostable pulse width to $10 \mu \mathrm{~s}$ minimum.
Delay time reset to output is $0.47 \mu \mathrm{~s}$ typical. Minimum reset pulse width must be $0.3 \mu \mathrm{~s}$, typical.

Pin 7 current switches within 30 ns of the output (pin 3) voltage.

PRECISION
OPERATIONAL AMPLIFIER

features - Low Noles	$80 n V_{p-p}(0.1 \mathrm{~Hz}$ to 10 Hz) $3 n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
- Low Drttr	$\ldots \ldots . .0 .2 \mu \mathrm{~V}{ }^{\circ} \mathrm{C}$
Hlgh Spee	8 MHz Gain Bandwidth
- High Open - Fits 725, OP	

general DESCRIPTION

The OP-27 precision operational amplifier combines the low ofliset and drift of the OP-07 with both high-speed and low-
noise. Offsets down to $25 \mu \mathrm{~V}$ and dritit of $0.8 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximim
 $\begin{aligned} & \text { make the } \\ & \text { tions. Exceptionally ly low noise, e } \\ & n\end{aligned}=3.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, at 10 Hz , a low $1 / /$ noise corner frequency of 2.7 Hz , and high gain 11.8 million), allow aceurate high-gain amplififcation of low-level
sionals. A gain-bandwidth product of 8 MHz and a $2.8 \mathrm{BV} / \mu \mathrm{sec}$ signals. A gain-bandwidth product of 8 MHz and a 2.8 V - $\mu \mathrm{sec}$
sem
rate provides excellentdynamic accuracy in high-speed slow rate providios syscolems.
A low input blas current of $\pm 10 \mathrm{nA}$ is achieved by use of a ORDERING INFORMATION

bias-current-canceliation circuit. Over the millary temporature range, this circuit typically holds I_{g} and $\mathrm{los}_{\mathrm{s}} 10 \pm 20 \mathrm{nA}$ and 15 nA respectively.
The output stage has good load driving capability. A guaranteed swing of $\pm 10 \mathrm{~V}$ into 600 n and low output distortion make
the $\mathrm{OP}-27$ an excellent choice for protessional audio applicathe OP
tions.
PSRR and CMRR exceed 120dB. These characteristics coupled with long-term drift of $0.2 \mu \mathrm{~V} /$ month, allow the circuit designer to achieve performance levels previously attained only by discrete designs.
Low cost, high-volume production of OP-27 is achieved by and stable offlset trimming scheme has proved its effectiveness over many years of production history.
The OP-27 provides excellent performance in low-noise high-accuracy amplification of low-level signals. Applications include stable integrators, precision summing amplifiers, precision voltage-threshold detectors, comparators,
and protessional audio circuits such as tape-head and microphone preamplifiers.
The OP-27 is a direct replacement for $725, O P-08, ~ O P-07$ and OP-05 amplifiers: 741 types may be directly replaced by removing the 741 's nulling potentiometer.

PIN CONNECTIONS

OP-27 LOW-NOISE PRECISION OPERATIONAL AMPLIFIER

ELECTRICAL CHARACTERISTICS at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

parameten	srmsol	CONOITIONs	min	$\overline{O P-27 N}$ πp	$E_{\text {max }}$	min	$\begin{aligned} & \text { OP-278/ } \\ & \hline \mathrm{TP} \end{aligned}$	max		$\overline{\mathrm{OP}-\mathbf{2 7 C}}$	$G_{\text {max }}$	units
inpur Ollmet volugo	v_{0}	(Note 1)	-	10	25	-	20	∞	-	30	100	${ }^{\text {av }}$
Long-Torm $V_{0 S}$ Stabilily	$\mathrm{V}_{\text {osf }}$ Time	(Note 2)	-	0.2	1.0	-	0.3	1.5	-	0.4	20	avmo
input Ottret Curremt	108		-	1	35	-	-	so	-	12	13	$n \wedge$
input Blat Currome	10		-	10	± 40	-	± 12	2ss	-	115	$\pm \infty$	nA
Input Nolse Voltape	-npo	0.1 Hz to 10 Hz (Notes 3. 5)	-	0.08	0.18	-	0.00	0.18	-	0.00	0.25	0.-p
Input Noise Voltage Density	-n	$\begin{aligned} & f_{0}=10 \mathrm{~Hz} \text { (Note } 3 \text {) } \\ & f_{0}=30 \mathrm{~Hz} \text { (Note 3) } \\ & t_{0}=1000 \mathrm{~Hz} \text { (Note 3) } \end{aligned}$	I	$\begin{aligned} & 3.5 \\ & 3.1 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 5.5 \\ & 4.5 \\ & 3.0 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 3.1 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 4.8 \\ & 3.8 \end{aligned}$	-	$\begin{aligned} & 3.0 \\ & 3.3 \\ & 3.2 \end{aligned}$	$\begin{aligned} & \hline 80 \\ & 5.0 \\ & 4.5 \end{aligned}$	$n v / \sqrt{H 2}$
Input Noise Current Density	m	$\begin{aligned} & \left.f_{0}=10 \mathrm{~Hz} \text { (Notes } 3,6\right) \\ & f_{0}=30 \mathrm{~Hz}(\text { Notes } 3,6) \\ & f_{0}=8000 \mathrm{~Hz} \text { (Notes 3,6) } \end{aligned}$	Z	$\begin{aligned} & 1.7 \\ & 1.0 \\ & 0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 23 \\ & 0.8 \\ & \hline 0 \end{aligned}$	-	$\begin{aligned} & 1.1 \\ & 1.0 \\ & 0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \\ & 0.0 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 1.7 \\ & 1.0 \\ & 0.4 \\ & \hline \end{aligned}$	$\overline{0.0}$	DN $\sqrt{H 2}$
Input Resistance -Differential-Mode	${ }^{\text {mw }}$	(Notes)	1.5	-	-	. 12	5	-	0.8	4	-	ma
Input Resistance -Common-Mode	${ }^{\text {mucu }}$		-	3	-	-	2.5	-	-	2	-	on
Input Voluage Rengo	va		± 11.0	:12.3	-	± 11.	± 12.3	-	± 11.0	:12.3	-	v
Common-Mode Rejection Ratio	стпR	$\mathrm{Vcu}_{\text {cu }}+\mathrm{tuv}$	114	126	-	100	${ }^{123}$	-	100	120	-	${ }^{8}$
Power supply Aopiection Aatio	Psan	$v_{3}= \pm 4 V_{10} \pm 18 \mathrm{~V}$	-	1	10	-	1	10	-	2	2	$\mu \mathrm{N}$
$\begin{aligned} & \text { Leroo-Signai } \\ & \text { voltapo Oain } \end{aligned}$	Avo	$\begin{aligned} & A_{L} \geq 2 \mathrm{kN}, v_{0}= \pm 10 \mathrm{v} \\ & A_{L} \geq 6000, v_{0}= \pm 10 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 1000 \\ & 000 \end{aligned}$	$\begin{aligned} & 18000 \\ & 1550 \end{aligned}$	Z	$\begin{gathered} 10000 \\ \hline 000 \end{gathered}$	$\begin{aligned} & 1000 \\ & 1 \times \infty \end{aligned}$	\bar{Z}	$\begin{aligned} & 7 \infty \\ & \hline 000 \end{aligned}$	$\begin{aligned} & 1500 \\ & 1500 \end{aligned}$	Z	v/mv
Output Voltage Swing	v_{0}	$\begin{aligned} & \boldsymbol{A}_{L} \geq 2 \mathrm{kn} \\ & \boldsymbol{R}_{L} \geq 800 \mathrm{n} \end{aligned}$	$\begin{aligned} & \pm 12.0 \\ & \pm 10.0 \\ & \hline \end{aligned}$	$\begin{aligned} & =110.8 \\ & =1118 \end{aligned}$	-	$\begin{aligned} & \pm 12.0 \\ & \pm 10.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 13.8 \\ & \pm 11.8 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 11.1 .8 \\ & t 10.0 \end{aligned}$	$\begin{aligned} & \hline 11.3 \\ & t 11.5 \\ & \hline \end{aligned}$		\checkmark
Slow fate	sh		1.7	2.8	-	1.7	2.0	-	1.7	2.8	-	W/me
Gain Eenowistin Prod.	cew	(Note 4)	5.0	8.0	-	5.0	0.0	-	5.0	0.0	-	MHz^{2}
$\begin{aligned} & \text { Opon-Loop Output } \\ & \text { Resistance } \end{aligned}$	n_{0}	$\mathrm{v}_{0}=0.10=0$	-	70	-	-	70	-	-	70	-	n
Power Connumplion	$\mathrm{P}_{\text {d }}$	v_{0}	-	90	140	-	80	140	-	100	170	mw
Ofteet Adjuatment - Range		$\mathrm{n}_{\mathrm{p}}=1$ 100n	-	= 40	-	-	± 40	-	-	± 4.0	-	mv

NOTES:

1. Input oftsor voltage moesuromenta are performed - 0.5 soconds ather

Saypore ivpicaly

Gueranteoc by doesion.
5-128

TYPICAL PERFORMANCE CHARACTERISTICS

COMMON-MODE INPUT RANGE

TYPICAL PERFORMANCE CHARACTERISTICS

APPLICATIONS INFORMATION
OP-27 Series units may be inserted directly into 725, OP-06. OP-07 and OP-05 sockets with or without removal of external 27 may be fitted to unnulled 741-type sockets; however, if conventional 741 nulling circuitry is in use, it should be modilied or removed to ensure correct OP-27 operation. OP-27 iffset voltage may be nulled to zero (or other desired setting using a potentiometer (see Offset Nulling Circuit).
The OP-27 provides stable operation with load capacitances e decoupled with a 50 n resistor inside the feedback loop. The OP-27 Is unity-gain stable.
Thermoelectric voltages generated by dissimilar metals al The input terminal contacts can degrade the drift pertionance. Best operation will be obtained when both input ontacts are maintained at the same temperature.
offset voltage adjustment
The input offset voltage of the OP-27 is trimmed at water bvel. However, if further adjustment of V_{0} is is necessary, a 10 kn trim potentiometer may be used. TCVos is not degraded oee Offset Nulling Circuit). Other potentiometer values from $1 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ can be used with a slight degradation (0.1 to

$0.2 \mathrm{~N}, \mathrm{C}$ a TCV ere, he cham
 potentiometer is $\pm 4 \mathrm{mV}$. If smailer adjustment range is reauired, the nulling sensitivity can be reduced by using the network below will have a $\pm 280 \mu \mathrm{~V}$ adustment rangi
:

OISE MEASUREMENT

measure the $80 n \mathrm{~N}$ peak-10-peak noise specification of the e-27 in the 0.1 Hz to 10 Hz range, the following precautions

1) The devic

As shown in the be warmed-up for at least five minutes. As shown in the warm-up drift curve, the oftset voltage after power-up. In the 10 -second measurement interval, these temperature-induced effects can exceed tens-ot-
nanovolts.
2) For simiar reasons, the device has to be weli-shieided rom air currents. Shielding minimizes thermocouple effects.
3) Sudden motion in the vicinity of the device can also "leedthrough" to increase the observed noise.
(4) The test time to measure 0.1 Hz -to-10 Hz noise should not axceoc 1 sesconse curve, the 0.1 Hz corner is defined by ero. The test time of 10 seconds acts as an additional ero to eliminate noise contributions from the frequency and below 0.1 Hz .
(5) A noise-voltage-density test is recommended when measuring noise on a large number of units. A 10 Hz with a $0.1 \mathrm{~Hz}-\mathbf{t 0}-10 \mathrm{~Hz}$ peak-to-peak noise reading, since woth resilts are determined by the white noise and the
location of the $1 / f$ cormer frequency.

UNITY-GAN BUFFER APPLICATIONS

When $R_{r} \leq 100$ and the input is driven with a tast, large signal pulsed operation diagram below.
During the tast feedthrough-like portion of the output, the input protection diodes eflectively short the output to the input and a currant, limited only by the output shor-circuit protection, will be drawn by the signal generator. With requirements ($L \leq 20 \mathrm{~mA} \mathrm{at} 10 \mathrm{~V}$): the amplifier will stay in its active mode and a smooth transition will occur.
When $A_{t}>2 k \alpha_{1}$, pole will be created with R_{1} and the mplifiers input capacitance (oper) hat creates additional Thase shift and reduces phase margin. A small capacitor

PULSED OPERATION

COMMENTS ON NOISE

The OP-27 is a very low-noise monolithic op amp. The outstanding input vollage noise characteristics of the OP-27 are achieved mainly by operating the input stage at a high quies-
cent current. The input blas and offset currents, which would normally increase, are held to reasonable values by the input-
 los of only $\pm 40 \mathrm{nA}$ and 35 nA respectively at $25^{\circ} \mathrm{C}$. This is particularty important when the input has a high sourceprefer to use direct coupling. The high Is. Vos. TCV os of previous designs have made direct coupling difficult, if not impossible, to use.
Voltage noise is inversely proportional to the square-root of blas current, but current noise is proportional to the square-
root of bias current. The $\mathrm{OP}-27$'s noise advantage disappears when high sourco-resistors are used. Figures 1. 2, and 3 compare OP-27 observed total noise with the noise pertor mance of other devices in different circuit applications. Total noise $=\left[(\text { Voltage noise })^{2}+\left(\text { current noise } \times \mathrm{R}_{\mathrm{s}}\right)^{\mathbf{2}}+\right.$
$\left.(\text { resistor noise })^{2}\right]^{1 / 2}$ resistor noise) $\left.{ }^{2}\right]^{1 / 2}$
Figure 1 shows noise-versus-source-resistance at 1000 Hz The same plot applies to wideband noise. To use this plot, just
muttiply the vertical scale by the square-root of the bandwidth.

At $\mathrm{R}_{\mathbf{s}}<1 \mathrm{kN}$, the OP-27's low voltage noise is maintained. $W_{\text {With }} R_{s}>1 \mathrm{kR}$. total noise increases, but is dominated by the resistor noise rather than current or voltage noise. It is only beyond $\mathrm{A}_{\mathbf{s}}$ of $20 \mathrm{k} n$ that current noise starts todominate. The
argument can be made that current noise is not important for argument can be made that current noise is not important tor crossover between the OP-27 and OP-07 and OP-08 noise occurs in the $15-10-40 \mathrm{k} \cap$ region. Figure 2 shows the 0.1 Hz 2 -to-10Hz peak-to-peak noise. Here
the picture is less tavorable; resistor noise is negiligible, cur-
rent noise becomes important because itis inversely proporrent nolse becomes important because it is inversely propor-
tional to the square-root of frequency. The crossover with the OP-07 occurs in the $3-10-5 \mathrm{k} \Omega$ range depending on whether balanced or unbalanced source resistors are used (at 3 kn the le. los error also can be three times the Vos spec.).

Thereiore, for low-rrequency applications, the OP-07 is bet ter than the $\mathrm{OP}-27 / 37$ when $\mathrm{R}_{\mathrm{s}}>3 \mathrm{kn}$. The only exception is when gain error is important. Figure 3 illustrates the 10 Hz igis.

For reterence, typical source resistances of some signal
sources are listed in Table 1 .
Table

oevice	sounce impedance	сомments	
Strain genge	<500n	Typleally ured in tow-rreauency applicatione.	
$\underset{\substack{\text { Magnotic } \\ \text { tapenhead }}}{ }$	<1800n	Low ls wery important to reduce sell-magnetization problems when direet couplling is used. OP-27 Is can be neglected.	
Magnetic phonograph cartridges	<1300n	Similar need for low I_{3} in direct coupled applications. OP-27 will not introduce any self-magnetization problem.	
Linear variable differential transformer	<1500n	Used in rugged servo-leedback appilications. Bandwidth of interest is 400 Hz to 5 kHz .	
OPEN-LOOP GAIN			
frequency AT:	Y OP-07	7 OP-27	OP-37
3 Hz	100dB	12488	125dB
10 Hz	100dB	12088	125 dB
3 Hz	90dB	110dB	124 dB

For further information regarding noise calculations, see Note AN-15.

AUDIO APPLICATIONS

The following applications information has been abstracted from a PMI articie in the 12/20/80 issue of Electronic Design magazine and updated.
Figure 4 is an example of a phono pre-amplifier circuit using The OP-27 for $A_{1}: R_{1}-R_{2}-C_{1}-C_{2}$ form a very accurate RIAA to accomplish RIAA phone equalization is to employ trequency-dependent leedback around a high-quality gain block. Properly chosen, an RC network can provide the three necessary time constants of 3180,318 , and $75 \mu \mathrm{~s}$.'
For initial equalization accuracy and stability, precision metal-film resistors and film capacitors of polystyrene or polypropylene are recommended since they have low voltage coefficients, dissipation factors, and dielectric absorption. ${ }^{4}$ (High-K ceramic capacitors should be avoided here, though
low-K ceramics - such as NPO types, which have excellent low-K ceramics - such as NPO types, which have excellent can be considered for small values.)

The OP-27 brings a $3.2 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ voltage noise and 0.45 $\mathrm{PA} \sqrt{\mathrm{Hz}}$ current noise to this circuit. To minimize noise from other sources. A_{3} is set to a value of 100Ω, which generates a voltage noise of $1.3 \mathrm{nV} / \sqrt{\mathrm{Hz}}$. The noise in lkO source, the circuit noise measures 63 dB below 1 mV reference level, unweighted, in a 20 kHz noise bendwidth. Gain (G) of the circuit at 1 kHz can be calculated by the expression:

$$
G=0.01\left(1+\frac{R_{1}}{R_{3}}\right)
$$

For the valueş shiown, the gain is iust under 100 (or 40 dB). Lower gains can be accommodated by increasing R_{3}, bu gains nigher tha
because of the 8 MHz gain-bandwidth of the OP-27.
This circuit is capable of very low distortion over its entire This circuit is capable of very low distortion over its entire
range, generally below 0.01% at levels up to 7 V rms. At 3 V range geverals, it will produce less than 0.03% total harmonic distortion at frequencies up to 20 kHz .
Capacitor C_{3} and resistor R_{4} form a simple -6dB-per-octave rumble filter, with a corner at 22 Hz . As an option, the switchselected shunt capacitor $\mathrm{C}_{\text {d }}$. a nonpolarized electrolytic.
bypasses the low-frequency rolloff. Placing the rumble filter's high-pass action after the preamp has the desirable result of discriminating against the RIAA-amplified lowtrequency noise comper and pickup-produced low trequency disturbances.
A preamplifier for NAB tape playback is similar to an RIAA phono preamp. though more gain is typically demanded.
along with equalization requiring a heavy low-frequency boost. The circuit in Fig. 4 can be readily modified for tape use, as shown by Fig. 5 .

While the tape-equalization requirement has a flat hightrequency gain above $3 \mathrm{kHz}\left(T_{2}=50 \mu \mathrm{~s}\right)$, the amplifier need not be stabilized for unity gain. The decompensated OP-37 cations, the idealized time constants shown may require
trimming of R_{1} and R_{2} to optimize frequency response for nonideal tape-head performance and other factors. ${ }^{5}$
The network values of the configuration yield a 50 dB gain a $\mathbf{1 k H z}$, and the dc gain is greater than 70 dB . Thus, the worst case output oftset is just over 500 mV . A single $0.47 \mu \mathrm{~F}$ outpu capacitor can block this level without affecting the dynamic
range. range.
The tape head can be coupled directly to the amplifier input. since the worst-case bias current of 80 nA with a $400 \mathrm{mH}, 100$ (such as the PRB2H7K) will not be troublesome. One potential tape-head problem is presented by amplifier OP-27 and OP-37 are tree of blas-current transients upon power up or power down. However, itis always advantageous to control the speed of power supply rise and fall, to eliminate transients.
In addition, the dc resistance of the head should be carefully controlled, and preferably below 1 kn . For this configura-
tion, the bias-current-induced offset voltage can be greater than the $100 \mu \mathrm{~V}$ maximum offset if the head resistance is not sufficiently controlled.
A simple, but effective, fixed-gain transformeriess microphone preamp (Fig. 6) amplifies differential signals from lowimpedance microphones by 50 dB , and has an input impedance of 2 KN . Because of the high working gain of the circuit.
an OP-37 helps to preserve bandwidth, which will be 110 kHz As the OP-37 is a decompensated device (minimum stable gain of 5), a dummy resistor, R_{p}, may be necessary, it the microphone is to be unplugged. Otherwise the 100% feedback trom the open input may cause the amplifier to oscillate. Common-mode input-noise rejection will depend upon the match of the bridge-resistor ratios. Either close-tolerance CMRR. All resistors should be metal-film types for best stability and low noise.
Noise performance of this circuit is limited more by the input resistors R_{1} and R_{2} than by the op amp, as R_{1} and R_{2} each generate a $4 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ noise, while the op amp generates a sources will be about $6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, equivalent to $0.9 \mu \mathrm{~V}$ in a 20 kHz noise bandwidth, or nearly 61 dB below a 1 mV input signal. Measurements confirm this predicted performance.

For applications demanding appreciably lower noise, a high quality microphone-rranstormer-coupled preamp (Fig. 7 ncorporates the internally-compensated OP-27. Th is mum source resistance for the OP-27 device. The circuit ha an overall gain of 40dB, the product of the transtormer's voltage setup and the op amp's voltage gain.

Gain may be trimmed to other levels, if desired, by adjusting R_{2} or R_{1}. Because of the low oftset voltage of the OP-27, the output oilset of this circuit will be very low, 1.7 mV or less, for

BURN-IN CIRCUIT

eliminated in such cases, but is desirable for higher gains 10 eliminate switching transients.
Capacitor C_{2} and resistor R_{2} form a $2 \mu \mathrm{~s}$ time constant in this circuit, as recommended for optimum transient response by unity-gain stability. For situations where the 2μ s time constant is not necessary. C_{2} can be deleted, allowing the taster $\mathrm{OP}-37$ to be employed.
Some comment on noise is appropriate to understand the capability of this circuit. A 150 n resistor and R_{1} and R_{2} gain resistors connected to a noiseless amplififir will generate 220 nV of noise in a 20 kHz bandwidth, or 73 dB below a 1 mV this noise level; It can neveriexceed it. With the OP-27 and T, specifiled, the additional noise degradation will be close to 3.6 dB (or -69.5 referenced to 1 mV).
1.

2. Jung, W.G.. IC OP Amp Coookoook, 2nd Ed. h.w. Sams and Compeny.
3. Jung, wa. . Audio ic op Amp Applications, 2nd Ed., H.w. Sems and
4. Juno. W.a., and Marsen, R.M.." Picking Copacciors." Audio. February \&

OFFSET NULLING CIRCUIT

Cherecteratic	Symbol	Min	Tvo	max	Unit
OfF Characteristics					
$\begin{aligned} & \text { Collector Curoff Curront } \\ & \left.{ }^{\text {(VCE }} \mathbf{=} \text { Retod } \mathrm{V}_{\mathrm{CEO}} \mathrm{~V}_{\mathrm{BEE}}=0\right) \end{aligned}$	'ces	-	-	10	${ }^{\wedge}$
$\begin{array}{\|c} \hline \text { Emituer Cutoft Current } \\ \left(V_{E S}=7.0 \mathrm{Vdec}\right) \\ \hline \end{array}$	1 \&80	-	-	10	${ }^{\wedge}$
ON Characteristics (1)					
	nfe	1000	-	-	-
Collector-Emitter Saturation Voltage IIC $=5.0$ Adc. $\mathrm{I}_{\mathrm{B}}=10 \mathrm{mAdc}$) $\mathrm{C}=10 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=20 \mathrm{mAdc}$)	${ }^{\text {celisat }}$	-	-	$\begin{array}{r} 15 \\ 20 \\ \hline \end{array}$	voc
Base-Emitter Saturation Voltage $\left.\mathrm{I}_{\mathrm{C}}=5.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=10 \mathrm{mAdc}\right)$	$\mathrm{V}_{\text {Belsat }}$	-	-	25	voc
DYNAMIC CHARACTERISTICS					
	ccBo	-	-	130	pf
SWitching Characteristics					
Delay and Rise Times $\mathrm{IIC}^{2}=10 \mathrm{Adc} . \mathrm{I}_{\mathrm{B} 1}=20 \mathrm{mAdc}$)	$14^{+1 \%}$	-	0.6	-	"
Storage Time $\mathrm{IIC}_{\mathrm{C}}=10 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{B}}=20 \mathrm{mAdc}$)	4	-	20	-	43
Fall Time $\left.\mathrm{II}_{\mathrm{C}}=10 \mathrm{Adc} . \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=\mathbf{2 0} \mathrm{mAdc}\right)$	4	-	0.5	-	${ }^{*}$

SAFE OPERATING AREA Information

"A2" Board
HI-508-5 8-Channel CMOS Analog Multiplexer, Harris
HA-1608 + 10V Adjustable Voltage Reference

8 HARRIS
HI-508/509
Single 8/Differential 4 Channel CMOS Analog Multiplexer

ELECTRICAL CHARACTERISTICS Unless Otherwise Specified:
Supplies $=+15 \mathrm{~V},-15 \mathrm{~V}$; $\mathrm{VAH}_{\text {(Logic Level High) }}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}$ (Logic Level Low)
Supplies $=+15 \mathrm{~V},-15 \mathrm{~V}, \mathrm{VAH}$ (Logic Level High) $=+2.4 \mathrm{~V}, \mathrm{VAL}$ (Logic Level
$=+0.8 \mathrm{~V}$. For Test Conditions, consult Performance Characteristics Section.

H1-508/509

Hl-508/509

Performance Characteristics and Test Circuits

HARRIS	HA-1608 +10V Adjustable Voltage Reference
FEATURES	DESCRIPTION
- monolithic construction - initial ačúuracy $+10 \mathrm{~V} \pm 0.010 \mathrm{~V}$ - output voltage error, total $\pm 1 / 4$ LSB - lownoise $20 \mu \mathrm{v}$ p-p - wioe input range 12 V to 30 V - low power dissipation 30 mW - output short ciacuit protection - adjustable output	HA-1608 is a monolithic +10 V adjustable voltage reference featuring accuracy and temperature stability specifications detailed exclusively for 8 bit data conversion systems. A stable +10 V output is provided by a reference zener and buffer amplifier coupled with laser trimmed feedback and zener bias resistors. Long term stability is ensured through integration of all reference components into a monolithic design. Flexibility of HA-1608 is provided through an external trim control which allows the user to adjust the output voltage for binary or BCD applications without affecting overall performance. These devices provide a total output voltage error of $\pm 1 / 4$ LSB for 8 bit D / A or A / D converters. Low standby power $(0.3 \mathrm{~mW})$ makes HA1608 a natural selection for portable battery operated equipment, comparator references, and reference stacking circuits. These devices can also be used on - 10 V references. HA-1608 is packaged in 8 pin metal cans ($\mathbf{T} 0-99$) and the pinout is arranged for convenient replacement of other less accurate regulators in applications demanding minimal change with temperature and time. HA-1608-2 is specified for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation while the HA-1608-5 operates from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
APPLICATIONS	
- an economical external reference for: HI-5608; DAC 08; AD1408; AD559 - voltage regulator reference - portable battery operated equipment - negative iov reference	
PINOUT	FUNCTIONAL SCHEMATIC

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS (Note 1)

Input Voltage	40 V	Operating Temperature Range	
Output Short Circuit Ouration	Indefinitely	HA-1608-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation	500 mW	HA-1608-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage Temperature Range	$-65{ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$		

ELECTRICAL CHARACTERISTICS (Note 2) $\mathrm{V}_{1 \mathrm{~N}}=+15 \mathrm{~V}, \mathrm{IL}=0 \mathrm{~mA}$, unless otherwise specified)

parameter	TEMP	$\begin{gathered} \text { HA-1608-2 } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			HA-1608-5 $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$			UNITS
		MIN	TYP	max	MIN	TYP	max	
POWER INPUT CHARACTERISTICS								
Input Voltage Range, $\mathrm{V}_{\text {IN }}$	full	12	15	30	12	15	30	v
Quiestent Current, Io	$\begin{aligned} & \hline 25^{\circ} \mathrm{C} \\ & \text { Full } \end{aligned}$		1.9	3.0		1.9	3.0	mA
REGULATEO OUTPUT CHARA.'S								
Output Voltage, V_{0}	$25^{\circ} \mathrm{C}$	9.990	10.00	10.010	9.990	10.00	10.010	v
Output Lood Current, IL	Full	10	20		10	20		mA
Line Regulation ($\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$ to 30 V)	$\begin{aligned} & 225^{\circ} \mathrm{C} \\ & \text { Full } \end{aligned}$		0.006	0.015		0.006	0.015	\%/v
Load Regulation (1L $=0$ Open to 10 mA)	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & \text { Full } \end{aligned}$		0.006	0.015		0.006	0.015	\%/mA
Output Voltage Error Total $\mathrm{L}=0 \mathrm{~mA}$ (Relative to 8 -bit accuracy. see Definition \#3)	Full			$\pm 1 / 4$ LSB			$\pm 1 / 4$ LSB	
Output Noise Voltage, EN 0.1 Hz to 10 Hz	Fuil		35			35		$\mu \mathrm{V}_{\mathrm{p}-\mathrm{p}}$
Dynamic Load Settling Time to $\pm 0.1 \%$ $10 \pm 0.01 \%$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \end{aligned}$		2.5 5			2.5 5		$\mu \mathrm{s}$
Warm-up Time (to $\pm 0.01 \%$)	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & \text { Full } \end{aligned}$		1			1		sec

NOTES:
Absolute maximum ratings are limiting values beyond which the servicesilitity of the circuit may be impaired. Functionnal
operation under any of these conditions is not nocessarily operation
implied.
2. The specified electrical characteristics apply to sugested
nook-up onily.

"A3" Board and Front Panel
LM3914N Dot/Bar Display Driver, National
HP 5082-7300 Numeric Indicator, Hewlett-Packard
HDSP-4820 10 Element Bar Graph Array, Hewlett-Packard
23102-2 Decade Switch, Digitran

National Semiconductor LM3914 Dot/Bar Display Driver

General Description

The LM3914 is a monolithic integrated circuit that senses analog voltage levels and drives 10 LEDs, pro viding a linear analog display. A single pin changes the isplay from a moving dot to a bar graph. Current driv to the LEDS is regulated and programmable, eliminating the need or resistors. This feature is one that al
operation of the whole system from less than 3 V .

The circuit contains its own adjustable reference and accurate 10 step voltage divider. The low-bias-curren input buffer accepts signals down to ground, or V , yet
needs no protection against inputs of 35 V above or below ground. The buffer drives 10 individual com parators referenced to the precision divider. Indication non-linearity can thus be held typically to $1 / 2 \%$, even over a wide temperature range.

Versatility was designed into the LM3914 so that ontroller, visual alarm, and expanded scale functions are easily added on to the display system. The circuit can drive LEDs of many colors, or low-current incan displays of 20 to over 100 segments. Both ends of the oltage divider are externally available so that 2 drivers can be made into a zero-center meter.

The LM3914 is very easy to apply as an analog meter circuit. A 1.2 V full-scale meter requires only 1 resistor and a single 3 V to 15 V supply in addition to the 10 display LEDs. If the 1 resistor is a pot, it becomes the LED brightness control. The simplified block diagram
lustrates this extremely simple external circuitry.

When in the dot mode, there is a small amount of verlap or "fade" (about 1 mV) between segments. This

Industrial Blocks
-
hus any ambiguous display is avoided. Various nov displays are possible.
Much of the display flexibility derives from the fact that all outputs are individual, DC regulated currents. Various effects can be achieved by modulating these well as a LED at the same time, so controller functions including "staging" control can be performed. The LM3914 can also act as a programmer, or sequencer.

Features

Drives LEDs, LCDs or vacuum fluorescents

- Bar or dot display mode externally selectable by user
- Expandable to displays of 100 steps
- Internal voltage reference from 1.2 V to 12 V
- Operates with single supply of less than 3 V
- Inputs operate down to ground
- Output current programmable from 2 to $\mathbf{3 0} \mathrm{mA}$
- No multiplex switching or interaction between outputs
- Input withstands $\pm 35 \mathrm{~V}$ without damage or false outputs
- LED driver outputs are current regulated, open collectors
- Outputs can interface with TTL or CMOS logic

The internal 10 -step divider is floating and can be referenced to a wide range of voltages
The LM3914 is rated for operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The LM3914N is available in an 18 -lead molded (N) package and the LM3914J comes in the 18 -lead ceramic package
DIP.
The following typical application illustrates adjusting of the reference to a desired value, and proper grounding or accurate operation, and avoiding oscillations.

Typical Applications

OV to 5V Bar Graph Meter

Absolute Maximum Ratings

Power Dissipation (Note 5)		Input Signal Overvoltage (Note 3)	*35V
Ceramic DIP (J)	iw	Divider Voltage	-100 mV to V^{+}
Molded DIP (N)	625 mW	Reference Load Current	10 mA
Supply Voltage	25 V	Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Output Drivers	25 V	Lead Temperature (Soldering, 10 seconds)	300°

Electrical Characteristics (Note 1)

PARAMETER	CONDITIONS (Note 1)	MIN-	TYP	Max	UNITS
COMPARATOR					
Offret Voltage, Buffer and First Comparator	$\begin{aligned} & \mathrm{OV} \leq \mathrm{V}_{\text {RLO }}=\mathrm{V}_{\text {RHI }} \leq 12 \mathrm{~V}, \\ & \mathrm{ILED}=1 \mathrm{~mA} \end{aligned}$		3	10	v
Offset Voltage, Buffer and Any Other Comparator	$\begin{aligned} & \mathrm{OV} \leq \mathrm{V}_{\text {RLO }}=\mathrm{V}_{\text {RHI }} \leq 12 \mathrm{~V} . \\ & \text { LLED }=1 \mathrm{~mA} \end{aligned}$		3	15	mv
Gain (Δ Lled $/ \Delta V_{\text {IN }}$)	LL(REF) $=2 \mathrm{~mA}$, LEED $=10 \mathrm{~mA}$	3	8		mA/mv
Inpur Bias Current (at Pin 5)	$\mathrm{OV} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}^{+}-1.5 \mathrm{~V}$		10	50	$n \mathrm{~A}$
Input Signal Overvoltage	No Change in Display	-35		35	v
VOLTAGE-DIVIDER					
Divider Resistance	Total, Pin 6 to 4	6.5	10	15	$k \Omega$
Accuracy	(Note 2)		0.5	2	*
Voltage reference					
Output Voltage	$\begin{aligned} & 0.1 \mathrm{~mA} \leq \operatorname{ILREF}) \leq 4 \mathrm{~mA}, \\ & \mathrm{~V}^{+}=\mathrm{V}_{\text {LED }}=5 \mathrm{VV} \end{aligned}$	1.2	1.28	1.34	v
Line Regulation	$3 \mathrm{v} \leq \mathrm{v}^{+} \leq 18 \mathrm{~V}$		0.01	0.03	*/v
Load Regulation	$\begin{aligned} & 0.1 \mathrm{~mA} \leq I_{L(R E F)} \leq 4 \mathrm{~mA}, \\ & \mathrm{~V}^{+}-\mathrm{V}_{\text {LED }}=5 \mathrm{~V} \end{aligned}$		0.4	2	*
Output Voltage Change With Temperature			1		*
Adiust Pin Current			75	120	$\mu \mathrm{A}$
OUTPUT DRIVERS					
LED Current	$\mathrm{V}^{+}=\mathrm{V}_{\text {LED }}=5 \mathrm{~V}$, LLREF) $=1 \mathrm{~mA}$	7	10	13	mA
LED Current Difference (Between	VLED-5V. LLED-2 mA		0.12	0.4	mA
Largest and Smallest LED Currents)	VLED - 5V, ILED-20mA		1.2	3	mA
LED Current Regulation	$2 \mathrm{~V} \leq \mathrm{V}_{\text {LED }} \leq 17 \mathrm{~V}$ LLED $=2 \mathrm{~mA}$		0.1	0.25	mA
	LLED 20 mA		1	3	mA
Dropout Voltage	$\begin{aligned} & \text { LEDDON }=20 \mathrm{~mA}, \mathrm{~V}_{\text {LED }}-5 \mathrm{~V} \text {. } \\ & \triangle \mathrm{I}_{\text {LED }}=2 \mathrm{~mA} \end{aligned}$			1.5	v
Seturation Voltage	LLED - 2.0 mA , L (IREF) $=0.4 \mathrm{~mA}$		0.15	0.4	v
Output Leakkege, Each Collector	(Bar Mode) (Note 4)		0.1	10	$\mu \mathrm{A}$
Output Leakage	(Dot Model (Note 4)				
Pins 10-18			0.1	10	$\mu \mathrm{A}$
Pin 1		60	150	450	$\mu \mathrm{A}$
SUPPLY CURRENT					
Standby Supply Current	$\mathrm{V}^{+}=5 \mathrm{~V}$. L (REF) $=0.2 \mathrm{~mA}$		2.4	4.2	mA
(All Outputs Off)	$\mathrm{V}^{+}=20 \mathrm{~V}$. L (REFF) $=1.0 \mathrm{~mA}$		6.1	9.2	mA
Note 1: Unless otherwise stated, all specifications apply with the following conditions:					
$\begin{aligned} & 3 v_{D C} \leq \mathrm{v}^{+} \leq 20 \mathrm{v}_{\mathrm{DC}} \\ & 3 \mathrm{v}_{\mathrm{DC}} \leq \mathrm{V}_{\mathrm{LED}} \leq \mathrm{v}^{+} \\ & -0.015 \mathrm{~V} \leq \mathrm{v}_{\mathrm{RLO}} \leq 12 \mathrm{v}_{\mathrm{DC}} \\ & -0.015 \mathrm{~V} \leq \mathrm{v}_{\mathrm{RHI}} \leq 12 \mathrm{v}_{\mathrm{DC}} \end{aligned}$	$\mathrm{V}_{\text {REF }}, \mathrm{V}_{\text {RHII }} \mathrm{V}_{\text {RLO }} \leq \mathrm{IV}^{+}-$ $\mathrm{OV} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}^{+}-1.5 \mathrm{~V}$ $T_{A}=+25^{\circ} \mathrm{C}$, $\mathrm{L}_{\text {L(REF) }}=0.2 \mathrm{~m}$	$\left.\mathrm{V}_{\mathrm{REF}}, \mathrm{V}_{\mathrm{RH}} . \mathrm{V}_{\mathrm{RLO}} \leq \mathrm{IV}^{+}-1.5 \mathrm{~V}\right)$ $\mathrm{OV} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{v}^{+}-1.5 \mathrm{~V}$			
For higher power dissipations, pulse testing is used.					
Note 2: Aceuracy is measured referred to $+10.000 \mathrm{~V}_{\mathrm{DC}}$ at pin 6 , with $0.000 \mathrm{~V}_{\mathrm{DC}}$ at pin 4 . At lower full-scele voltages, buffer and compar offset voltage may add significant error.					
Note 3: Pin 5 input current must be limited to $: 3 \mathrm{~mA}$. The addition of a 39 k resistor in series with pin 5 allows t 100 V signals without damage					
Note 4: Bar mode results when pin 9 is within 20 mV of V^{+}. Dot mode results when pin 9 is pulled at least 200 mV below V^{+}or left open circuit LED No. 10 (pin 10 output current) is dissbled if pin 9 is pulled 0.9 V or more below VLED.					
Note 5: The maximum junction temperature of the LM3914 is $100^{\circ} \mathrm{C}$. Devices must be derated for operation at elevated temperatures. Junction to ambient thermal resistance is $75^{\circ} \mathrm{C} / \mathrm{W}$ for the ceramic DIP (J package) and $120^{\circ} \mathrm{C} / \mathrm{W}$ for the molded DIP (N package).					

Definition of Terms

Accuracy: The difference between the observed threshold voltage and the ideal threshold voltage for each comparator. Specified and tested with 10 V across the internal voltage divider so that resistor ratio matching error predo

Adjust Pin Current: Current flowing out of the reference adjust pin when the reference amplifier is in the linear region.

Comparator Gain: The ratio of the change in output current (ILED) to the change in input voltage (VIN) required to produce it for a comparator in the linear region.

Dropout Voitage: The voitage measured at the current fall by 10%
Input Bias Current: Current flowing out of the signal input when the input buffer is in the linear region.

LED Current Regulation: The change in output current over the specified range of LED supply voltage (VLED) as measured at the current source outputs. As the with a small change in forward current this is equivallent to changing the voltage at the LED anodes by the same amount.

Line Regulation: The average change in reference output voltage over the specified range of supply voltage (V^{+}).
Load Regulation: The change in reference output voltage (VREF) over the specified range of load current (IL(REF))

Offset Voltage: The differential input voltage which must be applied to each comparator to bias the output in the linear region. Most significant error when the voltage across the internal voltage divider is small. Specified and tested with pin 6 voltage ($V_{\text {RHI }}$) equal to pin 4 voltage ($\mathrm{V}_{\mathrm{RLO}}$).

Typical Performance Characteristics

Reference Adjust Pin
Current vs Temperature

(ED CuRRENT (ma)

LED Driver Saturation Voltage

LED Driver Curren
Regulation

Block Diagram (Showing Simplest Application)

Functional Description

The simplified LM3914 block diagram is to give the general idea of the circuit's operation. A high input impedance buffer operates with signals from ground to 12 V , and is protected against reverse and overvoltage signals. The signal is then applied to a series of 10 comparison level by the resistor string -

In the example illustrated, the resistor string is connected to the internal 1.25 V reference voltage. In this case, for each 125 mV that the input signal increases, a comparator will switch on another indicating LED. This
resistor divider can be connected between any 2 voltages, providing that they are 1.5 V below V^{+}and no less than V^{-}. If an expanded scale meter display is desired, the total divider voltage can be as little as $\mathbf{2 0 0} \mathrm{mV}$. Ex pandedscole meter aremly only if bar mode is used. At
segments light uniformlater 50 mV or more per step, dot mode is usable.

Internal Voltage Reference

The reference is designed to be adjustable and develop a nominal 1.25 V between the REF OUT (pin 7) and

Functional Description (Continued)

REF ADJ (pin 8) terminals. The reference voltage is impressed across program resistor R1 and, since the voltage is constant, a constant current 1_{1} then flow voltage of:

$$
V_{\text {OUT }}=V_{\text {REF }}\left(1+\frac{R 2}{R 1}\right)+I_{A D J} R 2
$$

Since the $120 \mu \mathrm{~A}$ current (max) from the adjust termina represents an error term, the reference was designed to minimize changes of this current with V^{+}and loa changes.

Current Programming

A feature not completely illustrated by the block diagram is the LED brightness control. The curren drawn out of the reference voltage pin (pin 7) determines LED current. Approximately 10 times this current will be drawn through each lighted LED, and this curren will be relatively constant despite supply voltage and temperature changes. Current drawn by the internal 10 resistor divider, as well as by the external currentate LED drive current. The ability to modulate LED brightness with time, or in proportion to input voltage and other signals can lead to a number of novel display or ways of indicating input overvoltages, alarms, etc.

Mode Pin Use

Pin 9, the Mode Select input controls chaining of multiple
Pin 9, the Mode Select input controls chaining of multiple
LM3914s, and controls bar or dot mode operation. Th following tabulation shows the basic ways of using this input. Other more complex uses will be illustrated in the applications.

Bar Graph Display: Wire Mode Select (pin 9) direct/y to pin 3 (V^{+}pin).

Dot Display, Single LM3914 Driver: Leave the Mode Select pin open circuit.

Dot Display, 20 or More LEDs: Connect pin 9 of the first driver in the series (i.e., the one with the lowest input voitage comparison points) to pin 1 of the nex higher LM3914 driver. Continue connecting pin 9 of 30,40 or more LED displays. The last LM3914 drive in the chain will have pin 9 wired to pin 11. All previous drivers should have a 20 k resistor in paralle with LED No. 9 (pin 11 to VLED)

Mode Pin Functional Description

This pin actually performs two functions. Refer to the simplified block diagram below.

Block Diagram of Mode Pin Function

*High for bar

Dot or Bar Mode Selection

The voltage at pin 9 is sensed by comparator C , nom inally referenced to ($\mathrm{V}^{+}-100 \mathrm{mV}$). The chip is in ba mode when pin 9 is above this level; otherwise it's in can be left open circuit for dot mode.

Taking into account comparator gain and variation the 100 mV reference level, pin 9 should be no more than 20 mV below V for bar mode and more than 200 mV below V^{+}(or open circuit) for dot mode. In most applications, pin 9 is either open (dor mode) tied to V^{+}(bar mode). in bar mode, pin 9 Large currents drawn from the power supoly (LED current, for example) should not share this path so that large IR drops are avoided.

Dot Mode Carry
In order for the display to make sense when multiple LM3914s are cascaded in dot mode, special circuitry device when LED No. 1 of the second device comes on. The connection for cascading in dot mode has already been described and is depicted on the following page.

As long as the input signal voltage is below the threshoid of the second LM3914, LED No. 11 is off. Pin 9 of LM3914 No. 1 thus sees effectively an open circuit so the chip is in dor mold LED No. 11 , pin 9 of LM3914 No. 1 is pulled an LED drop (1.5 V or more) below $\mathrm{V}_{\text {LED }}$. This condition is sensed by comparator C2, referenced 600 mV below $\mathrm{V}_{\text {LED }}$. This forces the output of C2 low, which shuts off output transistor $\mathrm{C2}$, ex tinguishing LED No. 10

Mode Pin Functional Description (Continued)
$V_{\text {LED }}$ is sensed via the 20 k resistor connected to pin 11. The very small current (less than $100 \mu \mathrm{~A}$) that is diverted from LED No. 9 does not noticeably affect its intensity.

An auxiliary current source at pin 1 keeps at least $100 \mu \mathrm{~A}$ flowing through LED No. 11 even if the input voltage rises high enough to extinguish the LED. This ensures that pin 9 of LM3914 No. 1 is held low enough
to force LED No. 10 off when any higher LED is ilto force LED No. 10 off when any highaled. While $100 \mu \mathrm{~A}$ does not normally produce significant LED illumination, it may be noticeable when using highefficiency LEDs in a dark environment. If this is bothersome, the simple cure is to shunt LED No. 11 with a 10 k resistor. The IV IR drop is more than the 900 mV worst case required to hold off LED No. 10 yet small_ ekough that LED No. 11 does not conduct significantly.

Other Device Characteristics

The LM3914 is relatively low-powered itself, and since The LM3914 is relatively low-powered itself, and since
any number of LEDs can be powered from about 3 V , it any number of LEDs can be powered from about 3 V , it
is a very efficient disolay driver. Typical standby supply is a very efficient display driver. Typical standes supply
current (all LEDs OFF) is $1.6 \mathrm{~mA}(2.5 \mathrm{~mA}$ max). However, any reference loading adds 4 times that current drain to the V^{+}(pin 3) supply input. For example, an LM3914 with a 1 mA reference pin load (1.3 k), would supply almost 10 mA to every LED while drawing only

10 mA from its V^{+}pin supply. At full.scale, the IC is typically drawing less than 10% of the current supplied to the display.
The display driver does not have built-in hysteresis so that the display does not jump instantly from one LED to the next. Under rapidly changing signal conditions, this cuts down high frequency noise and often an annoying flicker. An "overlap" is built in so that at no time
between segments are all LEDs completely OFF in the between segments are all LEDs completely OFF in the
dot mode. Generally 1 LED fades in while the other fades out over a mV or more of range (Note 2). The change may be much more rapid between LED No. 10 of one device and LED No. 1 of a second device "chained" to the first.

The LM3914 features individually current regulated LED driver transistors. Further internal circuitry detects when any driver transistor goes into saturation, and prevents other circuitry from drawing excess current. This results in the ability of the LM3914 to drive and regulate LEDs
powered from a pulsating DC power source, i.e., largely powered from a pulsating DC power source, i.e., largely
unfiltered. (Due to possible oscillations at low voltages a nominal bypass capacitor consisting of a $2.2 \mu \mathrm{~F}$ solid nominal bypass capacitor consisting of a $2.2 \mu \mathrm{~F}$ solid
tantalum connected from the pulsating LED supply to tantalum connected from the pulsating LED supply to
pin 2 of the LM3914 is recommended.) This ability to operate with low or fluctuating voltages also allows the display driver to interface with logic circuitry, optocoupled solid-state relays, and low-current incandescent lamps.

Cascading LM3914s in Dot Mode

Typical Applications (Continued)

Typical Applications (Continued)

Indicator and Alarm, Full-Scale Changes Display From Dot to Bar

Bar Display with Alarm Flasher

Typical Applications (Continued)

Operating with a High Voltage Supply (Dot Mode Only)

Typical Applications (Continued)

Application Hints

Three of the most commonly needed precautions for using the LM3914 are shown in the first typical application drawing (see page $9-108$) showing a $0 \mathrm{~V}-5 \mathrm{~V}$ bar large LED currents are being drawn, especially in bar graph mode. These currents flowing out of the ground pin cause voltage drops in external wiring, and thus errors and oscillations. Bringing the return wires from signal sources, reference ground and bottom of the resistor string (as illustrated) to a single point very near pin 2 is the best solution.
Long wires from VLED to LED anode common can cause oscillations. Depending on the severity of the cause oscillations. Depending on the severity of the
problem $0.05 \mu \mathrm{~F}$ to $2.2 \mu \mathrm{~F}$ decoupling capacitors from LED anode common to pin 2 will damp the circuit. If LED anode line wiring is inaccessible, often similar decoupling from pin 1 to pin 2 will be sufficient.
If LED turn ON seems slow (bar mode) or several LEDs light (dot mode), oscillation or excessive noise is usually the problem. In cases where proper wiring and bypassing fail to stop oscillations, V^{+}voltage at pin 3 is usually below suggested limits (see Note 2, page 9-108). Ex panded scale meter applications may have one or both ends of the internal voltage divider terminated at rela-
tively high value resistors. These high.impedance ends should be bypassed to pin 2 with at least a $0.001 \mu \mathrm{~F}$ capacitor, or up to $0.1 \mu \mathrm{~F}$ in noisy environments.

Power dissipation, especially in bar mode should be given consideration. For example, with a 5 V supply and all Ever 600 mW . In this case a 7.59 resistor in series with the LED supply will cut device heating in half. The negative end of the resistor should be bypassed with a $2.2 \mu \mathrm{~F}$ solid tantalum capacitor to pin 2 of the LM3914.

Turning OFF of most of the internal current sources is accomplished by pulling positive on the reference with a current source or resistance supplying $100 \mu \mathrm{~A}$ or so. Alternately, the input signal can be gated OFF with a transistor switch.

Other special features and applications characteristics will be illustrated in the following applications schematics. Notes have been added in many cases, attempting to
cover any special procedures or unusual characteristics of these applications. A special section called "Apolica tion Tips for the LM3914 Adjustable Reference" has been included with these schematics.

Application Hints (Continued)

APPLICATION TIPS FOR THE LM3914s ADJUSTABLE REFERENC

Greatly Expanded Scale (Bar Mode Only)

Placing the LM3914s internal resistor divider in parallel with a section $(\simeq 230 \Omega)$ of a stable, low resistance divider greatly reduces voltage changes due to IC resistor vilue changes with temperature. V^{2}. Then the voltage V across the IC divider string can be adjusted to 200 mV using R5 without affecting V_{1}. LED current will be approximately 10 mA .
Non-Interacting Adjustments for Expanded Scale Meter (4.5V to 5V, Bar or Dot Mode)

This arrangement allows independent adjustment of LED brightness regardless of meter span and zero adjustment

First, V_{1} is adjusted to 5 V , using R2. Then the span (voltage across R4) can be adjusted to exactly 0.5 using R6 without affecting the previous adjustment.
R9 programs LED currents within a range of 2.2 mA to 20 mA after the above settings are made.

Greatly Expanded Scale (Bar Mode Only)

Adjusting Linearity of Several Stacked Dividers

Three internal voltage dividers are shown connected in series to provide a 30 -step display. If the resulting analog meter is to be accurate and linear the voltage on each divider must be adjusted, preferably without afecting any other adjustments. To do this, adjust R2 Then the
 by shunting each with selected resistors of $6 \mathrm{k} \Omega$ or higher resistance. This is possible because the reference LM3914 No. 3 is acting as a constant current source.

The references associated with LM3914s No. 1 and No. 2 should have their Ref Adj pins (pin 8) wired to ground, and their Ref Outputs loaded by a 620Ω resistor to ground. This makes available similar 20 mA current outputs to all the LEDs in the system.
If an independent LED brightness control is desired (as in the previous application), a unity gain buffer, such as similar to the previous application.

Non-Interacting Adjustments for Expanded Scale Met (4.5V to 5V, Bar or Dot Mode)

Adjusting Linearity of Several Stacked Dividers

Other Applications

- "Slow" - fade bar or dot display (doubles resolution)
20.step meter with single pot brightness control
- 10 -step (or multiples) programmer

Multi-step or "staging" controller

- Combined controller and process deviation meter
- Direction and rate indicator (to add to DVMs)
- Exclamation point display for power saving
- Graduations can be added to dot displays. Dimi light every other LED using a resistor to ground
- Electronic "meter-relay"-display could be circle or semi-circle
- Moving "hole" display-indicator LED is dark, rest o bar lit
- Drives vacuum.fluorescent and LCDs using added passive parts

Connection Diagram

HEXADECIMAL AND NUMERIC INDICATORS

5082-7300
5082-7302
5082-7304 5082-7340

TECHNICAL DATA JANUARY 198

Features

- NUMERIC 5082-7300/-7302 - HEXADECIMAL 5082-7340 $0-9$, Test State, Minus Sign, Blank States ecimal Point 7300 Right Hand D.P. $0-9$, A-F, Base 1 Operation Blanking Control. Conserves Power No Decimal Point
- dTL/TTL COMRATIBLE
- includes decoder/Driver with 5-bit MEMOR
8421 Positive Logic Inpui
- 4×7 DOT MATRIX ARRAY

Shaped Character, Excellent Readibility

- STANDARD DUAL-IN-LINE PACKAGE INCLUDING CONTRAST FILTER
$15.2 \mathrm{~mm} \times 10.2 \mathrm{~mm}$ (0.6 inch $\times 0.4 \mathrm{inch}$)
- CATEGORIZED FOR LUMINOUS INTENSITY Unit to Unit within a Single Category

Description

The HP 5082-7300 series solid state numeric and hexadecimal indicators with on-board decoder/driver and memory provethods of displaying digital inflormation reliable, low-cos information
The 5082-7300 numeric indicator decodes positive 8421 BCD logic inputs into characters 0-9. a "-" sign. a test pattern. and four blanks in the invalid BCD states. The unit employs a right-hand decimal point.

Package Dimensions

The 5082-7302 is the same as the 5082-7300, except that the decimal point is located on the left-hand side of the digit. The 5082-7340 hexadecimal indicator decodes positive 8421 logic inputs into 16 states, 0-9 and A-F. In place of the decimal point an input is provided for blanking the display all LED's off, without losing the contents of the memory the base-16 character set.
The $5082-7304$ is a (± 1) overrange display including a right hand decimal point.

Applications

Typical applications include point-of-sale terminals. instrumentation, and computer system.

Pin	Function	
	$5082-7300$ and 7302 Nat Numeric	5082-7340 Hexadecima
1	Input 2	Input 2
2	Input 4	Input 4
3	Input 8	Inout 8
4	Decimal Point	Blanking Control
5	$\begin{aligned} & \text { Latch } \\ & \text { Enable } \end{aligned}$	$\begin{aligned} & \text { Latch } \\ & \text { Enable } \end{aligned}$ Enable
6	Ground	Ground
7	v_{cc}	$v_{c c}$
8	Input 1	Input 1

Notes:
1
1.
Oimen

inches:
Uniess otherwise soeccitied

Absolute Maximum Ratings

Description	Symbol	Min.	Max.	Unit
Storage temperature, ambient	Ts	-40	+100	${ }^{\circ} \mathrm{C}$
Operating temperature, case ${ }^{(1.2)}$	T_{c}	-20	+85	${ }^{\circ} \mathrm{C}$
Supply voltage ${ }^{(3)}$	$V_{c c}$	-0.5	+7.0	V
Voltage applied to input logic, dp and enable pins	$\mathrm{V}_{\mathrm{t}}, \mathrm{V}_{\text {dr }}, \mathrm{V}_{\mathrm{E}}$	-0.5	+7.0	V
Voltage applied to blanking input ${ }^{\text {Th }}$?	V_{B}	-0.5	($\mathrm{V}_{\text {cc }}$)	\checkmark
Maximum solder temperature at 1.59 mm (. 062 inch) below seating plane; $t \leqslant 5$ seconds			230	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

Description	Symbol	Min.	Nom.	Max.	UnIt
Supply Voltage	$\mathrm{V}_{\mathbf{c c}}$	4.5	5.0	5.5	V
Operating temperature, case	$\mathrm{T}_{\mathbf{c}}$	-20		+85	${ }^{\circ} \mathrm{C}$
Enable Pulse Width	t_{w}	120			nsec
Time data must be held before positive transition of enable line	$\mathrm{t}_{\text {serup }}$	50			nsec
Time data must be held after positive transition of enable line	$\mathrm{t}_{\text {HoLD }}$	50			nsec
Enable pulse rise time	$\mathrm{t}_{\text {rLH }}$			200	nsec

Electrical/Optical Characteristics ${ }_{(\mathrm{c}}=-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. unless otherwise specitied)

Description	Symbol	Test Conditions	Min.	Typ. ${ }^{(4)}$	Max.	Unit
Supply Current	Icc	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$ (Numeral 5 and dp lighted)		112	170	mA
Power dissipation	P_{t}			560	935	mW
Luminous intensity per LED (Digit average) ${ }^{(5,6)}$	1.	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	32	70		$\mu \mathrm{cd}$
Logic low-level input voltage	V_{12}	$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$			0.8	V
Logic high-level input voltage	$V_{\text {IH }}$		2.0			V
Enable low-voltage; data being entered	V_{EL}				0.8	V
Enable high-voltage; data not being entered	$V_{\text {En }}$		2.0			v
Blanking low-voltage; display not blanked ${ }^{(7)}$	V_{31}				0.8	V
Blanking high-voltage; display blanked (7)	$\mathrm{V}_{\text {в }}$		3.5			V
Blanking low-level input current ${ }^{(9)}$	I_{BL}	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BL}}=0.8 \mathrm{~V}$			20	$\mu \mathrm{A}$
Blanking high-level input current ${ }^{\text {(7) }}$	Ів	$\mathrm{V}_{\mathrm{Cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BH}}=4.5 \mathrm{~V}$			2.0	mA
Logic low-level input current	IIL	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{t}}=0.4 \mathrm{~V}$			-1.6	mA
Logic high-level input current	${ }_{\text {IH }}$	$\mathrm{V}_{\mathrm{Cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}$			+250	$\mu \mathrm{A}$
Enable low-level input current	$\mathrm{IEL}_{\text {E }}$	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EL}}=0.4 \mathrm{~V}$			-1.6	mA
Enable high-level input current	IEM	$\mathrm{V}_{\mathrm{Cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EH}}=2.4 \mathrm{~V}$			+250	$\mu \mathrm{A}$
Peak wavelength	$\lambda_{\text {feax }}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$		655		nm
Dominant Wavelength ${ }^{(8)}$	λ_{4}	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$		640		nm
Weight				0.8		gm

Notes: 1. Nominal thermal resistance of a display mounted in a socket which is soldered into a printed circuit board: $\theta_{1}=50^{\circ} \mathrm{C} / \mathrm{W}$:
 lensity category designated by a letter located on the back of the display contiguous with the Hewlett-Packard logo marking. 6. The
 7. Applies only to 7340 . 8 . The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wave length which defines the color of the device.

10-ELEMENT BAR GRAPH ARRAY

Features

- CUSTOM MULTICOLOR ARRAY CAPABILITY
- MATCHED LEDs FOR UNIFORM APPEARANCE
- END STACKABLE
- PACKAGE INTERLOCK ENSURES CORRECT ALIGNMENT -
- LOW PROFILE PACKAGE
- RUGGED CONSTRUCTION-

RELIABILITY DATA SHEETS AVAILABLE

- Large, easily recognizable segments
- HIGH ON-OFF CONTRAST, SEGMENT TO SEGMENT
- WIDE VIEWING ANGLE
- CATEGORIZED FOR LUMINOUS INTENSITY
- HDSP-4832/-4836/-4840/-4850/-4890

CATEGORIZED FOR DOMINANT WAVELENGTH

Applications

- industrial Controls
- INSTRUMENTATION
- OFFICE EQUIPMENT
- COMPUTER PERIPHERALS
- CONSUMER PRODUCTS

Package Dimensions

Absolute Maximum Ratings ${ }^{[9]}$

Parameter	HDSP-4820	HDSP-4830	HDSP-4840	HDSP-4850	HDSP-4890
Average Power Dissipation per LED $\left(\mathrm{T}=25^{\circ} \mathrm{C}\right)^{[1]}$	125 mw				
Peak Forward Current per LED	$150 \mathrm{~mA}^{[2]}$	$90 \mathrm{~mA}^{[3]}$	$60 \mathrm{~mA}^{[3]}$	$90 \mathrm{~mA}^{[3]}$	$90 \mathrm{~mA}{ }^{[3]}$
DC Forward Current per LED	$30 \mathrm{~mA}{ }^{(4)}$	$30 \mathrm{~mA}{ }^{[5]}$	$30 \mathrm{~mA}{ }^{(6)}$	$30 \mathrm{~mA}{ }^{[7]}$	$30 \mathrm{~mA}{ }^{[7]}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				
Reverse Voltage per LED	3.0 V				
Lead Soldering Temperature (1.59 mm (1/16 inch) below seating plane ${ }^{[8]}$	$260^{\circ} \mathrm{C}$ for 3 sec				

C/W/LED.
2. See Figure 1 to establish pulsed operating conditions.
4. See an improved thermal design, operation at higher temperatures without derating is possible. See Figure 2 .
a $=60^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{LED}$. With a
5. Derare maximum improved thermal design, operation at higher temperatures without derating is possible. See Figure 7 .
and dermal design. operation at higher temperatures without derating is possible. See figure
ande maximum DC current above $T_{A}=37^{\circ} \mathrm{C}$ at $0.48 \mathrm{~mA}^{\circ} \mathrm{C}$ per LED. This derating assumes worst case $R \mathrm{H} \cdot \mathrm{J} \cdot \mathrm{A}=600^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{ED}$. With
an improved thermal design, operation at higher temperatures without derating is possible. See Figure 9 .
8. Clean only in water. Isopropanol, Ethanol. Freon TF or TE (or equivalent) and Genesolve D-1 15 ior equivalent
9. Absolute maximum ratings tor the HER, Yellow, and Green elements of the multicolor arrays are identical to the HDSP-4830/-4840 -4850 maximum ratings.

Internal Circuit Diagram

Multicolor Array Segment Colors

Segment	HDSP-4832 Segment Color	HDSP-4836 Segment Color
a	HER	HER
b	HER	HER
c	HER	Yellow
d	Yellow	Yellow
e	Yellow	Green
f	Yellow	Green
g	Yellow	Yellow
h	Green	Yellow
i	Green	HER
i	Green	HER

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(1)]}$
RED HDSP-4820

Parameter	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Luminous Intensity per LED (Unit Average) ${ }^{111}$	If	$\mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA}$	610	1250		$\mu \mathrm{cd}$
Peak Wavelength	גPEAK			655		nm
Dominant Wavelength ${ }^{121}$	$\lambda_{\text {d }}$			645		nm
Forward Voltage per LED	V_{F}	$\mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA}$		1.6	2.0	V
Reverse Voltage per LED	$V_{\text {F }}$	$\mathrm{IA}_{\mathrm{A}}=100 \mu \mathrm{~A}$	3	1215		\checkmark
Temperature Coefficient VF per LED	$\Delta V_{F} /{ }^{\circ} \mathrm{C}$	\cdots		-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin	$R_{\text {®J-PIN }}$	- .		300		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} / \\ & \text { LED } \end{aligned}$

GH－EFFICIENCY RED HDSP－4830	Symbol	Test Condiltons	Min．	Typ．	Max．	Units
Luminous intensity per LED （Unit Average）II	Iv．	$\mathrm{IF}=10 \mathrm{~mA}$	900	3500		$\mu \mathrm{cd}$
Peak Wavelength	入PEAK	－	T8	635		nm
Dominant Wavelength ${ }^{\text {2］}}$	$\lambda_{\text {d }}$	－	，	626	2	nm
Forward Voltage per LED	V_{F}	$\mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA}$		2.1	2.5	v
Reverse Voltage per LED	V_{B}	$\mathrm{t}_{\mathrm{A}}=100 \mu \mathrm{~A}$	3	30.51		V
Temperature Coetficient VF per LED	$\Delta V_{F} /{ }^{\prime} \mathrm{C}$		so	－2．0		$\mathrm{m} / /^{\circ} \mathrm{C}$
Thermal Resistance LED Junction－to－Pin	$R^{\text {OJTPIN }}$			300		${ }^{\circ} \mathrm{C} / \mathrm{W} / \prime$
YELLOW HDSP－4840						
Parameter	Symbol	Test Conditions	Min．	Typ．	Max．	Units
Luminous Intensity per LED （Unit Average）＂	Iv	$I_{5}=10 \mathrm{~mA}$	600	1900	4	$\mu \mathrm{cd}$
	$\lambda_{\text {PPEAK }}$	－	8	583	4	nm
Dominant Wavelength ${ }^{1235}$ ，way	$\lambda_{\text {d }}$	240	581	585	592	nm
Forward Voilage per LED	V_{F}	$I_{F}=20 \mathrm{~mA}$		2.2	2.5	V
Reverse Voltage per LED	$V_{\text {R }}$	$7 \mathrm{l}=100 \mu \mathrm{~A}$	3	40151		V
Temperature Coefficient V／per LED	$\triangle V_{F}{ }^{\circ} \mathrm{C}$		，	-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction－to－Pin	$\mathrm{Rej}_{\text {－PIN }}$			300		$\begin{aligned} & \text { C/W/ } \\ & \text { LED } \end{aligned}$
GREEN HDSP－4850						
Parameter	Symbol	Test Conditions	Min．	Typ．	Max．	Unils
Luminous intensity per LED （Unit Average）IIt	Iv	$\mathrm{IF}_{\mathrm{F}}=10 \mathrm{~mA}$	600	1900		$\mu \mathrm{cd}$
Peak Wavelength	λ ¢PEAK		（120	566	－	nm
Dominant Wavelength ${ }^{1231}$	$\lambda_{\text {d }}{ }^{\text {d }}$		46	571	577	nm
Forward Voltage per LED	$\mathrm{V}^{\mathbf{V} \text { F }}$	IF $=10 \mathrm{~mA}$		2.1	2.5	V
Reverse Voltage per LED	$V_{\text {A }}$	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	3	50151		V
Temperature Coefficient V_{F} Per LED	$\triangle \mathrm{V}_{\mathrm{F}}{ }^{\circ} \mathrm{C}$			－2．0．	－	$\mathrm{mV} \mathrm{l}^{\circ} \mathrm{C}$
Thermal Resistance LED Junction－to－Pin	$R_{\theta_{\text {- }- \text { Pin }}}$			300		$\begin{aligned} & \text { } \mathrm{C} /{ }^{\prime} / \\ & \text { LED } \end{aligned}$

EMERALD GREEN HDSP－4890

Parameter	Symbol	Test Conditions	Min．	Typ．	Max．	Units
Luminous Intensity Per LED （Unit Average）${ }^{[1]}$	lv	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	250	1600		$\mu \mathrm{Cd}$
PeakWavelength	XPEAK			556		nm
Dominant Wavelength $[2,3]$		5xicisex		558	㳟碞	nm
Forward Voltage Per LED	$\mathrm{V}_{\text {F }}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	\％	2.2	2.5	V
Reverse Voltage Perted	V_{F}	－ 1 A $=100 \mu \mathrm{~A}$	3	50 ${ }^{(5)}$		
Temperature Coefficient $\mathrm{V}_{\text {F }}$ PerLED	$\mathrm{SN}^{\prime \prime} \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$	W6．		－2．0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction－to－Pín	$R ⿴ 囗 ⿰ 丿 ㇄$－Pin			300		${ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{LED}$

Junction－to－Pín
1．The ba
1．The bar grapharrays are categorized for luminous intensity．The category is designated by a letter located on the side of the package ．deviceminant wavelength，λ_{0} ，is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the
3．The HOSP－4832／－4836／－4840／－4850／－4890 bar graph arrays are categorized by dominant wavelength with the category designated by a number adiacent to the intensity category letter．Only the yellow elements of the HDSP－4832／－4836 are categorized tor color．
4．Electrical／optical characteristics of the High－Efficiency Red elements of the HDSP－4832／－4836 are identical to the HOSP－4830 ．Electrical／optical characteristics of the High－EIficiency Red elements of the HDSP－4832／－4836 are identical to the HDS
characteristics．Characteristics of Yellow elements of the HOSP－4832／－4836 are identical to the HDSP－4840．Characteristics of Green elements of the HDSP－4832／－4836 are identical to the HOSP－4850．
5．Reverse voltage per LED should be limited to 3.0 V Max．

HDSP－4820

Figure 1．Maximum Tolerable Peak Current vs．Pulse Duration

Figure 2．Maximum Allowable D．C．Current per LED vs．
Ambient Temperature．Deratings based on Maximum Allowable Thermal Resistance，LED Junction－to－Ambient on a per LED basis． $\mathrm{T}_{\mathrm{JMAX}}=100^{\circ} \mathrm{C}$

beak－peak segment current－ma
Figure 3．Relative Etficiency（Luminous intensity per Unit Current）vs．Peak Segment Current

Figure 5．Relative Luminous Intensity vs．D．C．Forward Current

For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures，See Application Note 1005.

HDSP-4830/-4840/-4850/-4890

to - PULISE DURATION - - SEC
~Figure 6. HDSP.-4830/4840/-4850/-4890 Maximum Tolerable Peak Current vs. Pulse Duration

Figure 7. HDSP-4830 Maximum Allowable D.C. Current per LED vs. Ambient Temperature. Deratings Based on Maximum Allowa ble Thermal Resistance Values, LED Junction-to-Ambient on a per LED basis. T_{J} MAX $=100^{\circ} \mathrm{C}$.

Figure 9. HDSP-4850-4890 Maximum Allowable D.C. Current per LED. Ss. Ambient Temperature. Deratings Based on Maximum
Allowable Thermal Resistance Values. LED Junction - 0 - Ambient Allowable Thermal Resistance Values, LED Junction-to-Ambien Allowable Thermal Resistance Value
on a per LED basis. TJ MAX $=100^{\circ} \mathrm{C}$.

- ambient témperature - ${ }^{\circ}$

Figure 8. HDSP-4840 Maximum Allowable D.C. Current per LED vs. Ambient Temperature. Deratings Based on Maximum Allowable Thermal Resistance Values, LED Junction-lo-Ambient on a per LED basis. T_{J} MAX $=100^{\circ} \mathrm{C}$.

Figure 10. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current
or a Detailed Explanation on we Use of Dala Sh. Intormation and Recommended Soldering Procedures, See Application Note 1005.

HDSP-4830/-4840/-4850/-4890

Figure 11. Forward Current vs. Forward Voltage

loc - oc curaent per leo - ma

Electrical

These versatile bar graph arrays are composed of ten ligh emitting diodes. The light from each LED is optically stretched to form individual elements. The diodes in the (GaAsP) epitaxial layer on a Gallium Arsenide (GaAs) Sub strate. The HDSP-4830/ $/ 4840$ bar graphs utilize a GaAsP epitaxial layer on a GaP substrate to produce the brighter high-efficiency red and yellow displays. The HDSP-4850 -4890 bar graph arrays utilize a GaP epitaxial layer on a GaP substrate. The HDSP-4832/.4836 multicolor array have high efficiency red, yellow, and green LEDs in one package.

These display devices are designed to allow strobed opera tion. The typical forward voltage values, scaled from Figure or 11, should be used for calculating the current limiting resistor value and typical power dissipation. Expected maxi mum V_{F} values, for the purpose of driver circuit design and maximum power dissipation, may be calculated using the following V_{F} MAX models.

HDSP-4820 (Red)
 $\mathrm{V}_{\text {F MAX }}=1.75 \mathrm{~V}+$ IPEAK (12.5Ω)
 For: IPEAK $\geq 5 \mathrm{~mA}$

HDSP-4830/-4840 (High Efficiency Red/Yellow)
V_{F} max $=1.75 \mathrm{~V}+$ IPEAK 138 n
For IPEAK $\geq 20 \mathrm{~mA}$
$V_{F} \max =1.6 \mathrm{~V}+\mathrm{IOC}(45 \Omega)$
or: $5 \mathrm{~mA} \leq 1 \mathrm{DC} \leq 20 \mathrm{~mA}$
HDSP-4850/-4890 (Green/Emerald)
$V_{F} \operatorname{MAX}=2.0 \mathrm{~V}+$ IPEA
For: IPEAK $>5 \mathrm{~mA}$

For Further Information Concerning Bar Graph Arrays and Suggested Drive Circuits, Consult HP Application Note 1007 Entitled "Bar Graph Array Applications".

SERIES 23000 "SNAP-IN"SLIMSWITCH

The unit that costs less to buy, less to install and less to maintain. 10 STANDARD DIAL POSITIONS

Series 23000 SLIMSWITCHES are especially made for applications where cost is the primary consideration in selecting a contro component They are also ideal for use where maximum panel density, good reliability, error-proof positive setting action and component. They are also ideal for use where maximum p
large (.170 high) easily read in-line characters are desired.
Series 23000 SLIMSWITCHES are not recommended for use in applications where high temperature, high humidity or contam inated environments exist.
Series 23000 SLIMSWITCHES are truly the state-of-the-art economy leaders of the "thumbwheel" switch industry.
Their high package density saves on precious panel space...Snap-in mounting saves on installation and replacement costs... Exclusive Their high package density saves on precious panel space...Snap-in mounting saves on installation and
self-locking stainless steel snap-on assembly strap minimizes assembly and module replacement time..
And the purchase price is our lowest ever... Check our price list and you will see what we mean!
Stack as many modules of the same or different output code configurations together as you wish. Put an end bracket on each
end of the assembly and snap-on the assembly strap. Snap the entire assembly into a precut hole in your control panel. All end of the assembly and snap-on the assembly strap. Snap the entire assembly into a precut hole in your control panel. All without the use of a single tool. That's simplicity and economy!
Or...
If you do not want to set up your own modularized system of assembling switches to meet all of your digital switch requirements yourself, just tell us what your requirements are and we will assemble them for you.
Series 23000 SLIMSWITCHES are available from local stock at your nearest Digitran distributor or from the factory.

Specifications

Mechanical \& Electrical :	Environmental:
Number of standard dial positions: 10	Operating temperature: $-20^{\circ} \mathrm{C}$. to $65^{\circ} \mathrm{C}$.
Operating Force: 4 to 8 ounces	Shock: 100 G 's, 6 miliseconds duration, sawtooth
Life: Over $1,000,000$ detent operations at $25^{\circ} \mathrm{C} .\left(77^{\circ} \mathrm{F}\right.$.)	Vibration: 5 G 's at $70-2000 \mathrm{cps}$. $10-70 \mathrm{cps}$: 06 inches double amplitude (Ref: MIL-STD-202, Method 204, Test Condition B.)
Weight: $1 / 4$ ounce per module (approximately)	
Dial character height: .170 (4.32) for siandard dials	
Standard finish and color: Case, wheel and end brackets, black unless otherwise specified. Dial markings, white on black	Materials:
Rated electrical loads: 28 VAC or $\mathbf{2 8 V D C}$ at 50 milliamps resistive at $25^{\circ} \mathrm{C}$. $\left(77^{\circ} \mathrm{F}\right.$.). Non-switching current: 2 amps	Printed circuit board: Laminate per MIL-P-13949, type GF or GE, plated with nickel Contacts: Precious metal alloy
Contact resistance: Less than 100 milliohms original value between common and output terminal(s)	Structural parts: ABS thermoplastic
Insulation resistance: 1000 megohms minimumper MIL-STD. 202, Method 302, Test Condition A, between any two nonconnected terminals	Important Notice :
Dieloctre withstanding: 500 Vrms	Do not allow flux or cleaning agent to enter
Terrainations: Solder connections standard. Connector compatability on some types	For additional information about recommended cleaning method, contact Digitran.

NUMBER moovits	\wedge	-	c
1	1451191	649116.51	669 (1)
?	1.0601271	956122.51	9841231
3	13351351	1.279 32.51	1.2991331
-	1.6901431	1.598140 .51	1.6141411
5	2005151	1.909 148.51	1.929 4991
6	23201591	2.22415655	2.244157
,	2.6356161	2.539166 .51	2.559 1651
8	2.9501751	2.854172 .51	${ }^{2.884}$ (3)
9	1265 1831	3.168980 .51	${ }^{3} 18981811$
10	35801911	34884188.51	35041999
N	N: ${ }^{215} \times \cdots$	(

Notes:

1. For details of printed circuit board, terminals and Dimension
2. Assembly will accept panel thickness of 066211.5 s

200 MHz Phase Detector

MCL PDC-10-1 Broadband Directional Coupler, Mini-Circuits
MCL PSC-2-1 Power Divider, Mini-Circuits
MCL SRA-1 Mixer, Mini-Circuits
MCL PSCQ-2-250 90 Degree Power Divider, Mini-Circuits
most widely-used
Frequency Mixers
LEVEL 7 (+7 dBm Lo, up to +1 dBm RF)

뀪Nini-Circuits
00-09

Directional Couplers

6 to 30 dB
10 KHz to 2000 MHz

[^4]
뜎Mini-Circuits

- picai Periormance at $25^{\circ} \mathrm{C}$ (Cont.)

Characteristics	Output Power		Test Conditions
Harmonies of f L	R-Port	1-Port	
$\begin{aligned} & \mathrm{fL} \\ & 2 \mathrm{fL} \\ & 3 \mathrm{fL} \\ & 4 \mathrm{fL} \\ & 5 \mathrm{fL} \end{aligned}$	$-10 \mathrm{dBm}$.18 dBm 24 dBm .30 dBm .36 dBm	.12 dBm .15 dBm $-21 \mathrm{dBm}$.31 dBm -	$\mathrm{f}_{\mathrm{L}}=2 \mathrm{GHz}$ at +13 dBm
$\begin{aligned} & i L \\ & 2 \mathrm{f} L \\ & 3 \mathrm{fL} \\ & 4 \mathrm{fL} \end{aligned}$	$\begin{aligned} & .18 \mathrm{dBm} \\ & .22 \mathrm{dBm} \\ & .34 \mathrm{dBm} \\ & .37 \mathrm{dBm} \end{aligned}$		$\mathrm{f}_{\mathrm{L}}=4.5 \mathrm{GHz}$ at +13 dBm
${ }_{2}^{i} \mathrm{f}$	$\begin{array}{r} .9 \mathrm{dBm} \\ .29 \mathrm{dBm} \end{array}$		$\mathrm{f}_{\mathrm{L}}=9 \mathrm{GHz}$ at +13 dBm
${ }_{2}^{2} \mathrm{f}$		$\begin{gathered} -21 \mathrm{dBm} \\ -21 \mathrm{dBm} \end{gathered}$	$f \mathrm{~L}=4 \mathrm{GHz}$ at +13 dBm

R-PORT VSWR LO @ +13 dBm

CONVERSION LOSS vS FREQUENCY \& TEMPERATURE LO @ $\mathbf{+ 1 3} \mathrm{dBm}$

Drive Level: The maximum recom mended drive level is +20 dBm .

 5 nooukr \cdot oun

Typical Performance at $25^{\circ} \mathrm{C}$ (Cont.)
CONVERSION LOSS vS FREQUENCY LO @ +13 dBm

-

FINAL TEST RESULTS FOR WJ FMBB MIXER SERIAL NO. J2OIB

PA5S

CONVERSION LOSS(dB) (LO AT +13dBm)

IF $(M H z)=$ RF (MHz) 2000	1000	2000	4000	6000	8000
	---	----	---	---	---
+	6.2	---	6.5	7.4	7.0
3000-	6.8	---	---	---	\cdots
+	6.6	6.7	7.2	7.8	日. 8
4000-	6.9	---	---		
+	7.4	7.4	----	8. 3	9.2
5000-	7.6	6.5	-	--	
+	7.7	6.7	7.4	8.3	9.3
6000-	6.2	6.5	2.2	-	--
+	6.2	5.7	6.3	-	8.8
7000-	5.7	5.5	6.1	---	--
+	6.2	5.5	5.9	8.6	7.9
8000-	6.0	5.5	--	5.1	----
+	6.5	5.8	6.7	8.3	-
9000-	6.3	5.6	6.0	4.7	-
+	6.7	6.9	6.5	9.2	8.0
10000-	6.9	5.9	6.3	7.3	7.6
+	7.7	7.2	6.8	8.3	7.9
$11000-$	----	6.7	6.3	7.1	6.9
+	----	7.2	6.9	8.4	--
12000-	----	6.3	7.1	\cdots	4.3
+	----	7.1	6.9	8.1	-
13000-	----	6.0	6.4	7.7	6.4
+	----	7.0	6.6	---	--
14000-	--	6.1	6.5	7.1	6.6
+	----	7.4	6.6	--	---
15000-	----	6.3	6.7	7.3	7.0
+	----	7.9	-	---	---
16000-	---	6.6	6.7	7.5	----
+	----	8.0	---	---	----
17000-	---	7.8	7.8	A. 8	8.6
18000-	----	9.1	9:9	T-3.3	10.1
18000-	----	-		10.3	10.

FIXED ATTENUATORS
SMA
MINIATURE'

| ATTENUATION VALUE | LENGTHA |
| :--- | :--- | | ATTENUATION VALUE | LENGTHA |
| :---: | :---: |
| 1.20 dB | 1.20 |
| $21-60 \mathrm{~dB}$ | 1.49 |

MINIATURE DOUBLE MALE

MINIATURE DOUBLE FEMALE

ATtENuATION VALUE LENGTHA | 1.25 dB | 1.0° |
| :---: | :---: |
| 21.670 B | 1.35 |

DC TO 18 GHz HIGH PERFORMANCE SPECIFICATIONS
MODELS 263] 263M AND 263F FREQUENCY RANGE: DC IO 18GHz CONNECTOR TYPE: STAINLESS STEEL
SMA PER MILO-C-VALUES: 1 THRU 60dB IN 1dB INCREMENTS
ATTENUATION ACCURACY: $1-10 \mathrm{~dB} \pm 0.3 \mathrm{~dB} \mathrm{C}$ $11-20 \mathrm{~dB} \pm 0.5 \mathrm{dBE}$. $21-40 \mathrm{~dB} \pm 1.0 \mathrm{~dB}$ E
$41-60 \mathrm{~dB} \pm 1.5 \mathrm{~dB}$
MAXIMUM
4.0 TO 12.4 GHz 1.25 m 12.4 TO 18 GHz 1.35 MAXIMUM INPUTPOWER: 2 WATTS AVERAGEAT $+25^{\circ} \mathrm{C}$ DERATED LINEARLY TO 0.5 WATTS AT
OPERATING TEMPERATURE RANGE: $-65^{\circ} \mathrm{C}$ TO $+125^{\circ} \mathrm{C}$

DC TO 8.0 GHz HIGH PERFORMANCE DC TO 8.0 GHz H1
MODELS 292. 292M AND 292F
MODELS 292. 292M AND 292F
FREQUENCY RANGE: DC TO 8.0 GHz FREQUENCY RANGE: DC TO 8.0 GHz
CONNECTOR TYPE STAINLESS STEEL SMA PER MIL-C-39012
ATTENUATION VALUES: 1 THRU 30 dB IN 1 dB INCREMENTS
$11-20 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$ ACCURACY: $1-10 \mathrm{~dB} \pm 0.3 \mathrm{dBE}$ MAXIMUM VSWR: $1.07+0.015 \pm 1.0 \mathrm{~dB}$ MAXIMUM INPUT POWER: 2 WATTS AVERAGEAT $+25^{\circ} \mathrm{C}$ DERATED LINEARLY TO 0.5 WATTS AT $+125^{\circ} \mathrm{C}$
OPERATING TEMPERATURE RANGE: $-65^{\circ} \mathrm{C}$ TO $+125^{\circ} \mathrm{C}$

DC TO 2.0 GHz HIGH PERFORMANCE SPECIFICATIONS

MODELS 294294 M AND 294F
FREQUENCY RANGE: DC TO 2.0 GHz
CONNECTOR TYPE: STAINLESS STEEL
ATTENUATION VALUES: 1 THRU 30dB IN 1dB INCREMENTS

ATTENUATION ACCURACY: $1-20 \mathrm{~dB} \mathbf{\pm 0 . 3 \mathrm { dB } \mathrm { E }}$ | $21-30 \mathrm{~dB}$ |
| :--- |
| MAXIMUM VSWR: |

MAXIMUM INPUT POWER: 2 WATTS AVERAGEAT $+25^{\circ} \mathrm{C}$ DERATED LINEARLY TO O.5 WATTS AT
${ }^{+1255^{\circ} \mathrm{C}} \mathrm{OP}^{\circ}$ ING TEMPERATURE RANGE: $-65^{\circ} \mathrm{C}$ TO $+125^{\circ} \mathrm{C}$

DC TO 18 GHz IN

SPECIFICATIONS

MODELS 444. 444M AND 444F FREQUENCY RANGE: DC TO 18 GHz CONNECTOR TYPE: STAINLESS STEEL SMA PER MIL-C-39012 INCREMENTS
ATTENUATION ACCURACY:
 $\begin{array}{llll}13-20 \mathrm{~dB} & \pm 1.50 \mathrm{~dB} & 13-20 \mathrm{~dB} & \pm 1.50 \\ 21-30 \mathrm{~dB} \\ \pm 2.0 \mathrm{~dB} & 21-30 \mathrm{~dB} & \pm 2.0 \mathrm{~dB}\end{array}$ MAXIMUM VSWR: DC TO 4.0 GHz 1.25 4.0 TO 12.4 GHZ $+25^{\circ} \mathrm{C}$ DERATED LINEARLY TO 0.5 WATTS AT

OPER

TYPE II*

. 28 DIA.

\qquad | ATTENUATION VALUE | LENGTH A |
| :---: | :---: |
| 1.10 dB | 96 |
| 20 dB | 102 |

DC TO 18 GHz SPECIFICATIONS MODELS 451. 451M AND 451F FREQUENCY RANGE: DC TO 18 GHz CONNECTOR TYPE: STAINLESS STEEL ATTENUATION VALUES: 1 THRU 10 dB IN 1 dB INCREMENTS AND 20dB
ATTENUATION ACCURACY: $1-6 \mathrm{~dB}+0.3 \mathrm{dBE}$ 7-10dB AND $20 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$
4.0 TO 8.0 GHz 1.15 E 8.0 TO 18 GHz 120 MAXIMUM INPUT POWER: 2 WATTS AVERAGEAT $+25^{\circ} \mathrm{C}$ DERATED LINEARLY TO 0.5 WATTS AT $+125^{\circ} \mathrm{C}$

DC TO 12.4 GHz SPECIFICATIONS

MODELS 452. 452M AND 452F
FREQUENCY RANGE.DC TO 12.4 GHz
CONNECTOR TYPE: STA
ATTENUATION VALUES: 1 THRU 10dB in 1 dB
INCREMENTS AND INCREMENTS AND 20dB
ATT NUATION ACCURACY: $1-6 \mathrm{~dB} \pm 0.3 \mathrm{~dB}$ a MAXIMUM VS
4.0 TO 8.0 GHz 1.15 日 8.0 TO 12.4 GHz 1.20 MAXIMUM INPUTPOWER: 2 WATTS AVERAGEAT $+25^{\circ} \mathrm{C}$ DERATED LINEARLY TO 0.5 WATTS AT
OPERATING TEMPERATURE RANGE: $-65^{\circ} \mathrm{C}$ TO
$+125^{\circ} \mathrm{C}$
Us. Patent number 3.824.506 applies to all Type II Fixed Attenuators.

Tubular Filters

Bandpass
Bandpass
Tubular Filters

Yodel	Dlameter Inches	Frequency Range (MHz)	3dB BW (\% of Center Freq.	VSWR	No. of Sections	Impedance (Ohms (2))	$\begin{aligned} & \text { Avg. } \\ & \text { Power } \\ & \text { (Watts) } \end{aligned}$	Shock	Vibration	Humidily	Temp. Range
8250	$1 / 4$	$\begin{gathered} 200- \\ 6.000(3) \end{gathered}$	3-70\%(1)	$\begin{aligned} & \text { 1.5:1 } \\ & \text { of } \\ & \text { Less } \end{aligned}$	2-8	$\begin{aligned} & 50 \\ & 75 \end{aligned}$	2	30G. 11 ms	$\begin{gathered} 10 \mathrm{G} \\ 5-2.000 \mathrm{~Hz} \\ \hline \end{gathered}$	0-95\%	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
B380	318	$\begin{aligned} & 200- \\ & 4,000 \end{aligned}$	3-70\%(1)	$\begin{aligned} & \text { 1.5:1 } \\ & \text { or } \\ & \text { Less } \end{aligned}$	2-8	$\begin{aligned} & 50 \\ & 75 \end{aligned}$	5	30G. 11 ms	$\begin{array}{c\|} \hline 10 \mathrm{G} \\ 5-2,000 \mathrm{~Hz} \\ \hline \end{array}$	0-95\%	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { o } \\ & +85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
${ }^{120}{ }^{\circ}$	1/2	$\begin{aligned} & 50-900 \\ & 3.90 \end{aligned}$	1-70\%	$\begin{aligned} & 1.5: 1 \\ & \text { of } \\ & \text { Less } \end{aligned}$	2-12	50 75	18	30G. 11 ms	$\begin{gathered} 10 \mathrm{G} \\ 5-2.000 \mathrm{~Hz} \end{gathered}$	0-95\%	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
8340	$3 / 4$	$\begin{gathered} 25,700 \end{gathered}$	1-80\%	$\begin{gathered} \hline 1.5: 1 \\ \text { or } \\ \text { Less } \\ \hline \end{gathered}$	2-12	$\begin{aligned} & 50 \\ & 75 \end{aligned}$	40	30G. 11ms	$\begin{gathered} 10 \mathrm{G} \\ 5-2,000 \mathrm{~Hz} \end{gathered}$	0-95\%	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
8110	'1.1/4	15-,000	1-80\%	$\begin{aligned} & \text { 1.5:1 } \\ & o r \\ & \text { Less } \end{aligned}$	2-12	$\begin{aligned} & 50 \\ & 75 \end{aligned}$	200	30G. 11ms	$\begin{gathered} 10 \mathrm{G} \\ 5-2.000 \mathrm{~Hz} \end{gathered}$	0-95\%	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$

-Most versatille • Fits most applications - Immediate dolivery
(1) For frequency below 400 MHz . \% 3 dB Bandwidth range
(1) For frequency below 400 MHz . \% 3 dB Bandwidth range from 3% to 40%
(2) 50 Onms standard
(3) For teqs standara
.. Isertion Loss / Loss Constant

Features

K\&L tubular bandpass filters are available in five different series ranging in size from $1 / 4$ inch cover the frequency range of 15 MHz to 5.0 GHz . K\&L uses a .05 Chebychev design to yield low insertion loss in the passband and high attenuation levels in the stopband. The tubular filter design is made up of small resonating capacitively coupled to provide the specified passband response and selectivity required. This coupling structure provides a DC block.

n choosing the best tubular filter to meet the user's needs, K\&L

 recommends the use of the $1 / 2$ inch diameter; model B120. This series has convenient size, broad frequency range, versatility of design,and is the most economical.

The two larger series, $3 / 4$ inch diameter and $11 / 4$ inch diameter, offer
the user lower insertion loss, lower frequency operation, and higher power capabilities. The two smaller diameter filter series, $\%_{0}$ inch diameter and $1 / 4$ inch diameter, offer the user miniature size and volume, higher frequency opera. tions and less weight.

Mechanical

For sizes and connectors, see page 66

NOTE:

For a detailed explanation of changes o K\&L's part numbering system, see page 32

To Order
5 B121 - 500/T80 - 0/0
$\overline{234} \quad \overline{567} \overline{89}$

1. Number of sections 2. B-Bandpass
2. Size designation
ize designation
$250-.250^{\prime \prime}$
$380-.375^{\prime \prime}$
$120-.500^{\prime \prime}$
$340-750^{\prime \prime}$
$340-.750^{\prime \prime}$
$110-1.250^{\prime \prime}$
3. Circuit Indicator
4. Center Frequency
5. Supplemental codes.
(See page 32)
6. Bandwidth
7. Input connector
8. Output connector

LOSS CONSTANT VS. FREQUENCY VS. MODEL

Center Frequency (MHz)											
Model	15	26	41	51	66	101	201	401	1,001	2,001	4,001
	25	40	50	65	100	200	400	1,000	2,000	4,000	6,000
7250						5.0	5.0	4.0	3.5	3.0	2.5
380						4.0	3.0	2.5	2.0	1.8	
8120				4.0	3.5	3.0	2.5	2.0	1.8	1.6	
B340		3.5	3.0	2.5	2.2	2.0	1.6	1.4	1.2		
B110	2.6	2.5	2.4	2.2	1.8	1.6	1.3	1.2			

To determine the maximum insertion loss of the tubular filter at center frequency the following formula is used:
Insertion loss at Center
frequency
(Loss constant) (No. of sections $+1 / 2$) +0.2 $\% 3 \mathrm{~dB}$ BW
[2L

EXAMPLE:
Center frequency $=500 \mathrm{MHz}$
3 dB Bandwidth $=80 \mathrm{MHz}$
Number of sections
Find the insertion loss at Center frequency
From the table the Loss constant is
shown to be 2.0
Number of sections $=5$
The percent 3 dB bandwidth is:
$3 \mathrm{~dB} \mathrm{BW}(100)=(80)(100)=$
Center freq. 500
By substituting in the formula we find
the insertion loss =
(2) $(5+1 / 2)+0.2=0.88 \mathrm{~dB}$

REACTEL, INC.

687-D LOFSTRAND LANE. ROCKVILLE. MD 20850. TEL: ${ }^{202} 279.5535$

TEST DATA

SERIAL NUMBERS	21-44\|									
SPEC'S 1.0: Center freg.:...... $.4 .6 H Z$	8.46									
20: Insertion loss ar: .. 0 o $=1$ d'	$10 / B$									
RELATIVE B.W. 3.0: 3 dB BW \qquad .to... \qquad										
	\checkmark									
REJECTIONS 4.0:) 2....................... dB at \qquad										
VSWR (R.L.) $5.0 \leqslant 1.5 .51 . .2 t .293 . .10 . .8 .5 .4642$	V									
PHASE 6.0: \pm \qquad degrees at \qquad						:				
GROUP DELAY										
CONNECTORS 8.0: Sma female, smamale	\checkmark									
9.0: size ..14." $\times .0 .375 \times 2.66^{\prime \prime}$. 5 T...	\checkmark									
\cdots										

Tubular Filters

Tubular Filters

The length of a lubular wher is determined by adding the " A " and " B " dimensions. The " B " dimension is obtained from the table
below and the " A " dimension is obtained from Length vs. Frequency tables on the following page.

Example: A 4 -section bandpass filter Model B120 with a center requency of $1,200 \mathrm{MHz}$ and ". SMA connectors has an "A" "
dimension of 2 inches, and a "B

Connector Length Table

CONNECTOR STYLE	Connector Code	"B" DIMENSION (inches)						$\begin{gathered} \hline \text { Frequency } \\ \text { Range } \\ \hline \end{gathered}$
		$1 / 4 \mathrm{Dla}$.	3/8 Dla.	$1 / 2 \mathrm{Dla}$.	3/4 Dla.	11/2 Dla.	Fig.	
"N" Female	N	NR*	1.28	1.28	1.4	1.7		
"N" Male	NP	NR*	1.23	1.23	1.31	1.65		.
BNC Female	B	NR*	1.0	1.0	1.35	1.42		DC.1GHz
BNC Male	BP	$N R^{*}$. 93	. 93	1.45	1.35		DC.1GHz
TNC Female	T	NR*	1.0	1.0	1.35	1.42		DC. 10 GHz
TNC Male	TP	NR*	. 93	. 93	1.45	1.35		DC.10GHz
SMC Female (Screw On)	S	. 6	. 73	. 73	. 73	. 73		DC.4GHz
SMC Male (Screw On)	SP	NR*	. 81	. 81	. 81	. 81		DC-4 GHz
SMB Female (Snap On)	A	. 6	. 73	. 73	. 73	. 73		DC.4 GHz
SMB Male (Snap On)	AP	$N R^{*}$. 81	. 81	. 81	. 81		DC-4GHz
"F" Female	F	NR*	NR*	1.05	1.05	1.05		DC.800 MHz
SMA Female (Standard)	0	. 6	. 8	. 8	. 8	. 8		DC. 20 GHz
SMA Female (Right Angle)	DO	NR*	. 6	. 6	. 6	. 6	2	DC. 3 GHz
SMA Female (Right Angle Square)	EO	. 55	. 65	. 65	. 65	. 65	5	DC. 3 GHz
SMA Male (Standard)	OP	. 73	. 85	. 85	. 85	. 85		DC.20GHz
SMA Male (Right Angle)	DP	NR*	. 6	. 6	. 6	. 6	2	DC.3GHz
SMA Male (Right Angle Square)	EP	. 55	. 65	. 65	. 65	. 65	5	DC.3GHz
Cable, RG 188 (Rilght Angle Standard)	C	45	. 5	. 5	. 5	. 5	1	DC. 3 GHz
Cable, RG 188 (Straight)	CS	. 45	. 55	. 55	. 55	. 55	4	OC. 3 GHz
Solder Lug	L	. 40	. 45	. 45	. 45	. 45	6	DC-20GHz
PC Mount (Right Angle)	P	-	-	.	-	-	-	-

dimension of .08 inches. The tota
length is 3.6 inches since there
a connector at each end of the
filter.

rt. ancle sma-female or male

NR* = Not Recommended

- For PC Mount, contact factory.

Approximate* Dimension " A " - Length vs. Frequency

No. of Sections	Frequency (MHz)				
	150-200	201-300	301-400	401-3.000	${ }^{3.0000}$
	11/6	1214		1/2	
${ }_{4}^{3}$	2\%	3\%	2\%,	$2^{1 / 2}$	\cdots
5	${ }^{46}$	8\%	34.4.	${ }_{3}^{21 / 2}$	1%
${ }_{7}$	8\%	${ }_{5 \%}$	${ }_{44}^{44}$	3 3/2	${ }_{2}$
9	\% ${ }_{8 \%}^{7 \%}$	\% ${ }^{6,1}$		$4_{4 / 2}$	${ }^{2} \cdot$
10	年	7%	6\%	${ }_{5}$	

\author{

No. of	
	Frequency (MHz)

}

$\begin{aligned} & \text { No. of } \\ & \text { Sections } \end{aligned}$	Frequency (MHz)							
	$100-$ 200	${ }_{300}^{201 .}$	${ }_{800}^{301 .}$	$\begin{aligned} & 8.000 \\ & 2000 \end{aligned}$	${ }_{4.000}^{2.007}$	7.000 ${ }^{\text {a }}$	${ }^{7} 1.0001$.	(11.000.
${ }_{2}^{2}$	14.	"'1						
${ }_{4}^{3}$	21/2,	?		年16	${ }^{3}$	1	${ }^{5 / 8}$	
5 6	4	23	2	2%	1\%	1/8	${ }_{1}^{7 / 8}$	
${ }_{7}$	4\%	${ }_{34}^{34}$	2%	2\% 2%				
9	$7{ }^{7 \prime \prime}$	4.	3	21. 3.6 3				
${ }_{10} 9$	${ }_{8}^{8}$	4.4.	${ }_{4}$					

$\begin{aligned} & \text { No. of } \\ & \text { Sections } \end{aligned}$	Frequency (MHz)				
	100-210	211-350	351-600	601-1.200	1.201-4.000
${ }_{3}^{2}$	${ }_{3}^{21 \%}$	110/4	1/6	\% ${ }^{1 / 12}$	1%
${ }_{4}^{3}$	83\%,	${ }_{24}^{2}$	${ }_{2}^{1 / 1}$	${ }_{3}^{2 \%}$	$11 / 1$.
6		31/2,	$3_{3}^{2 k}$	$3_{4}^{3 / 2}$	${ }_{2}^{2 \%}$
${ }_{7}^{6}$	7\%	${ }_{5}{ }^{4.4}$	3/4	$4{ }_{4}$	
8	$8{ }^{8}$	54.	4	5	
9	9\%\%	${ }_{7}^{61 / 2}$	${ }_{5}^{46}$	${ }_{6}^{51 / 2}$	

($\begin{aligned} & \text { No. of } \\ & \text { Sections }\end{aligned}$	Frequency ($\mathbf{M H z}$)							
	${ }_{60}^{40}$	${ }_{70}^{61 .}$	${ }_{90}^{71 .}$	${ }_{150}^{91}$	$\begin{aligned} & \begin{array}{l} 151 . \\ 210 \end{array} \end{aligned}$	${ }^{211 .}$	${ }^{601} 1.900$	${ }^{1.0000}$
	4	3	2\%/		1/2/	${ }^{1 / 4}$		
${ }_{4}^{3}$	9	7	${ }_{5}^{412}$	3\%	${ }_{3}^{2 \%}$	$2_{21 / 2}$	11/2	11/6
5	11	9	7	5\%	3*	3	${ }^{14}$	2
6 7	(138	11	${ }_{10}{ }^{80^{\prime}}$	\% 7%	5\% ${ }^{4} /$	${ }^{3 \prime \prime}$	2\%	${ }_{3}^{21 / 2}$
8	18	15	11%	8:/2	6	4*/	4/3	31/2
909	${ }_{22}^{20}$	17	134,	9\%	6\%	5	4*	

Secilons	Frequency (MHz)						
	${ }_{40}^{25 .}$	${ }_{50}^{41}$	${ }_{80}^{51 .}$	${ }_{140}^{81 .}$	${ }_{400}^{141^{\circ}}$	${ }_{1}^{40000}$	${ }_{2.000}^{1.001-}$
${ }_{4}^{3}$	${ }_{12}^{8 / 2}$	$\underset{\substack{54 \\ 7}}{ }$	${ }^{4} \times 1 \%$	${ }_{4}^{3 \%}$	${ }_{3}^{26}$	$3{ }_{4}^{3 / 4}$	214
5	15	10	8\%	4k	${ }^{3 *}$	$4{ }^{4} 16$	316,
${ }_{7} 7$	18 21 21	- 12%	11	6\%	5\%,	6 $61 / 2$	4/2
8	24	${ }^{18}$	${ }^{121 / 2}$	7\%	6	$7{ }^{7}$	${ }^{51}$
9	27	20*	14.	8	${ }^{64}$	8	$\stackrel{6}{6}$
10	30	23/2	15\%	8*	7 ,	8.	$6^{\prime \prime}$

$\begin{aligned} & \text { No. of } \\ & \text { Sections } \end{aligned}$	Frequency (MHz)				
	10.15	16-30	31-100	101-200	201-1.000
${ }^{2}$	${ }_{11}{ }^{7}$	${ }^{5} 1$	${ }_{5}^{4}$	3,	${ }_{3}^{2 \prime *}$
${ }_{4}^{3}$	11	${ }_{10}{ }^{7 / 2}$	$7^{5 / 2}$	$4{ }^{3 / 2}$	34
5	17	1212	${ }^{817}$	51/2	4/1/
${ }_{7}^{6}$	${ }_{23}^{20}$	$\stackrel{15}{176}$	11%	\% 7	${ }_{6}{ }^{4}$
${ }_{8}^{8}$	26 29 29	${ }_{220}^{20}$	13	${ }_{8}^{8 \prime}$	${ }^{611}$
${ }_{10}^{9}$	${ }_{32}^{29}$	${ }_{25}^{221 / 2}$	${ }_{16} 14$.	10'2	$8{ }^{\text {\% }}$:

WEIGHT (ounces)

L250	L380	20	1.340	418
ree incin	$\begin{aligned} & \text { y, or } \\ & \text { per inch } \end{aligned}$		$\begin{aligned} & 4.02 . \\ & \text { per } 11 \mathrm{nch} \end{aligned}$	$\begin{aligned} & \text { 1e, oz } \\ & \text { per inin } \end{aligned}$

Tubular Filters

Tubular Filters

The following curves are used in determining the out-of-band atten ation for K\&L's five series of tubular filters. The curves show ples of 3 dB bandwidth dB , as multiwith 2 through 8 sections.

For the most part, K\&L filters are tree of spurious responses. How-
ever due to case moding or when resonance develops, spurious responses can occur. It is there-
fore advisable that the user specify the frequency which is to be sp ous-free. By doing so, K\&L can incorporate compensating networks to eliminate the spurious responses at no degradation in the passband frequencies.

Important Note: The stopband important Note: The stopband for specific schematics shown as figures 1 and 2 respectively on page 10. As this series is computer designed, necessitating unique component valu other schematics may be
utilized which will yield diffe attenuation characteristics (e.g., steeper on the high frequency side of the passband and shallower on the low fre quency side). Filter types such as elliptic function, linear phase also be specified. For specia requirements, consult the factory for specifications meeting your particular needs.

5-15\% BANDPASS

To determine which series of
curves to use, first calculate the percentage 3 dB bandwidth from he formula

$\% B W=\frac{3 \mathrm{db} \text { BW }}{\text { Center freq. }} \times 100$

determine the number of bandwidths (3 dB) from center frequency, se the following formula:
$S_{B} B W=$ Reject freq. - Center freq. 33dB BW

रह1

15-30\% BANDPASS

EXAMPLE:

Center frequency $=300 \mathrm{MHz}$
3 dB Bandwidth $=50 \mathrm{MHz}$
Number of sections $=6$
Determine attenuation at 200 MHz
and 400 MHz

1. Calculate $\% \mathrm{BW}=\frac{50 \times 100}{300}=17 \%$
2. $-3 \mathrm{~dB} \mathrm{BW}=\frac{200-300}{50}=-2 \mathrm{BW}$
3. $+3 \mathrm{dBBW}=$
$\frac{400-500}{50}=+2 \mathrm{BW}$

Referring to the curve for
$15 \%-30 \%$, a 6 -section response
-2 BW yields 64 dB , and +2 BW -2 BW yields 64 dB , and

WJ-A77-1

INPUT	POWER: $A \subset 7-1$ $600 \mathrm{MH}$	$-11 d B m$ AMPLIFIS			ETURN LOSS RETURN LOS. CURRENT
$=12$	511	512	521	522	Is Q +
S. 1	-17	-20	15	-19	50 mA
5.2	-17	-18	17	-15	50 mA
-65. 3	-17	-18	16	-15	48 mA
5.4	-10	-18	17	-15	50 mA
55	-13	-18	1.6	-14	50 mA
, 36	-16	-18	17	-13	50 mA
S7	-16	-18	17	-14	50 mA
358	-17	-20	15	-15	48 mA
0.59	- ${ }^{5}$		17.5		Yi.nA
910	-16-3	-17.5	± 16	16	49 mat
SII.	-15	-17	+1/16	$=22$	50 mA
issil	-145	-17	+15	-19	40.mit
SFS_{5}	- 16	-17.5	+15.	-17	48 mai
$\therefore 514$.	-15	-17	+16.5	-15.5	48.8
5.15	-13.5	-17.5	11.6	-17	$48 . \mathrm{mw}$
C 10	-138	-18	+15	-2c	4 mmz
517	-15	-17	$+16$	-16	49 mr
518	- $26: 5$	12.5	- + / 6	-15	50M1
519	-15	-17	+16	-15.5	50.80
- 520	-15	-7\%	+16	-15	\% 5 Mr
S21	-13.5	-125	$4 / 16$	-19	48 At
S22					
523					.
5.24					\ldots
5.25				-	-
5.26					
S. 27					-
5. 28					
S. 29					
- C .30					4
					\cdots
(-					$\frac{2}{4}$
					5 T
				\cdots	$\because 2$
					-

RF HYBRID AMPLIFIER ASSEMBLY
X AY 5029-X

AYDIN VECTOR oIvision
-4 367° 응

- Guaranteed Specifications
- Quality Product
- Wide Bandwidth 5-250 MHz
- Gain $\mathbf{6 5} \mathrm{dB}$
- 1 dB Gain Compression +12 dBm .
- Temperature Stability $-\mathbf{5 5 ^ { \circ }} \mathrm{C}$ to $\mathbf{1 0 0 ^ { \circ }} \mathrm{C}$
- Choice Of Connector
general description:
The AY series of amplifier assemblies consists of multiple modular amplifiers. The hermetically into a microstrip circuit board which is enclosed in the aluminum housing. A choice of connector is vailable.

QUALITY ASSURANCE
The Quality system is approved to MIL-Q-9858A. Units are designed to meet environmental requirements of MIL-STD-883B.

APPLICATIONS:
RF Preamplifiers, IF Gain Building Blocks, Isola tion Amplifier, LO Buffer Amplifiers.
Used in Phased Arrays, ECM Receivers, Satellite Communications IF's, Direction Finding Systems, instrumentation, Radar Receivers, Transceivers.

ENVIRONMENTAL
All standard products are screened to MIL-STD 8838, Class B with the exception of burn-in. Tests such as, Temperature Cycling, Accoleration, Hermeilicy Centrifuge and Fine/Gross Leak. Burn-in $(168 \mathrm{hrs}$.) will be performed upon request.

GUARANTEED:								
ELECTRICAL SPECIFICATIONS	$\begin{gathered} \text { GAIN } \\ \mathrm{dB} \end{gathered}$	FLATNESS IdB	NOISE FIGURE (dB)	$\begin{aligned} & \mathrm{IMP}_{3} \\ & \mathrm{dBm} \end{aligned}$	POWER OUTPUT dBm	INPUT/ OUTPUT VSWR	REVERSE ISOLATION (dB)	
Maximum								
Typical	65	± 1	2.2	+31	+12		70	$+15$
Minimum								

AYDIN VECTOR division / P.O. Box 328, Newtown, PA 18940 Main Offices \& Plant: Newtown Industrial Commons, Newtown, PA

TYṖICAL TEST DATA

GAIN $_{65}^{66}$

Assemblies available with BNC, TNC, N or SMA connectors.

TNC Connectors	AY5029	-1
BNC Connectors	-2	
N Connectors	-3	
SMA Connectors	-4	

NOTE: ALL DIMENSIONS IN INCHES.
Bulleotin Na: 18008029/6-82-1M/Printed in USA. AYDIN VECTOR division
Friends Lane, P.O. Box 328 Phone: (215) 968-427 Newtown, Pa. 18940

Phone: (215) 968-427
Rugyrdized Airborne Components \& Systems Transmitterx....Commutators....PC.II Encoders Subcarrier (iscillators.... Tele:metry Systems

AYDIN MONITOR systems
401 Commerce Drive Phone: (215) 646.8100 Fort Washington, Pa. 19034 TWX: 510.661.1520

$$
\begin{aligned}
& \text {,round Based Compunemts os }- \text { - tomis } \\
& \text { PAM/PDW/PCU Sinulatur- \& Sychemizor } \\
& \text { P(a, Deammultatora... oomphater mberan }
\end{aligned}
$$

AYDR VECTOR division

TEST DATA

Remarka: GSI \qquad in

Form Yo. 110-E-1:3

Harmonic Mixer

A2S124 Mixer Diode, TRW-Aertech

Schothy Kigh Eamier Kiver Diodes
Series L 2 S 100
Features

- Lowest Available Noise Figure
- Low Intermod Distortion
- High Peak Power Handling Capability
- High Reliability (Space Qualifiable)

Description
The TRW Microwave A2S100 series of diodes em. ploys a relatively high barrier metal/silicon Schottky junction. This produces diodes which have very low noise figures and are capable of operation over
versions are available upon request.

Environmental Ratings (Maximum)
Perating Temperature. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Storage Temperature $\ldots \ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Power Dissipation $₫ 25^{\circ} \mathrm{C} \ldots \ldots . . .200 \mathrm{~mW}$. Derate linearly Soldering Temperature $230^{\circ} \mathrm{C}$ for 5 seconds

Electrical Specifications @ $25^{\circ} \mathrm{C}$ - High Turn-on ($\mathrm{V}_{\mathrm{F}}=530 \mathrm{mV}$ Typ. @ 1 mA$)$

$\begin{gathered} \text { Parr' } \\ \text { Number } \end{gathered}$	$\begin{aligned} & \text { Test' } \\ & \text { Frequency } \\ & (\mathrm{GHz}) \end{aligned}$	$\begin{gathered} \text { Case } \\ \text { Style' } \end{gathered}$	Noise Figure ${ }^{2}$ Typ (dB) Max (dB)		$\begin{aligned} & \text { Max }^{2} \\ & \text { VSWR } \end{aligned}$		Typical Parameters ${ }^{\text {a }}$		
					$\begin{gathered} c_{i} \\ (\mathrm{pF}) \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{BR}} \\ \left(\mathrm{Volts}^{2}\right) \end{gathered}$		
A2S101	${ }^{9.375}$	P	5.6	6.0		1.5	200-400	0.12	3.0
A2S103	9.375	P	6.5	7.0	2.0	200-400	0.12	3.0	
A2S106	9.375	L	5.6	6.0	1.5	200-400	0.12	3.0	
A2S108	9.375	L	6.5	7.0	2.0	200-400	0.12	3.0	
A2S121	16.0	p	6.0	6.5	1.5	175.350	0.10	2.0	
A2S124	16.0	P	6.5	7.0	2.0	175.350	0.10	2.0	
A2S122	16.0	L	6.0	6.5	1.5	175.350	0.10	2.0	
A2S123	16.0	L	6.5	7.0	2.0	175-350	0.10	2.0	
A2S120	${ }^{9.375}$	$\cup 4$	6.0	-	1.5 (typ)	300 (typ)	0.12	3.0	
A25029	9.375	N6	6.0	-	1.5 (typ)	300 (typ)	0.12	3.0	
${ }^{\text {A22S130 }}$	3.0		5.5	-	1.5 (typ)	300 (typ)	0.40	5.0	

Typical Performance Data © $\mathbf{2 5}^{\circ} \mathrm{C}$

"denoter pair:
$\Delta N F_{i}<0.388$
$\Delta Z_{1} \leqslant 25$

TRW Microwave
ABta

Diode Cutine Dinensions
case style "A"
CASE STYLE "c"
case style "o"
品

case strle "e"
case strle "a"

CASE STYLE "H"

CASE STYLE " ${ }^{\prime \prime}$ "

Note: Preckonere not noctiony down io ine sme icale.
46

6.0 APPENDIX

List of Relevant NRAO Technical Reports and Data

NRAO Technical Reports

VLA Technical Report No. 29, An Introduction to the VLA Electronic System A. R. Thompson 3/77
VLA Technical Report No. 8, Module L6 The $2-4 \mathrm{GHz}$ Synthesizer A. R. Thompson February 1976
VLA Technical Report No. 7, Module F4 Frequency Converter, S. Weinreb July 1975
VLBA Technical Report No. 4, 2-16 GHz Synthesizer, L104 Robert I. Mauzy June 11, 1987

VLA System Drawings

D16000B03 VLA System RF Block Diagram

X-Band System Drawings

A13050P20
C13165B02
B13030M21
B13030M17
B13030M58
B13050M56
C13030M30
C13030P11
C13600M01
C13165B02
$\mathrm{Bin} /$ Module OSP Connector Interface
8 - 10 GHz Receiver Block Diagram
F-Rack to B-Rack Cables
Connector/Pin Mod. UG-603A/U
B-Rack Connector Bracket
B Rack Support Bracket
F-Rack to B-Rack Cable Support
Cable Support Assembly
D-Rack Filter Bracket
8-10 GHz Receiver

[^0]: ${ }^{1}$ VLA Technical Report No. 29, page I-2

[^1]: ${ }^{2}$ Art of Electronics, Horowitz and Hill, page 648

[^2]: ${ }^{3}$ VLA Technical Report No. 8, page 5-2
 4 VLBA Technical Report No. 4, page 15

[^3]: NOTES:

 1. Rating applies for case remperature to $+25^{\circ} \mathrm{C}$: derate linearly at $6.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $+25^{\circ} \mathrm{C}$.
 2. For supply voitages less than $\pm 15 \mathrm{~V}$ the absolute maximum input voltage is equal to the supply voltage.
 3. Short-circuit may be to ground or one amplifier only. I $\mathrm{CC}=45 \mathrm{~mA}$ (typical).
[^4]:

