VLA Technical Report No. 71 VOLUME 1

THE VLA WYE MONITOR SYSTEM HARDWARE

Philip Dooley, Arthur Sittler, Nelson Atencio, David Weber 8/94

TABLE OF CONTENTS

1.0 INTRODUCTION 1
Implementation Concept and System Components 1
Manual Content 2
2.0 THEORY OF OPERATION 3
2.1 Important Properties and Specifications 3
Important Properties 3
System Specifications 5
2.2 Message Format and Protocol 7
Message Format 7
Message Error Detection 8
Message Protocol 8
Hardware-Software Interactions 10
2.3 Telescope Operator Interface 13
2.4 Bus Signal Driving and Receiving 21
Bus ConditionsBus Surge Voltage Limiting21
Bus States 22
Bus Drive Circuitry 22
Bus Signal Waveform 23
Bus Receive Circuitry 23
RS-232/Bus Level Conversion 25
Bus Transmission Errors 25
2.5 87C51FA Microcontroller Description 27
Special Function Registers 28
1/O Ports 28
Timers/Counters 30
Timer/Counters 0 and 1 31
Timer 2 32
PCA, Programmable Timer/Counter Array 32
Serial Port Interface 33
Internupts 35
Priority Level Structure 37
How Interrupts are Handled 37
External Interrupts 38
Response Time 39
Reset 39
2.6 WYE Monitor System PC Configuration 41
2.7 WYE Monitor PC Interface Bin 43
WYE Monitor Watch-Dog Timer 43
WYE Monitor PC Transceiver Module 46
WYE Monitor Power Supply Module 47
WYE Monitor A\&B Switch Box 48
2.8 Isolated CPU Interface Board 49
2.9 M26 Module and its Interface with the Antenna Systems 53
Front Panel Test Point Connector 54
Antenna Systems Interface Signal Characteristics 54
Command Interface Circuits 55
Monitor Interface Circuits 56
Spare Functions 57
M26 Address Inputs 57
ACU Fault Board 58
M26 Power 59
ACU Discretes and their Relationships to M26 Discretes 60
2.10 M27 Auxiliary Monitor and its Interfaces with the Generators and UPS's 61
Front Panel Test Point Connector 62
M27 Command Interfacer Circuitry 62
M27 Monitor Interface Circuitry 62
M27 Address Inputs 63
M27 Power 63
Generator and Master Cubicle Interfaces 63
Master Cubicle Interface Signal Characteristics 64
Generators 1 and 2 Interfaces with M27 65
Correlator and Computer UPS Interfaces 66
Correlator and Computer UPS Interfaces with M27 67
2.11 M29 Auxiliary Utility Module 69
Front Panel Test Point Connector 70
M29 Isolated CPU Interface Board 70
M29 Command Interface Circuitry 71
M29 Address Inputs 71
Discretes Monitor Interface Circuitry 71
RS-232 Interface 72
AD590 Interface 73
Analog Multiplexing and A/D Conversion 74
7555 Clock 79
Digital Multiplexer 79
M29 Power Supplies 79
M29 Interface Signal Characteristics, Discretes Signals 80
2.12 M28 Power Supply/Battery Module 83
2.13 WYE-COMM Cable System 85
2.14 Module Alignment 87
PC Transceiver Module 87
Watch-Dog Timer Module 87
Bin Power Supply Module 87
M26 Antenna Interface Module 89
M27 Auxiliary Module 89
AD590 Interface Circuits 90
M28 Power Supply/Battery Module 91
3.0 WYE MONITOR SYSTEM AND RELATED FUNCTIONAL DRAWINGS LIST 93
4.0 APPENDIX 95
CRC Algorithm Description 95
List of WYE Monitor System Commercial Hardware and Software Documentation 98
5.0 SPECIAL-PURPOSE COMPONENT DATA SHEETS 99

LIST OF ILLUSTRATIONS

Figure 1 VLA WYE Monitor Screen 16
Figure 2 Correlator UPS Screen 17
Figure 3 Typical Antenna Screens 18
Figure 4 Typical Generator Screens 19
Figure 5 Typical Facility Screens 20
Figure 6 87C51FA Architecture 28
Figure 7 87C5IFA Special Function Registers 29
Figure 8 87C51FA I/O Ports 29
Figure 9 Timers 0 and 1, Mode 2 Configuration 31
Figure 10 Programmable Counter Array 32
Figure 11 PCA Timer/Counter 32
Figure 12 PCA Module, 16-Bit Software Timer Mode 33
Figure 13 Serial Byte Format 34
Figure 14 Serial Port, Mode 3 34
Figure 15 Interrupt Sources 36
Figure 16 Control System 36
Figure 17 Interrupt Response Timing 38
Figure 18 M29 PAL Logic Implementation 76
Figure 19 M29 PAL State Diagram 78
Figure 20 WYE Monitor CRC Generator Model 96

1.0 INTRODUCTION

WYE Monitor System Description

This manual describes the Very Large Array WYE Monitor system and its components. This system is a supervisory control system that provides the VLA telescope operator with comprehensive command and monitoring capabilities for VLA systems. The system was implemented to improve the control of antenna safety systems and to implement telescope operator control of major VLA facility support systems. Block Diagram C13900B12, following this section, shows the structure of this system. Important system properties and specifications are described in Section 2.1.

Implementation Concept and System Components

As shown on the block diagram, the heart of the system is an IBM-compatible personal computer (PC) that executes a control-monitor and operator interface program. The control program is the logical heart of the system; the balance of the system operates in response to program stimuli. The PC is the signal nexus and drives four buses that carry digital monitor and control messages in the WYE-COMM cables. Three of the buses are used for antenna systems and are carried in the existing North, East, and West Arm WYE-COMM cables. The fourth bus is carried in the existing Auxiliary WYE-COMM cable that is routed around the control-maintenance building complex. Devices in the control building are serviced by an extension of the Auxiliary bus.

The PC transmits command messages to the antennas and facility support systems and polls these devices for monitor data response messages. The narrow-band, time-serial digital messages operate in the half-duplex mode. The buses are multi-drop, single twisted-pair lines in the WYE-COMM cables. Message formats and protocol are described in Section 2.2

WYE Monitor system device interfacing is performed by control interface modules (M26, M27 and M29) bridged across the party-line buses. M26, M27 and M29's device interface circuitry is adapted to the requirements of the serviced device. A device is an antenna, HVAC system, generator system, etc. These modules and their interfaces to the controlled devices are described in Sections 2.8 through 2.11.

The VLA telescope operator interacts with the system via an Elographics Intellitouch Touch Screen CRT interface and a Covox Soundmaster II voice-message annunciator, both driven by the control PC. The Touch Screen display images resemble conventional system control panels equipped with illuminated push-button switches and display lights. The telescope operator initiates all commands via the Touch Screen interface and the Touch Screen displays system status and data. The Touch Screen displays are a set of nested heirarchal menus that provide detailed device control-monitor features. The PC drives a voice-message annunciator to alert the Telescope Operator to abnormal and alarm conditions. The operator interface is described in more detail in Section 2.3.

The system provides a high degree of reliability because it is not vulnerable to power losses and messages are subjected to rigorous error detection during reception. The command message protocol assures the correct reception of command messages because the addressed module echoes back the command message to the control PC for verification.

The system also has provisions to detect malfunctions in the execution of the PC control program. A Watch-Dog timer connected to the PC printer port senses periodic port activity. In the event of a
program crash or a loop hang-up, the Watch-Dog timer turns off the PC power for a few seconds to induce a power-on reset and program re-start. A hot spare back-up system can be quickly switched online in the event of a failure in the PC or the associated bus interface equipment.

The system also verifies that VLA observing control programs in the Modcomp computers are operating normally. Lines from these two computer's serial ports periodically signal that the program operations have reached a programmed flag point. In the event of a program crash or loop hang-up in either computer, these signals will not be emitted and the PC control program will alert the telescope operator by a voice alarm message.

The system does not perform astronomical observation control and monitor functions; this is done by the existing Monitor and Control System in conjunction with the antenna and control building electronics systems.

This brief system description highlights major aspects of the system. Section 2 below describes the system and components in more detail.

Manual Content

This manual describes the system's functional characteristics, command and monitor message formats, message protocol and error detection features, bus signal transmission and reception, telesc ope operator interface, the system component's theory of operation, hardware-software interactions and the M26, M27 and M29 control module's interfaces to controlled devices.

This manual does not describe the WYE-COMM voice communication system although the WYECOMM cable drawings are included to show the WYE Monitor system signal distribution. Similarly, other than citing interface details, the manual does not describe the antenna ACU and antenna support equipment, the VLA facility back-up power generators and switch gear, the control building HVAC system and the computer and correlator UPS systems.

Although important features of the PC are cited, this manual does not describe the PC, the Touch Screen or annunciator equipment. Commercial documentation is available for this equipment.

Other than the hardware-software interactions, this manual does not describe the system's software and firmware programs; these are the subjects of a second manual, Volume II.

2.0 THEORY OF OPERATION

2.1 Important Properties and Specifications

Important Properties

Important system properties are:

- The system is not vulnerable to 110 VAC power failures. Some components are powered by Uninterruptable Power Sources (UPS's), others by M28, a battery-backed power supply module and the M26 antenna interface is powered by the antenna fire alarm batteries.
- Since time-division multiplexing is used on the single-pair party-line buses, the system is not limited by WYE-COMM cable conductor capacity. The previous implementation of the antenna reset, Emergency Stop and the fire alarm monitors was a hard-wired system that was very conductor-limited. As a result of these limitations, this earlier equipment had to share functions on a common line; for example, the NCP breaker reset function reset all antenna NCP breakers on an arm. Similarly, the ACU reset momentarily turned off the ACU power for all ACU's on an arm; this reset function perturbed the observations of all antennas on the affected arm. The antenna fire alarms were also sensed on an arm-wide basis. To identify the antenna that had activated the fire alarm, the telescope operator had to call up antenna overlays one-by-one to see if critical power had been shut down - a slow process that required several minutes. Because of the cable conductor limitations, it was not possible to monitor the antenna stow-pin states.
- The system includes the functions performed by the previous dissimilar, hard-wired antenna control-monitor equipment and also incorporates antenna monitoring functions that were not possible with the previous equipment and WYE-COMM cables. The system has the capacity to add new antenna control-monitor functions.
- The system improves the telescope operator's cognizance of the VLA system's status by providing control-monitor capability for important VLA facility systems hitherto either obscure or unimplemented.
- The system simplifies Telescope Operator control/monitor interactions because one simple, unified interface replaces several antenna/facility interface panels. The system provides equipmentspecific voice messages that describe status and alarms - these immediately identify abnormal conditions and alarms and reduce the need for frequent visual status checks of the Touch Screen displays.
- Interface applications are implemented by the use of control interface modules driven by the WYE Monitor and Control bus. The control interface contains a standardized bus interface board subassembly that interacts with the party-line bus. Virtually any device control-monitor implementation is possible by "tailoring" the module's I/O circuitry to the device's interface requirements.
- The system can easily be expanded by adding additional interface modules to a capacity of 32 interface modules per bus.
- Since the digital messages have a 16 -bit command and monitor data argument format, the interface's command and monitor data capacities are 16 bits of command or monitor diccretes in any combination.
- Since the line drivers output a powerful signal on the bus lines and the signal detection is differential, the command-monitor messages are almost invulnerable to WYE-COMM cable crosstalk. Surge arrestors on the bus lines protect the equipment from surge voltages.
- Signal transmission is less sensiti ve to WYE-COMM cable length than the earlier antenna controlmonitor circuitry.
- When an antenna is moved, reconfiguration of location and address are easily input to the control program in the PC.
- The system is independent of the antenna waveguide communication system so that it is not vulnerable to failures in this equipment.
- Optically-coupled isolators in the bus line receivers protect the receiving circuitry from high voltage spikes induced in the lines by lightning strikes to the antennas, rails, buildings and the earth. To date, no control interfaces have been damaged by lightning strikes.
- Optical isolators in the control module's parallel control/monitor lines protect the module's microcontroller from high voltage spikes in the device interface lines. These isolators also prevent ground-loop interactions between the devices and the control interface modules.
- A latent capability for expanding the interface module's command and monitor capacity has been incorporated in the message format but this feature has not been incorporated into the control interfaces because usage has shown that the present capacity is adequate. Implementing this capability would require changes in the hardware and firmware design. The message format assigns two address bits that could be used to designate 16 -bit command or monitor functions. The four address states could expand the the capacity of the control interface to 64 bits by multiplexing I/O port lines. This 64 bit latent capacity could be any combination of command or monitor discretes.
- In addition to the system's simple discrete on-off command and monitor functions, it also performs more complex control and logical operations on some VLA equipment. For example, the antenna ACU reset function requires issuance of two commands at a five-second time interval. The antenna NCP breaker reset requires a similar dual command sequence. The system also issues phase synchronization commands to the Correlator and Computer UPS units. When the backup power generators are coming on line to assume the VLA loads, the Correlator and Computer UPS unit's output phase must be synchronized to the generator's phase before the UPS's can transfer their loads to the generator's AC power. The PC program's logic senses the loss of the commercial power and issues these UPS synchronization commands.
- Part of the operator interface is a Touch Screen CRT terminal that can display many control menus which are specialized for each device's control and monitor requirements. The hardware counterpart of the Touch Screen CRT and control menus would be a hardware control panel with many push-button, selector and toggle switches, status indicator lights, numeric displays, etc. In contrast, a hardware control panel for these functions would be very large and possibly intimidating to operate.
- The system monitors program execution in the two VLA Modcomp array control computers. The G10 and Dump programs each periodically output a serial message to the M29 module to indicate proper program execution. In the event of a program crash or loop hang-up in either computer, the periodic serial message will not be output and the system will alarm the telescope operator via annunciator messages and the Touch Screen's displays.

System Specifications

Message Bit Rate: 300 Baud.
Monitor Data Polling Rate per Bus: $450 \mathrm{mS} /$ Interface.
Antenna Bus Monitor Data Polling Rate per Antenna: 4.05 Seconds.
Auxiliary Bus Monitor Data Polling Rate per device: 2.7 Seconds.
Bus Interface Unit Capacity: 32 interface module addresses.
Interface Unit Command Capacity: up to 16 discrete commands.
Interface Unit Monitor Capacity: up to 16 discrete monitor lines. ${ }^{1}$
Command Latency Time: 225 milliseconds.
Verification Time for Commanded States: 900 mS .
Number of Antenna Monitor Functions: 9/antenna.
Number of Antenna Command Functions: 3/antenna.
Number of Auxiliary Bus Command Functions: 3.
Number of Auxiliary Bus Monitor Functions: 31.
Number of Auxiliary Bus Analog Functions: 2.

[^0]Device Interface Line Signal Characteristics: There are no specifications since the interface circuitry is typically "tailored" to the the device's requirements.

2.2 Message Format and Protocol

Message Format

The system uses four types of five-byte, time-serial digital messages. Command and Monitor Request messages are output by the PC control program and addressed to the interface designated by the state of the Unit ID bits (described below). In response to either of these two messages, the addressed interface emits a Command or Monitor Acknowledge message that is read by the PC control program. The Command Acknowledge message is a literal "command echo" in which the command message Unit ID, Port 1 and Port 0 argument values are used in the Command Acknowledge message format. The Command Acknowledge message is used by the PC control program to verify that the Command message was correctly received. The state attained by a control interface in response to a Command message is read out as a Monitor Acknowledge message in response to a Monitor Request. The Monitor Acknowledge contains the data requested by the Monitor Request and is used by the program to evaluate the state of the system. The format of these messages is shown below; detailed descriptions of the bit functions follow the format definitions. SYNC, the most significant byte, is transmitted first and the CRC byte ends the message.

Byte Functions	Sync		nit	10	$\begin{aligned} & \text { Port } 1 \\ & \text { (LSB) } \end{aligned}$	Port 0 (MSB)	CRC
Basic Formet	$s_{0} \ldots \ldots s_{7}$	X	MM	$U_{0} \ldots U_{4}$	$A_{0} \ldots \ldots A_{7}$	$\mathrm{A}_{8} \ldots \ldots \mathrm{~A}_{15}$	cccccccc
Message Type							
Command	00010110	1	MM	UUUUU	AAAAAAAA	AAAAAAAA	cccccccc
Monitor Req	00010110	0	MM	UUUUU	00000000	00000000	cccccccc
Command Ack	E0000110	1	MM	VUUUS	ARAAAAAA	AAAAAAAA	cccccccc
Monitor Ack	E0000110	0	MM	UUUU	maAAAAAA	AAAAAAAA	CCCCCCCC

The Sync byte signals the start of a message; a Unit ID (address) byte designates a specific control interface; Port 1 and Port 0 bytes are the command or data argument; and the CRC byte is an error detection code formulated over the first four message bytes.

The byte format is an 11 bit format; in time order these are Start, 8 Data Bits (LSB first), Parity Bit and Stop bit.

Note that the 8 bits of the Sync byte are identical in the Command and Monitor Request messages; this Sync byte designates messages output by the PC. Similarly, the upper 7 bits of the Command and Monitor Acknowledge messages are identical but different than the Command and Monitor Request messages; this Sync byte designates messages to be input to the PC. The E bit on the Command and Monitor Acknowledge message Sync bytes indicates that the addressed control interface detected a parity error in the message (see error detection below).

The first bit in the Unit ID byte designates the character of the message; a 1 designates a Command or Command Acknowledge message and a 0 designates a Monitor Request or Monitor Acknowledge message.

The five U bits in the Unit ID byte are a five-bit address that designates a specific control interface. U_{0} is the least significant bit and U_{4} is the most significant bit. The encoded address is hardwired on the control interface bin backplane wiring to eliminate the requirement for address-encoding switches in the control interface module - these could be set erroneously during module changes or installation. In the case of M26, the antenna control interface, the encoded address corresponds to the antenna serial number.

The MM bits are reserved for potential future use as a multiplex address. At present these bits are set to the 0 state by the PC and the control interfaces.

The Port 1 and Port 0 bytes are the 16 bit message argument and the Port 1 byte is the most significant byte. These designations are those used by the control interface's 87 C 51 microcontroller I/O ports. A_{0} is the least significant bit and A_{15} is the most significant bit. In most of the control interface applications, the message arguments are discrete functions but in the case of the M29 module, there are two monitor data arguments. One argument is an encoded analog value and the other argument is a set of 16 discretes. Four bits in the Command message determine the selection of the monitor data. Section 2.15 describes the M29 circuitry and usage of these bits in selecting the monitor data arguments.

Message Error Detection

The last byte (C bits) in the message is the CRC byte. This byte is a Cyclic Redundancy Code formulated over the first four bytes of message data by the message transmitter. During the reception of a message, the receiving unit (i.e. PC or control interface) analyzes the four data bytes of the incoming message data to formulate a CRC value. If the formulated CRC value matches that contained in the message CRC byte, the message has not been contaminated by errors. See Message Error Detection below. Since the CRC algorithm is rather complex, it is described in detail in the Appendix, Section 5.0.

Although the message E bits have been assigned the error reporting function for Command and Monitor Acknowledge messages, they have not been implemented.

There are three types of message error detection operations. First, the parity bit in each byte is analyzed by the receiving unit; any single bit error is detected and a flag set. The second level is the message CRC analysis and comparision described above. The CRC algorithm will detect any single-bit error and the probability of detecting a second erronous bit is $255 / 256$. When an error is detected, the receiving unit sets an error flag. The third type of error detection has been implemented for Command messages. The PC control program compares the Command Acknowledge message Unit ID, Port 1 byte and Port 0 byte with those in the Command message just output. If the comparison shows a difference, the PC software assumes that there has been a transmission error.

In the event that a receiving unit detects a message error, there is no attempt to analyze the message contents to correct the error.

Message Protocol

Message protocol is the set of logical rules governing the generation, reception and usage of the command and monitor data messages. It is important to remember that the PC control program drives the system and the control interfaces only respond to the PC control program's stimulus.

Except when interrupted by a command from the telescope operator, the PC control program continuously operates all four buses in the monitor polling mode. Bus activities are completely independent and asynchronous and there are no common mode, time, address, etc., relationships between the bus signals.

Time is an important message protocol parameter; as noted above, the PC control program continuously polls monitor data from each control interface on the four buses and outputs telescope operator-generated commands. All the operations in these processes are time-dependent so the PC control program uses four timing terms to regulate the four bus's activities. The detailed steps in this time-ordered sequence are described in the Hardware-Software interactions paragraphs below.

The PC has a cassete interface that can be programmed to generate hardware interrupts at rates up to 1024 interrupts per second; this provides a time resolution of about 1 mS . The interrupt service routine is programmed to generate several timing terms that are used to time-regulate program functions. Commonly used timing terms are 1 pulse/450 milliseconds, 2 pulses/second, 1 pulse/second, 1 pulse/5 seconds, 1 pulse/ 5 seconds and I pulse/10 seconds.

Each bus has an independent 1 pulse $/ 450 \mathrm{mS}$ timing term that is used as a time-out clock for each stimulus message-response message interaction. The time required to transmit a message is about 183 mS , (55 bits at a rate of 300 baud). Interface interactions always involve two messages: a Command or Monitor request from the PC to the control interface and a Command or Monitor Acknowledge from the interface. The total transmission time for the two messages is thus about 367 mS so there is about 83 mS program execution time available for the PC and control interfaces. If the addressed control interface responds within the 450 mS period, the response message is analyzed and the data is stored. In the event that the addressed control interface does not respond within the time-out period, the interface is flagged non-responsive.

Although 450 mS is available for each PC-control interface message interaction, the actual message transmission-program execution times in the PC and control interfaces are slightly below this limit; so that when a PC-control interface interaction is completed, the PC control program proceeds to the next polling operation in the schedule without waiting for the end of the 450 mS period. As a result, bus activities are slightly faster than 2.2 interfaces interactions/second.

The control program continuously polls each arm for monitor data in a nine state sequential schedule: PN1, PN2, ... PN9, PN1, PN2, etc. in which time slot PN1 polls the closest antenna on an arm and PN9 polls the farthest antenna on an arm. After polling PN9, the sequence reverts to PN1 and continues. An important point is that the PN numbers are distinct from the Unit ID (antenna serial numbers) which range from 1 to 28 . At the start of each of the nine polls in the sequence, the control program uses the PN number as an index in the configuration table to load the appropriate ID number into the Monitor Request message. A similar sequence is followed in polling the Auxiliary bus but PN6 is the last time slot in the sequence.

In polling monitor data, at the end of the 450 mS period, the PN number is incremented for the next Monitor Request message to be output. The PN number is related to the VLA WYE Monitor (main) screen described in the Telescope Operator Interface below. For each arm, the antenna screen and the associated E Stop screen switches are arranged in increasing distance order; the closest antenna is at the top of the column and the farthest antenna is at the bottom. For each column, the top switches designate PN1 and the bottom switches designate PN9.

In the PC control program, a bus's control mode is shifted to the command mode when the telescope operator inputs a command via the Touch Screen. The control program analyzes the command to identify the affected bus and formulates and outputs the command message. If a monitor data polling operation is active but incomplete, the command output operation pauses until the current monitor data input message operation has been completed. After completing the monitor data message input and storage cycle, the monitor polling sequence is interrupted and the control program emits the command message. After reception of the Command Acknowledge message, a Monitor Request message is sent to the control interface that had just been commanded to determine the device's state. This minimizes the latency time for verification of commanded states. After polling the commanded interface, monitor data polling resumes using the next sequential PN number.

When a command message is output on a bus, the other three busses continue to poll control interfaces for monitor data, unperturbed by the command message output on the affected bus.

When a control interface detects a Command message, it generates a Command Acknowledge message that is returned to the PC control program via the bus. The Command's Unit ID, Port 1 and Port 0 bits are retumed as a "command echo" to enable the PC program to verify that the Command was correctly received. The Command Acknowledge message CRC will differ from the Command CRC because the Monitor Acknowledge message Sync character differs from the Command message Sync character.

When a Monitor Acknowledge message is received, the message data is stored in global common and the Operator Interfaces are updated with the message data.

Two antenna functions require the issuance of a double-command sequence; these are commands that set a state followed by a second command to reset the state. The second command is issued when the program receives the Command Acknowledge message for the first command. The ACU Reset command turns off the AC power to the ACU, which causes the ACU power supply to gradually discharge. Five seconds later, the second command re-connects the AC power and the ACU's power-on reset circuitry initiallizes the ACU logic. The second double-command function is the NCP breaker reset command. In this case, the second command is issued on the next cycle of the control program loop. See the hardware-software interactions description below.

Hardware-Software Interactions

The following software and firmware descriptions of the control PC, control interface and Watch Dog Timer programs are brief sketches that are intended to highlight major hardware-related program operations. The programs will be described in detail in another manual, Volume II.

Setting aside the control PC's operations with its internal components (hard disc, keyboard, etc.), the PC's hardware-software interactions are those involved in driving the buses, the Touch Screen and Annunciator.

The control PC's program operates continuously in a large loop that services the four bus serial ports, the Touch Screen, the annunciator and the printer port. Bus timing is regulated by the four dedicated 450 mSec software timers mentioned above. The loop operations are listed below in their sequential order.

Check for a pending Monitor Request or a Command message on any bus.
Have any command messages been sent?
3 Check the four buses for the return of any Command Acknowledge messages in response to Command message outputs. After reception of the Command Acknowledge message, monitor data polling is resumed but not at the PN number value that would have occurred if the command had not interrupted the sequence. The PN number for the next Monitor Request is that associated with the Unit ID value of the command that had just been output. After polling the commanded interface, monitor data polling continues with the next PN number and continues the polling sequence.

Check the four buses for the return of any Monitor Acknowledge messages in response to Monitor Request outputs.

5 When a Command Acknowledge or Monitor response has been detected on a bus, a flag is set in the current-pass arrays and data structures.

Compare the states of the current-pass arrays and data structures with the previous-pass arrays and data structures to see if a state change has occurred between passes. This is a test of the stability of the monitor data states reported by the control interfaces.

7 Process the Touch Screen interface to test for a new operator touch input. Start the process with the main screen and progress through the level 2 and level 3 screens to identify the required control action. This control action could cause a new command message to be sent to a control interface, call for a different Touch Screen display or squelch or clear the annunciator message.

8 Check to see if the second command of a dual command message sequence is to be output. If the command is not output at this time; step 14 causes the second command message to be output.

9 If it is a 1 PPS time, a second command of a dual command sequence is to be output. In the case of the ACU reset, this is a 5 second period.

10 If it is a 2 PPS time, strobe the printer port to signal PC program activity to the Watch-Dog Timer.

11 Also at a 2 PPS time, check to see if any alarms should be blinked. Alarms are blinked at a 2 PPS rate. Also check to see if a Kill/Voice input has colored a switch or indicator border red. If the Kill/Voice has been rescinded or cleared, remove the red border.

12 Process the abnormal and alarm states to determine if a voice message should be output to the annunciator. The voice message may be inhibited by the Kill/Voice switches.

13 Send a synchronization command to the Correlator and Computer UPS's if the generators have just been started. This causes the UPS's to synchronize their AC output to the generator's output.

14 Trigger the output of the second command for any pending dual-command sequences. Dual commands are unique to the antennas; there are no Auxiliary bus dual command sequences.

15 Move the contents of the current-pass arrays and data structures to the previous pass arrays and data structures.

If any key on the PC keyboard has been actuated, the program is stopped.
The control interface's hardware-firmware interactions are a response to the PC's Command and Monitor Request messages. In response to a Command message, the control interface's 87 C 51 firmware decodes the U Bits to determine if the interface is being addressed; if so, it then analyzes the message parity and formulates a CRC over the four message bytes for comparison with the message CRC byte. If the message is error free, the firmware sets the interface output lines (87C51 Ports 1 and 0) to the message's Port 1 and Port 0 states. It then formulates and outputs a Command Acknowledge message on the bus.

In responding to a Monitor Request message, the control interface's 87C51 firmware decodes the U Bits to determine if the interface is being addressed; if so, it then analyzes the message parity and formulates a CRC over the message contents for comparison with the message CRC. If the message is error free, it reads the device's interface lines state into Port 1 and Port 0 , formulates the CRC, and outputs the Monitor Request message on the bus.

The Watch-Dog Timer module in the Control Room Interface bin also contains an 87C5I microcontroller; the 87 C 51 firmware executes the watch-dog timing and control functions. A watch-dog timer is a circuit that automatically invokes a reset unless the system being watched sends regular hold-off signals to the watch-dog. The Watch-Dog Timer's system function is to check the operation of the control PC program by checking the recurrence of the hold-off signal on the PC's parallel printer port. The holdoff signal is a character that is output at a rate of at least twice per second. The Watch Dog Timer initiates a PC reset sequence if it detects the loss of the hold-off signal within a one second period. The reset sequence has a 10 second pause to permit the telescope operator to invoke the maintenance mode, if desired. After the 10 second pause, the Watch-Dog Timer switches off the PC power for 10 seconds and then switches it back on to cause a power-on reboot. After turning on the PC power, the Watch-Dog Timer pauses 60 seconds before it resumes testing for the presence of the hold-off signal. If the reset attempt is unsuccesful, it is repeated and, if on the third reset attempt, the hold-off signal does not resume, the Watch-Dog Timer shifts to the alarm mode.

The Watch-Dog Timer is described in more detail in Section 2.6. The description includes a synopsis of the Watch-Dog Timer's firmware operations.

2.3 Telescope Operator Interface

As mentioned above, the telescope operator interface is both visual and audible. The visible portion of the interface is a Touch Screen CRT terminal that displays annotated control and display images that mimic conventional system control panels. The audible portion of the interface is an annunciator that pronounces voice messages that describe system states and alarm conditions.

The visual interface - the Touch Screen - is considered first. The Touch Screen images contain annotated psuedo-switches, psuedo-indicator lights and numeric displays grouped in labeled fields appropriate for the control function. The operator can enter a command by touching a fingertip to a psuedo control switch, just as is done on a conventional hardware control-display panel switch. Similarly, the psuedo-indicator lights and numeric displays show status and values, just as they would be displayed on a conventional hardware control-display panel. The control program assigns various solid and hatched colors to these switch, display and numeric indicator images and background as a function of the system command and monitor states. The color green in a switch or indicator signifies a non-fault or OK condition and red signifies an abnormal or fault condition. A blinking red signifies an antenna fault. Antenna Emergency Stop is red. Yellow signifies a stowed antenna. A border-hatched (with a band of broad diagonal black hatching around the periphery) switch or indicator signifies local control of the function. A gray color signifies a no-response condition from the associated control interface. If a control function's voice alarm has been disabled, the switch's border is outlined in red. See the annunciator inhibit description below. Some switches shift to a blue color for two seconds after actuation to show that the actuation caused a command to be sent to an antenna or some other device. Some switch actuations request a different screen and may not send out commands.

The control program provides a number of Touch Screen images arranged in heirarchal sets that are accessed from the highest level (main) image, the VLA WYE Monitor sireen (Figure 1). These lower level images (called sub-screens) are accessed by touching any psuedo-switch. The accessed screen is inserted into the upper right comer of the VLA WYE Monitor screen and replaces the Master Emergency Stop, W Arm, N Arm, etc. switches and the "National Radio Astronomy Observatory" label. Figure 2 shows the Correlator UPS sub-screen inserted into the VLA WYE Monitor Screen. Psuedo-switches on theses sub-screens invoke commands or call up lower level sub-screens. Figures 3, 4, and 5 show typical sub-screens for the antennas, generators and other facility equipment. Note that these figures do not show every possible sub-screen; there are also similar sub-screens for identical equipment. Examples of such are sub-screens for other antennas, other arm-wide antenna functions and multiple identical facility units (e.g. generators and UPS's).

These sub-screens are the telescope operator's control and monitor interfaces for the VLA antenna and VLA facility systems equipment. There are thirteen types of level 2 sub-screens that can be accessed from the main screen and some systems have a third level sub-screen to provide an additional level of control expansion for complex systems. These other sub-screens are not described in detail in this manual but the equipment's functions are suggested by the annotations on the screen switches, lights and indicators. The control and monitor signals associated with these screens are described in the M26, M27 and M29 control interface application sections 2.9, 2.10, and 2.11. Drawing D13900B11 at the end of this section shows the screen hierarchy structure.

The VLA WYE Monitor (main) screen is the most complex and its usage typifies the operation of the other screens. The left side of Figure 1 has 9 antenna psuedo-switches for each arm in observing
pad order; these call up the antenna sub-screen (level 2) indicated by the antenna number. Emergency Stop psuedo-switches command the associated aıtenna Emergency Stop to be set. The antenna switches also show the antenna's observing location. At the top of these three columns are arm configuration switches labelled "West Arm", "North Arm" and "East Arm". These switches call up the Arm Configurator sub-screens described below.

Note that antenna E-Stop, ACU Reset and NCP Reset commands can be invoked on a single antenna basis (via an Antenna sub-screen) or on an arm-wide basis (via an Arm E-Stop, Arm ACU Reset and Arm NCP Reset sub-screens). In addition, the Emergency stop command can also be invoked on an array-wide basis via the Master E-Stop sub-screen. There are no comparable cases for the other VLA facility equipment.

A Date-Time switch above the three arm configuration switches shows the day, month, date, time (local time) and year. Touching this switch calls up the Set Date/Time screen to enable the operator to set in the appropriate values. This screen is described below.

A large Master Emergency Stop switch on the top right causes all antennas to be commanded to the Emergency Stop condition.

Below the Master Emergency Stop switch are three arm-associated switches: Emergency Stop, ACU Reset and NCP reset. The Emergency Stop switch causes all antennas on an arm to be set to the Emergency Stop condition. Similarly, the ACU Reset and NCP Reset switches cause all the ACU's and the NCP breakers on the arm to be reset.

Below the Arm-associated switches described above are eight switches that call up level 2 screens for major VLA systems components. These are: the ModComp control computers, the generators and switch gear (Master Cubicle), the computer and correlator UPS's, and the control building HVAC system.

The screens have provisions for control of the other portion of the telescope operator interface the annunciator. The annunciator can be enabled or silenced in two ways; the main screen has a Clear Voice Alarms switch to reset all annunciator alarms. Secondly, some of the level 2 and level 3 screens have $\mathrm{K} /$ Voice switches that cause the associated alarm announcements to be squelched.

Level 2 and level 3 sub-screens have an Exit switch to return to the associated level 2 or main screens.

The main screen also shows the date and local time.
Several important level 3 sub-screens are the Transmission Log screens for major systems. These are system maintenance screens that show numeric values that characterize the quality of the WYE Monitor system message transmissions. The number of message transmissions, Acknowledge messages (both Command and Monitor), and No Response cases are shown on numeric indicators. The screens have a Clear Log switch that resets the indicators to zero and an Exit switch returns to the associated level 2 screen.

Two types of system configuration sub-screens are used to input reference data to the control program. The Set Date/Time sub-screen, activated by touching the Date-Time switch permits the telescope operator to input the year, date, month, day and local time to the program. This data appears in the upper
left side of the main (VLA WYE Monitor) screen. The West, East and North Arm Configurator subscreens are activated when the operator touches the "West Arm", "North Arm" or "East Arm" switches above the antenna number-pad location columns on the top left side of the main screen. This Arm Configurator screen enables the telescope operator to quickly re-assign antennas to the observing pad locations during array reconfigurations. The antenna number-observing pad data is shown in increasing pad number order in the three antenna columns.

To relieve the operator from the necessity of constantly checking the Touch Screen displays, the annunciator alerts the operator when there are antenna and system facility equipment abnormal state or alarm conditions. The telescope operator can selectively squelch these voice alarms by touching the $\mathrm{K} /$ Voice switch on a sub-screen. The telescope operator can also clear all these voice alarms by touching the Clear Voice Alarm switch on the main screen.

The annunciator is a voice synthesizer that is driven by concatenated sets of vocal word synthesis files. The program formulates the voice file sets as a function of the program's abnormal state and alarm logic. A voice message start is signaled by a beep to alent the operator that a message is impending. A typical voice message might be: "Fire Alarm, West Arm, Antenna 22". The total set of annunciator message types roughly correspond to each type of command or monitor function implemented in the WYE Monitor system.

The voice message is repeated until either the alarm or abnormal condition is cleared or the operator actuates the associated K/Voice switch. If there is more than one voice message, the messages are repeated in a continuous sequence.

Figure 3 Typical Antenna Screens

Figure 4 Typical Generator Screens

Figure 5 Typical Facility Screens

2.4 Bus Signal Driving and Recciving

Bus line driving and receiving are important functions because all control actions are conveyed by the bus lines in the long (up to 13 miles) WYE COMM system cables. It would have been virtually impossible to use conventional commercial digital line drivers and receivers for cable runs of this length and the problem is compounded by high cable shunt capacitance, high series resistance, low leakage resistance to ground and occasional surge voltages. Repeater amplifiers on the observing arms were considered during the design effort but they would have increased operational and circuit complexity, so they were rejected. Unconventional driver/receiver implementations were devised to deal with these problems.

Bus signal transmission and reception are differential to reduce common-mode inteference signal effects. The drivers are connected to the bus only when necessary for message transmission and the receiver circuits are optically-isolated from the control interface's logic circuitry. As a result, the PC and control interfaces are totally isolated from each other and from any grounds. In addition, the bus lines are each driven by powerful, opposite-polarity 30 volt signals (60 volt differential) to compensate for line loss and a slow data rate (300 baud) is used to charge and discharge the large bus line capacitance.

Only two types of circuit boards interact with the buses - the Isolated CPU Interface board (Cl3900S03) used in the control interface modules and the PC Transceiver board (Cl3900S02) used to translate the PC's RS-232 levels to the system bus levels. The WYE Monitor PC Transceiver is described in Section 2.7 and the WYE Monitor Isolated CPU Interface is described in Section 2.8.

Bus Conditions

The WYE-COMM cables are 25 -pair, \#22 AWG twisted-pair, unshielded cables that have high series resistance ($22.25 \Omega / 1000$ loop-feet), high shunt capacitance (about $20 \mathrm{pF} / \mathrm{foot}$), and an impedance of about 100 Ohms (estimated). The bus lines are not terminated at the ends of the run. There is also a potential for crosstalk from the WYE-COMM voice signals. Cross-talk coupling is not specified and roughly varies as a function of the cable lay (number of twists/foot), proximity of the pairs and length of the cable run. Cross-talk levels as high as about 0.5 VRMS have been measured on some of the pairs. Lightning strikes to the earth, antennas, tracks and buildings can induce high voltage spikes in the cables as a result of couplings between the cables and antennas, railroad track and buildings. These high voltage spike levels have not been measured but are an important design consideration. Drawing C13900S05 is a model based upon recent measure ments of the west arm cable at " A " array stations. The loop resistance from the Control Building to AW9 is 3106Ω and the shunt capacitance is 1.21 to $1.25 \mu \mathrm{~F}$; pair shunt resistance, leakage to other pairs and earth ground is not specified. West Arm WYE COMM drawing DI3900B02 (circa 1981) shows similar loop resistance values. The east arm values are probably similar since it is about the same length as the west arm and the north arm values are somewhat less because the length is about 11 miles.

Bus Surge Voltage Limiting

Although lightning-induced voltages and energies are not quantified, VLA experience has shown that voltage surges can damage equipment. Three-terminal, semiconductor threshold voltage surge arrestors (P1602 Sidactors) in the control interfaces at each antenna or device drop point are triggered into conduction when a bus lines exceeds a threshold of 60 to 90 volts. The Sidactors are connected from each
line to ground. In conduction, the P1602 forward drop is about 1.5 volts and the peak current can be as high as 400 Amperes - these arrestors can dump a lot of energy to ground. The Sidactor's typical response time is about 1 nS . The surge arrestor's peak current is limited by the cable's series resistance as a function of the distance between the interfaces and the place where the voltage spike is induced. The combination of surge arrestors and the cable's distributed shunt capacitance and resistance tends to dampen cable voltage spikes. After a year's service, there have not been any control interface failures, which suggests that these devices provide effective protection.

The bus interface circuitry on the WYE Monitor Isolated CPU Interface Board (C13900S03, used in each control interface) shows MOV's (metallic oxide varistors) connected across the bus lines and from each line to ground. The MOV's are not installed but the board has provisions to install them if required. Operational experience has not shown a need for additional surge limiting measures.

The WYE Monitor PC Transciever module PC board (C13900S02) has K680 MOV's connected across the two bus lines and from each bus line to ground. The P1602 Sidactor used on the WYE Monitor Isolated CPU Interface are not used on the WYE Monitor PC Transceiver board.

Bus States

The bus lines always float relative to earth ground and line voltage levels are limited by the $60-$ volt threshold Sidactors described above. The buses can only have three states: inactive, a "1" state or a " 0 " state; the levels are described below. The buses are inactive between message transmissions and all drivers are disconnected from the bus lines. To prevent line noise perturbations to the receiving circuitry, the lines are biased to the " 0 " state in each receiving circuit by $51 \mathrm{k} \Omega$ resistors to the isolated power supply outputs; this pulls Line $+10-15$ volts and Line $-10+15$ volts so that there is 30 volts across the lines.

Bus Drive Circuitry

The bus lines are each driven by opposite-polarity 30 volt signals powered by the driving unit's ± 15 volt power supply. If a " 1 " is being transmitted, Line + is -15 V and Line- is +15 V and if a " 0 " is being transmitted, Line + is +15 V and Line- is -15 V . The power supply is a Burr-Brown HPR 105 powered by the module's 5 volt power supply. The HPR 105 supply outputs are isolated from the input +5 V and 5 V common - an important requirement discussed below. The schematic designates the supply's +15 V and -15 V outputs as +15 I and -15 I and the $\pm 15 \mathrm{~V}$ Common is designated 0 I .

Refer to drawing C13900S03, which is the schematic of the Isolated CPU Interface Interface Board. Each bus line is driven by a pair of optical isolators (OPTO1A/OPTO1B and OPTOIC/OPTO1D) that switch the +15 V or -15 V outputs of the isolated dual 15 volt power supply onto the lines as a function of the drive logic and bit state to be output. The power supply common is not ground-referenced to the line drivers; only the +15 V and -15 V outputs are used by the optical isolator line drivers. Since the lines are switched between these two outputs, each bit change causes a 30 volt bus line swing. Since the 30 volt signal swings have opposite polarities, for each bit change, the differential signal swing across the lines is 60 volts.

As a result of the use of optical isolator bus drives, only the active interface driver is coupled to the bus; all the other drivers are isolated from the bus. The optical isolator photo transistors have a small leakage current, about 100 nA maximum at $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CE}}=40$ volts.

The low-true TX ENABLE (87C51 WR-) enables the isolator drive via U2D to U2C-9 and U2B5 ; this term is true only when the TXDATA is active during the 87C51's serial port byte output. The high-true TXDATA (87 C 51 TXD) data drives U2A and the inverted data (by U2A) drives U2B. Thus, either U2C or U2B sinks current as a function of the data bit state. If the TXDATA bit is a 1, U2C is active low and sinks current through the OPTOIC and OPTOIB LED's; this asserts - 151 onto LINE+ and $+15 I$ onto LINE- via the isolators output transistors. If the TXDATA is a 0, U2B is active low and sinks current through OPTOID and OPTOIA LED's; this asserts + 15 I onto LINE+ and -15I onto LINE- via the isolator's output transistors. The 150Ω resistors to VCC limit the isolator diode currents to about 12 mA .

During inactive periods between message transmissions and the intervals between a serial port's byte transmission, TX ENABLE, is low which sets gates U2C and U2B to the inactive-high state so that none of the optical isolators is sinking current. This state disconnects the optical isolator outputs from the bus lines.

The line driving circuitry in the WYE MONITOR PC TRANSCEIVER (C13900S02) is identical to that described above except the transmit enable is the RTS (Request To Send) line from the MAX233 RS-232 to TTL converter.

The NEC PS2501-4 optical isolator on-off switching delay times are typically about $3 \mu \mathrm{~S}$, respectively; this delay is very small relative to the 3.33 mS data bit period.

As mentioned above, the bus lines may be subjected to voltage surges; the PS2501-4 optical isolators are capable of maintaining isolation with 1500 volts between the LED inputs and transistor outputs. The high voltage isolation of the Burr-Brown HPR 105 power supply is 750 volts, peak for 10 seconds between the +5 volt and common inputs and the $+15 \mathrm{~V}, \pm$ Common and -15 V outputs.

Bus Signal Waveform

The bus lines are lossy transmission lines and drawing C13900S05 is a lumped-constant model of the west arm bus in the A array. The model values were measured at the stations noted.

The simplest model for the signal seen at the last A-array antenna on the west arm bus line is the output of an $R C$ low pass filter where $R=3100 \Omega$ and $C=1.2 \mu \mathrm{~F}$ - the values from C13900S05. The RC time constant is 3.6 mS and the period of a 300 baud bit is 3.33 mS , about the same as the RC time constant. An alternating 1 and 0 data signal input to the filter would be a 60 volt square wave with a 6.6 mS period. The output across the capacitor would be a simple, almost linear sawtooth function with a peak-to-peak amplitude of about 60% of the square wave input, about 37 volts. This simple RC low-pass filter model roughly represents the worst case of signal degradation on the arm and the AW9 signal waveform resembles the output of this model. Starting at AW9, observations of the signal waveform at each successive inbound station show step-like increases in amplitude and reductions in the capacitive loading.

Bus Receive Circuitry

The receiving circuitry of the Isolated CPU Interface is shown on C13900S03. The PC Transceiver receiving circuitry shown on C13900S02 is virtually identical to that in the Isolated CPU Interface.

The signal receivers use an open-loop operational amplifier as a bit sense detector. Three $330 \mathrm{k} \Omega$ resistors are bridged across the bus line. The amplifier's + and - inputs are connected across the center $330 \mathrm{k} \Omega$ resistor - an unconventional connection that puts about a third of the line signal difference across the inputs. Since the OP-15 operational amplifiers use JFET input transistors, they are capable of operation with inputs as high as ± 20 volts and a differential input as high as ± 40 volts. The first station on a bus will have the greatest signal amplitude and the levels at the two OP- 15 inputs are + and -5 volts, so the amplifier inputs are not voltage-stressed. The operational amplifier does not use feedback so the amplifier output is at either the + or - saturation levels of about ± 13 volts as a function of the data bit state. The only time that the output is not at either extreme is the brief period when the difference between the inputs is zero volts during the signal's ramp-up or ramp-down slope. During this period the output swings from one saturation level to the other as a function of the sequence of bus data states.

Since each receive circuit's load across the bus is 1 megOhm, the total load imposed by all antenna receive circuits is only $111 \mathrm{k} \Omega$.

The amplifier output sources current into the LED anode of OPTO2 through a $10 \mathrm{k} \Omega$ limiting resistor. The LED cathode is connected to the analog power suppy common, OI. A 1 N914 diode across the LED clamps the anode to -0.6 volts when the amplifier cutput is negative. The LED conducts when the amplifier output is greater than about +1.4 volts. When the LED conducts, OPTO2's output is low and gate U6A-3 is also low if enabled by the low-true drive from U2D-11 - the inversion of TX ENABLE. This receive enable is low at all times except when the interface is transmitting.

For interfaces near the control building when the bus signal is a " 1 ", the amplifiers + input is about -5 volts, the - input is at +5 volts and the amplifier output is -13 volts. Gate U6A's output (RX DATA) is a high (\mathbf{a} " 1 ") which is input to the 87C51 RXD serial port input. When the bus signal is a " 0 ", the amplifier's + input is about +5 volts, the - input is -5 volts and the amplifier output is +13 volts; thus gate U6A's output is a " 0 ". In the case of an interface at the end of the arm, the amplifiers + and inputs are reduced to about - and +3 volts (peak) for a " 1 " and " 0 ", respectively.

OPTO2 isolates the ampifier and power supply from the interface board's logic circuitry - an important requirement. The driver circuit and all interface's receive circuits are thus isolated from any interface's logic common. This eliminates any common-mode signal perturbations to bus receive circuitry.

When the bus is in the inactive state, all optoisolator drivers are disconnected from the bus which would leave both lines free to float around zero volts. This is an undesireable condition because the OP15 inputs would follow the two line's noise voltages and the output would flip between + and -13 volts. The line noise is principally audio frequency crosstalk from WYE-COMM cable voice lines. The modem frequency is 300 Hz ; inevitably, the 87 C 5 I UART receive circuitry would be randomly triggered by this audio crosstalk which could result in apparent error-contaminated message bytes. To avoid this problem, the lines are biased to the " 0 " state by $51 \mathrm{k} \Omega$ resistors connected to the isolated power supply outputs. In this state, the $51 \mathrm{k} \Omega$ resistor connected to -151 on the LINE+ and the $51 \mathrm{k} \Omega$ resistor connected to +15 I on the LINE- bias the amplifier's output to +13 volts, the " 0 " state.

The $51 \mathrm{k} \Omega$ bias resistors in series with the three $330 \mathrm{k} \Omega$ resistors impose a current drain of 27 micro-Amperes on each isolated power supply. In the inactive and " 0 " states, the voltage drop across a $51 \mathrm{k} \Omega$ resistor is about 1.4 volts; thus the line voltages are each about 13.6 volts (relative to 0 I) rather than the nominal 15 volt levels. Note that no current flows between the receive circuits for any line state because the interface's isolated DC-DC converter are isolated from ground.

During bus voltage surges, the operational amplifier floats at the line potential and is not stressed because its power is isolated from the interface module's logic circuitry.

RS-232/Bus Ifvel Conversion

The control PC is the signal nexus of the four buses and uses a four-port RS-232 serial interface board. RS-232 signal standards were established for short-run, single-ended serial communications on cable lengths up to 15 meters and with transmit levels of $\pm 5 \mathrm{~V}$ min to $\pm 15 \mathrm{~V}$ max; positive voltages are a " 0 " and negative voltages are a " 1 ". The receive thresholds are $\pm 3 \mathrm{~V}$. The RS-232 signal domain is inappropiate for transmission on the long WYE COMM system cables because of the cable's high resistance and capacitance.

Since standard commercial PC serial port boards use the RS-232 signal standard, the most economical RS-232 to bus level implementation is external to the PC; this is done in the WYE Monitor PC Transceiver boards (C13900P13) in the control room WYE Monitor PC Interface Bin Assembly (D13900P09). Four transceiver boards are used; one for each of the three buses.

A MAX233 RS-232 to TTL chip performs the signal transformation. The PC's RTS (Request to Send) term is transformed to TTL and enables the transceiver's bus drive circuitry in a manner similar to the TX ENABLE in the Isolated CPU Interface Board in the control interface units. The PC's RX and TX serial data terms are also transformed by the MAX233. The MAX233 is powered by the transceiver's logic power and has an internal flying capacitor power supply to supply the ± 9 volt power used for RS232 signal interfacing. The MAX233 has built-in filter capacitors and can supply + and -9 V for small external loads.

The MAX233 transmit and receive circuits both invert the input signals. The receive circuits have about 0.5 volt volt hysteresis to reduce sensitivity to line noise effects.

After the three RS-232 PC terms have been transformed to TTL, they are input to the bus drive and receive circuits, similar to those described above.

Bus Driving Component Data Sheets

Data sheets for the P1602 Sidactors, the Burr-Brown HPR 105 power supply, NEC PS2501-4 optical isolators, the OP-15 amplifier and the Maxim 233 RS-232 converter are included in Section 5.

Bus Transmission Errors

As in any long-haul digital transmission system, transmission rate is traded for bus length. Because of the large cable shunt capacitance with a transmission rate of 300 baud, the peak signal at the end of the 13 mile cable runs is about 60% of the signal level transmitted by the PC's line drivers. Repeater amplifiers on the observing arms were considered during the design effort, but they would have increased the operational and circuit complexity, so they were rejected. During development, experiments showed that the 300 baud transmission rate provided high reliability communications and a transmission rate of 600 baud is marginal. With a 300 baud transmission rate, monitored functions are each sampled at a 4 second rate; this is roughly the Telescope Operator's problem analysis and response time.

Transmission Log screens were briefly described in the Operator Interface discussion. The error analysis software and screens were developed to evaluate transmission reliability during system development and have been retained for maintenance purposes. In normal operation, transmission error rates (parity and no-response) are vanishingly small and have not been quantified. A few errors may occur during intense lightning storms and errors may also occur when antennas are being conrrcted and disconnected during array reconfigurations.

2.5 87C51FA Micontroller Description

This section is a highlight description of the characteristics of the Intel 87C51FA microcontroller that are important to its use in the Isolated CPU Interface and the Watch-Dog Timer.

The 87C5IFA is a member of the eight-bit Intel MCS-51 microcontroller family. The architecture is shown in Figure 6, next page. For a detailed description of the chip's characteristics, refer to the 87C51FA data sheets in Section 5. The 87C51FA has four 8 -bit bidirectional parallel I/O ports, three timer/counters (Timer 0, 1 and 2), a programmable timer/counter array (PCA), a 256 byte on-chip RAM memory, an 8 Kbyte on-chip EPROM program memory, a full-duplex programmable serial I/O port, an interrupt structure with seven interruput sources, and power saving modes. The timer/counters, serial interface and interrupt features are controlled by a bank of Special Function Registers shown in Figure 5 as a block labelled SFRs, Timers, P.C.A. Figure 7 shows the SFRs, their addresses, and their state following a reset. The B register, Accumulator, I/O Ports and PSW addresses fall within the SFR block.

The MCS-51 series of microcontrollers was designed for control applications and has many convenient features for this class of usage. These features include programmable timer/counters, a programmable counter/timer array (PCA), a serial port and an interrupt system. In a typical application, one of the timers may be used as a baud-rate generator for the serial port and the others may be used as event counters, clock rate generators and watch-dog timers. Other valuable features are the use of separate program and data memories, a seven-source interrupt structure with two priority levels, four 8 -bit I/O ports, a Boolean processor, and an Accumulator parity bit in the Program Status Word (convenient for serial transmissions). A portion of the on-chip RAM memory is bit addressable for convenient state manipulations. RAM memory provides four selectable bands of registers for operands storage and a stack for interrupt service storage. I/O ports are both byte and bit addressable. The bit-addressable I/O port property makes it easy to manipulate I/O port lines as discretes without having to perform byte maskmerge operations. I/O Port pins may be assigned to alternate functions such as interrupt inputs rather than standard I/O bit functions. Program and data memory are in separate address spaces and may be as large as 64 Kilobytes.

This description is restricted to chip features such as I/O ports, timer/counters, and the interrupt system. Emphasis is given to the operating modes of the timer/counters, PCA, and serial port; the intent is to describe only those features and modes that are relevant to the 87C51's functions in the WYE Monitor system. A brief review of the 87C5IFA data sheets shows that the timer/counters, PCA, and serial port have many modes and combinations of these modes. Refer to the 87C5IFA data sheets for a complete description of the other modes of the timer/counters, PCA, serial port, and the characteristics of the 87C51. Although chip architecture, registers, instruction types, program and data memory, address modes, instruction timing, etc. are very important topics, they are conventional and are adequately described in Section 5; there is no need to repeat the description.

The following description shows how the mode and control SFRs of these features are set up or initialized but does not describe the firmware program's usage of these features. In addition, the 87C5IFA instruction set, assembly language programming techniques, and EPROM programming are not discussed. Lastly, the two firmware programs are not described; these are the subject of another manual.

In both applications, the 87C51FA clock is an on-chip oscillator that uses an external 11.0592 Mhz crystal. In the Isolated CPU Interface, Timer 0 and the PCA use a programmed subdivision of this clock
for I/O port sampling and to drive the MAX695 Watch-Dog Timer chip. Using this clock, Timer 1 functions as a baud-rate generator for the serial port transmit and receive clocks.

Special Function Registers

Special Function Registers (SFR's) control the modes and operation of the timer/counters, PCA, serial port, and interrupt system. Arguments and values for these functions are stored as data in the SFR's. Some SFR's (e.g. IP, IE, T2CON and SCON) are both bit and byte addressable. The timers and PCA modes are controlled by mode registers (e.g. TMOD, T2MOD and CMOD) and they are turned on and off by control registers (e.g. TCON, T2CON and CCON). Thus TMOD's state determines the modes of timers 0 and 1 and TCON tums the timers on and off. SCON

Figure 6 87C51 Archifecture controls both the mode and operation of the serial port. Some SFRs (TL0, TH0, RCAP2L, RCAP2H, CCAP0L, CCAP0H, etc.) contain compare or count values for the timers and PCA. The SMOD1 bit in PCON causes the serial port baud rate to be doubled. Control bits in T2CON select timer/counter 1 or 2 as the clock for the serial port. The IE register enables the interrupts, some of which are the result of timer overflow. The IP register establishes the priority of the six interrupt sources. The functions performed by these SFR mode and control registers are mentioned here to introduce their function. The text below describes the way that the SFR mode and control registers control the timer/counters, PCA, serial port, and interrupt system.
Figure 7, (next page) shows the SFR mapping and reset values.

I/O Ports

In the Isolated CPU Interface and Watch-Dog Timer module, the port 0 and port 1 latches are convenient state memories for command state outputs. The Isolated CPU Interface uses five, port 2 bits in the input mode to read the hard-wired antenna ID value, i.e. antenna serial number code. The WatchDog Timer module uses port 2.7 in the output mode to clock the MAX695 WDI (watch-dog input), port 2.6 in the output mode to reset the 74LS74 flip flop, and port 2.0 in the input mode to sense the Quiet switch state.

All four 87C51 I/O ports (Figure 8, next page) are bidirectional and each port bit can be individually set to input or output. Each port bit consists of a latch (SFR's P0 through P3), an output driver, and an input buffer. Ports I, 2 and 3 have internal pullups. Port 0 has open drain outputs. The
pullup FET in the Port 0 output driver is used only when the port is emitting l's during extemal memory accesses; otherwise the pullup FET is off. Port 0 output buffers can sink 3.2 mA at 0.45 volts. Ports 1 , 2 and 3 output buffers can sink 1.6 mA at 0.45 volts. The control interface modules use Port 0 for command outputs because of the Port's higher drive capabilities.

The 87C51's bidirectinal 1/O ports are used as parallel interfaces by the Isolated CPU Interface Board. All the Port 1 and Port 3 pins are multifunctional. They are not only port pins, but also serve the functions of various special features listed below. The alternate functions are activated when the corresponding latch in the port SFR contains a 1; otherwise the port pin is stuck at 0 .

The output drivers of Ports 0 and 2 and the input buffers of Port 0 are used in accesses to external memory. In this usage, Port 0 outputs the low byte of the external memory address, time-multiplexed with the byte being written or read. In the two WYE Monitor applications, the program memory is an on-chip EPROM, therefore these ports are not used as a multiplexed addressdata bus.

Some instructions that read a port read the latch and others read the pin. Which ones do which? The instructions that read the latch rather than the pin are the ones that read a value, possibly change it, and then rewrite it to the latch. These are called "read-modify-write" instructions. The instructions listed below are read-modify-write instructions. When the destination operand is a port or a port bit, these

	$\begin{gathered} P 5 \\ 00000000 \end{gathered}$	$\begin{gathered} \mathrm{CH} \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { ССАРОН } \\ & X X X X X X X X \end{aligned}$	$\begin{aligned} & \text { CCAPIH } \\ & \{\times X X X X X X X \end{aligned}$	$\begin{aligned} & \text { CСAP2H } \\ & x X X X X X X X \end{aligned}$	$\left\{\begin{array}{l} \text { CСАР } 3 \mathrm{H} \\ \mathrm{x} \times \mathrm{x} \times \mathrm{x} \times \mathrm{x} \end{array}\right.$	$\begin{aligned} & \because \text { ССАРАН } \\ & !\times X X X X X X X \end{aligned}$		FF
	$\begin{gathered} \cdot B \\ 00000000 \end{gathered}$,	$\begin{gathered} \text { AD7 } \\ 00000000 \end{gathered}$			$\begin{aligned} & \text { SEPSTAT } \\ & \times \times x \times \times 000 \\ & \hline \end{aligned}$	7
E8	$\left\lvert\, \begin{gathered} \text { C1CON } \\ 00000000 \end{gathered}\right.$	$\begin{gathered} C L \\ 00000000 \end{gathered}$	$\begin{gathered} \text { CCAPOL } \\ x x x x x x x x \\ \hline \end{gathered}$	$\begin{aligned} & \text { CCAP1L } \\ & X X X X X X X X \end{aligned}$	$\begin{aligned} & \text { CCAP2L } \\ & x X X X X X X X \end{aligned}$	CCAP3L XXXXXXXXX	$\begin{gathered} \text { CCAPAL } \\ x \times x \times x \times x \times x \end{gathered}$		EF
	$\begin{gathered} \text { } A C C \\ 00000000 \end{gathered}$				$\begin{gathered} \text { AD6 } \\ 00000000 \end{gathered}$			$\left\lvert\, \begin{aligned} & \text { SEPDAT } \\ & x \times x \times x x x x \end{aligned}\right.$	E7
08	$\begin{gathered} \text { CCON } \\ 00 \times 00000 \end{gathered}$	$\begin{gathered} \text { CMOD } \\ 00 \times \times \times 000 \end{gathered}$	$\begin{aligned} & \text { CCAPMO } \\ & \times 0000000 \end{aligned}$	$\begin{aligned} & \text { CCAPM1 } \\ & \times 0000000 \end{aligned}$	$\begin{aligned} & \text { CCAPM2 } \\ & \times 0000000 \end{aligned}$	$\begin{array}{r} \text { CCAPM3 } \\ \times 0000000 \\ \hline \end{array}$	$\begin{aligned} & \text { CCAPM4 } \\ & \times 0000000 \end{aligned}$		D
D0	$\begin{gathered} \text {-PSW } \\ 00000000 \end{gathered}$				$\begin{gathered} \text { AD5 } \\ 00000000 \end{gathered}$			$\begin{aligned} & \text { SEPCON } \\ & \times \times 000000 \end{aligned}$	D7
$\mathrm{C8}$	$\begin{array}{\|c\|} \hline \text { T2CON } \\ 00000000 \end{array}$	$\begin{gathered} \text { T2MOO } \\ \times \times \times \times \times \times 00 \\ \hline \end{gathered}$	$\begin{aligned} & \text { FCAP2L } \\ & 00000000 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RCAP2H } \\ & 00000000 \end{aligned}$	$\begin{gathered} T L 2 \\ 00000000 \end{gathered}$	$\begin{gathered} \text { TH2 } \\ 00000000 \end{gathered}$			CF
CO	P4 00000000				$\begin{gathered} A 04 \\ 00000000 \end{gathered}$		$\begin{aligned} & \text { EXICON } \\ & \times 0000000 \end{aligned}$	$\begin{gathered} \text { ACMP } \\ 00000000 \end{gathered}$	C7
B8	$\begin{gathered} \text { •IP } \\ \times 0000000 \end{gathered}$	$\begin{aligned} & \text { SADEN } \\ & 00000000 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { CICAPOH } \\ \times X X X X X X X \\ \hline \end{array}$	$\begin{array}{\|c\|} \text { С1САР1н } \\ X X X X X X X X \end{array}$	CiCAP2H $x \times X X X X X X$	CICAP3H XXXXXXXXX	$\begin{aligned} & \text { C1CAP4H } \\ & x \times x x x x x \end{aligned}$	$\begin{gathered} \mathrm{CH} 1 \\ 00000000 \end{gathered}$	BF
B0	$\begin{array}{\|c\|} \hline \text { PO } \\ 111111111 \\ \hline \end{array}$				$\begin{gathered} A 03 \\ 00000000 \end{gathered}$	$\begin{gathered} \text { IPAH } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { IPA } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { IPH } \\ \times 0000000 \end{gathered}$	87
AB	$\cdot \mathrm{IE}$ 00000000	$\begin{aligned} & \text { SADOR } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { C1CAPOL } \\ x x x x x x x x \end{gathered}$	C1CAP1L XXXXXXXX	C1CAP2L XXXXXXXX	$\begin{array}{\|c\|} \hline \text { CICAP3L } \\ X X X X X X X X \end{array}$	$\begin{aligned} & \text { C1CAPAL } \\ & X X X X X X X X \end{aligned}$	$\begin{gathered} \text { CL1 } \\ 00000000 \end{gathered}$	AF
AO	$\begin{gathered} \bullet \mathrm{P} 2 \\ 00000000 \\ \hline \end{gathered}$				$\begin{gathered} \text { AD2 } \\ 00000000 \\ \hline \end{gathered}$	OSCR $\mathbf{X X X X X X X O}$	$\begin{array}{\|c\|} \hline \text { WDTRSI } \\ \times X X X X X X X \\ \hline \end{array}$	$\begin{gathered} \text { IEA } \\ 00000000 \end{gathered}$	A7
98	$\begin{gathered} \text { - SCON } \\ 00000000 \end{gathered}$	${ }^{\bullet}$ SBUF $X X X X X X X X$	$\begin{aligned} & \text { C1CAPMO } \\ & \times 0000000 \end{aligned}$	$\begin{aligned} & \text { C1CAPM1 } \\ & \times 0000000 \end{aligned}$	C1CAPM2 X0000000	C1CAPM3 X0000000	$\begin{aligned} & \text { C1CAPM4 } \\ & \times 0000000 \end{aligned}$	$\begin{gathered} \text { C1MOO } \\ \times \times \times \times 0000 \\ \hline \end{gathered}$	97
90	${ }^{\bullet} \mathrm{P} 1$				$\begin{gathered} \text { AD1 } \\ 00000000 \end{gathered}$			$\begin{gathered} \text { ACON } \\ \times \times 000000 \end{gathered}$	97
88	$\cdot T$ TCON 00000000	$\begin{gathered} \text {-TMOD } \\ 00000000 \end{gathered}$	$\left\|\begin{array}{c} \text { TLO } \\ 0000000 \end{array}\right\|$	$\begin{gathered} \cdot T L i \\ 00000000 \end{gathered}$	$\begin{gathered} \cdot \text { THO } \\ 00000000 \end{gathered}$	$\begin{gathered} \cdot T H 1 \\ 00000000 \end{gathered}$			8F
80	$\left\|\begin{array}{c} \text { PO } \\ 11111111 \end{array}\right\|$	$\begin{gathered} \cdot \operatorname{SP} \\ 00000111 \end{gathered}$	$\begin{gathered} . \mathrm{DPL} \\ 00000000 \end{gathered}$	$\begin{gathered} \text { •OPH } \\ 00000000 \end{gathered}$	$\begin{gathered} A D 0 \\ 000000000 \end{gathered}$			$\begin{aligned} & . P C O N \cdot " \\ & 00 X \times 0000 \end{aligned}$	87
- = Found in the 8051 core (see 8051 Haroware Descnotion for explanabons of these SFRs) - = See descnpbon of PCON SFR. BR PCON. 4 is not attected by reset. $x=$ Undefined.									

Figure 7 87C51 Special Function Registers

Figure 8 87C5T Port Bif Latches and $1 / 0$ Buffers
instructions read the latch rather than the pin:

ANL	(Logical AND, e.g., ANL P1, A)
ORL	(Logical OR, e.g., ORL P2, A)
XRL	(Logical EX-OR, e.g., XRLP3,A)
JBC	(Jump if bit=1 and clear bit, e.g., JBC P1.1, LABEL)
CPL	(Complement bit, e.g., CPL P3.0)
INC	(Increment, e.g., INC P2)
DEC	(Decrement, e.g., DEC P2)
DJNZ	(Decrement and jump if not zero, e.g.., DJNZ P3, LABEL)
MOV PX.Y,C	(Move carry bit to bit Y of Port X)
CLR PX.Y	(Clear bit Yof Port X)
Set PX.Y	(Set bit Y of Port X)

The last three instructions in this list read the port byte, all 8 bits, modify the addressed bit, and then write the new byte back to the latch.

All of the Port 1 and Port 3 pins are multifunctional. They are not only port pins, but also serve alternate functions listed below. The alternate functions are selected when the associated port latch bits are set. Power reset sets all the altemate function latch bits.

```
PO.O/ADO- Mulitplexed Byte of Address/Data for External Memory. This alternate function is not used in the
P0.7/AD7 two WYE Monitor applications.
P1.0/T2 T2 Timer/Counter 2 external imput. Not used in the WYE Monitor applications.
P1.l/T2EX Timer/Counter 2 capture/reload trigger. Not used in the WYE Monitor applications.
P1.2/T2EX Timer 2 Reload/Capture/Direction control. Not used in the UYE Monitor applications.
P1.3/CEXO PCA Module O Capture Input, COmpare/PWM output. Not used in the WYE Monitor applications.
P1.4/CEXI PCA Module 1 Capture Input, Compare/PWM output. Not used in the WYE Monitor applications.
P1.5/CEX2 PCA Module 2 Capture Input, Compare/PUM output. Not used in the WYE Monitor applications.
P1.6/CEX3 PCA Module 3 Capture Input, Compare/PLM output. Not used in the WYE Monitor applications.
P1.7/CEX4 PCA Module 4 Capture Input, Compare/PUM output. Not used in the WYE Monitor applications.
P2.0/A8- High Byte of Address for External Memory. Not used in the WYE Monitor applications.
P2.7/A15
P3.0/RXD Serial Port Input. This function is used only in the Isolated CPU Interface.
P3.1/TXD Serial Port Output. This function is used only in the Isolated CPU Interface.
P3.2/INTO- External Interrupt 0. The Watch-Dog Timer module uses Interrupt 0 to sense the PC hold-off signal.
P3.3/INT1- External Interrupt 1. Not used in the WYE Monitor applications.
P3.4/T0 Timer/Counter O external clock input. Not used in the WYE Monitor applications.
P3.5/11 Timer/Counter 1 external clock input. Not used in the WYE Monitor applications.
P3.6/WR- Write Strobe for External Data Memory. Used only in the Isolated CPU Intreface.
P3.6/RD- Read Strobe for External Data Memory. Used in both applications.
```


Timer/Counters

The 87C51FA has three 16 -bit timer/counter registers, Timer 0 , Timer 1 , and Timer 2. Each consists of two 8 -bit registers, THx and TLx, ($x=0,1$ and 2). All three can be configured to operate as timers or event counters.

In the "timer" function, TLx is incremented every machine cycle; therefore one can think of it as counting machine cycles. Since a machine cycle consists of 12 oscillator periods, the count rate is $1 / 12$ of the oscillator frequency.

In the "counter" function, the register is incremented in response to a 1-to-0 transition at its corresponding external input pin, $\mathrm{T} 0, \mathrm{T1}$, or T 2 . In this function, the external input is sampled during S5P2 of every machine cycle. (See the intemal clock states description in the 87C51FA data sheets in

Section 5.) When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register in the S3P1 of the cycle following the one in which the transition was detected. Since it takes 2 machine cycles (24 oscillator periods) to recognize a 1 -to- 0 transition, the maximum count rate is $1 / 24$ of the oscillator frequency. There are no restrictions on the duty cycle of the exteral input signal but to insure that a given level is sampled at least once before it changes, it should be held for at least one full machine cycle.

In addition to the Timer or Counter selection, Timer 0 , and Timer 1 have four operating modes. Timer 2 is has three modes of operation: "capture," "auto reload" and baud-rate generator.

Timer/Counters 0 and 1

The Isolated CPU Interface uses Timer/Counters 0 and 1 . The Watch-Dog Timer does not use these timer/counters. For brevity, they are called Timer 0 and Timer 1.

Timers 0 and 1 are very similar and both operate in mode 2 . Figure 9 shows the mode 2 configuration. Timer 0 is used as the baud-rate generator for the serial port and Timer 1 is used as a data sampling clock for the parallel I/O ports.

Register TMOD specifies Timer/Counters 0 and 1 modes. Register TCON controls the operation (i.e. turns them on and off) of these two timer/counters. Timer 2 uses a separate mode/control register T2CON.

Mode 2 for Timer/Counter 1 is used to generate the 300 baud serial port shift clocks in the Isolated CPU Interface Board application. Mode 2 configures the timer register as an 8 -bit counter (TL1) with automatic-reload as shown in Figure 9. The initialization firmware loads A0H (160D) into TH1. Overflow from TL1 sets TF1, the interrupt flag, and reloads TL1 with the contents of TH1; the overflowinduced reload leaves TH1 unchanged. The interrupt flag TF1 does not cause an interrupt because the ETI bit in the IE register is a 0 . The processor clock is $11,059,200 \mathrm{~Hz}$ so the divide-by- 12 counter produces a timer 0 and 1 clock rate of $921,600 \mathrm{~Hz}$. C/T- (in TMOD) is 0 and TR1 (in TCON) is a 1. The Timer 1 overflow is 300 Hz and is used as the baud rate for the serial port; see figure 13 , for the usage of the Timer 1 overflow.

Timer 0's mode 2 operation is identical to that in Timer 1. TF0, the interrupt flag, is set by overflow and is enabled in the interrupt system by ET0 in the IE. TH0 is set to 00 H , which produces a Timer 0 overflow rate of 3600 Hz that is used by the Isolated CPU Interface firmware as a data sampling clock for the parallel $1 / O$ ports.

See the TMOD, TCON and IE tables in the 87C51 data sheets for additional details on the usage of these mode and control bits.

Timer 2

Timer 2 is a 16 -bit timer/counter. Timer 2 is has three modes of operation: "capture," "auto reload", and baud-rate generator. Since neither WYE Monitor application uses this timer/counter, it is not described.

PCA, Programmable Timer/Counter Array

The PCA is used in both the Isolated CPU Interface and the Watch-Dog Timer module.
The Programmable Timer/Counter Array consists of a 16 -bit counter/timer and five 16 -bit compare/capture modules as shown in Figure 10. Figure 11 shows the PCA Timer/Counter. The PCA timer/counter serves as a common time base for the five modules and is the only timer that can service the PCA. Its clock input can be programmed to count any of the following signals: 1) Oscillator frequency +12 ; 2) Oscillator frequency $-4 ; 3$) Timer 0

Figure 10 Programmable Counter Array overflow; 4) External input on EC1 (PI.2).

Each compare/capture module can be programmed in any of the following modes: 1) Rising and/or falling edge capture; 2) Software timer; 3) High speed output; 4) Pulse width modulator. Module 4 can also be programmed as a watch-dog timer.

The PCA Timer/Counter is controlled by CMOD, the PCA Counter Mode Register. Each module has a mode register, CCAPMn ($n=0,1 . .4$) to select the module function. Each module has a pair of 8 -bit compare/capture registers, CCAPnH and CCAPnL, that store the time when a capture event occurred or when a comparator event should occur. The CMOD, CCAPnH, CCAPnL and CCAPMn registers are shown in the 87C51 data sheets.

In the Isolated CPU Interface Board application, PCA Module 4 is used to generate a 14 Hz clock for the MAX695 WatchDog chip. In this application, CMOD is set to 00 H ; this sets the PCA input clock mode to Fosc 12. CR, the Counter Run bit (in CCON), is set to $1 ; \mathrm{CH}$ and CL are set to 00 H . This setting makes the counter divide by 65,536 . WDTE

Figure 11 PCA Counter/Timer
(in CMOD) is set to 1 , which enables the watch-dog timer function on PCA module 4. Figure 11 shows the PCA module 4 in the watch-dog timer mode. CCAPM4 is set to 4 CH , which sets ECOM4, MAT4 and TOG4 to 1. This enables the comparator function, flags the CCF4 bit in CCON (flagging an interrupt), and causes the P1.7 pin to toggle when the interrupt is generated.

Since P1.7 is used for

Figure 12 PCA Module 16-Bit Solfware Timer Mode parallel I / O, any interrupt-driven activity on this pin would perturb the device interface. The CCAPM4 configuration described above is required for the operation of Module 4's timer function. To avoid activating P1.7, the firmware main loop recurrently tests the state of the PCA CH and CL counters. When the count reaches a threshold value, the Module 4 CCAP4H and CCAP4L capture registers are set to new values so they never match the PCA's CH and CL, therefore P1.7 is never interrupt-driven. When the capture registers are set to new values, the software also toggles the MAX695 WDI input via the RD- pin.

See the CMOD, CCON, CCAP4H, CCAP4L tables in Section 5 for details of these SFR registers.
The Watch-Dog Timer module does not use timers 0,1 and 2. The PCA is used for four timing functions and modules 0 through 3 operate in the 16 -bit Software Timer Mode. Figure 13 shows the module-counter configuration. Power reset clears the CPS1 and CPS0 bits (in CMOD); this selects Fosc - 12 (e.g. $921,600 \mathrm{~Hz}$) for the PCA clock. The firmware sets the CR bit in CCON; this enables the PCA clock to the counter. The PCA counter (CH and CL) overflow sets flag CF in CCON but does not cause an interrupt because ECF (in CMOD) is also a 0 as it was also cleared by the reset. The comparator enable bit, ECOMn in the CCAPMn register, is set to a 1 when the firmware loads a 16 -bit value in CCAPnH and CCAPnL. The firmware sets the MATn and ECCF bits in CCAPMn; these permit a comparator match to set the CCFn internupt flag in CCON. The five CCFn flags are OR-ed in the Interrupt Source Logic; the firmware must test the CCFn flag states to determine which module set the interrupt.

See the CMOD, CCON, CCAPMn tables in the 87C51FA data sheets in Section 5. The Interrupt Source Logic is described below.

Serial Port Interface

The Isolated CPU Interface uses the serial port for message byte reception and transmission and is assigned the highest priority in the IP register. The serial port is not used by the Watch-Dog Timer module because it is not involved in message activity.

The serial port is full duplex, meaning it can transmit and receive simultaneously. It is also receive-buffered, which means that it can commence reception of a second byte before a previously received byte has been read from the receive register. However, if the first byte still hasn't been read by
the time reception of the second byte is complete, one of the bytes will be lost. The serial port receive and transmit registers are both accessed at Special Function Register SBUF. Writing to SBUF loads the transmit register, and

Figure 13 Serial Byte Format reading SBUF accesses a physically separate receive register.

The serial port can operate in 4 modes; Mode 3 is used in the Isolated CPU Interface Board. In Mode 3, 11 bits are transmitted through TXD or received into RXD: a start bit (0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (1). On transmit, the 9th data bit (TB8 in SCON) can be assigned the value 0 or 1 . Or, for example, the parity bit (P in the PSW) could be moved into TB8. On receive, the 9th data bit goes into RB8 in Special Function Register SCON, while the stop bit is ignored. The baud rate is variable and is generated by Timer 1. Figure 13 shows the serial byte format.

Figure 14 shows the operation of the Serial Port in Mode 3.

The serial port control and status register is the Special Function Register SCON. This register contains the mode selection bits SM0 and SMI, the 9th data bit for transmit and receive, TB8 and RB8, anit the serial port interrupt bits TI and RI. SCON is initialized to Mode 3 by the firmware. SCON is shown in the 87 C 51 FA data sheet in Section 5. The SMODI bit in PCCON is initialized to 0 by the power reset.

In all four modes, transmission is initiated by any instruction that uses SBUF as a destination register. In Mode 3, reception is initiated by the incoming start bit if REN $=1$ in SCON.

Transmission is initiated by any instruction that uses SBUF as a destination register. The "write to SBUF" signal also loads TB8 into the 9 th position of the transmit shift

register and flags the TX Control unit that a transmission is requested. Transmission commences at SIPI of the machine cycle following the next rollover in the divide-by- 16 counter; therefore, the bit times are synchronized to the divide-by- 16 counter, not to the "write to SBUF" signal.

Transmission begins with the activation of the "Write to SBUF" signal, which puts the start bit in TXD. One bit time later; DATA is activated, which enables the output bit of the transmit shift register to TXD. The first shift pulse occurs one bit time after that. The first shift clocks a 1 (the stop bit) into the 9 th bit position of the shift register. Thereafter, only zeroes are clocked in.

As data bits shift out to the right, zeroes are clocked in from the left. When TB8 is at the output position of the shift register, then the stop bit is just to the left of TB8, and all positions to the left of that contain zeroes. This condition flags the TX Control unit to do one last shift, then deactivate SEND- and set TI. This occurs at the 11 th divide-by- 16 rollover after the "write to SBUF".

Reception is initiated by a detected 1-to-0 transition at RXD. For this purpose RXD is sampled at a rate of 16 times whatever baud rate has been established. When a transition is detected, the divide-by- 16 counter is immediately reset, and IFFH is written to the input shift register.

At the 7th, 8th and 9th counter states of each bit time, the bit detector samples the value of RXD. The value accepted is the value that appeared in at least 2 of the 3 samples. If the value accepted during the first bit time is not 0 , the receive circuits are reset and the unit revers back to looking for another 1 -to-0 transition. If the start bit proves valid, it is shifted into the input shift register and reception of the rest of the frame will proceed.

As data bits come in from the right, l's shift out to the left. When the start bit arrives at the leftmost position in the shift register, it flags the RX Control block to do one last shift, load SBUF and RB8, and set RI in SCON. The signal to load SBUF and RB8 and to set RI, will be generated only if the following conditions are met at the time the final shift pulse is generated:

1) $\mathrm{RI}=0$, and 2) Either $\mathrm{SM} 2=0$ or the 9 th data bit $=1$.

If either of these conditions is not met, the received frame is irretrievably lost and RI is not set. If both conditions are met, the received 9 th data bit goes into RB8 and the first 8 data bits go into SBUF. One bit time later, whether the above conditions were met or not, the unit goes back to looking for a new 1 -to-0 transition at the RXD input.

Note that the received stop bit state is ignored; the validity of the stop bit can be checked with Framing Error Detection.

Interrupts

The Interrupt Source Logic is shown in Figure 15 (next page) and provides 7 interrupt sources.
The External Interrupts INTO- and INT1- can be either level-activated or transition-activated, depending on bits IT0 and ITI in TCON. The flags that actually generate these interrupts are bits IE0 and IE1 in TCON. For external interrupts, there are two ways that the interrupt request flag that generated the interrupt is cleared. If the external interrupt is transition-activated, on-chip logic clears the flag when the service routine is vectored to. If the interrupt was level-activated, then the external requesting source
controls the request flag rather than the onchip logic.

In the Watch-Dog Timer module, the PC hold-off signal clocks the 74LS74 flipflop. The flip-flop's Q- output goes low, which activates INT0-. Bit IT0 in TCON is initialized to a 1 which makes INTO-negative-edge triggered.

The Timer 1 and Timer 0 Interrupts are generated by TFO and TFI in TCON, which are set by a rollover in their respective timer registers in mode 2 . When a timer interrupt is generated, the flag that generated it is cleared by the on-chip logic when the service routine is vectored to.

The Serial Port Interrupt is generated by the logical OR of RI and TI in SCON. Neither of these flags is cleared by chip logic when the service routine is vectored to. The service routine will have to determine whether it was RI or TI that generated the interrupt, and the flag bit will have to be cleared in firmware.

Figure 15 Interrupi Source Logic

The Timer 2 interrupt is generated by the logical OR of RF2 and EXF2. Neither of these flags is cleared by chip logic when the interrupt service routine is vectored to. The service routine will have to determine whether it was TF2 or EXF2 that generated the interrupt, and the flag bit will have to be cleared in firmware. Timer 2 is not used in either WYE Monitor application.

PCA interrupts are generated by the logical OR of the following flags: CF, CCF0, CCF1, CCF2, CCF3 and CCF4, all in CCON. None of these flag bits are cleared by chip logic when the service routine is vectored to. The service routine must determine which flag triggered the interrupt and clear it. The PCA interruput is enabled by bit EC in the IE register. In addition, the CF flag and each of the CCFn flags must be enabled by bit ECF in CMOD and ECF in

Figure 16 Tnterrupt Control Sysiem

CCAPMn before they can cause an interrupt.
All of the bits that generate interrupts can be set or cleared by software with the same result as though it had been set or cleared by hardware. That is, interrupts can be generated or pending interrupts can be cancelled in software.

Each of these interrupts can be individually enabled or disabled by setting or clearing a bit in IE. Note that IE has a global disable bit, EA, which disables all interrupts at once. The IE and IP register tables are shown in the 87 C 51 data sheets. Figure 16 (previous page) shows the basic 8051 Interrupt Control System.

Priority Level Structure

Each interrupt source can also be individually programmed to one of two priority levels by setting or clearing a bit in IP. A low-priority interrupt can itself be interrupted by a high-priority interrupt but not by another low-priority interrupt. A high-priority intermpt cannot be interrupted by any other interrupt source.

If two requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level, there is a second priority structure determined by the polling sequence as follows:

SOURCE		PRIORITY WITHIN LEVEL	VECTOR ADORESS
1.	INTO-	(highest)	0003H
2.	Timer 0		0008H
3.	INTI-		0013H
4.	Timer 1		0018H
5.	PCA		0033H
6.	Serial Port		0023H
7.	Timer 2	(lowest)	0028H

Note that the "priority within level" structure is only used to resolve simultaneous requests of the same priority level.

How Interrupts Are Handled

The interrupt flags are sampled at S5P2 of every machine cycle. The samples are polled during the following machine cycle. If one of the flags was in a set condition at S5P2 of the preceding cycle, the polling cycle will find it and the interrupt system will generate an LCALL to the appropriate service routine, provided this hardware-generated LCALL is not blocked by any of the following conditions:

1. An interrupt of equal or higher priority level is already in progress.
2. The current (polling) cycle is not the final cycle in the execution of the instruction in progress.
3. The instruction in progress is RETI or any access to the IE or IP registers.

Any of these three conditions will block the generation of the LCALL to the interrupt service routine. Condition 2 ensures that the instruction in progress will be completed before vectoring to any service routine. Condition 3 ensures that if the instruction in progress is RETI or any access to IE or IP, then at least one more instruction will be executed before any interrupt is vectored to.

The polling sequence is repeated with each machine cycle, and the values polled are the values that were present at S5P2 of the previous machine cycle. Note that if an interrupt flag is active but not being responded to for one of the above conditions and if the flag does not continue to be active when the blocking condition is removed, the denied interrupt will not be serviced. The interrupt logic does not store the occurrence of unserviced interrupts. Every polling cycle is new. The user must take this potential loss of unserviced interrupts into account in the logic design.

The polling cycle/LCALL sequence is illustrated in Figure 17.
Note that in accordance with the above rules, if an interrupt of higher priority level goes active prior to S5P2 of the machine cycle labeled C3 in Figure 17, then it will be vectored to during C5 and C6 without any instruction of the lower priority routine having been executed. Therefore, the processor acknowledges an interrupt request by executing a hardware-generated LCALL to the appropriate servicing routine. In some cases it also clears the flag that generated the interrupt, and in other cases, it doesn't. It never clears the PCA, Serial Port, or Timer 2 flags. This has to be done in the user's software. It clears an external interrupt flag (IE0 or IE1) only if it was transition-activated. The hardware-generated LCALL pushes the contents of the Program Counter onto the stack (but does not save the PSW) and reloads the PC with an address that depends on the source of the interrupt being vectored to, as shown on the previous page.

Execution proceeds from that location until the RETI instruction is encountered. The RETI instruction informs the processor that this interrupt routine is no longer in progress, then pops the top two bytes from the stack and reloads the Program Counter. Execution of the interrupted program continues from where it left off.

Note that a simple RET instruction would also have returned execution to the interrupted program, but it would have left the interrupt control system thinking an interrupt was still in progress.

External Interrupts

The external sources can be programmed to be level-activated or transition-activated by setting or clearing bit ITI or IT0 in Register TCON. If ITx $=0$, external interrupt x is triggered by a detected low at the INTx-pin. If INTx- = 1, extemal interrupt x is edge-triggered. In this mode if sucessive samples of the INTx- pin show a high in one cycle and a low in the next cycle, interrupt request flag IEx in TCON is set. Flag bit IEx then requests the interrupt.

Since the extenal interrupt pins are sampled once each machine cycle, an input high or low should hold for at least 12 oscillator periods to ensure sampling. If the extermal interrupt is transition-activated, the

Figure 17 Interrupt Response Timing
external source has to hold the request pin high for at least one cycle, and then hold it low for at least one cycle to ensure that the transition is seen so that the interrupt request flag IEx will be set. IEx will be automatically cleared by the CPU when the service routine is called.

If the external interrupt is level-activated, the external source has to hold the request active until the requested interrupt is actually generated. Then it has to deactivate the request before the service routine is completed or else another interrupt will be generated.

Response Time

The INT0- and INT1- levels are inverted and latched into IEO and IE1 at S5P2 of every machine cycle. The values are not actually polled by the circuitry until the next machine cycle. If a request is active and conditions are right for it to be acknowledged, a hardware subroutine call to the requested service routine will be the next instruction to be executed. The call itself takes two cycles. Thus a minimum of three complete machine cycles elapse between activation of an external interrupt request and the beginning of execution of the first instruction of the service routine. Figure 17 shows the interrupt response timing.

A longer response time will result if the request is blocked by one of the previously listed conditions. If an interrupt of equal or higher priority level is already in progress, the additional wait time obviously depends on the nature of the other interrupt's service routine. If the instruction in progress is not in the final cycle, the additional wait time cannot be more than 3 cycles, since the longest instructions (MUL AND DIV) are only 4 cycles long. If the instruction in progress is RETI or an access to IE or IP, the additional wait time cannot be more than 5 cycles (a maximum of one more cycle to complete the instruction in progress, plus 4 cycles to complete the next instruction if the instruction is MUL or DIV). Therefore, in a single-interrupt system the response time is always more than 3 cycles and less than 8 cycles.

Reset

The reset input is the RST pin, which is the input to a Schmidt Trigger. A reset is accomplished by holding the RST pin high for at least two machine cycles (24 oscillator periods) while the oscillator is running. The CPU responds by executing an internal reset. It also configures the ALE and PSEN- pins as inputs; they are quasi-bidirectional. The internal reset is executed during the second cycle in which RST is high and is repeated every cycle until RST goes low. It leaves the internal registers as shown in Figure 7.

The intemal RAM is not affected by reset. When VCC is turned on, the RAM content is indeterminate unless the 87 C 51 FA is returning from a reduced power mode of operation. The reduced power mode of operation is not used in the Isolated CPU Interface Board or the Watch-Dog Timer applications but one bit of the PCON power control Register in the Special Furction Registers is important. This bit is SMODI which is bit PCON.7. It causes the serial port baud rate to be doubled when set.

2.6 WYE Monitor System PC Configuration

This section describes the configuration of the WYE Monitor System's control PC. The intent of this description is to provide an overview of the PC's important features. A very detailed description is unnecessary because the most of the components could be replaced by generic equivalents. However, in some cases important features or critical components are identified.

Two PC's are used in the system. One is on line and the other is a ready spare that can be powered up and put into service by turning on the power and actuating the bus switchover unit. Their reliability has been enhanced by using rotating components with high MTBF's.

The PC uses a 486 DX processor with 8 MB of RAM on a generic mother-board. 2 MB of the RAM are used as virtual memory and 3 MB are used for program segment swapping. The Hard Disk is a Quantum 127 MB unit with an IDE controller that has a 250,000 hour (estimated) MTBF for long-term reliability. The following components are used for program development: a $3.5^{\prime \prime}, 1.44 \mathrm{MB}$ floppy disk, a keyboard and mouse. The keyboard can be used to stop the control program execution.

The power supply has been upgraded by replacing the sleeve-bearing cooling fan with a ballbearing fan having a 60,000 hour MTBF (estimated).

The monitor is a $14^{\prime \prime}$ CTX super-VGA unit used in the VGA mode. An Elographics Intellitouch Touch Screen is installed on the monitor screen. This is a surface acoustic-wave device controlled by an interface board in the PC.

The following boards are installed in the PC:

1) An Elographics Intelitouch Controller.
2) A four-port serial I/O card supplied by Willie's Computer Software Company.
3) A TVGA 800 CL video card.
4) A Covox Soundmaster 2 audio card with a microphone jack for voice message input. The speakers are outside the computer cabinet.
5) A Super I/O Card with an IDE hard disk interface and a $3.5^{\prime \prime}$ floppy disk controller, two serial ports, one parallel port and one game port. One serial port on the Super I/O Card is disabled and the other is connected to a mouse used for program development.

The four-port serial board drives the four buses and the ports share a common interrupt. The four ports are COM3, COM4, COM5 and COM6. The mouse is on COM1 and the Touch Screen controller is on COM2.

2.7 WYE Monitor PC Interface Bin

The WYE Monitor PC Interface Bin contains the modules that transform the computer's serial port RS-232 signals to the WYE Monitor bus levels and resets the PC in the event of an apparent control program crash. These modules are the PC Watchdog, the PC Transcievers and the Power Supply, which are described below. Drawing D13900P09 is the bin assembly drawing and shows the module and I/O connector locations. The bin interconnect and I/O wiring is shown on drawing C13900W04, the WYE Monitor PC Interface Bin Wiring Diagram. The WYE Monitor A\&B Switch Box is not installed in this bin but is included for convenience.

The WYE Monitor PC Interface Bin Assembly drawings are listed below and for convenient reference, reduced-scale copies of these drawings follow this section.

D13900P09 WYE Monitor PC Interface Bin Assembly
Cl3900W04 WYE Monitor PC Interface Bin Wiring Diagram
C13900P13-20 PC Transceiver Module Assembly, East Arm
C13900P13-30 PC Transceiver Module Assembly, North Arm
C13900P13-40 PC Transceiver Module Assembly, West Arm
C13900P10 WYE Monitor PC Module Watchdog Assembly
Cl3900P14 WYE Monitor Power Supply Module Assembly
B13900W07 WYE Monitor A\&B Switch Box Wiring Diagram
\section*{WYE Monitor Watch-Dog Timer}

A watch-dog timer is a circuit that automatically invokes a reset unless the system being watched sends regular hold-off signals to the watch-dog. These circuits are used in applications where high reliability is required.

The WYE Monitor control PC's 110 VAC power is controlled by a firmware program in the Watch-Dog Timer module. The Watch-Dog Timer's function is to monitor the execution of the PC's program; in the event of a problem, it cycles the PC's power to induce a power reset and program reboot.

The WYE Monitor PC Watch-Dog Timer is installed in Slot 3 in the WYE Monitor PC Interface Bin. The Watch-Dog Timer's circuitry is packaged on a Vector CG2-95 Card Mount circuit board. The front panel has a green "Power On" LED, a yellow "Alarm" LED and a "Quiet" pushbutton switch; these LED's and switch's functions are described below. The major circuit components are an Intel 87C51 microcontroller and a Maxim MAX695 Microprocessor Supervisory Circuit to sense bin power failures and 87C51 firmware crashes. The other components are a 74LS74 "D" flip-flop, an alarm beeper, and an LM7805T power regulator to produce +5 volt logic power from the bin's +12 volt DC power supply. Three red LED's are installed in a dip header on the circuit board for bench test purposes.

The Watch-Dog Timer drawings are listed on the next page and for convenient reference, reducedscale copies follow this section.

```
C13900P10 WYE Monitor PC Watchdog Module Assembly
C13900P11 WYE Monitor PC Watchdog Circuit Board Assembly
C13900S06 WYE Monitor PC Watchdog Circuit Board Schematic Diagram
A13900P12 WYE Monitor Watchdog Ciruit Board Dip Header Assembly
```

The firmware program contains the Watch-Dog Timer's logic. The program's operations are described by the text and synopsis below - a detailed description of the program is beyond the scope of this manual.

The Watch-Dog Timer has four operating modes: normal, PC restart, scream and maintenance. Normal mode verifies the proper execution of the PC control program. The PC restart mode is entered from the normal mode when the Watch-Dog Timer detects an apparent fault in the execution of PC control-monitor program or detects a bin power problem. The scream mode is entered when the WatchDog program detects an alarm condition; the beeper is pulsed to alert the telescope operator and the alarm LED is powered. The maintenence mode is used when the PC is taken off-line for program or hardware maintenance.

In the normal mode, the Watch-Dog program monitors the PC control program activity. After the control program has been started, it outputs a character on the printer port at 2 pulse/Second intervals. Bit D0 in this character is the PC program hold-off signal. The Watch-Dog Timer is connected to the D0 bit. If the timer's program detects a cessation of the hold-off signal, it decides that the PC program is not operating properly or has crashed, etc. The Watch-Dog program then shifts to the Restart Mode, in which the PC power is turned off for 10 seconds and then back on, to force a PC power-on reset. After a 10 second delay for the program to reach the point at which it should output the hold-off signal, the WatchDog program resumes testing for the presence of this hold-off signal. If the signal has not resumed, the Watch-Dog program makes two more attempts to induce a PC program reset. If the third reset attempt is unsuccessful, the Watch-Dog program shifts to the scream mode. During the normal mode, the power LED is illuminated.

The maintenance mode is entered by an operator intervention. Three quick actuations of the Quiet push button will activate the maintenance mode. Upon entry to the maintenance mode, the beeper is pulsed several times to acknowledge the maintenance mode request and the program starts an entry delay period of 60 seconds. During this period, the program holds the PC power on and ignores the presence of the hold-off, if it is present.

After the 60 second entry delay, the presence of the hold-off signal will trigger the program to exit from the maintenance mode. Before exiting the entry delay, the program will sound a 10 second series of beeps to query the telescope operator for exit confirmation. If the Quiet button is pushed within a 60 second grace period, the program will restart the maintenance mode. If the Quiet button is not pushed before the exit delay expires, the program will revert to the normal mode.

When the bin Power Supply is turned on, after the 87 C 51 microcontroller is power-on reset by the MAX695 (described below), the Watch-Dog program waits 60 seconds to permit the PC to boot up before it begins to test for the presence of the 2 pulse/second hold-off signal.

A synopsis of the Watch-Dog Timers 87C5I firmware program is shown on the next page:

```
Begin:
    Initialize Stack, PCA, I/O
Set Tries:
    Boot_Tries = Retries
While Boot_Tries > 0
    Boot PC:
    Turn on Power to PC
    For Boot Delay
                        If Quiet Button is pressed
                                    Call Maint Test
    Check_PC:
    While PC is sending pulses
            Pulsing:
                Make sure alarm and beeper are off
                    Boot Tries = Retries
                    If Quiet Button is pressed
                                    Call Maint Test
No_Pulse:
                    Turn on Alarm LED
                    For Exit Delay
                        Wait
Reset_PC:
                                    Decrement Boot Tries
                            Turn off PC power
                            Turn off Power LED
                                    For Offtime
                                    Hait
                                    urn on PC power
                                    Turn on Power LED
Scream:
    While Quiet Button is not pressed
            Pulse Alarm Beeper
            IF PC pulses resume
                Go To Pulsing
Flash:
    While Quiet Button is pressed
    Wait
    While PC is not pulsing
            Flash Alarm LED
            If Quiet Button is Pressed
                Call Maint_Test
            Go To Pulsing
Maint_Test:
    If Quiet Button is pressed quickly three times
            Call Maint_Mode
    Return
Maint Mode:
    Send Audible Acknowledge
    For Entry Interval
            Flash Power LED
    While PC is not pulsing
            Flash Power LED
    For Grace Interval
            Flash Power LED
            Send audible Query every few seconds
            If Quiet Button is pressed
                    Go To Maint Mode
Return
```

Refer to the schematic diagram C13900S06, and note that the LED's and beeper are driven by 87 C 51 Port 0 bits 0.1 through 0.7 (bit 0.4 is not used). Port 0.2 senses the Quiet switch's state. Also note that 87C5I Port 2.6 clocks the MAX695 WDI input and Port 2.7 direct resets the 74 LS 74 flip-flop. Port 0.0 drives a solid state 110 VAC relay mounted on the back of the bin; this relay provides the PC's 110 VAC power. When the PC is powered, Port 0.0 is low and sinks current from V_{CC} through the . Jlid state relay. To reset the PC, the program firmware sets Port 0.0 high which disconnects the PC's 110 VAC power.

The Watch-Dog timer uses the 87C51 Timer 1, Timer 2 and the PCA (programmable counter array) features. These are briefly described in Section 2.4. The Intel 87C51 Microcontroller is also used in the Isolated CPU Interface Board, Section 2.7.

The positive-going edge of the PC's printer port hold-off signal, bit D0, clocks the 74LS74 flipflop. The 74LS74 Q- output goes low and the negative edge transition activates the 87C51 INTOinterrupt input. During the ensuing response to the interrupt, Port 2.7 is set low and then high to clear the flip-flop for the next hold-off signal.

Three red LED's are installed on dip header DV10 and are only visible when the module is operated on an extender cable. These LED's are intended to be used during bench tests. LD3 is driven by Port 0.7 and flashes each time the confirmation signal occurs. LD4 and LD5 do not have any functional assigment.

The application of the MAX695 chip in the Watch-Dog Timer is very similar to its usage in the Isolated CPU Interface board described in Section 2.7. See this section for a description of the chip's functions in these two applications. The only difference between the usage of this chip in the Watch-Dog Timer and Isolated CPU Interface is that in the Isolated CPU Interface, the chip's WDI input is driven by the 87C51 RD/ pulse. The Watch-Dog Timer uses Port 2.6 to drive the WDI input and this port is pulsed during each pass through the normal mode code.

The module is powered by 12 volts DC from the WYE Monitor Power Supply (see below). The 12 volts is regulated to +5 volts DC by an LM7805 regulator; this powers the Watch-Dog Timer circuitry.

WYE Monitor PC Transceiver Module

The WYE Monitor PC Transceiver translates the PC's serial RS-232 signal levels to the bus levels described in Section 2.5. Four types of transceivers are used, one for each bus and they are installed in bin slots 4 through 7; see D13900P09, the bin assembly drawing above. The four transcievers are functionally identical and differ only in the panel label. It is possible to use any transceiver type in another transceiver's slot but this is operationally confusing because it is misleading.

The transceiver's circuitry is contained on a PC board installed in the front of a Vector CG2-95 card mount module. The circuit board is common to all four types of transceivers. Five jumper wires connect the PC board to the Vector PC board 12 volt power, signal buss lines and earth ground. These are connected to the bin backplane wiring via the Vector Board's card edge connector contacts. The connections between the transceiver PC board and the CG2-95 card-edge contacts are shown on the PC Interface Bin Wiring Diagram, C13900W04. The PC's RS-232 bus signals are connected to the module's front panel 25 -socket " D " connector. The RS-232 signals are RX (Receive Data), TX (Transmit Data) and RTS (Request to Send).

The transceiver modules are powered by +12 VDC from the WYE Monitor Power Supply (see below). The +12 VDC power is regulated to +5 V DC by an LM 7805 regulator. The bus drive and receive circuitry is powered by a Burr-Brown HPR 105 which produces + and - 15 VDC. The three power supply outputs are designated $+15 \mathrm{I}, 0 \mathrm{VI}$ and -15 I . These three outputs are isolated from the supply's + 5 volt and 5 volt common inputs.

The MAX233 RS-232 to TTL converter chip is powered by +5 volt logic power. The chip has an internal flying capacitor power supply to provide the ± 9 volt power used for RS-232 signal interfacing. The MAX233 can also supply +9 V and -9 V for small extemal loads.

Two front panel LED's indicate bus signal activity; the amber LED (D5) flickers to show monitor message activity and the green LED (D6) flickers to show command and monitor request activity.

For convenient reference, the WYE Monitor PC Transceiver drawings follow the text at the end of this section; these drawings are:

```
C13900P13 WYE Monitor PC Transceiver Assembly
C13900P01 WYE Monitor PC Transceiver PCB Assembly
C13900S02 WYE Monitor PC Transceiver PCB Schematic
```

WYE Monitor line driving and receiving was described in Section 2.4; see this Section for a detailed description of these functions. The transceiver's line drive and receive circuitry is very similar to that in the Isolated CPU Interface Board circuitry and do not require additional description here. The only significant difference is that the transceiver's logic circuitry uses a 74 HCT 00 instead of a 74 LS 32 . Secondly, instead of Sidactors, Panasonic ERZ-C10DK680 MOV surge arrestors are connected across the bus lines and from each bus line to ground.

WYE Monitor Power Supply Module

The WYE Monitor Power Supply provides +12 VDC to the four WYE Monitor Transceiver modules and the Watch-Dog Timer via the bin backplane wiring. Assembly drawing Cl3900P14 shows a front panel power supply switch; this is not used. The 110 VAC module power input is wired directly to the supply. A front panel power indicating LED is powered by the +12 VDC power.

The power supply uses a Vector CG2-95 Card Mount circuit board. An NRAO front panel and Lambda modular power supply is mounted on the card and wired to the card-edge connetors. The power supply module card edge connections are shown on the bin wiring schematic, C13900W04.

The power supply modue is a commmercial Lambda LVS-44-12-B switching power supply. The LVS-44-12-B is a switching regulation power supply rated at 12 volts, 2.1 amps , over a temperature range of 25 to 50 degrees C. Line and Load regulation is 0.4% and 0.8%, respectively. Ripple and noise are 15 mV RMS and the temperature coefficient is $0.02 \% /{ }^{\circ} \mathrm{C}$. This power supply has overcurrent limiting and overvoltage protection. Molex-type connectors are used for AC and DC wiring connections. A data sheet for this power supply module is included in Section 5.

For convenient reference, a reduced-scale copy of the bin power supply assembly drawing C13900P14, follows the text at the end of this section. There is no schematic diagram; the bin wiring schematic C13900W04 shows the module's card-edge connections.

WYE Monitor A\&B Switch Box

This unit is used to switch the four bus lines from the on-line PC and PC Interface to the backup system in the event of a PC or bus line driving-receiving problem.

The A\&B Switch Box is a modification of a commercial printer selector switch box. Telephone line connectors are used for the bus line connections. Drawing B13900W07 shows the box wiring.

2.8 Isolated CPU Interface Board

This section describes the Isolated CPU Interface PC Board that is used as a serial-to-parallel interface in all the control interface modules. The board transforms serial bus message interactions into 16 discrete parallel I/O lines that are connected to the control module's command and monitor interface circuitry. This board might be termed a "semi-standardized" interface in that while the bus line interface is standard for all applications, the board's parallel command/monitor interface circuitry is particularized to the module's device interface application. This particularlization is described below.

The device interface circuitry is installed on a logic connector board adjacent to the Isolated CPU Interface Board and is hard-wire connected to the board.

For convenience, the Isolated CPU Interface Board drawings follow this text; refer to them during the following description. The drawings are:

D13900P02 WYE Monitor Isolated CPU Interface Board Assembly
C13900S03 WYE Monitor Isolated CPU Interface Board Schematic Diagram
The board's bus line receive and drive circuitry is described in Section 2.4 above; refer to this description for details.

An important property is the isolation of the board's circuitry from high-voltage spikes on the I/O lines. Optically-coupled isolators in the board's bus line transmitter-receiver circuitry protect it from high voltage spikes that may be induced in the bus lines by lightning strikes to the antennas, rails, buildings and the earth. This also eliminates bus line common-mode signal perturbations to the receiving circuitry.

The board's parallel command/monitor lines are also optically isolated from the device interface circuitry; this protects the board's 87C51 microntroller and eliminates potential ground-loop interactions between the control interface modules and the controlled and monitored devices. Ground loop interactions can be very troublesome. The board's parallel interface circuitry is described below.

The optically-coupled isolators used on this board are NEC PS2501 and NEC PS2502 which have isolation break-down voltage ratings of $5 \mathrm{kV}_{\mathrm{RMS}}$, MIN. The board's line driving and receiving circuitry power is provided by a Burr-Brown HPR 105 which has an isolation voltage of 750 volts. Data sheets for the isolators and power supply are included in Section 5.

The heart of the board is an Intel 87C51FA microcontroller and its on-chip EPROM firmware. The 87C5IFA, the serial interface and timers are described in Section 2.5; see that section and the 87C51 data sheets in Section 5 for details.

The 87C51's bidirectional I/O ports are the board's parallel interfaces. Ports 0 and 1 are the board's parallel command-monitor interface. The device's command state is written into the Port 0 and 1 latches and the two port's input circuitry reads the device's monitor state. The Port 0 and Port 1 latches are the interface board's command memories; the control module's device interface circitry performs only level adaption or inversion. The Port 2 lines read the Unit ID code hard-wired on the module's bin connector. The 87C51's I/O ports were described in Section 2.5 above. The Port 0 output buffers can sink 3.2 mA at 0.45 volts and require external pullups to drive inputs. Ports 1,2 and 3 can sink 1.6 mA
at 0.45 volts. These ports can be driven by open-collector and open-drain outputs.
The parallel interface ports 0 and I levels are active-low; high is false and low is true. A Command message argument bit that is a 1 will be a low level on the associated 87C51 Port 0 and Port 1 command pins. Similarly, a low level monitor input to the 87 C 51 Ports 0 and 1 pins will be $a 1$ in the transmitted Monitor Acknowledge message. Port 2, the board's address line (Unit ID) inputs are activehigh.

The board's 87 C51 firmware requires that monitor (or fault) inputs be low. The firmware stores the active-low input state until the next Command or Monitor Request message from the control PC.

Section 2.2 has a very brief description of the board's 87 C 51 firmware; a separate manual will provide a more extensive description of the 87 C 51 firmware.

The system's message formats and protocol were discussed in Section 2.2.
The board's 16-bit parallel command output/monitor input circuitry consists of two sets of optical isolators; either (not both) a command opto-isolator or monitor opto-isolator is installed on each port line.

The command output circuit is a NEC PS2502-1 optically-coupled isolator with a Darlington output transistor pair. The isolator's current transfer ratio ranges between 200 to 2000%. When the Port 0 or Port 1 outputs are low, they sink about 0.3 mA current through a $10 \mathrm{k} \Omega$ resistor and the isolator's LED. A photo-Darlington isolator is used to avoid loading the 87 C 51 's $/ / 0$ ports. The isolator's switching times are about 3 microseconds. The isolation voltage is 5,000 volts and the transistors BVCEO is 40 volts. The Darlington-output transistor's emittor and collector are connected to the board's parallel input/output pins. The output transistors emittor and collector lines are referenced to the device's ground via the module's device interface circuitry. Note that when the port bit is a high, the output transistor is conducting and is non-conducting when the port output is a low. When a parallel input/output line is used for command output, the monitor input isolator is not installed and is out of the circuit. In some control interfaces (e.g. M26, M27), the command optical isolators are installed in the device interface circuitry.

The monitor input circuit is a NEC PS2501-1 optically-coupled isolator with a single phototransistor output. The isolators LED is connected to the same pair of pins as the command output isolator; only one isolator is permitted on a parallel bit line. The monitor input circuit is totally isolated from the board's circuitry. The isolator's current transfer ratio ranges between 80 to 600% and the LED drive current is determined by the device monitor circuitry. This current should be about 1.2 mA . The isolation voltage is 5,000 volts and the transistor's BVCEO is 80 volts. Switching times are about 3 microseconds. When a parallel input/output line is used for input, the output isolator is not installed. Both LED lines are connected to the parallel input/output pins. In some control interfaces (e.g. M26, M27), the monitor optical isolators are installed in the device interface circuitry.

The board's parallel inputoutput pins (J1 through J16) are 0.025 in, square wire-wrap pins. Wirewrap wiring connects these outputs to the module's device interface circuitry. Since these pins are hardwired to the device interface circuitry, this board is not a removable module.

To configure this board for service in one of the interface modules, install the command and monitor isolators as shown in the module's schematic diagram. Note that most of the board's isolators are monitor isolators because there are only a few command functions in the M26, M27 and M29 control
interface modules.
All eight 87 C 51 Port 2 pins are connected to J 17 for use in the interface module. Pull-up resistors are not required because Port 2 has intemal pull-up resistors. Six of the Port 2 pins and logic common are connected to the module I/O connector, PI. Five of these lines, Ports 2.0 through 2.4, are used to read the control module's 5 -bit address (Unit ID) code and the bit weights are 2^{0} (J17-1) through 2^{4} (J17-5). The address code value is formed by jumpering the appropriate lines to logic common on the control interface module's bin backplane connector. As mentioned above, the address inputs are active-high so the address-encoding jumper connection are the logic complement of the address code. Port 2.5 , address bit 2^{5} (J17-6) is connected to P1, the control module's back-panel connector for potential future use as an address input in the event that the address space should ever exceed 32 addresses. In current use, this term is connected to logic ground on the bin backplane connector. Ports 2.6 and 2.7 (J17-7 and J17-8) have not been assigned any board or module function.

An 8-circuit dip-switch is connected to the Port 2 pins for convenience in bench-testing the board before installation in a control interface.

The board uses a MAX695 Microprocessor Supervisory chip to sense +5 volt power losses and as a watch-dog on the 87 C 51 program execution. If the +5 volt DC power drops below +4.65 volts, the MAX695 RESET pin outputs a high-true reset to the 87 C 51 . When the DC power rises above the +4.65 volt threshold, an intermal monostable holds the RESET line high an additional 200 mS to enable the processor clock oscillator to start. The 87C5I data sheet specifices a minimum reset period of 1 mS for crystal frequencies of 10 MHz . The 200 mS of adaitional delay on the RESET output is more than adequate.

The MAX695 has a WDI- input and an internal watch-dog timer. If OSC IN and OSC SEL are unconnected, the 87C51 firmware hold-off output (RD-, P3.7) must toggle the WDI pin once within a maximum period of 1.6 seconds; if this period is exceeded or the hold-off does not occur, the RESET output issues a 200 mS reset to the 87 C 51 . In the event that the 87 C 51 does not toggle the WDI pin within the 1.6 second period, the MAX695 will issue another reset output. If program execution is not resumed, the reset pulse will be output at 1.6 second intervals. Each pass through the 87 C 51 firmware's main loop causes the hold-off output to toggle. There is no particular hold-off signal pulse rate because the recurrance rate may vary as a function of the program's message handling, etc. activity. The hold-off signal toggle period is much smaller than the MAX695's 1.6 second threshold value.

During development it was discovered that the MAX695 is rather sensitive to noise on the VCC terminal. This terminal is filtered by a 10Ω resistor and $0.1 \mu \mathrm{~F}$ capacitor RC filter to eliminate this problem. The VBATT pin is connected to ground. VBATT is a MAX695 battery backup function which is not implemented in the WYE Monitor system application.

The board is powered by an extemal 12 to 24 VDC DC power supply; the board's load on this power supply is 70 mA . The on-board logic, 87 C 51 , and parallel interface circuitry is powered by an LM7805KC DC regulator. The board's line driver/receiver circuitry is powered by a Burr-Brown HPR 105 flying capacitor ± 15 volt isolated power supply. The HPR 105 is powered by +5 volt power from an LM7805KC DC regulator.

A 1 N4007 series diode in the positive input power supply line protects the board and LM7805KC in the event that external power is inadvertently reversed. The $10 \mu \mathrm{~F}$ capacitor across the LM7805KC
input provides input filtering and a surge capacity for the regulator. The $10 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ capacitors on the output provide low and high frequency filtering of the regulators output 5 volt power.

The LM7805KC DC input power is rated at a nominal +10 volts and the typical output voltage is +5 volts, and a minimum of +4.8 and a maximum +5.2 volts. Line regulation is $\pm 50 \mathrm{mV}$ with a 100 mA load and load regulation is $\pm 100 \mathrm{mV}$ with a 500 mA load. The minimum input voltage is +7.2 to maintain line regulation. The LM7805 series has intemal thermal overload and short circuit protection features.

The HPR 105 DC input power is rated at a nominal +5 volts with a minimum and maximum of +4.5 and +5.5 , respectively. The power rating is 750 mW and the voltage setpoint accuracy is $\pm 5 \%$. Line regulation is $1 \% / \%$ Vin and load regulation is 3% from 1 mA to rated load. The temperature coefficient is $0.01 \% /{ }^{\circ} \mathrm{C}$.

Data sheets for the 87C51FA, HPR105, NEC PS2501-1, NEC PS2502-1 and MAX695 are included in Section 5.

2.9 M26 Antenna Interface Module and its Interfaces with Antenna Systems

This section describes the M26 Antenna Interface Module and its interfaces with antenna systems. Like the other WYE Monitor control interface modules, M26 uses the Isolated CPU Interface Board to transform serial bus message interactions into 16 discrete parallel interactions with antenna interface circuitry. D13900S04 is the M26 schematic diagram. The antenna interface circuitry is installed on a wire-wrapped logic connector board in M26. Drawing D13900P06 is the M26 assembly drawing and drawing C13900P017 shows the interface circuit's component layout on the logic connector board. Reduced-scale copies of the M26 functional drawings follow this text.

Sections 2.2 and 2.4 described the message formats, protocol, and line driving and receiving. Section 2.8 described the Isolated CPU Interface Board.

The M26's are connected to the North, East and West arm WYE Monitor Buses.
The major subjects of this section are the character of the interface signals, the interface circuits that adapt these signals to the Isolated CPU Interface Board, and the M26 power circuitry.

M26 is installed in bin position 7 in the F / R System Bin " X "; there are no interconnections or functional links to the F / R System. The antenna systems interface signals are connected to M26 via the WYE Monitor System bin I/O connector installed behind bin position 5. The WYE Monitor bus signal from the antenna WYE-COMM terminal block is connected to this connector. Interface signals from this connector fan out to the ACU, Pedestal Room Junction Box, the Azimuth Drive Cabinet, the 28 volt relay power supply, and a 9 volt wall transformer (NCP power monitor). This antenna interface wiring is shown on drawing D13900W01.

M26 is powered by 24 volts DC from the antenna fire alarm system batteries - an uninterruptable power source. The battery's charge is maintained by a 110 VAC-powered, trickle-charger. Fire Alarm Control Panel terminals Aux 1 and 2 are the connection point for the M26 DC power lines that are routed through the WYE Monitor System bin I/O connector.

Antenna systems serviced by M26 are the ACU, ACU Fault Board, Emergency-Stop circuitry, Stow Monitor circuitry, Fire Alarm, Non-Critical Power (NCP), Non-Critical Power breaker, and the Critical Power phase-loss monitor circuitry. These functions and their interface characteristics are tabulated below. Descriptions of the command and monitor interface circuits follow the table.

The M26 command psuedo-switches and monitor states are shown in Figure 3, the Antenna status subscreen.

M26 outputs three command discretes and inputs nine monitor discretes. In the event that additional command or monitor functions are required, four spare parallel Isolated CPU Interface Board bits are available for assignment to command or monitor functions. M26 also monitors ACU functions not implemented in the ACU via an ACU Fault Board installed in the ACU. The ACU Fault Board is described below.

M26 functional and related drawings are listed below; for convenient reference, reduced-scale copies follow this section's text.

```
D13900P06 WYE Monitor M26 Antenna Interface Module Assembly
A13900201 M26 Antenna Interface Module BOM
013900S04 WYE Monitor M26 Antenna Interface Module Schematic Diagram
C13900p07 M26 Antenna Interface Module Wire-Wrap Board Component Layout
c13900w02 M26 Module 37-Pin Connector Test Puints Wiring Diagram
A13900P04
D13900w01 WYE Monitor Wiring Diagram
C13900P05 ACU Fault Printed Circuit Board Assembly
C13900S09 ACU Fault Printed Circuit Board Schematic Diagram
```


Front Panel Test Point Connector

For convenience in locally checking the antenna system's interface signals, WYE Monitor bus signal and M26 power, M26 has a front panel test connector J1, which is a 37 contact " D " series socket connector. Note from the M26 module schematic drawing that a level-shifted version of all antenna systems interface signals are connected to this test point connector. Drawing A13900W02 shows the contact-signal assignments.

Note from the M26 schematic that the command and monitor and command test point signal levels are quite different. With the exception of the E-Stop command monitor which is +24 volts (when the command is active), the monitor signal test points are all across the input optoisolator's LED; therefore, the signal levels are small and depend upon the circuit's characteristics. The highest level will be about +1.1 volts, which is the optoisolator LED's forward voltage. The low levels will be 0 volts for contact closures or power supply inputs and about +0.2 volts for inverting optoisolator cases. In these optoisolator cases, the level is about +0.2 volts, which is the V_{CE} of the inverting optoisolator's output transistor.

In the cases of command outputs, the test point connections are all across the command circuit's relay coils; therefore the signal levels will be +24 or about +0.9 volts, the optoisolators output transistor V_{CE}.

Antenna Systems Interface Signal Characteristics

Int Bd Signal		Function	Signal Type	M26 Module I/o Pins \& Levels	$\begin{aligned} & \text { Int BD } \\ & \text { Port State* } \end{aligned}$	Signal	Function
1000	(C)**	E-Stop Cormmand	SPDT Relay Contacts	P1-P \& P1-M open closed	Low, 0 High, 1	E-Stop No E-St	$\begin{aligned} & \text { Cmd } \\ & \text { op Cmd } \end{aligned}$
1001	(C)	DFR (ACU Reset) Cormand	SPOT Relay Contacts	$\begin{aligned} & \text { P1-S \& P1-U } \\ & \text { open } \\ & \text { closed } \end{aligned}$	Lon, 0 High, 1	Command Command	Active Inactive
1002	(c)	NCP Breaker Reset	SPDT Relay Contacts	$\begin{aligned} & \text { P1-W \& P1-Y } \\ & \text { open } \\ & \text { closed } \end{aligned}$	Low, 0 High, 1	Cormand Command	Active Inactive
1003	(C) or	Spare function					
1004	(C) or	* Spare function					
1005	(C) or	Spare function					

1006	(C)	Spare func	tion			
1007	(M)	ACU Manual Mode	OC voltage	P1-V \& P1-x +5 to 12 VDC 0 volts	Low, 0 High, 1	Manual Mode Computer Mode
1008	(M)	Emergency Stop Cmd State	DC voltage	$\begin{aligned} & \text { P1-w \& P1-y } \\ & +28 \mathrm{VOC} \\ & 0 \text { volts } \end{aligned}$	low, 0 High, 1	E-Stop Mode Drive Mode
1009	(M)	ACU Fault Mon	THL level	P1-T \& P1-V TTL high TTL low	Low, 0 High, 1	ACU Fault No ACU Fault
1010	(M)	Non Critical Power Monitor	DC voltage	P1-X \& P1-Z +13 VoC 0 volts	High, 1 Low, 0	NCP OK NCP Fault
1011	(M)	28 VDC Relay pS Monitor	DC voltage	P1-F \& PI-L +28 Voc 0 volts	$\begin{aligned} & \text { High, } 1 \\ & \text { Low, } 0 \end{aligned}$	Relay PS OK PS fault
1012	(M)	Stow Monitor	DC voltage	P1-f \& P1-j +28 VOC 0 volts	Low, 0 High, 1	Ant Stowed Not Stowed
1013	(M)	Critical Power Phase Loss	OC Voltage	P1-m \& P1-p +28 VDC 0 volts	$\begin{aligned} & \text { High, } 1 \\ & \text { Low, } 0 \end{aligned}$	AC Power OK AC Fault
1014	(M)	Fire Alarm	DC voltage	P1-s \& P1-u +28 VOC 0 volts	$\begin{aligned} & \text { H:gh, } 1 \\ & \text { Low, } 0 \end{aligned}$	No fire Alarm Fire Alarm
1015	(M)	Local E-Stop Switch Mon	DC voltage	$\begin{aligned} & P 1-w \& P 1-y \\ & +28 \text { VOC } \\ & 0 \text { volts } \end{aligned}$	High, 1 Low, 0	Loc E-Stop Off Loc E-Stop On

* At the 87C51 port pin
* C denotes a command function and M denotes a monitor function.
*** These ports can be configured as either command or monitor functions.
Note that when WYE Monitor system commands are not active and there are no faults, the Isolated CPU Interface Board monitor data port states (at the 87C51 Port 0 and Port 1 pins) are all high. The 87C51 firmware inverts this port bit sense so that the Monitor Acknowledge message bits are all 0's for this no-fault case.

Command Interface Circuits

Command optoisolators (NEC PS2502-1) are installed in the Isolated CPU Interface Board ports $100,1 O 1$ and 102 . Monitor optoisolators are not installed in these ports.

Note that the three command circuits are very similar and use the same Hamlin SPDT relay. The differences between the three circuits are the relay contact assignments. In the three command circuits, only one set of relay contacts is connected to the module I/O connector; the other set is not used. When a command message bit is a 1 , the associated 87 C 51 port bit state is a low. This low signal sinks current through the command output optoisolator's LED. This causes the Darlington-connected output transistors to conduct, thereby sinking current from the +28 volt relay supply through the relay, to the supply's return.

When active, the Emergency-Stop command NC relay contacts open to interrupt current flow in the E-Stop relay in the servo drive cabinet; this disables the antenna position servo amplifier drives and holds the antenna azimuth and elevation positions constant. The Emergency-Stop circuit consists of a series connection of these Emergency-Stop command NC contacts and the NC contacts in three manual Emergency Stop switches. If all NC contacts are closed, the relay supply +28 volts powers the E-Stop relay in the servo drive cabinet.

When active, the DFR (ACU Reset) command NO relay contacts closure applies 28 volt power to an external 28 volt relay. The ACU's 110 VAC power is routed through the relay's NC contacts. When the command is active, the ACU's power is interrupted and the ACU's +5 volt logic power supply quickly discharges. The command remains active for five seconds. At the end of this period, the command is reset to the inactive state and the ACU's 110 VAC power is re-applied. This induces a reset of the ACU's logic circuitry.

When active, the NCPR (Non-Critical Power Reset) command NO relay contacts apply 28 volt power to the reset coil of the Non-Critical Power circuii breaker. This command remains active for two seconds; at the end of this period, the command is reset to the inactive state.

The Hamlin HE721C2410 is a dry reed relay with a contact rating of 3 Watts, 0.25 Amps , and 175 volts. The coil resistance is 2000 Ohms, is designed for 24 volt operation and has an internal clipping diode.

Monitor Interface Circuits

Monitor optoisolators (NEC PS2501-1) are installed in the Isolated CPU Interface Board ports IO7 through IO15. Command optoisolators are not installed in these ports.

The M26 schematic diagram shows a variety of monitor circuit types. Roughly there are two classes: non-inverting inputs and inverting inputs. Inversion is implemented by adding a second series optoisolator to the monitor input circuit. Note from the table above that when there are no faults, no Emergency Stops, and the antenna is in the observing mode, the Isolated CPU Interface Board port states are all 0 's (high). The 87 C 51 firmware inverts this sense so that the message data bits are all 0 's. When a monitored signal is a voltage in the non-fault state without inversion, the Isolated CPU Interface port state would be a 0 because of the inversion of the monitor input optoisolator. The inverting optoisolators are used to make all the port states 1's for non-fault conditions. This all-1's state simplifies the PC control program's analysis of the monitor data.

When a monitor signal is an active high voltage, the inverting optoisolator's output transistor sinks about 0.9 mA and the V_{CE} is about +0.2 volts, which is below the monitor input optoisolator LED's 1.2 to 1.4 volts operating voltage. As a result, the monitor input LED does not emit and the port state is a high.

The monitored antenna functions active-high voltage levels fall into two classes: about +13 volts (ACU Fault Monitor and Non-Critical Power Monitor), and the balance at +24 to +28 volts. The current limiting resistors for the inverting and noninverting optoisolator's LEDs limit the input current to about 2 to 3 mA , except for the relay supply monitor which is about 6 mA .

A special case is the +28 volt relay power supply monitor, which has a 20 -volt Zener diode in series with the $1 \mathrm{k} \Omega$ current limiting resistor on the inverting optoisolator's LED input. The relay power supply is a non-regulated supply that has a number of loads which make it's output somewhat variable. If the relay supply voltage is too low to reliably operate the relays, the +28 volt relay supply monitor will report a fault.

Another special case is the monitor circuit for the E-Stop command, port 108 . When the command is active, the E-Stop command relay's NO contact feeds about 2.5 mA from the +28 volt level of the E-Stop circuit into the monitor port optoisolator to verify that the E-Stop command is working. The optoisolators LED anode is connected to the relay supply return.

The E-Stop command circuit description above mentioned a 28 volt E-Stop relay in the servo drive cabinet. The voltage across the relay coil is sensed by the Local E-Stop Monitor input. If an E-Stop command is not active, the Local E-Stop monitor input is 28 volts. When a manual E-Stop switch is actuated or the E-Stop command is active, the 28 volt power to the relay coil is interrupted and the input to the inverting optoisolator is zero volts. This level is inverted by an inverting optoisolator so that the IOIS port state is low.

The antenna stow position sensors are a pair of mercury switches in the Vertex Room junction box. The switches are mounted side-by-side and are oriented to make the contact closures a function of elevation position. Switch 1 closes when elevation position is < about 85° and switch 2 closes when elevation position $>$ about 95°. When the antenna is properly stowed, both sets of switch contacts are open. The contacts are connected in parallel and wired to the Stow Monitor input; if the antenna is properly stowed, both sets of contacts open and current from the Fire Alarm batteries drives the monitor optoisolator LED through a $10 \mathrm{k} \Omega$ limiting resistor.

Spare Functions

Note that both command optoisolators (NEC PS2502-1) and monitor optoisolators (NEC PS25011) are not installed on spare Isolated CPU Interface Board ports IO3, IO4, 105 and IO6. Monitor data readout of these spare ports is a 1 because the port pull-up resistors pull the floating port pins to +5 volts. Spare I/O ports can be assigned to either a command or a Monitor function by installing the appropriate optoisolators and interface circuitry.

M26 Address Inputs

The M26 address line (Unit ID) inputs are encoded to enable the Isolated CPU Interface board to determine if the module is the target of a Command or Monitor Request messages. It also uses the encoded value in formatting Command or Monitor Acknowledge messages transmitted to the control PC. The M26 address line inputs are active-high and the code is formed by connecting the appropriate address line inputs to logic common (J1-FF) on J1, the bin back-plane connector. The encoded address is the binary equivalent of the antenna serial number, and the ground connections are the complement of this encoded value. J1-DD is the LSB $\left(2^{9}\right)$ and $\mathrm{J} 1-\mathrm{z}\left(2^{4}\right)$ is the MSB. J-IAA $\left(2^{5}\right)$ is always connected to logic common in the address line ground string.

ACU Fault Board

The ACU Fault Board (schematic diagrain C13900S09) is a printed circuit board installed in the ACU to monitor the ACU power supply voltages, drive limits, and drive-fault ACU discretes. This board is functionally an extension of the M26 but was installed in the ACU to reduce and simplify the ACU modification wiring that would otherwise have been required to implement the additional ACU monitoring functions. A 25 -contact, 0.025 in square-post header on the board, connects the board circuitry to the ACU. The ACU's signal and power inputs are connected to the ACU Fault Board by a cable connected to the header.

The ACU Fault Board limit-tests the ACU's $+5 \mathrm{~V},+15 \mathrm{~V}$, and -15 V power supply voltages using the LTCl042 Window Comparator. This comparator uses a pair of externally-supplied voltages, a reference voltage (CENTER), and tolerance (WINDOW) voltage; these define the middle and width of the comparison window. The LTC1042 compares VIN with these two references to determine if voltage is within the comparison window. If it is within the window, the WITHIN window output is high, a logic 1 ; otherwise it is a logic 0 . The LTC 1042 features low reference and window comparison errors, $\pm 1 \mathrm{mV}$ max and ± 2 max respectively. The LTC1042 is a sampling comparator that can be strobed or use an external resistor and capacitor on the OSC pin to determine the frequency of an internal sampling oscillator. When the voltage on the OSC pin is near VCC, the comparator samples the analog signal. The three comparator circuits use a +2.5 volt reference voltage (W.C.) and +0.187 volt (WIDTH/2) window voltage from a high-precision reference divider described below. In the ACU Fault Board application, the OSC pin is connected to VCC to force the sampling to be continuous. Section 5 includes a data sheet for the LTC 1042.

Power supply and reference voltages required by the ACU Fault Board circuitry are generated on the board. The ACU Fault board power division and regulator circuitry uses two ACU voltages, +28 VDC and -28 VDC , to generate: $+5 \mathrm{~V}(\mathrm{VCC}):+15 \mathrm{~V}(\mathrm{Z}+15) ;-15 \mathrm{~V}(\mathrm{Z}-15) ;+2.5 \mathrm{~V}$ REF; and +0.187 V REF.

VCC is generated by a 7805 regulator from the ACU's +28 volt supply. The 7805 has $2.2 \mu \mathrm{~F}$ capacitors on the 7805 input and output and six additional $0.1 \mu \mathrm{~F}$ capacitors on the output filter VCC's noise because it is used as a reference by the LTC1042 analog limit comparator chips. VCC is also used to power the 74 HCT 688 comparators and 74 HCT 04 inverters.

Two 2.5 volt LT1004 precision, shunt-regulator diodes in a series voltage divider circuit provide three accurate reference voltages: +5 V REF, +2.5 V REF, and +.187 V REF. The 2.5 V REF and .187 V REF voltages are used as reference voltages by the LTC1042. The +5 V REF voltage is not used. The LT1004 voltage outputs are accurate to $\pm 5 \mathrm{mV}$. Section 5 includes a data sheet for the LT1004.

A resistive voltage divider on the ACU 's +5 V produces +2.5 volts and the divider output is filtered by a shunt $0.1 \mu \mathrm{~F}$ capacitor. This +2.5 volt level is connected to the LTC1042 VIN input. A 74HCT04 inverts the comparators output for input to the 74 HCT 6888 -bit magnitude comparator, which performs exclusive NOR-sums ACU voltage or discrete faults for input to the M26 ACU Fault input.

A resistive voltage divider on the ACU's +15 V provides +2.504 volts and the divider output is filtered by a shunt $0.1 \mu \mathrm{~F}$ capacitor. This +2.504 volt level is connected to the LTC1042 VIN input, as was the case in the +5 V in the paragraph above. In a similar manner, the comparators WITHIN output is connected to the 74 HCT 688 comparator via an inverter.

The ACU's -15 V is translated to a positive voltage by the OP-15 operational amplifier connected as a simple inverting amplifier with a gain of 0.166 . This polarity inversion is done because the LTC1042 operates on positive voltage inputs. The amplifier's output is +2.490 volts which is connected to a third LTC1042. Like the two circuits above, the LTC1042's WITHIN output is connected to the 74HCT688 via an inverter.

The 74HCT688 is an expandable 8-bit active-low equality detector. Two sets of 8 -bit inputs, P_{n} and Q_{n} (where $n=1, \ldots 8$), are compared by exclusive-NOR gates. The output is low-true when all P_{n} $=Q_{n}$ and enable input G is low-true. Refer to a TTL data book for more details on the chip's logic.

The P_{n} inputs to U2 are the three high-true voltage comparisons and four low-true drive fault discretes (AZ-1, AZ-2, EL-1 and EL-2) from the ACU ${ }^{1}$. If the ACU does not detect drive faults, these terms are low; in the event of a fault, one or more terms will go high and force the comparator output high. The Q_{n} inputs are connected to logic common; this requires the P_{n} inputs to be low-true for the comparison. The P_{3} input on U2 is not used; therefore it is connected to logic common.

The P_{n} inputs to U 1 are the eight high-true azimuth and elevation limit switch discretes from the ACU. During operation in the normal angular drive ranges, these terms are low. If either drive encroaches on the limits of its drive range, a limit switch is actuated. There are two sets of terms, AZ-1 and AZ-2; AZ-1 goes true first, and an additional drive in the same direction activates AZ-2. The ACU's intemal control circuitry uses these terms in its logical control of the servo amplifiers. The M26 readout of these terms is a monitoring adjunct of the ACU because these limit and drive fault discretes are read out of the ACU in monitor words 212 (octal).

M26 Power

As mentioned above, the M26 is powered by the 24 volt output of the Fire Alarm batteries. The M26's +5 VDC power is provided by a Polytron TW1.8-24S5 regulated DC/DC converter installed on the logic connector board. The max output current load is rated at 360 mA and the efficiency is 55%. The converter has a 500 volt input-output isolation. The line and load regulation are $\pm 0.5 \%$ Max and $\pm 1 \%$ Max, respectively. The output voltage accuracy is $\pm 5 \%$ and the voltage temperature coefficient is $0.02 \% /$ degree C . Ripple and noise are 50 mVp -p maximum. A TW1.8-24S5 data sheet is included in Section 5.

The +5 VDC power from the TW1.824S5 converter-regulator is connected to the Isolated CPU Interface board via JPI on the Isolated CPU Interface Board, and the board's LM7805KC is not used. The board's HPR 105 DC/DC converter is used and generates the isolated +15 V and -15 V used by the line driving-receiving circuitry.
${ }^{1}$ The installation of the four drive fault and eight limit switch inputs from the ACU is a future ACU modification. The ACU's +5 volt and + and -15 volt power supply monitors are connected to the ACU Fault Board.

ACU Discretes and their relationships to M26 Discretes

A comparison of the antenna discretes monitored by the M26 and the ACU shows three apparent redundancies: ACU bits 22 (Stow Pin) and 23 (Emergency Stop) in ACU monitor word 211 and bit 24 (Fire Detection System Malfunction) in ACU monitor word 2122_{8}. These bits and words are in octal format (See the ACU manual). A description of these two sets of functions follows.

The antenna azimuth and elevation drives each have a stow pin that can be inserted into a stow recess; a Stow Pin switch on each pin senses the position of the stow pin. The switches are input to the ACU to inhibit the drive servo amplifiers in the event that either stow pin is inserted into a stow recess. The ACU also formats the OR of the two switch states into bit 22 of word 211_{8}. The stow pins are seldom, if ever, used but are probably still operative. The stow state monitored by the WYE Monitor system is not related to the stow pin switches described above.

The two antenna smoke alarm units have a malfunction output (NO contacts) that indicates a detector fault state. These outputs are connected in parallel (OR connection) and sensed by the ACU, which formats the OR state into bit 24 of word 212 . The WYE Monitor system monitors the OR of the smoke detectors fire alarm NO contacts; thus these two monitors are separate functions and the Fire Detection System Malfunction sensed by the ACU is still very important. See the interface circuit description below.

The Emergency-Stop relay in the drive cabinet was mentioned above. Contacts on this relay are connected to bit 23 of word ACU monitor word 211_{8}; this Emergency-Stop monitoring is used by the antenna control programs. Although both sets of Emergency-Stop command and monitoring circuitry are closely related, the WYE Monitor circuitry is electrically isolated from the ACU and antenna drive equipment.

The Azimuth and Elevation limit discretes tested by the ACU Fault board are redundant because they are also included in the ACU's monitor word 211_{8}.

NATIONAI RADIO ASTRONOMY OBSERVATORY
\qquad EIECTRICAI. \qquad MECHANICAI. BOM \#_A139007.01 \qquad RHV_A DATE 6.02-94 PACE $2 \mathrm{OH}_{4}$ MODULE M26 26. NAME ANTENNA INTERFACE DWC\# Dl3900P06 SUB ASSY \qquad DWG $\#$ \qquad
SCHEM. DWC/l_ D13900SO4 LOCATION WYE:MON QUA/SYS. \qquad PRF.I'RD BY \qquad APPRVD BY A SITTI.ER

\| ITEM \#	KEF DES	MANUFACTURER	Part number	DESCRIPTION	total. QTY
1		NRAO	Cl3050M02	PANEL, REAR	1
2		NRAO	B13050.104	cuide	2
3		NRAO	Cl3050M06	plate, side	1
4		NRAO	Cl 3050 M 70	KNOB, MODULE PULLER	2
,		NRAO	C13050P21	ASSY. PERFORATED COVER	1
6		NRAO	Cl3720M1S. 1	SUPPORT. BOTTOM	1
7		NRAO	Cl3720M15.2	SUPPORT, TOP	1
8		NRAO	C13720M17	SPACER, INSULATED RAIL	2
9		NRAO	C13720M49	PANEL, INSULATED SIDE	1
10		NRAO	C13900M04	PANEL. FRONT	1
11		NRAO	D13900P02	PCB, ISOLATED CPU INTERFACE	1
12		NRAO	Cl3900P07	CIRCUIT BOARD, WIRE.WRAP	1
13	RX			LED, YELLOW	1
14	TX			LED, GREEN	1
15		HEWLETT PACKARD	HIMP.0103	RING, LED MOUNTING	2
16	J 1	AMPHENOL	170.C375-F179	CONNECTOR, 37-PIN D.SUB	1
17	P1	AMP	201358.3	CONNECTOR. SO-PIN	1
18		AMP	202394.2	SHIELD, CONNECTOR	1
19		AMP	200833.4	PIN, GUIDE	2
20		AMP	203964-6	SOCKET. GUIDE	2

bill of material.
NATIONAL RAOIO ASIRONOHY OBSERVATORY

$\frac{\text { FRONT PANEL CONNECTOR }-J 1}{\text { NEEED PROM MOOULE FRONT }}$

COMPONENT SIDE

A NOTES: ADD DS AND DE TO PRINTED CIRUTT BONRD AT TIME OF ASSEMMLY FOR LIGHTNING
PROECTON DRILL MOUNTNG HONES NEAR
TRAES. SO DER SO THT THERE IS A GOOD
 COMPONENT LEAD

2.10 M27 Auxiliary Monitor and its Interfaces with the Generators and UPS's

This section describes the M27 Auxiliary Monitor Module and its interfaces with the generator system's Generators 1 and 2, Master Cubicle, and the Correlator and Computer UPS units. Like the other WYE Monitor control interface modules, M27 uses the Isolated CPU Interface Board to transform serial bus message interactions into 16 discrete paralell interactions with device interface circuitry. D13900S08 is the M27 schematic diagram. The device interface circuitry is installed on a wire-wrapped logic connector board in M27. Drawing D13900P20 is the module assembly drawing and drawing C13900P21 shows the interface circuit's component layout on the logic connector board. Reduced-scale copies of the M27 functional drawings follow this text.

This section does not describe the operating characteristics of the generator, computer or correlator UPS systems. However, the tables following the correlator and generator interface descriptions list the unit's control and monitor signal function names and the conditions associated with each signal state. Figures 2, 4 and 5 show the Correlator UPS, Generator and Facility sub-screens.

The M27's are connected to the WYE Monitor Auxiliary Bus that services the Control Building and service building complex.

Sections 2.2 and 2.4 described the message formats, protocol, and line driving and receiving. Section 2.8 described the Isolated CPU Interface Board.

The major subjects of this section are the character of the interface signals, the interface circuits that adapt these signals to the Isolated CPU Interface Board and the M27 power circuitry.

M27 is designed to output two command discretes and input fourteen monitor discretes. There are no unimplemented command/monitor discretes, as was the case in the M26 module.

M27 is a more general module than the M26 and M29 because its device interface circuitry on the logic connector board services the five devices mentioned above. This application commonality is the result of the fact that the control interfaces in the generators and Master Cubicle have identical circuitry; the two UPS units are identical, and the interface signal types and levels for the two types of applications are very similar. As a result of this similarity, it was possible to design the M27 device interface circuitry so that it would be compatible with both the generator and UPS systems.

Three M27's and the associated M28 Power Supply/Battery Module are installed in a bin in the Generator Control room. These units control and monitor the generators and Master Cubicle switching gear. The three M27 outputs are each connected to a generator system interface module, C9390028. A reduced-scale copy of this drawing follows this text. The generator systems interfaces are described below.

Two M27's and the associated M28 Power/Battery Module are installed in a bin in the Control Building's UPS room and control and monitor the Correlator and Computer UPS units; these interfaces are described below.

The M27 and related functional drawings are listed on the next page; for convenient reference, reduced-scale copies follow this section's text.

D13900p20	WYE Monitor M27 Auxiliary Monitor Module Assembly
A13900204	M27 Auxiliary Module Module BOM
D13900s08	WYE Monitor M27 Auxiliary Monitor Schematic Diagram
013900P22	M27 Auxiliary Monitor Isolated CPU Interface Board Assembly
C13900P21	M27 Auxiliary Monitor Module Wire- Wrap Board Component Layout
A13900P23	M27 Auxiliary Monitor Module Dip Header Assembly
C13900w05	M27 Module 37-Pin Connector Test Points Wiring Diagram
A13900W06	M27 Auxiliary Monitor Module Hire List
D13900wN09	M27-Generator System Interface
B13900S12	WYE Monitor Master Cubicle Relay and Header Schematic Oiagram
C9390028	Main Generator WYE COM Monitor Circuits
D13900w10	M27-Correlator and Computer UPS Interface

Front Panel Test Point Connector

For convenience in locally checking the M27's interface signals, WYE Monitor bus signal and M27 power, M27 has a front panel test point connector J1 that is a 37 contact, " D " series socket connector. Note from the M27 module schematic drawing that all the monitored functions are connected to JI but command functions are not included. Note also that the JI signals are connected to the Isolated CPU Interface Board Port 0 and Port I connectors. The levels are the TTL-compatible port inputs and are low-true when the input to the associated optoisolator is an active-high 24 volts.

M27 Command Interface Circuitry

The Isolated CPU's Interface Board's parallel I/O optical isolator configuration is shown on D13900P22.

Command optoisolators (NEC PS2502-1) are installed in the Isolated CPU Interface Board ports IOO and IO1. Monitor optoisolators are not installed in these ports.

The two command interface circuits are SPDT relays and are functionally similar to those used in the command interface circuits of M26. The two sets of NO relay contacts are connected to P1, the M27 module I/O connector; the NC contacts are not used. Setting a 0 in command ports IO01 or IO02 closes the NO relay contact. Since the command outputs are NO relay contacts, they are electrically isolated from the M27 circuitry.

Note that the two relay command circuits are identical and use the same Hamlin SPDT relay and inductive-kick clipping diode as in M26. The relays are driven by the output transistor of the command optoisolators (NEC PS2502-1), which sinks current from the M28 Power Supply +28 output through the relay coil to the M28 28 volt return.

The Hamlin HE721C2410 is a dry reed relay with a contact rating of 3 Watts, 0.25 Amps , and 175 volts. The coil resistance is 2000 Ohms and is designed for 24 volt operation.

M27 Monitor Interface Circuitry

Monitor optoisolators (NEC PS2501-1) are not installed in the Isolated CPU Interface Board ports IO2 through IO15. In place of these isolators, Ports IO2 through IO15 use NEC PS2501-4 monitor input optoisolators installed on the logic connector board. These optoisolators are electrically identical to NEC

PS2501-1 but four optoisolators are packaged in one chip. Correspondingly, Command optoisolators are not installed in Ports IO2 through IO15.

The monitor interface circuits are all optically-isolated 24 volt inputs and all use a $10 \mathrm{k} \Omega$ series resistor to limit the isolator LED current to about 2.2 mA . Other than the inversion inherent in the monitor optoisolators, there are no logical inversions in the monitor circuitry. Therefore, a no-fault readout will not be all zero's as is the case in M26. If the input to the monitor circuits is 24 volts and is the correct polarity, the optoisolator output will be low, which is a 1 .

The voltage sources are +24 volts in all M27 applications. The M28 Power Supply +24 volt output and its return are connected to the device interface circuitry where it is typically connected to monitor relay contacts. The contact outputs return this voltage as a function of the device's monitor states.

M27 Address Inputs

The M27 address line (Unit ID) inputs are encoded to enable the module's Isolated CPU Interface board to determine if the module is the target of a Command or Monitor Request messages. It also uses the encoded value in formatting Command or Monitor Acknowledge messages transmitted to the control PC. The M27 address line inputs are active-high and the code is formed by connecting the appropriate address line inputs to logic common ($\mathrm{J} 1-\mathrm{FF}$) on the J 1 , the bin back-plane connector. The bin contacts connected to ground are the complement of the address code. J1-DD is the LSB $\left(2^{\circ}\right)$ and $\mathrm{J} 1-\mathrm{z}\left(2^{4}\right)$ is the MSB. J-IAA $\left(2^{5}\right)$ is always connected to logic common in the address line ground string. The M27 address code assignments are described below in the two M27 interface application descriptions.

M27 Power

M27's input power is +13.6 volts from the M28 Power Supply/Battery Module. The Isolated CPU Interface Board performs the power regulation and isolation for the M27 Mcdule. This power circuitry is described in Section 2.8; see this section for details. VCC for the monitor input optoisolator's collector load resistors is provided by the Isolated CPU Interface Board's LM7805KC +5 volt regulator's output.

Generator and Master Cubicle Interfaces

The Generator System's M27's are installed in bin locations 4, 5, and 6 in the Generator Control Room. M28 is installed in positions 1,2 and 3. The M27 in bin position 4 monitors Generator 1 (EAST), that in bin position 5 monitors Generator 2 (WEST), and the unit in position 6 controls and monitors the Master Cubicle. M28, the Power Supply/Battery Module provides 12 -volt M27 power and 26 -volt power to the monitor interfaces in the generator system's monitor interfaces.

The Generator 1 M27 (position 4) address code is 2 ; the Generator 2 M27 (position 5) address code is 3 and the Master Cubicle M27 (position 6) address code is 4.

Drawing D13900W09 shows the bin wiring and control-monitor wiring between the three M27's, Generator 1 and 2 cubicles and the Master Cubicle. Three 24 -wire cables from TB 1 connect the M27 to the associated Generator and Master Cubicle monitor circuits. Both generators have identical monitor functions and wiring; the generator's M27s do not have any command functions. The generator start and stop functions are controlled by the Master Cubicle circuitry but the Master Cubicle M27 only outputs the start command. The Generator and Master Cubicle interface signal characteristics and bit assignments are
tabulated following this text.
Drawing C9390028, Main Generator WYE COM Monitor Circuits, shows the the physical layout of the three sets of identical monitor interface modules that read out the Generator 1, Generator 2, and Master Cubicle monitor states. Drawing B13900S12 shows the monitor interface circuit in larger scale. Refer to these drawings during the following description.

The monitor interface module's outputs to the M27 are on TB 2 and the inputs from the generator system are on TB 1. Each interface module has ten interface circuits. Each circuit consists of a relay, a state indicator LED, current limiting resistors, and relay contact-select jumpers. The resistors, LED, and jumpers are installed on a dip header. The resistors limit LED current and relay coil current; the jumper selects either the NO or NC relay contacts. The M28+24 volt power supply output is connected to TB $2-23$ and the 24 volt return is connected to TB 2-24. The relay center contacts are connected to +24 volts and the jumpers are configured for NO contact outputs. The relay coil is driven by the generator system's monitor circuits and when they actuate a relay, the NO contacts read out the function's state as a +24 volt signal. These +24 volt signals drive the optoisolator's anodes via the $10 \mathrm{k} \Omega$ limiting resistors. The M28's 24 volt return is connected to all ten low-side (optoisolator's LED cathode) M27 monitor inputs. The relay and LED circuit returns are connected to the generator system's circuit grounds; therefore, the generator systems monitor outputs are electrically isolated from the M27's.

Note from the tables below that the WYE Monitor System outputs only one command to the generator system, Start Generators, from the Master Cubicle M27. The command interface circuits (IOO and IO1) in the generator M27's are not used. The Start Generators command pair is wired through the 24 -wire interface cable to relays in the Allen-Bradley Process Control equipment in the Master Cubicle cabinet. When activated by setting a 0 in command port IOO1, the relay NO contact closure activates the generator start function. See drawing D13900W09 for details.

Figure 4 shows the Generator, Master Cubicle and Generator START/STOP sub-screens.

Master Cubicle Interface Signal Characteristics

1005	(M)	Not Used	DC voltage	P1-k \& P1-n +24 volts 0 volts	Low, 0 High, 1	
1006	(M)	Not Used	DC voltage	P1-r \& P1-t +24 volts 0 volts	Low, 0 High, 1	
1007	(M)	Not Used	DC voltage	Pi-v \& P1-x +24 volts 0 volts	Low, 0 High, 1	
1008	(M)	AC Control Vol tage	DC voltage	PI-N \& P1-R +24 volts 0 volts	Low, 0 High, 1	No AC Voltage Voltage OK
1009	(M)	\#1 Day Tank Low Fuel	DC voltage	P1-T \& P1-V +24 volts 0 volts	Low, 0 High, 1	fuel Low Fuel OK
1010	(M)	\#2 Day Tank Low Fuel	OC voltage	P1-X \& P1-Z +24 volts 0 volts	Low, 0 High, 1	Fuel Low Fuel OK
1011	(M)	Voltage/Freq Failure	DC voltage	P1-b \& P1-d +24 volts 0 volts	Low, 0 High, 1	Volt/freq Fail Volt/freq OK
1012	(M)	Load Shed Activated	DC voltage	P1-f \& P1-j +24 volts 0 volts	Low, 0 High, 1	Load is Shed Load OK
1013	(M)	Alarm Horn	DC Voltage	P1-m \& P1-v +24 volts 0 volts	Low, 0 High, 1	Alarm On Alarm Off
1014	(M)	Not Used	DC voltage	Pi-s \& Pi-u +24 volts 0 volts	LOW, 0 High, 1	
1015	(M)	Not Used	DC voltage	P1-w \& P1-y +24 volts 0 volts	Low, 0 High, 1	

* C denotes a command function and M denotes a monitor function.

Generators 1 and 2 Interfaces with M27

int B Signa		function	Signal Type	M27 Module $1 / 0$ Pins \& Levels	$\begin{aligned} & \text { Int BD } \\ & \text { Port State } \end{aligned}$	Signal Function
1000	(C)*	Not Used	SPDT Relay Contacts	$\begin{aligned} & \text { P1-P \& P1-M } \\ & \text { open } \\ & \text { closed } \end{aligned}$	Low, 0 High, 1	Start Cmd Act'v Cmd Inactive
1001	(C)	Not Used	SPDT Relay Contacts	$\begin{aligned} & \text { P1-S \& P1-U } \\ & \text { open } \\ & \text { closed } \end{aligned}$	$\begin{aligned} & \text { Low, } 0 \\ & \text { High, } 1 \end{aligned}$	Stop Cmd Active Cmd Inactive
1002	(M)	Generator Ckt Breaker	DC voltage	P1-W \& P11-Y +24 volts 0 volts	$\begin{aligned} & \text { Low, } 0 \\ & \text { High, } \end{aligned}$	Breaker Open Breaker Closed
1003	(M)	Remote Ckt Breaker	DC voltage	P1-a \& P1-C +24 volts 0 volts	Low, 0 High, 1	

1004	(M)	Not Used	DC voltage	P1-e \& P1-h +24 volts 0 volts	$\text { Low, } 0$ $\text { High, } 1$	
1005	(M)	Not Used	OC voltage	P1-k \& P1-n +24 volts 0 volts	Low, 0 High, 1	
1006	(M)	Not Used	DC Voltage	P1-r \& P1-t +24 volts 0 volts	Low, 0 High, 1	
1007	(M)	Not Used	OC Voltage	P1-V\&P1-x +24 volts 0 volts	Low, 0 High, 1	
1008	(M)	Engine Start	DC voltage	$\begin{aligned} & \text { P1-N \& P1-R } \\ & +24 \text { volts } \\ & 0 \text { volts } \end{aligned}$	Low, 0 High, 1	Engine Starting Not Starting
1009	(M)	Engine Running	DC voltage	P1-T\& P1-V +24 volts 0 volts	Low, 0 High, 1	Engine Running Not Running
1010	(M)	Battery failure	DC voltage	P1-X\&P1-Z +24 volts 0 volts	Low, O High, 1	Battery failure Battery OK
1011	(M)	Overcrank	DC Voltage	P1-b \& P1-d +24 volts 0 volts	Low, 0 High, 1	Overcrank OK
1012	(M)	Fait to Synchronize	DC voltage	P1-f \& P1-j +24 volts 0 volts	Low, 0 High, 1	Fail to Sync ok
1013	(M)	Approach Low Lube Oil	DC Voltage	P1-m \& P1-v +24 volts 0 volts	Low, 0 High, 1	Lube Oil Lvi Low lube oil ok
1014	(M)	Approach High Water Temp	DC voltage	pl-s \& P1-u +24 volts 0 volts	Low, 0 High, 1	High Water Temp Water Temp OK
1015	(M)	Approach Load Limit	DC voltage	P1-w \& P1-y +24 volts 0 volts	Low, 0 High, 1	At Limit OK

* C denotes a cormand function and M denotes a monitor function.

Correlator and Computer UPS Interfaces

The Computer and Correlator UPS systems M27's are installed in a bin in the UPS Room. M28 is installed in bin positions 1, 2 and 3, and M27s are installed in bin positions 4 and 5. The M27 in location 4 controls the Correlator UPS, and the M27 in 5 controls the Computer UPS. M28, the Power Supply/Battery Module, provides 12 -volt M27 power and 26 -volt power to the monitor interfaces in the UPS's.

The Correlator UPS M27 (position 4) address code is 5 and the Computer UPS M27 (position 5) address code is 6 .

Drawing D13900W10 shows the bin wiring, control-monitor wiring between the M27's and the UPS units and the UPS Command and Monitor interface circuits.

Both UPS units are identical. The UPS units use only one command function, Reduce Input Limit, port bit IO0. This is an M27 relay contact closure; the NO contacts are connected to terminals 8 and 9 on TB1 in assembly A24. Setting a 0 in this port closes the NO relay contact and activates a command relay in the UPS.

The UPS monitor circuitry is also shown on D13900W10. Thirteen monitor functions are connected to TB1 in assembly A23. These are NC relay contacts in the UPS circuitry that are connected to the M28+24 volt output and 24 volt return. When a monitored UPS state or alarm is false or a 0 , the contacts are closed so the M27 monitor input is zero volts. When the function goes true, the contacts open and 24 volts is applied to the monitor optical isolator circuits. The Correlator and Computer UPS unit's interface signal characteristics and bit assignments are tabulated below.

Figures 2 and 5 show the Correlator UPS sub-screen.

Correlator and Computer UPS Interfaces with M27

Int B Signa		Function	Signal Type	M27 Module $1 / 0$ Pins \& Levels	$\begin{aligned} & \text { Int BD } \\ & \text { Port State } \end{aligned}$	Signal Function
1000	(C)*	Reduce Input Limit	SPDT Relay Contacts	$\begin{aligned} & \text { P1-P \& P1-M } \\ & \text { ypen } \\ & \text { closed } \end{aligned}$	Low, 0 High, 1	Cmd Active Cmd Inactive
1001	(C)	Not Used	SPDT Relay Contacts	$\begin{aligned} & \text { P1-S \& P1-U } \\ & \text { open } \\ & \text { closed } \end{aligned}$	Low, 0 High, 1	
1002	(M)	Battery Volts Low	DC voltage	$\begin{aligned} & P 1-W \& P 1-Y \\ & +24 \text { volts } \\ & 0 \text { volts } \end{aligned}$	LOW, 0 High, 1	Low Batt Volts Batt Volts OK
1003	(M)	Battery Not Available	DC voltage	P1-a \& P1-c +24 volts 0 volts	Low, 0 High, 1	Battery Not Avail Battery Avail
1004	(M)	UPS Overload Alarm	DC voltage	P1-e \& P1-H +24 volts 0 volts	Low, 0 High, 1	UPS Overload No Overload
1005	(M)	Inlet Air Over Temp Alarm	DC voltage	P1-K \& P1-n +24 volts 0 volts	Low, 0 High, 1	Temp Alarm No Alarm
1006	(M)	Transfer Not Available	DC voltage	$\begin{aligned} & \mathrm{P1}-\mathrm{r} \& \mathrm{Pq}-\mathrm{t} \\ & +24 \text { volts } \\ & 0 \text { volts } \end{aligned}$	Low, 0 High, 1	Transfer N/A Transfer Avail
1007	(M)	Retransfer Not Available	DC voltage	P1-v \& P1-x +5 to 12 VDC 0 volts	Low, 0 High, 1	Manual Mode Computer Mode
1008	(M)	Not Used	DC voltage	P1-N \& P1-R +24 volts 0 volts	Low, 0 High, 1	
1009	(M)	UPS Available	DC voltage	P1-T \& P1-V +24 volts 0 volts	Low, 0 High, 1	UPS Avail UPS Not Avail
1010	(M)	UPS On Bypass	DC voltage	P1-X \& P1-Z +24 volts 0 volts	Low, 0 High, 1	UPS On Bypass UPS Not On Bypass

1011	(M)	5 Min rill UPS Shutdown	DC voltage	p1-b \& P1-d +24 volts 0 volts	LOW, 0 High, 1	5 Min Till S/O UPS OK
1012	(M)	Summary Alarm	DC voltage	$\begin{aligned} & \text { P1-f\& P1-j } \\ & +24 \text { volts } \\ & 0 \text { volts } \end{aligned}$	Low, 0 High, 1	Summary Alarm No Alarm
1013	(M)	Minor Alarm	OC Voltage	P1-m \& P1-u +24 volts 0 volts	Low, 0 High, 1	Minor Alarm No Alarm
1014	(M)	Major Alarm	DC voltage	P1-s \& P1-U +24 volts 0 volts	Low, 0 High, 1	Major Alarm No Alarm
1015	(M)	UPS Input Failure	DC voltage	P1-W\& P1-y +24 volts 0 volts	Low, 0 High, 1	UPS Input Fail UPS Input OK

BILL OF MATERIAL
NATIONAL RADIO ASTRONOMY OBSERVATORY
\qquad Ellectrical \qquad MECHANICAL. BOM \#_Al3900204 REV_.
\qquad DATE 6.01.94 PACE 2 OFY_4_ MODUIE M2) \qquad NAME AISXIIARY MONITOR LOCATION WYE MON OWC ${ }^{\text {D13900P20 }}$ SCIII:M. DWCH_ Di3900S08 QUA/SYS. \qquad SLB ASSY \qquad DWG/I \qquad MANUFACTURER

ITEM	REF DES	HANUFACTURER	part number	DESERIMTION	ToTal. QTY.
1		irao	C13050M02	Panel. REAR	1
2		NRAO	B13050M04	CUIDE	2
3		NRAO	C13050M06	Plate, side	1
4		NRAO	C13050m70	KNOB, MOUDLE PULLER	2
5		nRaO	C13050P21	ASSY. PERFORATED COVER	1
6		NRAO	C13720M15.1	SUPPORT. BOTTOM	1
7		NRAO	C13720M15-2	SUPPORT. TOP	1
8		NRAO	C13720M17	SPACER, INSULATED RAIL	2
9		NRAO	C13720M49	Panel, insulated side	1
10		NRAO	C13900M04	PANEL, FRONT	1
11		NRAO	C13900P21	CIRCUIT BOARD, WIRE-WRAP	1
12		NRAO	D13900P22	PCB, ISOLATED CPU INTERFACE	1
13	RX			LED, YELLOW	1
14	TX			LED, GREEN	1
15		HEWLETT PACKARD	HLMP -0103	RING. LED MOUNTING	2
16	J1	AMPHENOL	170.C375.F179	CONNECTOR, 37.PIN D.SUB	1
17	Pl	AMP	201358-3	CONNECTOR, SO-PIN	1
18		AMP	202394-2	SHIELD, CONNECTOR	1
19		AMP	200833 -4	PIN, CUIDE	2
20		AMP	203964.6	SOCKET, GUIDE	2

bill. of material
NATIONAL RAOIO ASIRONOMY OBSERVATORY

bill of material.
NAI IONAL RADIO ASIRONOMY OBSERVATORY

$\frac{\text { REAR PANEL CONNECTOR - }-P 1}{\text { NEWED FROM MOOULE REAR }}$

Generator 2 Monitor Board

GENERATOR INTERFACE BIN

ERONT MEW
GENERATOR CONTROL SYSTEM CABINETS

2.11 M29 Auxiliary Utility Module

This section describes the M29 Auxiliary Utility Module and its interfaces with the Computer and Correlator air conditioning systems and the control ModComp computers. Like the other WYE Monitor control interface modules, M29 uses an Isolated CPU Interface Board to transform serial bus message interactions into 16 discrete paralell interactions with device interface circuitry. The device interface circuitry is installed on a wire-wrapped logic connector board in M29. Drawing D13900P15 is the module assembly drawing and drawing C13900P17 shows the device interface circuit's component layout on the logic connector board. Drawing D13900S07 is the module schematic diagram. Reduced-scale copies of the M29 functional drawings follow this text.

M29 is installed in the VLA Control Room Console, Monitor and Control Bin, location 9 and M28 the Power Supply/Battery Module is installed in locations 10, 11 and 12. M28 provides the 12 volt DC power to M29 and 24 volts to monitor interfaces in the computer and correlator air conditioning system.

M29 is connected to the WYE Monitor Auxiliary Bus that services the Control Building and service buildings complex.

Sections 2.2 and 2.4 described the message formats, protocol, and line driving and receiving. Section 2.8 described the lsolated CPU Interface Board; a slightly different version is used in M29 and is described below.

Figure 5 shows M29's Control Building sub-screen.
The major subjects of this section are the M29 circuitry, the character of the device interface signals, and the interface circuits that adapt these device signals to the Isolated CPU Interface Board.

Monitor signals from the Correlator and Computer air conditioning systems and the ModComp computer's RS-232 signals are connected to M29 via the module's bin rear panel I/O connector. Drawing Cl3900W03 shows the M29's rear panel signal-pin assignments and drawing C13900W08 shows the connections to the computer and correlator air conditioning system and the ModComp computers.

M29 does not have command outputs but inputs five monitor discretes, two RS-232 serial holdoff signals from the control ModComp computers, and two analog monitor signals. The five monitor discretes are 24 volt level signals. The two RS-232 serial holdoff signals are single characters that are converted to monitor discretes. The two analog signals are AD590 temperature sensor outputs that monitor air temperature in the correlator and computer air conditioning systems. These two analog signals are converted to digital values and read out as monitor data.

One Isolated CPU Interface Board command port (IO3) is used to select the analog monitor mode and three other command ports (IO0, IO1 and IO2) are used to designate the multiplexer address for the M29's analog multiplexer-A/D converter. The analog multiplexer-A/D converter selects the analog signals and converts them to digital values that are parallel-input to the Isolated CPU Interface board. The multiplexer-A/D converter chip has an eight channel capacity; with modifications, the M29 could multiplex and convert an additional six analog signals.

The nature and variety of these monitor inputs make M29 a more complex and specialized module than the M26 and M27. M29 is the only module in the WYE Monitor system that performs analog signal
multiplexing and A / D conversion.
M29 functions as a sort of watch-dog timer in sensing the recurrent RS-232 level, hold-off signals from the two control ModComp computers; however, the ModComp computer reset is indirect in that it is commanded by the VLA telescope operator who is alerted to the loss of the hold-off signal by the VLA PC's Annunciator and Touch-Screen terminal.

In addition to the Isolated CPU Interface Board, M29's circuitry consists of the following functional groups: discretes monitor, RS-232 to discrete conversion, AD590 temperature sensor interface, analog mulitplexer-A/D converter, digital multiplexer to select either analog monitor data or discretes monitor data, and additional power supplies to service the analog functions. These functional groups are described below.

M29 functional drawings are listed below; for convenient reference, reduced-scale copies follow this text.

```
D13900P15 WYE Monitor M29 Auxiliary Utility Module Assembly
A13900203 M29 Auxiliary Utility Module BOM
013900S07 WYE Monitor M29 Auxiliary Utility Module Schematic Diagram
D13900P16 M29 Auxiliary Utility Isolated CPI Interface Board Assembly
C13900P17 M29 Auxiliary Utility Module Wire-Wrap Board Component Layout
A13900pi8 M29 Auxiliary Utility Module Dip Header Assembly
C13900W03 M29 Auxiliary Utility Module Test Points Wiring Diagram
C13900w08 M29 Module Control Building HVAC Interface Wiring Diagram
```


Front Panel Test Point Connector

For convenience in locally checking the M29's interface signals, internal control discretes, and M29 power, M29 has a front panel test point connector J 1 that is a 37 contact, " D " series socket connector. Note from the M29 module schematic drawing that a level-shifted version of all the device monitor interface signals are connected to this test point connector. The signal levels vary as a function of the signal type; the discretes monitor test point signals are TTL levels, the RS-232 test point signals are RS-232 levels, and the AD590 temperature test point signal levels are the outputs of the current-tovoltage conversion amplifiers. Drawing C13900W03 shows the contact-signal assignments.

M29 Isolated CPU Interface Board

The M29 uses Isolated CPU Interface Board D13900P16 - a later version than the D13900P02 used in M26 and M27. This board is functionally identical to the earlier board but has a larger heat sink on the LM7805KC +5 volt regulator because the M29 5 volt power load is larger than the other modules. The signal and power I/O connections are physically identical to the other board. Two NEC PS2501-4 input optoisolator chips are installed on ports IO8 through IO15. These chips have four optoisolators per package but are functionally identical to the NEC PS2501-1 optoisolators. Note from the schematic diagram that the monitor data input to these isolators is the output of the digital multiplexer described below.

M29 Command Interface Circuitry

M29 does not output command discretes but four command optoisolators (NEC PS2502-1) are installed in the Isolated CPU Interface Board ports P0.0 through P0.3. These optoisolators use $1 \mathrm{k} \Omega$ pullup resistors to VCC. Monitor optoisolators are not installed on these ports. As noted above, these four command ports do not control external device circuitry; they function as an analog/digital monitor readout selector discrete and an analog multiplexer address.

M29 Address Inputs

The M29 address line (Unit ID) inputs are encoded to enable the module's Isolated CPU Interface board to determine if the module is the target of a Command or Monitor Request messages. It also uses the encoded value in formatting Command or Monitor Acknowledge messages transmitted to the control PC. The M29 address line inputs are active-high and the code is formed by connecting the appropriate address line inputs to logic common ($\mathrm{Jl}-\mathrm{FF}$) on the JI, the bin back-plane connector. The encoded value is the binary equivalent of the address code; M29's address code is 1 . The bin contacts connected to ground are the complement of the address code. J1-DD is the LSB $\left(2^{9}\right)$ and $\mathrm{J} 1-\mathrm{z}\left(2^{4}\right)$ is the MSB. J-1AA $\left(2^{5}\right)$ is always connected to logic common in the address line ground string.

Discretes Monitor Interface Circuitry

Seven channels of discrete monitor signals are input through NEC PS2501-4 optoisolators installed on the logic connector board. Five of these signals are 24 -volt level discretes from the computer and correlator handling systems and the other two are discretes from the two RS-232 interfaces, described below.

The seven outputs of the optoisolators are connected to seven inputs of a 74 HC 244 octal buffer chip (at iocation AA23) that is a part of the digital multiplexer. The digital multiplexer is described below.

Since the NEC PS2501-4 chips have four optoisolator channels, an additional channel is available in the chip at AA23. This spare channel is not shown on the schematic diagram, but its output transistor's collector is connected to pin 17 of the 74 HC 244 octal buffer in location AA23. The output transistor's emitter is connected to emitters of the seven other optoisolators in the circuit. The spare channel's LED anode and cathode are floating and with wiring modifications, they could be connected to another discrete monitor input.

The five 24 -volt discretes consist of two types of circuits - voltage inputs and contact closure inputs. The voltage inputs are the CHILLER HOT, CHILLER COLD, and CONDENSER HOT signals. The contact closure inputs are the COMPUTER AIR and CORRELATOR AIR signals. In both types of circuits, a $10 \mathrm{k} \Omega$ series current limiting resistor limits the LED current to about 2.2 mA .

The voltage input ciruits use the +24 volt output of M28, which is connected to the input contacts of three NO contact pairs in the chiller-condenser circuitry. When a contact pair is closed, the +24 volt level is connected to the optoisolator LED anode through the $10 \mathrm{k} \Omega$ limiting resistor; this forces the optoisolator's transistor collector to a logic low or 1. (Remember that the Isolated CPU Interface Board's parallel inputs and outputs are active-low.) When the contacts are open, there is no current into the LED so the output transistor collector is a logic high or 0 . Even though the optoisolator LED cathodes are
connected to the 24 volt return, the three set of circuits are connected to the three voltage sources by three pairs of wires via the following PI pins: $\mathrm{Pl}-\mathrm{f} / \mathrm{PI}-\mathrm{j} ; \mathrm{Pl}-\mathrm{m} / \mathrm{PI}-\mathrm{p}$ and $\mathrm{Pl}-\mathrm{s} / \mathrm{PI}-\mathrm{u}$.

In the contact closure circuits, the optoisolator L.ED current source is +24 volts through the $10 \mathrm{k} \Omega$ current limiting resistors RP4C and RP4D. When either set of contacts is closed, current flows through the LED and makes the transistor collector a logic low or 1 . When the contacts are open, no LED current flows so the transistor collector is high or a 0 . The contact circuits are connected to the two AIR switches by two pairs of wires via PI pins: PI-X/PI-Z and P1-b/P1-d.

The discretes signal functions are tabulated at the end of this section.

RS-232 Interface

The two RS-232 interface circuits consist of a polarity detector, optoisolator, and a digital delay circuit. The digital delay circuit outputs drive two monitor optoisolators (AA49 and AA47) described above.

This interface circuit functions in a manner similar to a watch-dog timer. If the holdoff signal recurs within the time-out period, the alarm is not set and the timer is reset to zero. If the holdoff disappears or exceeds the time-out period, the alarm is set. In this circuit, the time-out period is about 42 seconds.

The holdoff signal is a single serial character on the RS-232 lines from the computers. The holdoff character recurrence rate is about 9.6 seconds. The character may be any possible symbol; the interface circuit is not particular.

RS-232 signals are bipolar, swinging between negative and positive levels relative to the signal return line. In the quiescent period (MARK) between character transmissions, the signal is more negative than -3 volts. The first bit in a character is the Start bit which is more positive than +3 volts. Serial bit logic 0's are positive polarity and logic 1's are negative polarity. The RS-232 lines from the ModComps are active-positive only when the computers are outputting the holdoff character; otherwise they are quiescent-negative. See the serial byte format in Figure 14.

The RS-232 specifications require that the minimum receive threshold be ± 3 volts; the RS-232 interface must detect the holdoff character with a signal span as small as -3 to +3 volts.

From the above, it is clear that the RS-232 interface must respond to the $z+3$ volt Start bit and initiate a time-out period. If the Start bit does not reappear within the time-out period, an alarm level must be input to the associated monitor optoisolator.

Referring to the schematic diagram, the negative portions of the RS-232 signals are clipped. When the signal is negative, the input 1 N 4148 diode is forward biased and conducts a small current through the $10 \mathrm{k} \Omega$ limiting resistor. This limits the voltage across the optoisolator LED to about 0.6 volts. In this condition, the LED is back biased and does not conduct. The optoisolator output transist or is an emitterfollower circuit with a $10 \mathrm{k} \Omega$ emitter resistor. Since the LED does not conduct during negative inputs, the output transistor is cut off and the emitter is near ground. In this condition, the 4060 Reset input current is less than $20 \mu \mathrm{~A}$ so the drop across the $10 \mathrm{k} \Omega$ emitter resistor is less than 200 mV , below the CMOS 4060 Reset input $\mathrm{V}_{11},+1.0$ volts. The 4060 is reset when the input exceeds V_{tH}, about +3.5 volts;
therefore, for negative RS-232 signal inputs, the 4060 is free to count the oscillator clock pulses.
If the RS-232 signal remains quiescent-ne gative, the 4060 Q12 stage goes high at 2048 counts of the oscillator signal; this forces the OSCIN pin high via the 1 N4148 diode. The high on OSCIN disables the oscillator and stops the counter with Q12 static high. The Q12 high state (about +4.7 volts) drives the associated discretes monitor optoisolator LED through the $3.3 \mathrm{k} \Omega$ resistor. The LED current is about 4.5 mA .

When the RS-232 signal is positive, the 4060 Reset input is high, $\geq+3.5$ volts so the counter is reset to the zero state. When the signal reverts to the negative polarity, the oscillator starts and the counter advances from the zero state. If data bits in the holdoff character are also positive-polarity, they also reset the counter, which is not important. The Stop bit at the end of the character is negative; therefore the counter is free to count out the time-out count of 42 seconds.

The 4060 oscillator frequency is determined by the resistor connected to OSOUT1 and capacitor connected to OSOUT2. These are $47 \mathrm{~K} \Omega$ and $0.22 \mu \mathrm{~F}$ respectively, and the frequency is determined by $\mathrm{f} \approx 1 / 3 \mathrm{RC}$. Using these nominal values, the calculated frequency is about 42 Hz . M29 bench tests show an oscillator frequency of about 49 Hz ; the difference is probably the result of the use of wide tolerance components.

AD590 Interface

The two analog temperature signals input to M29 are the outputs of AD590 two-terminal, temperature transducers in the heat pump refrigeration system that cools the correlator and computers in the Control Building. One transducer measures the temperature of the warm water coming out of the water-cooled condenser heat exchanger on the hot side of the refrigeration system. The other measures the temperature of the chilled water on the cold side of the refrigeration system.

For supply voltages between +4 and +30 volts DC, the AD590 acts as a high impedance, constant current regulator passing $1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}$. During manufacture, the chip is trimmed to calibrate the transducer to $298.2 \mu \mathrm{~A}$ output at $298.2 \mathrm{~K}\left(+25^{\circ} \mathrm{C}\right)$.

The AD590 is particularly useful in remote sensing applications because it is insensitive to voltage drops over long lines since it is a high impedance, low current device. Secondly, the AD590 dissipates very little power, $1.5 \mathrm{~mW} @ 5 \mathrm{~V} @+25^{\circ} \mathrm{C}$.

The AD590 interface circuits transform the AD590 currents to voltages and have gain and offset adjustments. The circuit is a simple inverting operational amplifier using the Precision Monolithics OP-15. The AD590 sinks current from the amplifier's summing junction (the minus input) to the -5 V supply. This current is a linear function of the temperature sensed by the AD590. The OP-15 output, a positive voltage, feeds back a current to the summing junction so as to null the summing junction currents. The gain is determined by the feedback resistor $50 \mathrm{k} \Omega$. This value requires that the output voltage change 50 mV in response to a $1 \mu \mathrm{~A}$ change in the AD 590 's current (i.e. $50 \mathrm{mV} / 50 \mathrm{k} \Omega=1 \mu \mathrm{~A}$). Therefore the amplifier's scaling is $50 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. The amplifier's gain is trimmed by the $2 \mathrm{k} \Omega$ potentiometer and the 298.2 $\mu \mathrm{A}$ offset current is trimmed by a current from the +5.120 volt supply through the $22.6 \mathrm{k} \Omega$ resistor and $1 \mathrm{k} \Omega$ trimming potentiometer.

The AD590 interface circuit was designed to cover the $-51.2^{\circ} \mathrm{C}$ to $+51.2^{\circ} \mathrm{C}$ temperature range; the corresponding AD590 current change is $102.4 \mu \mathrm{~A}$. The AD590 interface circuit's gain and offset potentiometers are adjusted to make the amplifier's output voltage span 0 volts to +5.120 volts for this temperature range.

With the $50 \mathrm{k} \Omega$ feedback resistor, an AD590 current change of $102.4 \mu \mathrm{~A}$ will produce a 5.120 volt change in the amplifier output, which is the input voltage range of the ADC0808. An offset current of $273.15 \mu \mathrm{~A}$ will produce an amplifier output of +2.560 volts when the AD590 is passing a current of $273.15 \mu \mathrm{~A}$, which corresponds to a temperature of $0^{\circ} \mathrm{C}$. The A/D's 8 -bit output has 256 possible states and the amplifier's voltage span is 5.120 volts; therefore, the A / D 's voltage resolution is $20 \mathrm{mV} / \mathrm{LSB}$. +2.560 volts is the mid-point of the ADC0808 range. With this output, the feedback current is $51.2 \mu \mathrm{~A}$ and the AD590 is sinking $273.15 \mu \mathrm{~A}$; therefore, the offset current must be $221.95 \mu \mathrm{~A}$. The offset current source is the +5.120 volt supply so the offset resistance must be 23068Ω. When the gain and offset resistances are set to produce these values, the AD590 temperature range is $-51.2^{\circ} \mathrm{C}$ to $+51.2^{\circ} \mathrm{C}$, which produces an ADC0808 output span of 0 to 256 counts straight binary code. The amplifier-A/D converter system temperature resolution is $102.4^{\circ} / 256$ or $0.40^{\circ} \mathrm{C} / \mathrm{LSB}$.

The two temperature interface amplifier outputs are input to mulitplexer inputs IN0 and IN1 in the National Semiconductor ADC0808 multiplexer-A/D converter described below.

Section 2.14 describes the adjustment of the M29's AD;90 interface circuit gain and offset potentiometers.

The $0.1 \mu \mathrm{~F}$ capacitor across the feedback resistor reduces the gain of the amplifiers to quickly changing signals. Typically, this is normal-mode noise that might be induced in the long cable run to the AD590 temperature sensors.

For temperature stability, the $\mathrm{OP}-15$'s + inputs are connected to analog ground through a $16 \mathrm{k} \Omega$ resistor.

An AD590 data sheet is included in Section 5.

Analog Multiplexing and A/D Conversion

The two analog voltages from the AD590 Temperature Transducer Circuitry described above are converted to digital values for readout to the control PC via a Monitor Acknowledge message.

This circuitry consists of a National Semiconductor ADC0808, 8-bit A/D converter with an 8channel analog multiplexer, an Intersil 7555 clock, and an AMD PALCE22V10Z-25 (Programmable Array Logic) chip. The converter's analog multiplexer selects one of the temperature interface circuit outputs on mulitplexer inputs $\operatorname{IN} 0$ or IN 1 as a function of the PAL's 3-bit address output, MUX1, MUX2, and MUX4. The PAL generates sequencing terms that cause the A/D converter to convert the selected signal to a digital value. The PAL inputs are the 7555 clock, the A/D end of conversion signal, EOC, the analog/digital mode discrete, DISCRETE and the analog multiplexer address bits ANA1, ANA2 and ANA3 (described below). The PAL chip and the programmed logic functions are described below.

The PC control program determines the M29 data readout mode. Refer to the message format description in Section 2.2. Four command message argument bits determine the character of the data read
out by subsequent Monitor Acknowledge Messages; the tit states remain static in the port 0 outputs until changed by a new M29 command message. Bit A_{3} (ANALOG*) in port P 0.3 controls the analog/digital mode. If A_{3} is low (1), the analog signal specified by the multiplexer address is selected for A / D conversion and readout. Conversely, if A_{3} is high (0), the discretes monitor data is read out during the next Monitor Acknowledge Message. In this case, the state of the three multiplexer address bi \cdot have no significance.

Message argument bits A_{0}, A_{1}, and A_{2} are the three analog multiplexer address bits stored in ports $\mathrm{P} 0.0, \mathrm{P} 0.1$ and P 0.2 . On the logic schematic drawing, the mode control and address outputs from the port's output optoisolators are designated $\mathrm{P} 03^{*}, \mathrm{P} 00^{*}, \mathrm{P} 01^{*}$, and $\mathrm{P} 02^{\star}$, respectively.

Although the A/D converter could be made to operate continuously by connecting the EOC to the START input, in the M29 application the conversion sequence is controlled by state transitions in the control PAL. The PAL state transitions are described below. Briefly, an A/D conversion is triggered by a commanded transition to the analog mode from the discrete mode or when the multiplex address is changed while in the analog mode. After the conversion, the converted digital value remains in the converter's output latches. If the analog mode continues unchanged and the multiplex address is not changed, there are no additional conversions and this one converted value will continue to be read out by all subsequent Monitor Acknowledge messages. In the analog mode, a new commanded multiplex address will initiate a conversion and the resultant converted value will remain static in the converter's output latches until a new conversion is commanded.

The National Semiconductor ADC0808 is a CMOS analog multiplexer-A/D converter chip. It features an 8 -channel single-ended multiplexer, 8 -bit successive-a pproximation conversion, low temperature sensitivity, long term stability, and the absolute accuracy is $\pm 1 / 2$ LSB at $25^{\circ} \mathrm{C}$. External gain and zero adjustments are not required. The analog signal input range is 0 to +5.100 VDC, typical conversion time is $100 \mu \mathrm{~S}$ with a 640 kHz clock; it is is typically powered by a single +5 volt volt supply, and powor consumption is only 15 mW . An external clock is required - typically 640 kHz . The digital inputs and outputs are TTL-compatible, the multiplexer address and digital outputs are latched, and the digital data output is tri-state. Instead of the usual R/2R ladder network, the conversion uses a 256 R network because of its inherent monotonicity, which guarantees no missing codes. Secondly, the 256R network does not cause load variations on the reference voltage. The reference voltage applied to the 256R resistor ladder determines the voltage conversion range.

The multiplexer address is latched on the low-to-high transition of the Address Latch Enable (ALE). The successive approximation register is cleared on the rising edge of the Start Conversion signal (START) and the the conversion operation is initiated by the falling edge of START. The End of Conversion (EOC) is clocked low by START and goes high at the end of conversion. Section 5 includes a data sheet for the ADC0808.

The 7555 clock rate is calculated to be 68.6 kHZ using the 7555 data sheet timing formulas and the M29 7555 timing circuit values. The measured clock rate is about 57.8 kHz and frequency discrepancy is probably the result of component tolerances. Although the A/D converter and PAL are capable of operation at a much higher clock rate, the low clock rate was chosen to reduce A/D converter and PAL power consumption. This clock rate increases the conversion time to about $1000 \mu \mathrm{~S}$, which would be very long in typical data acquisition systems. The long conversion time is not a problem in the WYE Monitor system because the Auxiliary bus M29 polling rate is 2.7 seconds.

The A/D converter reference voltage ($\mathrm{REF}+$) is +5.120 volts from the precision +5.120 volt supply (described below). The converter's REF- input is connected to analog ground AGND. This +5.120 volts is connected across the converter's 256 R ladder network and determines the converter's scaling. The converter output has 256 possible states; therefore, the converer's quantization is $+5.120 / 256,20 \mathrm{mV} / \mathrm{LSB}$.

This reference voltage also powers the converter which can operate with a V_{cc} as high as +6.5 volts. The converter's VREF + input is connected to +5.120 volts and the VREF- input is connected to analog ground AGND, which is the $+/-15$ volt power supply's 0OUT terminal. See the M29 Power Supplies description below.

The A/D converter-AD590 interface circuit's span and resolution were described in the AD590 Interface description above.

The A/D's Output Enable (OE) is connected to V_{cc} so that the latched output data is always available.

The ADC0808 data sheet states that the converter can be made to be self-sequencing by connecting the EOC to the START input; the rising edge of EOC initiates the next conversion. It also states that if this self-sequencing mode is used, an external START pulse should be applied after power is applied to avoid potential logic lock-up. Since there is no external indication of lockup and this state could continue indefinitely, it would be impossible to correct the fault. For this reason the PAL is used as a control sequencer.

The PAL is a programmable digital state machine, and in this implementation, it is controlled by the states of: DISCRETE, the input multiplex address (JANA1, /ANA2 and (ANA3), the PAL's output mulitplex address (MUX1, MUX2 and MUX4), and the EOC (ADCE).

The PAL state equation's signal name notation differs from that used on the logic schematic. DISCRETE is the ANALOG* signal and the input multiplex address bits /ANA1, /ANA2 and /ANA3 are ANA1*, ANA2* and ANA4*, respectively.

Figure 18 is a simplified rendering of the logic circuitry implemented by the PAL. The AMD PALCE22V10Z-25 is a high speed CMOS programmable logic array (PAL) that can be programmed and erased. The PAL implements the Boolean sum of products and is a set of

Figure 18 M29 PAL Logic Implementation
programmable AND arrays that drive fixed OR arrays. The AND arrays are programmed to create custom product terms, while the OR array sums selected terms at the outputs. The product terms are connected to the fixed OR's with a varied distribution of 8 to 16 AND output to the 10 OR inputs. The OR sums feed an output macrocell. Each macrocell can be programmed as registered ("D" flip-flop) or combinatorial, and active high or low outputs. The PAL has 12 inputs and 10 output macrocells. Combinatorial or Registered outputs can be fed back to the AND arrays to enable the generation of sequential logic functions. Unused inputs are connected to ground or VCC. The "D" flip-flop is clocked on the low-to-high transistion of the clock input. This PAL can be asynchronously cleared and synchronously preset for initialization. Refer to the block diagram in the PAL data sheet in Section 5.

In the M29 application, six logic inputs are used to form seven registered outputs that control the A/D conversion and digital multiplexer steering. State transitions occur only on the rising (positive-going) edge of the CLOCK which sets or resets the register flip-flops. Since the registers are clocked, each state transition has the clock period delay. The PAL equations and the PAL state transition diagram show that these seven terms are static until changed by a new command from the control PC program.

Referring to Figure 18, the low-true A/D converter multiplex address bits ANA1*, ANA2* and ANA3* are programmed to registered, active-high MUX1, MUX2 and MUX4 for the A/D converters address inputs. The digital/analog mode select term DISCRETE is programmed to produce two low-true, digital multiplexer control terms - /ADOE and /DIGOE. These outputs are also fed back into the PAL inputs. The digital multiplexer is described below. ADCE, the A/D converter's end-of-conversion output, indicates that the conversion has been completed and the data is available in the output latches.

The PAL outputs do the following: The rising edge of the ALE output clocks the A/D converters multiplex address bits MUX1, MUX2, and MUX4 into the converter's address latches. The rising edge of the ADSTART output initiates the A/D conversion sequence. /DIGOE and /ADOE control the digital multiplexer.

The /DIGOE and /ADOE states are a function of the three address inputs, /ANA1, /ANA2 and /ANA4, DISCRETE, ADCE, and the /DIGOE and /ADOE feedback terms. See the PAL state and conditional equations below.

Although /ADOE and /DIGOE are in a sense complementary; when either is active-low, the other is inactive. These terms are active-low only when the associated data is to be asserted onto the Isolated CPU Interface Board IO8 through IO15 inputs. When /ADOE is low, the A/D converter's digital data drives the Isolated CPU Interface Board inputs 108 through IO15. When /DIGOE is low, the discretesmonitor data drives IO8 through IO15.

Figure 19 (next page) is the PAL A/D converter state sequence diagram; the diagram shows all possible states and the transition paths between states. The upper line of text in each state is the state name and the lower line is the name of the associated signal that is activated upon entry to the state. The six states are: DIG_OUT, PRESTART, START_A/D, A/D_BEGIN_WAIT, A/D_END_WAIT, and AD_OUT. The rules for the transitions are described in the state transition description below. All transitions are initiated by the rising edge of CLOCK; it has been omitted from the diagram for simplicity.

Note that when DISCRETE is true (high), there are no transitions out of the DIG_OUT state. When DISCRETE becomes false (low), it forces a transition to the sucessive A/D conversion states ending in the AD_OUT state. The PAL remains in this state until changed by an analog mode command with
a different multiplexer address; this initiates a new conversion sequence via the PRESTART state. When DISCRETE is commanded true, it forces a transition from any state to the DIG_OUT state.

ALE is output to the A/D to latch MUX1, MUX2 and MUX4 into the A/D address latches in the PRESTART state. The ADSTART signal is issued to the A/D converter in the START_AD state. Since the A / D conversion sequence is much larger than the CLOCK period, a wait condition is necessary. The BEGIN_WAIT state is the start of the wait period and the END_WAIT state terminates the wait period when the ADCE becomes true.

State and condition equations use the following notation: "and", "then", "otherwise", "or else" and "XOR" are logical operators and " l " denotes the negation of the signal. Commas are used for readability and have no logical function.

Three Condition equations are also used in the state transition equations. The

Figure 19 M29 PAL State Diagram first one is:
NEW_ADDRO = /DISCRETE and
/DIGOE, or else /DISCRETE and (MUX1 XOR ANA1), or else (MUX2 XOR ANA2), or else (MUX4 XOR ANA4). This equation forces the transition to the analog mode from the digital mode or forces a new conversion sequence if the address is changed. The second one is: GO_CET = /DISCRETE and ADCE. The third is: GO_CEF = /DISCRETE and /ADCE. The second and third condition equations are terms used in the state transition equations.

The state equations are:
Assert discrete bits to cpu:
DIG_OUT: if /DISCRETE then PRESTART, otherwise DIG_OUT
Latch mux address in A/D:
PRESTART: if DISCRETE then DIG_OUT, otherwise START_AD
Send START pulse to A/D:
START_AD: if DISCRETE then DIG_OUT, otherwise AD_BEGIN_WAIT

Wait for EOC to go false:
AD_BEGIN_WAIT: if DISCRETE then DIG_OUT, or else GO_CET, then AD_BEGIN_WAIT, or else GO_CEF, then AD_END_WAIT

Wait for EOC to go true:
AD_END_WAIT: if DISCRETE then DIG_OUT, or else GO_CEF, then A/D_END_WAIT, or else GO_CET, then AD_OUT

Assert A/D conversion value to Isolated CPU Interface ports:
AD_OUT: if DISCRETE then DIG_OUT, or else NEW-ADDRO, then PRESTART, otherwise, AD_OUT

Note the correspondence of the state diagram to these equations.
A data sheet for the AMD PALCE22V10Z-25 PAL is included in Section 5.

7555 Clock

The Intersil 7555 is a CMOS version of the 555 timer with lower power dissipation, a higher maximum frequency, and much smaller supply current transients. The 7555 timing equations are identical to those for the 555 ; refer to the 7555 data sheet in Section 5. The clock frequency is determined by the timing parameters $\mathrm{R}_{\mathrm{A}}(1 \mathrm{k} \Omega), \mathrm{R}_{\mathrm{B}}(10 \mathrm{k} \Omega)$ and $\mathrm{C}(1000 \mathrm{pF})$. The clock period T is given by: $\mathrm{T}=$ $0.693\left(\mathrm{R}_{\mathrm{A}}+2 \mathrm{R}_{\mathrm{B}}\right) \mathrm{C}$, which is $14.5 \mu \mathrm{~S}$. The clock frequency is $68,700 \mathrm{~Hz}$.

Digital Multiplexer

The digital multiplexer consists of two 8-bit, tri-state buffers that drive ports IO8 through IO15 on the Isolated CPU Interface Board. PAL output /DIGOE enables the discretes monitor data (described above) onto the Isolated CPU Interface ports IO8 through IO15 via the 74HCT244 (AA23) tri-state bus driver. PAL output /ADOE enables the converted analog value in the A/D converter output register onto these same ports via the 74 HCT 240 (AA12) tri-state bus drivers. When either term is low, the data on the buffer inputs is asserted on the output tri-state lines. These two signals are generated by the PAL and are, in a sense, logic complements; they were described above. Since the A/D converter output data is high-true, the discretes data are low-true, and the IO8, ... IO15 ports inputs are low-true, the A/D converter tri-state buffer is an inverting buffer, 74 HCT 240 . Note that the discretes buffer (74 HCT 244) is a noninverting buffer.

M29 Power Supplies

M29 has three additional power supplies that are required to support the analog and A/D converter functions. The bus driving-receiving supplies cannot be used because they are dedicated to bus line driving and receiving and must be kept isolated from the analog functions.

The module's power input is 12 volts DC from M28, the Power Supply/Battery Module. This powers a Burr-Brown HPR 105 dual 15-volt, DC-DC converter that provides + and - 15 volt DC power
for the analog functions. This DC-DC converter was described in Section 2.8.
An LM7905 three-terminal, linear regulator that is powered by the -15 volts from the HPR 105 provides a -5 volt current-sinking power for the AD590 temperature transducers described above. Since the AD590's operate with supply voltages between 4 and 30 volts without degradation of their performance, they are not sensitive to their excitation voltage. The LM7905's stability, line and load regulation are not significant factors in the AD590's function.

A precision +5.120 volt, DC power supply is used for the A/D converters reference input, REF+. The +5.120 volt supply is also used for the converter's V_{cc} because $\mathrm{REF}+$ cannot exceed V_{cc}. Similarly, REF- cannot be more negative than the converter's ground. However, REF+ and REF- can be symmetrically less than V_{cc} and greater than analog ground, respectively. Since the A / D converter is a CMOS chip and operates at a clock rate of 69 kHz , its power consumption is a few milli-Watts, a precision operational amplifier supply is used to supply both voltages. This prevents any possibility that the REF+ could exceed V_{cc}. The converter's V_{cc} supply can be as high as +6.5 volts.

This supply consists of an Analog Devices AD581 High Precision 10V IC reference, a voltage divider, and a Precision Monolithics OP-15 operational amplifier connected as a voltage follower. The AD581 is powered by +15 volts from the HPR 105 power supply. The divider potentiometer provides a stable +5.120 voltage that is buffered by the OP-15 voltage follower. The $0.1 \mu \mathrm{~F}$ capacitor on the potentiometer wiper is a noise filter.

The AD581 is a three-terminal, temperature-compensated, monolithic band-gap voltage reference that provides a precise 10.00 volt output from an unregulated input level from 12 to 30 volts. The AD581 (grade L) has an error tolerance of $\pm 5 \mathrm{mV}$ and a voltage temperature coefficient of $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The AD581's stability is enhanced by its constant load; the voltage follower buffers any load variations that the A/D might impose upon the AD581's output.

As mentioned above, this +5.120 volt level determines the converter's scaling; therefore it should be an accurate stable supply. If it were to drift, the resultant scaling change would not be detectable on the M29 output data. The supply's stability and accuracy are a function of the OP-15 and AD581 characteristics. The AD581's stability and accuracy were mentioned above. The OP-15's power supply rejection ratio is typically $15 \mu \mathrm{~V} / \mathrm{V}$.

M29 Interface Signal Characteristics, Discretes Signals

Int Bd Signal	Function	Signal Type	M29 Module 1/O Pins \& Levels	$\begin{aligned} & \text { Int BD } \\ & \text { Port State } \end{aligned}$	Signal function
1000 (c)*	ANAI*	Mux Addr Bit	No Ext 1/0		
				$\begin{aligned} & \text { Low, } 1 \\ & \text { High, } 0 \end{aligned}$	True False
1001 (C)	anaz*	Mux ADDR Bit	No Ext 1/0		
				Low, 1 High, 0	True False
1002 (C)	AMA4*	Mux Addr Bit	No Ext 1/0		
				Low, 1 High, 0	True False

1003	(C)	DISCRETE	Analog/Digital Mode Control	No Ext I/O	$\begin{aligned} & \text { Low, } 1 \\ & \text { High, } 0 \end{aligned}$	Discretes Mode Analog Mode
1004	(M)	Not Used				
1005	(M)	Not Used				
1006	(M)	Not Used				
1007	(M)	Not Used				
1008	(M)	ModComp Line 1	$\begin{aligned} & \text { RS- } 232 \\ & > \pm 3 \text { volts } \\ & < \pm 3 \text { volts } \end{aligned}$	P1-N \& P1-R	$\begin{aligned} & \text { High, } 0 \\ & \text { Low, } \end{aligned}$	ModComp OK ModComp Crashed
1009	(M)	ModComp Line 2	$\begin{aligned} & \text { RS- } 232 \\ & > \pm 3 \text { volts } \\ & < \pm 3 \text { volts } \end{aligned}$	P1-T \& P1-V	$\begin{aligned} & \text { High, } 0 \\ & \text { Low, } \end{aligned}$	ModComp OK ModComp Crashed
1010	(M)	Computer Air	Switch Contacts Open Closed	P1-X \& P1-2	$\begin{aligned} & \text { High, } 0 \\ & \text { Low, } \end{aligned}$	Comp Air OK Comp Air Fault
1011	(M)	Correl Air	Switch Contacts Open Closed	P1-b \& P1-d	$\begin{aligned} & \text { High, } 0 \\ & \text { Low, } \end{aligned}$	Correl Air OK Correl Air Fault
1012	(M)	Chiller Hot Switch	Fault Switch 0 volts 28 volts	P1-f \& Pi-j	$\begin{aligned} & \text { High, } 0 \\ & \text { Low, } \end{aligned}$	Chill hot OK Chill Hot Bad
1013	(M)	Chiller Cold Switch	Fault Switch 0 volts 28 volts	P1-m \& P1-p	$\begin{aligned} & \text { High, } 0 \\ & \text { Low, } 1 \end{aligned}$	Chill Cold OK Chill Cold Bad
1014	(M)	Cond Hot Switch	Fault Switch 0 volts 28 volts	P1-s \& P1-u	$\begin{aligned} & \text { High, } 0 \\ & \text { Low, } 1 \end{aligned}$	Cond Hot OK Cond Hot Bad
1015	(M)	Not Used				

bill of material
NATIONAL RADIO ASTRONOMY OBSERVATORY

BILL Of MATERIAL
NATIONAL RADIO ASTRONOMY OBSERVATORY

\times	ELECTR	- X -_mermanica.	вом	*. 113900203	REV __	DATE_11-04-91 PAGE	C_or_1
ITEM	RET DES	mantiacturar		PART Nuncer		DESCRIPTION	total OTY.
39		DATACON		94V-0 OFYF6		BOARD. WIRE-WRAP	1
40		POLYTRON		TW1.8-24S5		CONVERTER, DC-DC, 24 :0 5V	1
41							
42		NRAO		C13900AB08		SILKSCREEN, FRONT PANEL	---
43		NRAO		D13900p15		ASSEMBLY, M29 MODULE	--
44		NRAO		A13900p18		ASSEMBLY, DIP HEADER	--
45		NRAO		D13900507		SCHEMATIC, M29 MODULE	---
46		NRAO		A13900603		WIRING DIAGRAM, CONNECTOR	--.
47		NRAO		A13900203		BOM	---
48							
49							
50							
51							
52							
53							
54							
55							
56							
57							
58							
59							
60							

ITEM	REF des	MANUTACTURER	PART NUTBER	DESCRIPTION	total QTY．
：		$\because P . A=$	ここ：こここ：	FANE：FES：	\square
2		NRAO	3130539こi	コロッミミ	2
3.		NRAO	B：$: 353 \mathrm{~m}: 5$	PLATE．SIこE	2
4		NRAO	ここ3こ5ピロワこ：		2
5		NRAC	c：3722xi5－：	SUPPCRT．30－TOM	2
6		NRAO	C：3920． $25-2$	SUPPORT． SOP	1
7		NRAO	C：3ワ2こM：	SPACER．：NSULATED RA：	2
8		NRAO	C：3720M49	PANEL．INSULATED SIDE	：
9		NRAO	C13930M04	PANEL，FRONT	1
10		NRAO	2139008：6	PCB，ISOLATED CPU INTERFACE	1
11		NRAO	C13900P17	CIRCUIT BOARD．WIRE－TRAP	1.
22		NRAO	C13900P19	ASSY，PERFORATED COVER	：
13	RX			LED，YELEOW	1
14	TX			LED，GREEN	1
15		HEWLETT PACKARD	HLMP－0103	RING，LED MOUNTING	2
16	J1	AMPHENOL	170－C375－F179	CONNECTOR，37－PIN D－SUB	$:$
17	P1	AMP	201358－3	CONNECTCR，50－PIN	$:$
18		AMP	202394－2	SHIELS．SONNECTCR	.
19		AMP	20こ333－：	PIN，GU：DE	：
20		AMP	203964－5	SOCKET．GUIDE	2

MODULE: M29 AUXILIARY UTILITY
BOARD LOCATION: AC35

MODULE: M29 AUXILIARY UTILITY
BOARD LOCATION: AE04, AE16

2.12 M28 Power Supply/Battery Module

M28 is a dual-voltage, DC power supply with backup batteries that is used to power the M27 and M29 modules. In normal operation, the power supply provides DC power to the M27 and M29 modules and maintains a charge on the batteries. In the event of an AC power failure, the batteries provide operating power to the M27's and M29.

The Panasonic LCR 12VI.3P batteries are lead-acid, have a long service life, are maintenance free, do not generate corrosive gases during normal use, are sealed and guaranteed not to leak, and can be used in any physical orientation.

The M28 drawings are listed below; for convenient reference, reduced-scale copies are found at the end of this text.

```
013900P08 UYE Monitor M28 Power Supply/Battery Module Assembly
C13900S10 M28 Power Supply/Battery Schematic Diagram
Al3900202 M28 Power Supply/Battery Module BOM
```

Refer to the schematic diagram. The M2o uses two Lambda VS10-15 switching power supplies cascade-connected to provide both 27 and 13.5 volt DC outputs. The 13.5 volt and 27 volt outputs have a common return. The 13.5 volt output powers the M27 and M29 modules and the 27 volt output is used to power DC relays in the M27 and remote equipment. 1N4007 diodes on the output of the power supplies isolate the batteries from the power supplies when the AC power is off. Internal 1 ampere fuses prevent damage to the power supplies in the event of a short-failure of the batteries.

A front panel LED indicates the presence of the 27 volt output and two front panel test jacks permit measurement of the 27 volt output.

The Lambda VS10-15 output current capacity is 0.7 Amps at an output voltage of 15 volts. The DC output may be adjusted over 10 to 15 volts by an output voltage adjustment potentiometer; this is set to 13.7 VDC for M28. AC input and DC outputs are connected via Molex-type connectors. Line and load regulation are 0.4% and 0.8%, respectively. Peak-to-peak ripple and noise is rated at 150 mV . The output has current limit and overvoltage protection. Typical efficiency is 72%. Isolation of the DC outputs is 500 volts to frame ground. The power supplies are mounted on a metal component plate which serves as a heat sink. A VS 10 power supply data shect is included in Section 5.

The Panasonic LCR 12V1.3P has a 12 volt output and a 1.3 ampere-hour capacity. In the event of loss of AC power, the M28 will power one M29 for 3.5 hours, two M27s for 5.0 hours, and three M27s for 3.3 hours. These values are based upon measurements of power demand and take into account the transmission duty cyle of the M27 and M29 modules on the Auxiliary bus and a 60% discharge limit for the batteries. Refer to the Panasonic battery data sheets in Section 5. Note that the batterie's Cyclic life vs Depth of Discharge curves show a marked reduction in cycle life as the depth of discharge increases. A 60% discharge depth was chosen for these operating time calculations. While it is obviously difficult to set strict M28 battery check guidelines, maintenance personnel should periodically check the M28 batteries.

BILL of material
NATIONAL RADIO ASTRONOMY OBSERVATORY

BILL OF MATERIAL
NAIIONAL RADIO ASIRONOMY OBSERVATORY

bill. of material.
NATIONAL RADIO ASTRONOMY OBSERVATORY

x	ELECTRICAL	- X MECHANICAI	1	DATE_6-17-93 PACE	4
ITEM \#	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	total. QTY
21		AMP	203964.6	SOCKET. GUIDE	2
22		AMPHENOL	MS3102A-14S.01P	CONNECTOR	1
23		Littlefuse	344125	FUSE. 20A, 125V	1
24				FUSE, 1A, 125V	2
25		NEMIC LAMBDA	SCB032A	SUPPLY. POWER	2
26		PANASONIC	LCR12V1.3P	BATTERY, RECHARGABLE	2
27		SOUTCHO	47.10-204-10	SCREL, CAPTIVE	3
28				SCREW, PAN HD, SS. 4-4OUNC-2A $\times .25$	18
29				SCREW, SOCKET HD, SS. 4.40 UNC -2A $\times .38$	4
30				SCREW, FLAT HD, SS. 6.32UNC. $2 \mathrm{~A} \times .25$	12
31				SCREW, FLAT HD, SS, 6-32UNC.2A x.38, HP GREY	2
32				SCREW, FLAT HD, SS, 6-32UNC-2A $\times .75$	2
33				SCREW, PAN HD, SS 6-32UNC-2A×. 25	8
34				SCREW, PAN HD. SS. 6.32UNC-2A $\times .75$	4
35				SCREW, PAN. SS. 6.32UNC.2A x. 88	4
36				SCREW, SOCKET HD. SS. 6.32UNC-2A $\times .38$	2
37				WASHER, LOCK, \#4	4

2.13 WYE-COMM Cable System

Four drawings describe the WYE-COMM system 25-pair cable routing, termination and signal assignments. These are: D13900B02, D13900B03, D13900B04 and D13900B05 - for the West, North, East Arms and Auxiliary cables, respectively. For convenience, reduced-scale copies of these drawings follow the text. The cable characteristics are specified by NRAO specification 91S00137, dated 25 September, 1977. The WYE Monitor system bus signals are distributed on these cables.

The implementation of the WYE Monitor system made five previous antenna-related cable functions obsolete which released many pairs of lines for other service. These obsolete functions are: NCP Reset, Emergency Stop, Antenna Stow Monitor, ACU Reset and Fire Alarm; therefore, they are not described in this manual. The Executone voice-communication equipment distributed on the WYECOMM cables remains in service as the principal antenna-control room voice communication system. The Power Loss Alarm circuitry is also still in service.

During the WYE Monitor system implementation, the condition of the pairs formerly used for the above five functions were measured to determine line-to-line: DC and AC noise levels, resistance and capacitance. The DC and AC noise levels, resistance and capacitance to earth ground were not measured. The pairs selected for WYE Monitor signal distribution were based upon these measurements. The measure ments were made at the control cable room punch-down terminal blocks except where noted. For documentation purposes, the measurement data are tabulated below.

West Arm Cable, 5/19/93

PAIR	$\begin{aligned} & D C \\ & m V \end{aligned}$	$\begin{aligned} & \mathrm{AC} \\ & \mathrm{mV} \end{aligned}$	Resistance 』	Capacitance $\boldsymbol{\mu F}$	CONDITION
BLU/WHT	350	190	open	1.16	OK
BLU/RED	12	20	open	1.17	OK
ORG/RED	60	16	open	1.17	OK
GRN/RED	1500	2	open	1.16	OK
BRN/RED	3300	1200	?	1.8-2.1?	Bad line, 180 Hz noise
Slate/RED	70	250	open	1.17	
BLU/BLK	260	140	open	1.16	
ORG/BLK	150	2	open	1.17	
GRN/BLK	230	180	30 m ?	1.17-1.20	
BRN/BLK	60	2	open	1.15	
SLATE/BLK	60	540	open	0.27	
GRN/YEL	-	-	-	-	Used for WYE Monitor bus
BRN/YEL	2700	15	open	1.08	
SLATE/YEL	550	55	open	1.15	
SLATE/VIO	5500	1500	$\approx 1 \mathrm{ma}$	$1.7 \cdot 2.0 ?$	Bad line, 180 Hz noise
North Arm Cable, 3/18, 1993					
BLU/WHT	-	-	-	1.07	
BLU/RED	-	-	-	1.06	
ORG/RED	10	≈ 1.9	open	1.06	
GRN/RED	28	≈ 2.0	open	1.07	
BRN/RED	60	≈ 2.0	open	1.06	
SLATE/RED	10	20	open	1.42	
BLU/BLK	3	<2	open	1.06	
ORG/BLK	20	<2	open	1.07	
GRN/BLK	11	<2	open	1.07	
BRN/BLK	<10	<2	open	1.06	
SLATE/BLK	20	<2	open	1.07	

GRN/YEL	<10	>150	open	1.06	Noisy
SLATE/YEL	40	>130	open? SLATE/VIO	200 to 500	900

2.14 Module Alignment

PC Interface Bin Modules

The most appropriate environment for testing the PC Interface Bin modules is a PC that is executing the control program and an off-line PC Interface bin equipped with the PC Transceiver, WatchDog Timer and Bin Power Supply Module. The modules can also be individually bench-tested with suitable test conditions.

PC Transceiver Module

The PC transceiver should be tested with an RS-232 level serial data stream using the WYECOM Cable Simulator C13900P03 for a load. The RS-232 data stream need not be formatted messages but must have a 300 Hz baud rate. The Transceiver output signal is 60 volts, $p-p$ and the signal at the end of the load (AW9+ and AW9- terminals) should be an almost linear sawtooth signal with about a 37 volt, p-p amplitude. The signal character and amplitude should be measured using a two-channel oscilloscope in the differential mode.

Watch-Dog Timer Module

The Watch-Dog Timer module is typically tested in the PC Interface Bin with the PC tumed off. The LEDs and audible alarm indicate the Watch-Dog Timer's response to the missing PC holdoff signal.

Bin Power Supply Module

The Bin Power Supply Module should be tested at full output power; the module's Lambda LVS-$44-12$-B power supply should provide 2.1 amperes at 12 volts DC , at an operating temperature of $25^{\circ} \mathrm{C}$. After testing at full load, a test load that exceeds this current rating should be applied to the module to verify proper operation of the overload protection circuitry.

Control Interface Modules M26, M27 and M29

The control interface modules test environment consists of a WYE Monitor Bus Message Handler and a Device Interface Simulator. The WYE Monitor Bus Message Handler generates Command and Monitor Data Request messages and receives Command Acknowledge and Monitor Acknowledge messages. The Device Interface Simulator simulates the control and monitor interfaces of the devices serviced by M26, M27 and M29.

The M28 Power Supply/Battery Module is not tested by the Device Interface Simulator; it must be tested independently.

At present there are two sets of bus-driving test environments to test these modules: the AOC WYE Monitor Development System and the portable WYE Monitor Bus Message Handler D13900S11, described below.

The WYE Monitor Bus Message Handler D13900S11 is a portable test unit that generates Command and Monitor Request messages and displays Command Acknowledge and Monitor

Acknowledge messages. This unit simulates the operation of the Control PC and can be used at any bus node. All possible stimulus address and message arguments can be generated and all possible response message address and message arguments can be displayed. It can generate either Command or Monitor Request messages or passively monitor and display a bus line's activity by not outputting Command or Monitor Request messages. It can perform either single-cycle (output a single request message and display the response message) or operate continuously. It can also act as the bus Master or a Slave unit. Examination of the schematic diagram shows that the command discretes states are set by toggle switches and monitor states are displayed by discrete LEDs. A thumbwheel switch defines the stimulus message address and the response message address is displayed on a numeric display. Four control switches determine the operating modes. This test unit contains line driving and receiving circuitry identical to that contained in the control interfaces.

Setting a toggle switch in the up position causes the corresponding Command or Monitor Request message argument bits to be a 1 . This commands the corresponding port bit in the receiving module's (M26, M27 or M29) Isolated CPU Interface Board to be active low - the 1 state. The monitor data bits of the received Command and Monitor Acknowledge messages are similarly displayed on the display LEDs. A 1 in the message, corresponding to a low-true input on the Isolated CPU Interface Board port, lights the associated LED. Since the address is displayed in a two-digit decimal format, there is no ambiguity of interpretation of address bits sense. For convenience, a reduced-scale copy of D13900S11 follows this text.

The Device Interface Simulator D13900S13 is a bench test unit used to test and align M26, M27 and M29. This unit has three 50 pin AMP connectors that are cabled to M26, M27 or M29. Three bus input ports route the bus line to the module type under test. Three dedicated sets of address toggle switches define the address of the module under test. Three dedicated sets of toggle switches define the monitor data discretes states and dedicated discrete LED's indicate the command states. Toggle switches and LED's are only provided for implemented command/monitor functions; switches and/or LED's for unimplemented functions are not provided. For example, M26 has four unimplemented Port 0 funcions; the circuitry for these functions cannot be implemented in the tester since it is not defined in M26. Frontpanel test jacks permit measurement of the test unit's power supply voltages.

The Device Interface Simulator contains the power supplies required for M26, M27 and M29. They consist of a 24 volt psuedo-battery, a 28 volt relay supply, a 13.6 volt psuedo-battery, a +5 volts supply, a -10.000 volt supply and $a \pm 15$ volt power supply. The -10.000 volt supply is powered by the +5 volt supply.

The Device Interface Simulator contains two additional test stimulus features required by M29: two periodic psuedo-RS-232 signals to test the M29 watch-dog circuitry and current sources that simulate the AD590 currents at $0^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ temperatures. Port 1.0 and 1.1 toggle switches control the psuedo-RS-232 signals; the switches permit the psuedo-RS-232 to be periodically output or inhibited.

Note from the schematic diagram that the bus communications jacks on the simulator rear panel each have a circuit interrupt switch wired into the bus signal circuitry. If the WYE Monitor Message Handler is plugged into J5, J6 and J7 are also connected to this message handler so that M27 and M29 also receive the same signals. If, for example, this message handler is plugged into $\mathrm{J} 6, \mathrm{~J} 7$ will also be driven by the message handler but J5 is disconnected. In this case, the WYE Monitor Development System could be connected to J5 and independently drive an M26. Similarly, if the message handler is connected to J7, M26 and M27 could be independently driven by the development system.

Since a detailed description of this unit is beyond the scope of this manual, it is not described but for convenience, a reduced-scale copy of the schematic diagram, DI3900SI3 follows this text.

The test environment should also have provisions to simulate the loading imposed by a WYE COM system cable pair. The WYECOM Cable Simulator Assembly C13900P03 can be us dor this purpose.

When the WYE Monitor Message Handler is used to test M29, the user should remember that M29's output can be either discretes or a converted analog value; however, reference to the M29 schematics and the M29 description of Section 2.12 should enable all M29 modes and states to be evaluated.

Since a detailed description of this message handler is beyond the scope of this manual, refer to the schematic diagram and the unit's 87C51 firmware for details on this unit's operation.

The description above is focused upon the WYE Monitor bus environment.

M26 Antenna Interface Module

Since the Device Interface Simulator interface circuitry simulates the antenna systems, the first M26 test should exercise the M26 message address-detection function. This test would verify that the M26's address circuitry responds properly to all possible address states set into the WYE Monitor Bus message handler and does not spuriously respond when it is not addressed. The address is set by M26peculiar toggle switches on the Device Interface Simulator.

Note that unless special M26 jumpering, etc. is done or an ACU Fault Board is connected to M26 (with appropriate voltage and logic state inputs), an ACU fault state should be read out.

The discretes monitor states set by the toggle switches should be displayed on the WYE Monitor Bus Message Handler's monitor data display.

Secondly, the three M26 commands should turn on and off the associated control state indicator LED's.

M27 Auxiliary Module

Since the Device Interface Simulator interface circuitry simulates the computer-correlator UPS's and the generator system interfaces, the first M27 test should exercise the M27 message address-detection function. This test verifies that the M27's address circuitry responds properly to all possible address states set into the WYE Monitor Bus message handler and M27 does not spuriously respond when it is not addressed. The address is set by M27-peculiar toggle switches on the Device Interface Simulator.

Since M27's monitor and monitor interfaces are simple and uniform, the monitor states set in the toggle switches should be displayed on the WYE Monitor Bus Message Handler's discretes display.

Similarly, the two M27 commands should turn on and off the command display LEDs.

M29 Auxiliary Utility Module

M29 is a more complicated module; both the discretes monitor data mode and the analog monitor data modes must be tested. M29 does not perform command functions. Refer to the M29 description in Section 2.11.

Since the Device Interface Simulator interface circuitry simulates the Control Building systems, the first M29 test should exercise the M29 message address-detection function. This test would verify that the M29's address circuitry responds properly to all possible address states set into the WYE Monitor Bus Message Handler and does not spuriously respond when it is not addressed. The address is set by M29peculiar toggle switches on the Device Interface Simulator.

After the address tests are performed, the discretes monitor data mode should be tested first. Command bit 03 (P03) should be set to a 0 ; this selects the discretes monitor mode. Next, the Port 0 and Port 1 toggle switches should be exercised. The switch states should be displayed on the WYE Monitor Bus Message Handler discretes display. Note from the Device Interface Simulator schematic that this test also exercises the M29's RS-232 interface circuitry.

After verification of the discretes monitor circuitry, the AD590 interface circuitry should be aligned. This should be done before the analog data readout tests to permit verification of the converted analog data states.

AD590 Interface Circuits

The M29's +5.120 volt reference supply is adjusted first since the Analog-to-Digital Converter and the AD590 interface's offset current depend upon the accuracy of the +5.120 volt supply. The reference voltage may be measured on J1, the front panel test connector; pin 36 is the +5.120 supply output and pin 19 is analog ground. The 500Ω trim potentiometer on dip header AG20 adjusts this voltage. The voltage should be set as close to +5.120 volts as possible. Bench tests have shown that this can be done with an error less than $\pm 1 \mathrm{mV}$.

Having set the +5.120 volt reference, the AD590 interface circuit's gain and offset trims can be set near the correct values by measuring the gain and zero path resistances with a digital multi-meter. This must be done for both AC47 and AE47 OP-15 operational amplifiers.

With power disconnected, measure the resistance from the OP-15's output pin (pin 6) to the inverting input pin (pin 2). Adjust the $2 \mathrm{k} \Omega$ gain trim potentiometer (near the headers pin 6) until the total resistance is $50,000 \Omega$.

Measure the resistance from the +5.120 volt reference supply at $\mathrm{Jl}-36$ to the OP-15's inverting input (pin 2). Adjust the $1 \mathrm{k} \Omega$ trim potentiometer (near the header's pin 2) until the total resistance is $23,068 \Omega$.

After the initial settings described above, the circuits should be further adjusted using the calibration circuits built into the WYE Monitor Test Fixture. This fixture tests the AD590 interface circuits with precision current sinks. A switch near the bottom of the test fixture front panel selects $40^{\circ} \mathrm{C}$ or $0^{\circ} \mathrm{C}$ current sink values. Switch position labelled 0 C (corresponding to an AD590 current at ${ }^{\circ} \mathrm{C}$) causes each channel to sink $273.15 \mu \mathrm{~A}$. The other switch position, labelled 40C (corresponding to an AD590
current at $+40^{\circ} \mathrm{C}$), causes each channel to sink $313.15 \mu \mathrm{~A}$. These current values are convenient reference points and are near those realized at the upper and lower points of the AD590's operational temperature environment.

With the current sinks set to 0 C , adjust the offset trim potentiometers near pin 2 of the dip headers next to the temperature channel amplifliers so that the output voltages of the channel (measured on pin 6 of the amplifier or on the front panel test connector) is +2.560 volts. It should be possible to trim the voltage to within 1 or 2 mV .

With the current sinks set to 40 C , adjust the gain trim potentiometers near pin 4 of the header next to the amplifiers so that the output voltage of the amplifiers are within 1 or 2 mV of +4.560 volts.

These two adjustments interact, so it may be necessary to repeat the adjustments two or more times before the voltages are correct within 1 or 2 mV .

Other than the +5.120 volt power supply voltage adjustment described above, there are no other adjustments required for the ADC0808 analog to digital converter.

After setting the AD590 interface amplifier's gain and offset adjustments, the analog data readout mode should be tested. To do so, set command bit P03 to 1 and bits $\mathrm{PO} 0, \mathrm{PO} 1$ and PO 2 to 0 . This sets the analog mode and selects analog multiplexer input INO, the Chiller temperature probe channel. Set the Device Interface Simulator's Temperature Probes switch to $0^{\circ} \mathrm{C}$. The output of both amplifiers should be +2.560 volts, mid-scale on the A/D converter's range. The corresponding value is $1000,0000_{2},\left(128_{10}\right)$ counts which should be displayed on the message handler discretes display.

Next, keeping command bit P03 a 1, set PO1 to 1 , and PO2 and PO3 to 0 . This selects analog multiplexer input IN1, the Condenser channel. The data readback should be identical to that read back from the Chiller channel.

Next, keeping command bit P03 a 1 , set P01 and P02 to 1 and P03 to 0 . This selects analog multiplexer input IN2, a floating input. The converted value should vary in a random manner.

Finally, keeping command bit P 03 a 1 , set $\mathrm{PO} 0, \mathrm{PO} 1$ and PO 2 to 0 ; this selects analog multiplexer input INO. Set the Temperature Probe switch to $40^{\circ} \mathrm{C}$. The two amplifier outputs should be +4.560 volts and the corresponding digital value should be $1110,0100_{2}$. This value should be displayed on the message handler's discretes display. Finally, change the command bits to select IN1 and verify that the same value is displayed.

M28 Power Supply/Battery Module

Refer to the M28 schematic diagram C13900S10. M28 contains two Lambda VS10-15 modular power supplies. Adjust each supply's output to produce M28 output voltages of +13.6 and +27.2 volts.

The Panasonic LCR 12 V 1.3P backup batteries have a capacity of 1.3 ampere-hours. Apply a 780 mA load to the 13.6 volt output and monitor the voltage for one hour. Record the results. Recharge the batteries and repeat the test using a 780 mA load on the 26.2 volt output. Again record the results. Recharge the batteries before the module is put into service.

3.0 WYE MONITOR SYSTEM AND RELATED FUNCTIONAL DRAWINGS LIST

Note: asterisk-marked drawings are listed for reference, they are not included in this manual.

A13900203	M29 Auxiliary Utility Module Bom
D13900S07	WYe Monitor Auxiliary Utility Module Schematic Diagram
A13900P18	M29 Auxiliary Utility Module Dip Header Assembly
C13900W03	M29 Auxiliary Utility Module Connector Test ミ2ints Wiring Diagram
C13900P17	M29 Auxiliary Utility Module Wire-Wrap Board zomponent Layout
D13900P16	M29 Auxiliary Utility Isolated CPU Interface Board Assembly
C13900W08	M29 Module Control Building HVAC Interface Wiring Diagram
428 Power Supply/Battery Module	
D13900P08	WYE Monitor M28 Power Supply/Battery Module Assembly
A13900202	M28 Power Supply/Battery Module BOM
C13900S10	M28 Power Supply/Battery Module Schematic Diagram
WYE-COMA Cable Syatem Drawings	
D13900B02	Main Telephone Cable West Arm
D13900803	Main Telephone Cable North Arm
D13900B04	Main Telephone Cable East Arm
D13900B05	Auxiliary Telephone Cable
C13900903	WYE COM Cable Simulator Assembly
C13900S05	WYE COM Cable Simulator Schematic Diagram
C13900B09*	WYE-COMM System AX5/BX5 Power Monitor Block Diagram
C13900S01*	WYE-COMM System Power Alarm Circuit Card Schematic Diagram
C13900B08*	WYE-COMM System 25 Pair to 19 Pair Cable Splice Diagram
WYE Monitor System Test/Alignment Units	
D13900S11	WYE Monitor Bus Message Handler
D13900S13	Device Interface Simulator Schematic Diagram

4.0 APPENDIX

CRC Algorithm Description

The Cyclic Redundancy Check (CRC) character was mentioned in Section 2.2. This byte is formulated over the four message bytes by the message generator and appended to the end of the message as it is being transmitted. Using the same algorithm, the message receiver formulates a CRC over the four message bytes and compares the message CRC with the CRC it just formulated. If they agree, the probability that the message is contaminated by errors is vanishingly small and it is considered to be errorfree.

This section briefly describes some of the CRC generation principles and is not a rigorous mathematical treatment.

Digital error detection techniques include the use of parity bits and check sums. A parity bit is formulated over a set of bits (typically a byte) in accordance with an odd or even parity rule. When there is more than one byte in a set of data, for example a digital time-serial message, each byte will have an appended parity bit. In a similar manner, a numerical check sum can be formed over a set of bytes.

The techniques of parity bit formulation and usage are well known and widely used. Bit error evaluation techniques sometimes involve grouping data bytes and a parity-check byte into tables to determine bit errors by examination of the parity of the table rows and columns. While this technique can detect a single bit error, two or more bit errors can defeat this error detection technique.

A check sum is the summation of a group of bytes and is a rudimentary but useful data error check. The sum may overflow (typically the case) and the remainder is used as a measure of the check sum. In the old days when computer programs were read from paper tape, check sums were used to indicate that the computer had apparently read the program without error. Again, two or more bit errors can defeat this technique.

In a manner analogous to the parity and check sum techniques mentioned above, a CRC error detection scheme involves applying a set of mathematical rules to a set of data to develop a CRC which is transmitted with the data. Then upon reception, the data is evaluated by the receiver using the same rules to develop a CRC character; if the two CRC characters are identical, the received message is error free. Multiple-bit data errors in the data do not defeat CRC techniques. Since the error probability is so minute, the CRC techniques are not used for error correction.

In the CRC technique, the message serial data bits can be considered to be a polynomial, $\mathbf{G}(\mathrm{X})^{1}$, of the form, $G(X)=a_{n} X^{n}+a_{n-1} X^{n-1}+\ldots . a_{0} X^{0}$ where the a coefficients are either a 1 or 0 and X is 2 . Thus $X^{4}+X+1$ can be represented by the binary value 10011 where the a_{4}, a_{1}, and a_{0} coefficients are 1 and the a_{3} and a_{2} coefficients are 0 . The CRC technique uses a message polynomial $G(X)$, a generator polynomial $P(X)$; and the objective is to construct a code message polynomial $F(X)$ that is evenly divisible by $\mathbf{P (X)}$. The steps are as follows:

[^1]1. The message $G(X)$ is multiplied by X^{n-k} where $n-k$ is the number of bits in the CRC.
2. Divide the resulting product $X^{n \cdot k}[G(X)]$ by the generator polymomial, $P(X)$.
3. Disregard the quotient and add the remainder, $C(X)$ to the product to yield the code message polynomial $F(X)$, which is represented as $X^{n k}[G(X)]+C(X) . \quad C(X)$ is the CRC.

The division is performed in binary without carries or borrows and the remainder is always one bit less than the divisor. The remainder is the CRC and the divisor is the generator polynomial; therefore the CRC bit length is always one less than than the number of bits in the generator polynomial.

Note that the transmitted $F(X)$ message data bits will resemble the original message data bits although they have been multiplied by $\mathrm{X}^{n-\mathrm{k}}$, which is a single factor. Although the multiplication raises each bit's polynomial value, the bits still represent their hardware equivalent before transmission.

Figure 20 WYE Monitor CRC Generator Model

There are a number of CRC generation schemes; the VLA WYE Monitor scheme is described below. Remember that the WYE Monitor outputs the message address and data LSB first. This is important in the CRC formulation process.

Hardware implementations of CRC generators use a shift register with feedback to generate the CRC. Figure 20 shows a simplified representation of the hardware equivalent of the CRC generator used in the WYE Monitor system. The WYE Monitor system uses an 8051 software equivalent of this scheme, which is described in the 1990 Dallas Semiconductor Data Book. The CRC generator consists of a shift register and Exclusive-OR (XOR) gates. Shift counter and other logic details are not included in Figure 21. At the beginning of the message block, the CRC register is initialized to to a value of 0 .

An XOR on the generator register output forms the XOR product of the data stream and the CRC generator register LSB output. This XOR output is fed back to XORs between stages 2 and 3, between stages 3 and 4 and is also input to the MSB-end of the generator register. The generator polynomial $\mathbf{P (X)}$ is thus $\mathrm{X}^{8}+\mathrm{X}^{5}+\mathrm{X}^{3}+1$ or in binary representation, 10010101. The total number of message bits, which is n , is 40 and there are 32 data bits so $\mathrm{k}=32$. Thus $\mathrm{n}-\mathrm{k}=8$, the number of CRC bits. Because there are 32 message bits in the WYE Monitor system message format, a CRC generation example is rather ponderous; therefore a simpler example follows.

1. Given:

Message polynomial $G(X)=110011\left(X^{5}+X^{4}+X+X^{9}\right)$.
Generator polynomial $P(X)=11001\left(X^{4}+X^{3}+1\right)$.
$G(X)$ contains 6 data bits.
$P(X)$ contains 5 data bits and will yield a CRC with 4 bits; therefore $n-k=4$.
2. Multiplying the message $G(X)$ by $X^{n .4}$ gives:
$X^{n-k}[G(X)]=X^{4}\left(X^{5}+X^{4}+X+X^{9}\right)=X^{9}+X^{8}+X^{5}+X^{4}$. The binary equivalent of this product contains 10 bits and is 1100110000 .
3. This product is divided by $P(X)$.

4. The remainder $C(X)$ is added to $X^{n-k}[G(X)]$ to give $F(X)=1100111001$.

The code message polynomial is transmitted. The receiver divides it by $P(X)$. If there is no error, the division will produce no remainder and it is assumed that the message is error-free. A remainder indicates an error.

List of WYE Monitor System Commercial Hardware and Software Documentation
Covox Developer's Kit, Includes Sound Master II Owner's Manual and Software
Elographics:
Elographics Graphical User Interface.
Teletouch Touch Screen Controller, Model E281-4025
Elographics Touch-Screen Driver Program N1.5, Instruction and User's Manual
Autumn Hill Software: Menuet Software Manual. Two volumes: Library and Programming Guide
MetaWINDOW Reference Manual (This is the graphics interface between the control program Clanguage code and Menuet). These are the low-level graphics functions used in composing the C-language control program.

Willie's Computer Software Company: Comm-Drv Serial I/O driver used by the 4 -port Serial I/O board.
TVGA Video Board - Model 8900C User's Manual
CTX Monitor - CVP-5468A Operating Manual
PC Generic Motherboard - 486SX-20 and DX-25/33 SC User's Manual, Rev D2, Oct 1991

5.0 Special-Purpose Components Data Sheets

The following special-purpose data sheets follow this page and are ordered as listed. Note that many of these components are widely used throughout the system.

PC Interface Bin

Intel 87C5IFA Microcontroller

NEC PS2501-1 Photo Coupler
NEC PS2502-1 Photo Coupler
MAX233 RS-232 Driver/Receiver
MAX695 Microprocessor Supervisory Circuit
HPR 105 DC/DC Converter
OP-15FP Operational Amplifier
Lambda LVS-44-12B Power Supply
Isolated CPU Interface Board
P1602 Surge Arrestor
M26 Antenna Interface
LTC1042 Window Comparator
LT1009 2.5 Volt Reference
Polytron TW1.8-24S5 DC/DC Converter

M29 Auxiliary Interface

ADC0808 Analog Multiplexer-A/D Converter
ICM7555 General Purpose Timer
AD590 Temperature Transducer
AD581 High Precision 10 V IC Reference
PALCE22V 10Z-25 Programmable Array Logic
MC14060B 14-Bit Counter and Oscillator
M28 Power Supply/Battery Module
Lambda VS10-15 Power Supply
Panasonic LCR 12V1.3P Battery

8 HARRIS

GENERAL DESCRIPTION

The ICM7555/6 are CMOS RC timers providing significantly improved performance over the standard SE/NE555/6 and 355 limers, while at the seme time being direct replacements for those devices in most applications. Improved paramelers include low supply curent. wide operating supply voltage range. Iow THRESHOLD. TRIGGER and RESEF currents, no crowbarnng of the supply current during output transtions, higher trequency pertormance and ble operation. ble operation

Specilically, the ICM7555/6 are stable controllers capa. ble of producing accurate lime delays of frequencies. The independently of each other, sharing only $v+$ and GND. In the one shot mode. The pulse width of each circul is precisely controlled by one external ressistor and capecitor. For astable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled by two external resistors and one capacitor. Unlike the regular blpolar 555/6 devices. the CONTROL VOLTAGE terminal
need not be decoupled with a capacitor. The ckcuits are need not be decoupled with a capacitor. The ckcuits are oulput inverter can source or sink currents large enough to drive TTL loads. or provide minumal olfsels to dive CMOS loads.
ORDERING INFORMATION

Part Number	Temperature Range	Package
ICM7555CBA	$0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C}$	8 Lead SOKC
ICM7555IPA	$25^{\circ} \mathrm{C}$ 10 $185^{\circ} \mathrm{C}$	a Lead MiniDip
ICM7555ITV	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO-99 Can
ICM7555MTV*	$-55^{\circ} \mathrm{C} 10+125^{\circ} \mathrm{C}$	10-99 Can
ICM7556IPD	$-25^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$	14 Lead Plastic DIP
ICM7556MJD*	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead CERDIP

1093日

[^2]
ICM7555/ICM7556

 General Purpose Timer
FEATURES

Exact Equivalent in Most Cases for SE/NE555/556 or TLC555/S5S
Low Supply Current - 60μ A Typ. (ICm75s5)
120 μ А Тур. (ICM7550)

- Extremely Low Trigger. Threshold and Reset Currents - 20pA Typlcal
- High Speed Operation - 1 WHz Typlcal
- Wide Operation Supply Voltaga Range Guaranteed 2
to 13 Voits
- Normal Reset Function - No Crowberring of Supply Durthe Output Tranaition
- Can Bo Used With Migher Impedance Tuning

Elements Then Regular 555/6 for Longer RC Time Constants

- Timing From Microsoconds Through Hours
- Operates in Both Aatable and Monostable Modas
- Adjuastable Outy Cycle
- High Output Source/Sink Driver Cen Drive TTL
CHOS CMOS
- Typleal Temperature Stablity of 0.005% Per ${ }^{\circ} \mathrm{C}$ at
$25^{\circ} \mathrm{C}$ $25^{\circ} \mathrm{C}$
- Outputa Have Very Low Offsets, HI and LO

APPLICATIONS

- Prectaton Timing
- Putse Generation
- Sequontiel Timing
- Theme Delay Ceneration
- Pulse Wirth Modulation
- Pulse Poultion Modulation
- Miselng Putee Detoctor

 mpror excosucto no wasouro ne

\square

 2 incrion

routline daname in

(OUTLIME ORAWMO PA)

(OUTLIME ORAMMMO JO. PD)
03000-2
Figure 2: Pin Configuration (Top Vlew)

ICM7555

ELECTRICAL CHARACTERISTICS

ICM7556
ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}$, unless otherwise specified

Symbol	Parameter	Test Conditions	$\begin{aligned} & 1 C M 75561,0 \mathrm{M} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			ICM7556m			Units
						$-55^{\circ} \mathrm{C} \cdot \mathrm{T}_{A}>+125^{\circ} \mathrm{C}$			
			min	Typ	Max	min	Typ	max	
$1+$	Static Supply Current	$\begin{aligned} & v_{D D}=5 \mathrm{~V} \\ & v_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{array}{\|c\|} \hline 80 \\ 120 \\ \hline \end{array}$	$\begin{array}{\|} 400 \\ 600 \\ \hline \end{array}$			$\begin{aligned} & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
	Monostable Timing Accuracy	$A A=10 \mathrm{k}, \mathrm{C}=0.1 \mu \mathrm{~F}, V_{D O}=5 \mathrm{~V}$		2		858		1161	$\begin{aligned} & \text { \% } \\ & \mu s \end{aligned}$
	Drift with Temp*	$\begin{aligned} & V_{O D}=5 \mathrm{~V} \\ & V_{D O}=10 \mathrm{~V} \\ & V_{O O}=15 \mathrm{~V} \end{aligned}$					$\begin{aligned} & 150 \\ & 200 \\ & 250 \\ & \hline \end{aligned}$		pom $/{ }^{\circ} \mathrm{C}$ ppm $/{ }^{\circ} \mathrm{C}$ ppm $/{ }^{\circ} \mathrm{C}$
	Orith wilh Supply*	$V_{D O}=5 \mathrm{~V}$ to 15V		0.5			0.5		x / v
	Astable Timing Accuracy	$A A=R 8=10 \mathrm{k}, \mathrm{C}=0.1 \mu \mathrm{~F} . \mathrm{V}_{\text {DO }}=5 \mathrm{~V}$		2		1717		2323	$\begin{aligned} & \% \\ & \mu \mathrm{~s} \end{aligned}$
	Drif with Temp*	$\begin{aligned} & v_{00}=5 \mathrm{~V} \\ & v_{00}=10 \mathrm{~V} \\ & v_{00}=15 \mathrm{~V} \end{aligned}$					$\begin{aligned} & 150 \\ & 200 \\ & 250 \\ & \hline \end{aligned}$		ppm $/{ }^{\circ} \mathrm{C}$ ppm $/{ }^{\circ} \mathrm{C}$ pom $/{ }^{\circ} \mathrm{C}$
	Orit with Supply*	$V_{D O}=5 \mathrm{~V}$ to 15 V		0.5			0.5		$\% N$
$V_{\text {TH }}$	Threshold Vollage	$V_{00}=15 \mathrm{~V}$	62	67	71	61		12	$\% V_{O D}$
$V_{\text {IRIG }}$	Trigger Voltage	$V_{D O}=15 \mathrm{~V}$	28	32	36	27		37	* $V_{\text {OD }}$
Itrig	Trigger Current	$V_{O D}=15 \mathrm{~V}$			10			50	nA
$\mathrm{ITH}^{\text {I }}$	Threshold Current	$V_{O D}=15 \mathrm{~V}$			10			50	nA
$\mathrm{V}_{\text {cV }}$	Control Vollage	$V_{D O}=15 \mathrm{~V}$	62	67	71	61		12	\% $V_{\text {DD }}$
VfSt	Reset Voltage	$V_{O D}=2 \mathrm{~V}$ to 15 V	0.4		10	0.2		1.2	V
last	Peset Current	$V_{00}=15 \mathrm{~V}$			10			50	nA
lors	Discharge Leakage	$V_{O D}=15 \mathrm{~V}$			10			50	nA
Vol	Output Voltage Drop	$\begin{aligned} & V_{D O}=15 \mathrm{~V} .1_{\text {smik }}=20 \mathrm{~mA} \\ & V_{O O}=5 \mathrm{~V} .1_{\text {gnk }}=3.2 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 0.4 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$			$\begin{gathered} 1.25 \\ 0.5 \\ \hline \end{gathered}$	$\begin{aligned} & v \\ & v \end{aligned}$
$\mathrm{VOH}_{\mathrm{OH}}$	Oulpul Voltage Drop	$\begin{aligned} & V_{D O}=15 \mathrm{~V} .1_{\text {source }}=0.8 \mathrm{~mA} \\ & V_{O D}=5 \mathrm{~V} . \mathrm{I}_{\text {source }}=0.8 \mathrm{~mA} \end{aligned}$	$\begin{array}{\|c\|} \hline 14.3 \\ 4.0 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 14.6 \\ 4.3 \\ \hline \end{array}$		$\begin{gathered} 14.2 \\ 3.8 \\ \hline \end{gathered}$			v
Vois	Discharge Output Voltage Drop	$\begin{aligned} & V_{O O}=5 \mathrm{~V} .1_{\text {ginh }}=15 \mathrm{~mA} \\ & V_{O O}=15 \mathrm{~V} .1_{\text {manh }}=15 \mathrm{~mA} \end{aligned}$		0.2	0.4			$\begin{array}{r} 0.6 \\ 0.4 \\ \hline \end{array}$	$\begin{aligned} & v \\ & v \end{aligned}$
v+	Supply Voltage*	Functuonal Oper.	2.0		18.0	3.0		16.0	v
${ }_{4}$	Output Rise Time ${ }^{\text {P }}$	$R L=10 \mathrm{M}, \mathrm{CL}=10 \mathrm{FF} . \mathrm{V}_{\mathrm{DO}}=5 \mathrm{~V}$		75					ns
${ }_{\text {i }}$	Output fall Trme*	$R L=10 M, C L=10 p F, V_{D O}=5 \mathrm{~V}$		75					ns
$\mathrm{I}_{\text {max }}$	Osciliator Frequency ${ }^{\circ}$	$\begin{aligned} & V_{D O}=5 V, R A=470 n, \\ & R B=270 \Omega, C=200 p F \end{aligned}$		1					MHz

-These permmaters are besed woon chesccierastion dote and are not levied.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

APPLICATION NOTES

GENERAL

The ICM7555/6 devices are, in most instances, dwect replacements for the NE/SE 555/6 devces. However, it is possible to effect economies in the external component count using the ICM7555/6. Because the bipolar 555/6 devices produce large crowbar currents in the outpul driver, it capscior close to the device. The $7555 / 6$ dences produca no such transients. Soe Figuro 3.

Figure 3: Supply Current Tranelent
Compared with a Standard Bipolar 555 Compared with a Standard Bipolar
Ouring an Output Traneition

The ICM7555/6 produces eupply currem spikes of oniy 2-3mA insteed of $300-400 \mathrm{~mA}$ and supply decoupling is normatty not necessary. Secondly. In most instances, the CONTROL VOLTAGE decoupling capaciors are not requmed since the input inpediance of the CMOS comperators tors can be seved using an ICM7555, and 3 capactors with an ICM7556.

maveric on $0383-16$
POWER SUPPLY CONSIDERATIONS
Although the supply ourrent consumed of the ICM7555/6 devices is very low. the roter system supply can be high uniess the tirning comporeonts are high impadance. Therefore, use nigh values for P and low values for C in Figures 4 and 5.
OUTPUT DRIVE CAPABILITY
The output driver consists of a CMOS inverter capable of driving most logic famines including CMOS and TTL. As sges will equal the supply voltegeg. At a supply voltage of 4.5 volts or more the ICM7555/6 will drive at leest 2 standard TLL loads.
ASTABLE OPERATION
The circuit can be comrected to trigger itser and free rum ts a multivibrator, see Figure 4. The output swings from rail 10 rall, and is a tue 50% duty cycle squme wave. (Trip points and output swings are symmetrical). Lees than a 1% requency variation is observed, over a voltage range of +5 $0+15 \mathrm{~V}$.

$$
t=\frac{1.44}{R C}
$$

The timer can also be connected as shown in figure 4b. In this crecuit, the lrequency is:

$$
1=1.44 /\left(R_{A}+2 R_{B}\right) C
$$

The duty cycle is controlted by the values of P_{A} and R_{B}, by the equation:

$0=R_{B} /\left(R_{A}+2 R_{B}\right.$

monostable operation

In this mode of operation, the timer functions as a one hot Initielly the extemel capecitor (C) is hold disctiarged by a ransistor inside the bimer. Upon application of a negative chesese the stort circuit scross the extemm capecitor and dives the OUTPUT thin. The voltage ecroce the capacitor how increases exponentially with a time constam1 $i=R_{A} C$. When the voltage across the capacitor eques $2 / 3 \mathrm{~V}+$, the comparator resets the nip nop. which in windsischarges the capacitor rapidy and also dives une ovirut to its low state. TRIGGER must rearm to a high state bovore the OUT. PUT can retum to a low stite.
tourpen $=-\ln (1 / 2) P_{A} C=1.1 A_{A} C$

Figure 4b:
$0303-22$

CONTROL VOLTAGE
The CONTROL VOLTAGE lermunal permits the two trip vollages for the THRESHOLD and TRIGGER internal comparators to be contralled. This provides the possibility of oscillation frequency modulation in the astable mode or even inniorion of oscallaton, depending on the applied vort. age. In the monostable mode, delay times can be changed by varning the applied vorlage to the CONTROL VOLTAGE Pin.

RESET

The RESEP terminal is designed to have essentially the same thp voltape as the standard bipolar $555 / 6$, i.e. 0.8 to 0.7 volts. Al all supply vottages it represents an extremely hugh inpur mpedance. The mode of operadon of the RESE polar 555/6 in that it controls onty the internal fitio fiop. which in furn controls simultaneously the state of the OUT. PUT and DISCHARGE pans. This avoids the multiple threanold problems sometmes encountered with slow lalling edges in the bipolar dences.

TRUTH TABLE

Threstiold Voltage	Trager Voltage	FESET	Outpur	Otecharge Switen
DON'T CARE	DON'T CARE	LOW	LOW	ON
$>2 / 3{ }^{(1)}$	$\geq 1 / 2\left(V^{+1}\right.$	HIGH	LOW	ON
$<2_{3} V^{+}+1$	$>1 / 2 V^{+1}$	HIGH	Stable	STABLE
DON'T CARE	< $1 / 3 \mathrm{~N}^{+}$)	HIGH	HIGH	OFF

OTE RESET win commeta al other nava: MREGEA mel commato over TMAESHOLD

Flgure e: Equivalent Circum

ANALOG DEVICES

Temperature Transducer
AD590*

FEATURES
Lineer Curromt Outpur: $1 \mu \mathrm{~A} / \mathrm{K}$
Wide Range: $-56^{\circ} \mathrm{C}$ to $+750^{\circ} \mathrm{C}$
Probe Compatible Caramic Semor Packeo
Two-Tarminal Device: Voltage In/Curremt Oun
Leser Trimmed to $50.5^{\circ} \mathrm{C}$ Celibrotion Aceurecy (ADSsona) Excedlent Linearity: $50.3^{\circ} \mathrm{C}$ Over Full Renge (AD590M) Wide Power Supply Range: +aV to +30 V smmor lsolstion from Csee
Low Cont

PRODUCT DESCRIPTION

The ADS 90 is a two-terminal integrated circuit temperature cransducer which produces an output current proportional io absolute temperature. For supply voltages between +4 V and +30V the device acts as a high impedance, constant current regulator passing $1 \mu \mathrm{~N} / \mathrm{K}$. Laser trimming of the chip's thin film resistors is used to calibrate the device to $298.2 \mu \mathrm{~A}$ output at $298.2 \mathrm{~K}\left(+25^{\circ} \mathrm{C}\right)$.
The ADS 90 should be used in any temperature sensing applicauon below $+150^{\circ} \mathrm{C}$ in which conventional electrical tempersture sensors are currently empluyed. The inherent low cosr of a monolithic integrated circuit combined with the elimination of support circuiry makes the ADS 90 an atractive alternativ for many temperature measuremene sinuations. Lineanation circuitry, precision voltage amplifiers, resistance measuring circuitry and cold junction compensation are not needed in applying the ADS90.

In addition to temperature measurement, applications include remperature compensation or correction of discrete components, biasing proportional to absolute temperiture, flow rate measurement, level derection of fluids and anemometry. The ADS 90 is avalable in chip form making it suitable for hybrid circuits and fast temperature measurements in protected environments.

The ADS90 is particularly useful in remote sensing applications. The device is insenative to voltage drops over long lines due to its high impedance current output. Any well-insulated rwisted pari is sufficient for operation hundreds of feet from the receiving circuitry. The outpue characteristics aleo make the ADS 90 elsy to multiplex: the current can be switched by a CMOS multiplexer or the supply voltage can be swisehed by
${ }^{\bullet}$ Covered by Prexat No. 4.123.698

PIN DESIGNATIONS

BOTTOM VIEW

PRODUCT HIGHLICHT

The ADS90 is a calibrated two terminal temperature sensor requiring only a de voltage supply (+4 V to +30 V). Cosely ransmitters, filters. lead wire compensation and lineariz. dion circuits are all unnecessary in applying the device.
2. State-of-thearr laser trimming ar the wafer level in conjunction with extensive final testing insures that ADS90 unics are easily interchangeable.
3. Superior interference rejection results from the output being a current rather than a voltage. In addition, pow fearures make the ADs90 easy io apply as a more
4. The high oucput impedance ($>10 \mathrm{M} \Omega$) provides excelient rejection of supply woltage drift and ripple. For instance. luA maximum current change, or $1^{\circ} \mathrm{C}$ equivalent error

- Ima maximum curtent change. ot 1 C equivalent er

5. The AD590 is electrically durable: it will withstand a forward voltage up to 44 V and a reverse voluge of 20 V . Hence, supply irregularities or pin reversal will not damage
the device. the device.

Model	Min	ADS90L Typ	Max	Min	$\begin{aligned} & \text { ADS90M } \\ & \text { Irp } \end{aligned}$	Mar	Units
absol.utemaximlm ratings							
Formed Volloge IE: , iof ,			+44			+44	Vota
Reverse Volage it, , iot:			-20			-20	Vohs
Breakdown Voiluge (Case io , or \mathbf{t}.)			± 200			=200	Vols
Rated Perfurmance Temperature Renge'	- 59		+150	-35		+150	${ }^{\text {c }}$
Siorage Temperature Range'	-65		+ 155	-65		+153	${ }^{\circ} \mathrm{C}$
Lead Temperaure (Solderng. 10 vec)			+ 300			+ 300	${ }^{\circ}$
POWER SUPPLY							
Operating Voltage Range	+4		+ 30	+4		+ 30	Vols
OUTPL'T							
		298.2			298.2		$\mu \mathrm{A}$
Nominal Temperature Cinefficient		1			1		HAK
Calibraion Error th $125^{\circ} \mathrm{C}$			± 1.0			± 0.5	${ }^{*}$
Absolute Firror tover rated performance (emperature range)							
Withuut External Calibration Adiutureent			± 3.0			± 1.7	$\stackrel{\circ}{4}$
With 25 CCalibration Errme Set io Zero			± 1.6			± 1.0	${ }^{*}$
Nonincanty			± 0.4			± 0.3	${ }^{\circ}$
Repesamiliv*			$=0.1$			$=0.1$	${ }^{\circ} \mathrm{C}$
tang ternilaill			$=0.1$			$=0.1$	
Current Nones		40			4		$\mathrm{pA} \sqrt{\text { Fz }}$
Power Supply Reicium							
+4VsVss+5V		0.5			0.5		mav
+ $5 \mathrm{~V}-\mathrm{v}_{5} \times+15 \mathrm{l}$		0.2			0.2		mav
+ $15 \mathrm{v}=\mathrm{V}_{5}+30 \mathrm{~V}$		0.1			0.1		uAV
Case Leotation tw Lather lead		10^{10}			10^{10}		\boldsymbol{n}
Effective Shunt Copecitame		100			100		pF
Elecince Turn-On Time		20			20		μs
Reverse Bas leakage Current* (Reverse Voltare 10 V)		10			10		pA
PACKAGEOPTION'							
T0-52(11.03A)	ADs90LH ADS90LF			ADS90MH ADS90MF			
Fiat Pack(F-2A)							

temperature scale conversion equations

$$
\begin{array}{ll}
{ }^{\circ} \mathrm{C}=\frac{5}{9}\left({ }^{\circ} \mathrm{F}-32\right) & \mathrm{K}={ }^{\circ} \mathrm{C}+273.15 \\
{ }^{\circ} \mathrm{F}=\frac{9}{9}{ }^{\circ} \mathrm{C}+32 & { }^{\circ} \mathrm{R}={ }^{\circ} \mathrm{F}+459.7
\end{array}
$$

AD590

The 590 H hes 60μ inches of gold plating on its Kovar leads and Kovar header. A resistance welder is used to sed the nickel cap to the header. The ADS90 chip is eutectically mounted to the header and ultasonically bonded to with 1 MIL aluminum wire. Kovar composition: 53% iron nominal; 29\% $\pm 1 \%$ nickel; 17\% 11% cobalr; 0.65% manganese max; 0.20% silicon max; 0.10% eluminum max; 0.10% magnesium max; 0.10%,
nium max; 0.10% titanium max; 0.06% carbon max.

The 590 F is a ceramic package with gold plating on its Kovar leads, Kovar lid, and chip cavity. Solder of 80/20 Au/5n com position is used for the 1.5 mil thick zolder ring under the bid. The chip caviry hes a nickel underlay be rween the metalization and the gold plating. The AD590 chip is eurectically mounted in the chip caviry at $410^{\circ} \mathrm{C}$ and ultrasonically bonded to wit 1 mul aluminum wire. Nore chat we chip is ADS90 in die form, the chip abstrate mut be kept eleo trically itolad. (floning) for correct circuir operation.

CIRCUIT DESCRIPTION

The ADSO uses a fundamental property of the silicon tran sistors from which it is made to reaize its temperature propor conal characteristic: if wo idenuical uransisioss are operated at a constant ratio of collector current densities, t, then the difference in their base-emitter voluges will be ($k T / q$) (In t) Swee both k. Boluman's constant and q. the charge of an
 tronal to absolute temperarure (PTAT)

Por a more deviled cirsuit dextription "ee MP. Tumo. "A Two Terminad KC Tempereture Tranethoert." IEEE J . Solid Stace Cirwith

In the AD590, this PTAT voluge is converted to a PTAT cur rent by low temperaure coefficient thin film resistors. The tota curtent of the device is chen forced to be a mulsple tim of the AD590, 98 and $O 11$ we the trencirrors thes p ro duce the PTAT roluet R5 and R6 convert the voluge to current. Q10, whose collector current tracks the collector currents in $\mathbf{Q 9}$ and $\mathbf{Q 1 1}$, supplies all the biss and substrate currents in Q9 and Q11, suppies all the bias and mubstrate surrent to be PTAT. RS and RG are laser trimmed on the wafer to calibrate the device at $+25^{\circ} \mathrm{C}$.
Fugure 2 ahows the typical v - 1 characteristic of the enrcuit at $+25^{\circ} \mathrm{C}$ and the temperature extirmes.

Figure 1. Schematic Diagram

Figure 2. V-1 Plot

Understanding the Specifications-AD590

EXPLANATION OF TEMPERATURE SENSOR

 SPECIFICATIONSThe way in which the ADS90 is specifeed makes it easy to apply in a wide vatiety of different applications. It is important ou understand the meaning ot the various specifications and the effects of supply voltage and thermal environment on acuracy
The ADS 90 is basscally a PTAT (proportional to absolute remperanure)' curtent requlator. That is. the output current is equal to a scale factor times the cemperature of the sensor in degrees Kelvin. This scale factor is trimmed to $1 \mu \mathrm{~A} / \mathrm{K}$ at the factory, by adjusting the indicated temperature (i.e. the outpur (urrent) to aqree with the actual temperature. This is done with 5° across the device at a temperature within a few degrees of噱 accuracy over temperature.

CALIBRATION ERROR

At final factory test the difference berween the indicated tem perarure and the actual temperature is called the calibration error. Since this is a scale factor error, its contribution to the total ermor of the itevic as PTAT. For example. the effect of the $1^{\circ} \mathrm{C}$: spectified niaximum error of the ADS 90 L varies from $.73^{\circ} \mathrm{C}$ a $-55^{\circ} \mathrm{C}$ oi $142^{\circ} \mathrm{C}$ at $150^{\circ} \mathrm{C}$. Figure 3 shows how over temperature

Figure 3. Celibration Error vs. Tempersure The calibration etror is a prumary contributor to maximum otal error in all ADS 90 grades. However, sunce it is a scale actor error, it is paricularly easy to inm. Figure 4 shows the most elementary way of accomplishing this. To trim this cir cult the temperature of the ADS90 is measured by a reference emperature sensor and R is inmmed so that $V_{T}=1 \mathrm{mV}$ K at har cemperature. Note that when this error is trimmed out a one emperature, irs effect is zefo over the entire temperatur range. In most applications there is a current to voltage conersion resistor (or. as with a current inpul ADC. a reference) that can be trimmed for scale factor adjustment.

Figure 4. One Temperature Trim
$\left.T 0^{\circ} \mathrm{C}\right) \cdot T(X)-273.2$. Zero on the Ketvio scile is "dboolute zeto"

ERROR VERSUS TEMPERATURE, WITH CALIBRATION

 ERROR TRIMMED OUTEach ADS90 is also tested for error over the temperature range with the calibration error trimmed out. This specification could aso be called the "variance from PTAT" since it is the maxiand a PTAT multiplication of the actual current at $25^{\circ} \mathrm{C}$. This error consists of a slope error and some curvature, mostly at the temperature extrenmes. Figure 5 shows a rypical ADS90K temperature curve before and after calibration error trimming

Figure 5. Effict of Scwe Factor Trim on Accuracy

ERROR VERSUS TEMPERATURE, NO USER TRIMS

 Using the ADS90 by simply measuring the currenc. the total error is the "variance from PTAT" described above plus the effect of the calibration error over temperature. For ex ample he ADS ${ }^{\circ} \mathrm{CL}$ maximum cotal error varies from $2.33^{\circ} \mathrm{C}$ al ty, only the larger fie ure is shown on the specification page.
nonlinearity

Nonlinearity as it spplies to the AD 990 is the maximum devistion of current over temperanure from a best-fit straight line. The nonlinearity of the AD5 90 over the $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ range is superior to all conventional electrical temperitur censors such as thermocouples. RTD's and thermistors. Fig ure 6 shows the nonlinearity of the typical ADS90K from Figure 5

Figure 6. Nonlinoority
Figure 7A shows a circuit in which the nonlinearity is the m jor contributor to error over temperature. The circuit is crimmed by adjusting R_{1} for a $0 V$ output with the ADS90 at $0^{\circ} \mathrm{C}$. R_{2} is then adjusted for 10 V out with the sensor al $100^{\circ} \mathrm{C}$. Other pairs of temperarures may be used with this procedure as long as they are me asured accurately by a reference ensor. Note that for +15 V ou 1 put ($150^{\circ} \mathrm{C}$) the $V+$ of the of ump must be greater then $17 V$. A co note hat V - hould be
 the device.

TEMPERATURE SENSORS 9-1

AD590

voltage and thermal environment effects

The power supply rejection specifications show the maximu expected change un outpur current versus inpur voit age changes. The insensirivity of the output to input volage allows the use of unregulated supplices. It also means chat hundreds of ohma of resisunce (such as a in series with the device.

It is important to note that usin; a supply voitage other than SV does not change the PTAT neture of the ADS90. In othe words, this change is equivalent to a calibration error and can be removed by the scale factor trim (see previous page).
The ADS90 specifications are guaranteed for ux in a low thermal resistance environment with SV acrosa the sensor. Lege changes in the thermal reuistance of the sentor 's enve ronment will change the amount of selt-heating and realle in changes in the output which are predictable but not necesserily desirable.

The thermal environment in which the ADS 90 is used determines iwo important characteristics: the effect of self heating and the response of the sensor with time.

Figure 8. Thermel Circuit Moder

Pigure 8 is a model of the ADS90 which demonstrates thex charecteristics. As an example, for the TO-S2 pack nge, $\theta_{1]}$ is the thermal resistance between the chip and the case, about
$26^{\circ} \mathrm{C}$ wate. $\begin{aligned} \mathrm{Ca} \\ \text { is the thermal resistance berween the case and }\end{aligned}$ its surroundings and is determined by the characteristics of the thermal conneetion. Power source P represents the power dissipated on the chip. The rise of the junction temperature. $\mathrm{T}_{\mathbf{j}}$, above the ambient temperature T_{A} is

$$
\begin{equation*}
T_{J}-T_{A}=P\left(\theta_{J C} * \theta_{C A}\right) . \tag{Ea. 1}
\end{equation*}
$$

Table I gives the sum of θ_{c} and θ_{CA} for several common thermal media for both the " H " and " F " packages. The hea sink used was a common clipon. Using Equation 1. the remprer arure rise of an ADS90 "H" packnge in \& stired bath at $+23^{\circ} \mathrm{C}$ when driven with a 5 V supply, will be $0.06^{\circ} \mathrm{C}$. However. for the same conditions in still air the temperature rise is $0.722^{\circ} \mathrm{C}$ For a given supply voitage, the temperaure nise varies wir is trimmed wich the sensor in the tame themal envimenment in which it will be used, the scale factor mim compensates for this effect over the entire temperature range.

MEDIUM			$\underline{L e s e)(N o t e ~ 3)}$	
	H	E	H	E
Aluminum Block	30	10	0.6	0.1
Stirred Oil ${ }^{\text {l }}$	42	60	1.4	0.6
Moving Air^{2}				
With Heat Sink	45	-	5.0	-
Without Heat Sink	115	190	13.5	10.0
Still Air				
With Heat Sink	191	-	108	-
Without Heat Sink	480	650	60	30

Note: 1 is de

Air nelocity a Muses
the tume conatunt is defioed as the ume required to reach 63.24 of an instantuneove tempes ocure charge

roble 1. Therma/ Resistances

The time response of the ADS90 to a step change in temperawure is determined by the thermal resistances and the thermal capacities of the chip. C_{CH}, and the case. $\mathrm{C}_{\mathrm{C}} \mathrm{C}_{\mathrm{CH}}$ is about medium since it includes anything that is in direet thermal con ecer with ehe case in most cases, the single time constant ex. ponential curve of Figure 9 is sufficient to deseribe the time response. T(t), Table 1 shows the effective time constant. for several media.

fioure 9. Time Response Curve

9-12 TEMPERATURE SENSORS

Applying the AD590

general applications

Figure 10 Variable Scole Display
Figure 10 denonstratr, the use of a low cost Digual Panel Meter for the display of temperature on euther the Kelvin. Celssus or Fahrenhers scales. For Kelvin temperature Pins 9. 4 and 2 are grounded. and for Fahrenhert temperature Pins 4

The above confyuration yiedds a 3 digit display with $1^{\circ} \mathrm{C}$ or ${ }^{\circ} F$ resolution, in aldintion to an absolute accuracy of $\pm 2.0^{\circ} \mathrm{C}$ over the $-55^{\circ} \mathrm{C}$ ro $+125^{\circ} \mathrm{C}$ temperature range if a one-temper arure calibration is performed on an AD 590 K . L. or M.

Figure 11. Series \& Parallel Connection

Connecting several ADS90 units in series as shown in Fyure 11 allows the minimum of all the sensed remperatures to be indicated. In contrast. using the sensorss in parallel yields the
average of the sensed remperatures.

The circuit of figure 12 demonstrates one method by which differential temperature measurements can be made. R_{1} and R_{2} can be used to trim the output of the op amp to indicate

Figure 12. Difforentiol Measurements

2 desired temperature difference. For ex-nple, the inherent offser berween the two devices can be trimmed in. If $v+$ and - are radically different, then the difference in internal diss effect can be ues a differential internal temperature nise. This seen by the sensors in applications such as fluad level detectors or anemometry.

Figure 13 is an example of a cold junction compensation circuit for a Type J Thermocouple using the ADS90 to monitor the eference junction temperature. This circurt replaces an ice-bat as the chemocouple reference for ambient cemperatures berween $+15^{\circ} \mathrm{C}$ and $+35^{\circ} \mathrm{C}$. The circuit is calibrated by adjust ing R_{T} for a proper meter reading with the measuring junction at a known reference cemperature and the circuit near $+25^{\circ} \mathrm{C}$. Using components with the T.C.'s as specified in Figure 13 . compenation accuracy will be within $\pm 0.5^{\circ} \mathrm{C}$ for circuit cemperatures berween $+15^{\circ} \mathrm{C}$ and $+33^{\circ} \mathrm{C}$. Other thermocouple ypes can be accommodated with different resistor values. Note that the I.C. s of the voltage reference and the rexistors are the primary contributors to error.

AD590

Figure 14. 4 to 20 mA Curront Tranamittor

Figure 14 is an example of a current transmitrer designed to be used with $40 \mathrm{~V}, 1 \mathrm{k} \Omega$ systems: it uses its full current range of 4 mA ro 20 mA for a narrow epan of mewared eemperarures. In this example the luNK output of the ADS90 ne amplified 20 A ${ }^{2}$ and ar an intermediate reference temperature. With a suictable chace of resistors, any temperature range within the operating limits of the ADS90 may be chosen.

Figure 15. Simple Temperature Control Circuit

Figure 15 is an example of a vaniable temperature control cir cuit (thermostac) using the ADS90. $\mathbf{R}_{\mathbf{H}}$ and $\mathbf{R}_{\mathbf{L}}$ are selected to art the high and low limics for $R_{\text {SET }}$. R R ${ }_{\text {SET }}$ could be a simple por, a calibrated multi-turn pot or a swieched resistive divider. Powering the ADS 90 from the 10 V reference isolates the volenge ($\sim T V)$ ecross it Cepaciror C_{1} is often needed to filter utreneous noise from remote senooss R_{1} is determined by the A of the power transiator and the current requiremens of the p of
the loed.
Figure 16 shows how the AD 590 can be configured with an 8 bit DAC to produce a digitally controlled ert point. This

Figune 16. DAC Ser Point
particular circuit operates from 0 (all inpuss high) co $\$ \$ 1^{\circ} \mathrm{C}$ (迆 inputs low) in $0.2^{\circ} \mathrm{C}$ steps. The comparator is shown wit $1^{\circ} \mathrm{C}$ hysterezis which is usually necesury to guardband fo extraneous noiv; omitring the $5.1 \mathrm{M} \Omega$ resistor results in no hysceresis.

Figure 17. AD590 Driven from CMOS Loaic

The voltage compliance and the reverse blocking charisteristuc of the ADS90 sllows it to be powered direcely from $+5 V$ CMOS logic. This permits easy multiplexing, swicehing of pulsing for minimum internal heat distupation. In Figure 17 any ADS 90 consected to a logic high will pass a signal current through the currene menauring circury while hose conacred wo a logic the wos90' mey be employed for other purose the the edicional capecitence due to the ADS90 thould be uhen into account.

Figure 18. Matrix Multiplexer
CMOS Analog Multiplexers can who be used to switch ADS90 current. Due to the ADS 90 's current mode, the rexistance of such switches is unimportant s long as $4 V$ is maintained across the transducer. Figure 18 shows a circuit which combincs the principal demonstrated in Figure 17 with an 8 channel eighty sensors over only 18 wres wich a 7 bit binary word. The eighty sensors over only 18 wres with a 7 bit binary word. The
inhibit input on the multiplexer turns all sensors off for minimum dissipation while idling.

Figure 19 demonstrates a method of multiplexing the AD 390 in the two-trim mode (Fiqure 7) Additional ADS90's and their in the two-trimm mode (Figure 7). Additional ADS90's and their asociared resistors can be added to multiplex up to 8 channels $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The high remperature pertriction of $+123^{\circ} \mathrm{C}$ is due to the ourput range of the op amps; output to $+150^{\circ} \mathrm{C}$ can be achieved by using a +20 V supply for the op amp.
\square AD581* *
\square

FEATURES

Leser. Thmmed to High Accurecy:
10.000 Votse $\pm 5 \mathrm{mV}$ (L and U)
sppmec mex o to $+70^{\circ} \mathrm{C}$ II $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ man, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (U)
Excellent Long.Torm Stabtlity:
$25 \mathrm{p} \mu \mathrm{m} / 1000 \mathrm{hrs}$. (Noncumulativo)
Negative 10 Voft Reforence Cepabtity
Low Qulescent Current: 1.0 mA max
10mA Current Output Capablitity
3-Torminal TO.5 Package
MIL-STD-883 Compllant Versions Available

Produr.t dr sckip IIOn

The ADSBl is a there terminal. temperature compensated, monolithic band gap voliage relerence which provides a pr sise 10.00 volt output from an unregulated inpur level from 12 to 30 volls Laser Wafer Trimming (LWT) is used to trim buth the initial error at $825^{\circ} \mathrm{C}$ as well as the remperature coefficient. which results in high precision performance premodules The 5 mV initial error tolerance and $5 p p m / \mathrm{C}$ fuar. anteed eemperamure coefficient of the ADS 811 represent the best performance cumbination available in a monolithe volt. age reference.
The bandgap circuit design used in the ADS81 offers several advantages over classical Lener breakdown diode techniques. Most important, no external components are required to syseems. In addition, total supply current to the device includ ing the outpur buffer amplifier (which cen supply up to 10 ma is rypically $750 \mu \mathrm{~A}$. The longeterm stability of the band to 10 mA) design is equivalent ur superior to selected Zener referente diodes.
The ADS81 is recommended for use as a reference for 6 . 10 or 12 -bit D / A converters which require an external presision rei erence. The device is also ideal for all rypes of A/D converters grating designs, and in enerel successive approxumation or inte than that provided by sundued elferoneained references.

The ADS81J. K, and L are specified for operation from 0 to $+70^{\circ} \mathrm{C}$, the ADS81S. T, and U are specified for the $-15^{\circ} \mathrm{C}$ to $-125^{\circ} \mathrm{C}$ range. All grades are packaged in a hermerically.
sealed three-terminal TO-S meral can.

PRODUCT HIGHLIGHTS

1. Laser trimming of both initial accuracy and eemperature coefficient results in very low errors over temperature with out the use of external components. The ADS81L has a
 0 to $+70^{\circ} \mathrm{C}$. while the ADS81U guarantees $\mathbf{1 5 \mathrm { mV } \text { maximum } .}$ total ertor without external trims from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
2. Since the leser trimming is done on the wafer prior to sepsration into individual chips, the ADS8) will be extremely aluable to hybrid designers for its ease of uke, lack of equired external trims, and inherent high performance.
3. The ADS81 can also be operated in a two-terminal "Zenet" mode to provide a precision negative 10 volt reference with just one external resistor to the unregulated aupply. The per formance in this mode is neasly equal to that of the standard threeterminal sonfiquration.
4. Advanced circuit deaign using the bandyap concept alowa the AD581 to give full performance with an unregulated input volages down to 13 volts. With an external resistor, the device will operste with a supply as low as 11.4 volts.
5. The ADS8 1 is available in verions compliant with MIL-STD863. Refer to the Analog Devices Military Producs Databook or current AD581/83 3 B data shert for detailed specifications.

ment	m	$\begin{gathered} \text { ADseay } \\ \hline \end{gathered}$	Men	mm	$\begin{gathered} \text { ADosiax } \\ T_{0} \end{gathered}$	Man	Mb	$\begin{gathered} \text { adsent } \\ T_{n} \end{gathered}$	Mm	Unso
OUTMUT VOLTAGE TOLBRANCE (Ertox from sominel $10,000 \mathrm{~V}$ output)			\% $\%$			216			± 5	av
			$\begin{aligned} & \pm 11.5 \\ & 10 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathbf{4 6 . 7 5} \\ & 15 \end{aligned}$			$\begin{aligned} & \pm 2.5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ev } \\ & \hline \end{aligned}$
LINEREGULATION $\mathrm{ISV}=\mathrm{V}_{\mathrm{m}} \leq 3 \mathrm{SV}$ $13 V \leq V_{\mathrm{DM}} \leq 15 \mathrm{~V}$			3.0 1.0 (0.003)			1.0 1002 1.0 (0.005)			$\begin{aligned} & 1.0 \\ & 0.002) \\ & 1.0 \\ & (0.003) \end{aligned}$	
LOADEEGULATION		200	50		200	sem		200	50	PV/an
Qutiscent CurRent		0.78	1.0		0.75	1.0		0.75	1.0	㫛
		200			200			200		n
NOISE (0. 1 00 10th)		40			ω			0		avpep
LONG-TERMSTAELLTTY		25			25			23		prowiceome
SHORTCILCUTTCURRENT		3			10			0		OA
	$\begin{aligned} & 10 \\ & 5 \\ & 5 \end{aligned}$			$\begin{aligned} & 10 \\ & \text {; } \end{aligned}$			${ }^{10}$			
TEMPERATURE RANGE $\substack{\text { Sppafind } \\ \text { Oporing }}$	$0-65$		$\begin{array}{\|c\|c\|} +150 \\ +18 \end{array}$	${ }^{0} \text { - }$		$+\infty+1 \leqslant 0$	${ }^{0}-6$		$\begin{gathered} +\infty \\ -150 \\ \hline \end{gathered}$	$\begin{aligned} & c \\ & \underset{c}{ } \end{aligned}$
$\begin{aligned} & \text { PACKAGEOPTION } \\ & \text { TO. } \mathrm{P}(\mathrm{H} 03 \mathrm{~B}) \end{aligned}$		ADSAI			ADSA			AOSM1		
Mabl	Mb	$\begin{gathered} \text { ADSOLS } \\ T 0 \end{gathered}$	Man	\cdots	$\begin{gathered} \text { adsit17 } \\ T_{7} \end{gathered}$	Mam	Mb	$\begin{gathered} \text { Absstu } \\ \mathrm{Tp} \end{gathered}$	Man	Unem
OUTPUT VOLTAGE TOLENANCE (Bros frome notemd $10,000 \mathrm{~V}$ outpue)			*30			111			25	av
\qquad			$\begin{aligned} & * 50 \\ & 30 \end{aligned}$			$\begin{aligned} & \$ 15 \\ & 15 \\ & \hline \end{aligned}$			$\begin{aligned} & 210 \\ & 10 \\ & \hline \end{aligned}$	
LINEREGULATION $\mathrm{IV}=\mathrm{V}_{\mathrm{m}} \leq 3 \mathrm{OV}$ $13 \mathrm{~V}=\mathrm{V}_{\mathrm{DN}} \leq 1 \mathrm{SV}$			1.4 (0.002) 1.4 (0.005)			${ }^{3.0} 8$ 1.0 (0.003)			3.0 10.0081 1.0 (0.005)	
$\begin{aligned} & \text { LOADREGULATION } \\ & \text { OELOUTSMAA } \end{aligned}$		200	90		300	30		200	50	${ }^{*}$ Vinan
QUIESCENTCURRENT		0.75	1.0		0.88	1.0		0.73	1.0	\cdots
TURN-ON SETTLING TIME TOO 1\%1		200			200			20		m
NOISE (0. 11010 Hz)		10			\cdots			40		AVppp
LONG-TERMSTABLLTTY		13			23			3		Ppericooks
SHont cincurt cunaent		0			30			4		${ }^{1}$
OUTHUTCUREENT somperfor +25 C sumex $\mathrm{T}_{-\infty} \mathrm{NOT}_{-1}$ $\sin \boldsymbol{T} \mathrm{T}_{-\infty} \mathrm{T}^{\mathrm{T}}$ \sin - $\operatorname{sic} x \cdot 0 \cdot \cos x$	$\begin{aligned} & 10 \\ & 9 \\ & 200 \\ & \hline \end{aligned}$			$\begin{aligned} & 10 \\ & 100 \\ & 3 \\ & \hline \end{aligned}$			10 3 300 3			$\begin{gathered} \text { Ma } \\ \text { MA } \\ \text { MA } \\ \hline \end{gathered}$
$\begin{aligned} & \text { TEMPERATURE RANGE } \\ & \text { Sochan } \\ & \hline \end{aligned}$	$\begin{aligned} & -38 \\ & -08 \\ & \hline \end{aligned}$		$\begin{array}{r} 129 \\ +150 \\ \hline \end{array}$	$\begin{aligned} & -81 \\ & -818 \\ & \hline \end{aligned}$		$\begin{array}{r} +123 \\ +150 \\ \hline \end{array}$	-98		$\begin{array}{r} +13 \\ +180 \\ \hline \end{array}$	$\underset{\Sigma}{\tau}$
$\begin{aligned} & \text { PACXAGEOPTION } \\ & \text { ras(K03B) } \end{aligned}$		ADSt			ADsa			ADSA		
Notes "sen fisure) 'H - Herneric Mexal Cen For oviline unformen Specricationn have in bowatict ere teuced on al cal wer. Anula from thone beses art wad to cal 					ARSOLUTE MAXIMUM RATINGS toput Voltage $V_{\text {IN }}$ to Ground Power Dissipation © $+25^{\circ} \mathrm{C}$ Operacing Junction Temperature Range Lead Terbperture (Soldering, 10eec) Thermel Resistance Junction-ro-Ambient					$-39^{\circ} \mathrm{C} \text { to }$

A0581

VOLTAGE VARIATION vs. TEMPERATURE
Some confusion exists in the area of defining and specifying reference voltage error over temperature. Historically, refer ences have been characterized using a maximum deviation per degree Centigrade ; i.e., $10 \mathrm{ppm} / \mathrm{C}$. However, because of nonlinearities in temperature characteristics, which originated in standard Zener references (such as "S" type characteristics) most manufacturers have begun to uxe a maximum iumit erro band approach to specify devices. This technique involves measurement of the output at 3,5 or more dilferent temperatures 10 guarane The temperacure characteristic of the ADS 81 consistendy follows the S -curve shown in Figure 4 . Three-point measurement of each device guarantees the error band over the specified temperature range.

The error band which is guaranteed with the ADS81 is the maximum deviation from the initial velue at $+25^{\circ} \mathrm{C}$; this error band is of more use to a designer than one which simply guar antees the maximum total change over the entire range (i.e., in the latter definition. all of the changes could occur in the positive direction). Thus, with a given grade of the ADS81, the designer can easily determine the maximum total error fro initial tolerance plus temperature variation (e.g., for the ADS81T, the initial rolerance is 10 mV , the band is 1 $\pm 25 \mathrm{mV}$ from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$).

Figure 4. Typical Temperature Characteristic
OUTPUT CURRENT CHARACTERISTICS
The ADS81 has the capability to either source or sink current and provide good load regulation in either direction. athough it has berter characteristics in the source mode (positive current into the load). The circuir is protected for shorts to either positive supply or ground. The output voltage vs. output cur-

Figure 5. AD581 Output Voltage vs. Sink and Source Current
6-12 voltage references
rent characteristics of the device are shown in Figure 5. Source current is displayed as negative current in the figure; sink cur rent is positive. Nowe that the short circuit current (i.e., zero volts output) is about 28 mA ; when shorted to +15 volts, the sink current goes to about 20 mA

DYNAMIC PERFORMANCE

Many low power instrument manufacturers are becoming increasingly concerned with the tum-on characteristics of the components being used in their systems. Fast turn-on compo nents often enable the end user to keep power off when not needed, and yet respond quickly when the power is cumed on for operation. Fiqure 6 displays the turnon characteristic of the ADS81. This characteristic is generated from cold start operation and represents the true Nurn-on waveform after an extended perse and fine transienc characteristics of the device; the total setting time to within ± 10 millivolt is about $180 \mu s$, and there is no long thermal tail appesing after the point.

Figure 6. Output Sertling Characteristic

Figure 7. Spectral Noise Density and Toral rms Noise vs. Frequency

Figure 8. Quiescent Current vs. Temperature

AD581

PRECISION HIGH CURRENT SUPPLY
The ADS81 can be casily connected with power pnp or power darington pnp devices to provide much greater outpur current eapability. The curcuit shown in Figure 9 delivers a precision 10 vole output with up to 4 amperes supplied to the load. The 0. $1 \mu \mathrm{~F}$ capacitor is required only if the load has a significant capacitive component. If the load is purely resistive, improved capacitor.

figure 9 High Current Precision Supply
CONNECTION FOR REDUCED PRLMARY SUPPLY While line regulation is specified down to 13 volts, the rypical current sunk capa bil iy allows even tower supply yoltow. The bility such as operation from $12 \mathrm{~V} \pm 5 \%$ as shown in Figure 10 . The 560Ω resistor reduces the rument supplied by the AD581 to a manageable level at full smA load. Note that the other bandgap references. without curtent sink capability, may be damaged by use in this circuit configuration.

Figure 10. 12-Volt Supply Connaction

THE ADS81 AS A CURRENT LIMITER

The ADS81 represents an aternative to current limiter diodes which require factory selection to achieve a desired current. This approach often results in temperamure coefficients of $18 /{ }^{\circ} \mathrm{C}$. The ADS81 approach is not limited to a defined set current limst: it can be programmed from 0.75 to 5 mA minumum voluge required to deive the connection is 13 volis The ADS 80 , which is a 2.5 voit reference, can be used in chis type of circuit with compliance voluge down to 4.9 voler.

Figure 17. A Two-Component Precision Current Limiter

NEGATIVE 10-VOLT REFERENCE

The AD581 can also be used in a two terminal "Zener" mode to provide a precision $\mathbf{- 1 0 . 0 0}$ volt reference. As shown in Fif. ure 13, the $V_{\text {DN }}$ and $V_{\text {Out }}$ terminals are connected together to the high supply (in this case. ground). The ground pin is pur is ned through a resistor to the negative supply. The out 1 mA now will show a 2 mV increace in curpur level over that produced in the three-terminal mode. Note also that the effective ou qui impedance in this connection increases from 0.2Ω typics to 2 ohms. It is emential to arrange the output load and the sup. ply resistor. Re, so that the net current through the ADS81 is always berween 1 and $5 m \mathrm{~A}$. For operation to $+125^{\circ} \mathrm{C}$, the net current should be beween 2 and SmA. The temperature charac the same as that of a unir used in the standard three sermial mode. mode.
The ADS81 can also be und in a wo-terminal mode to develop a positive reference. $V_{\text {NN }}$ and $V_{\text {Out }}$ are tied together and to the postive supply through an appropriate supply resistor. The ative ewo-cerminal connection. The only advantage of this con nection over the standard three-terminal connection is that a lower primary supply can be used, as low as 10.5 volts. This type of operation will require considerable atrention to lond and primary supply regulation to be sure the ADS81 always remains within its regulauing range of 1 to 5 mA (2 to 5 mA for operation beyond $+85^{\circ} \mathrm{C}$).

Figure 12. Two-Terminal - 10 Volt Reference

AD581
10 VOLT REFERENCE WITH MULTIPLYRNG CMOS D/A OR AD CONVERTERS
The ADS81 is ideal for application with the entire AD7533 series of 10 . and 12 bit multiplying CMOS D/A converrers. especially for low power applications. It is equally suicable for the AD7574 8-bit ND converter. In the standard hook-up, as shown in Figure 14, the +10 volt reference is inverted by the amplifier/DAC configuration to produce a 0 to -10 vole range. If an AD308 amplifier is used, total quiescent supply current will typically be 2 mA . If a 0 to +10 vole full seale range is desired, the ADS8I can be connected to the CMOS DAC in its 10 volt "Zenet" mode. as shown in Figure 12 (the - $10 V_{\text {REF }}$ output is connected directly to the VREP in of the CMOS DAC). The AD581 will normally be ured in the -10 volt mode with the AD7574 to give a 0 to +10 vole ADC range. This is thown in Figure 14. Bipolar outpue applications and other operating decails can be found in the data sheets for the CMOS products.

morl ' ithor nitainet omirto ir Gaim ram Figure 14. A
CMOS ADC
PRECISION 12-BIT D/A CONVERTER REPERENCE The ADS62. like most D/A converters, is designed to operate What - 10 volt reference eiement. in the ADS62, this 10 vole eference voitage is converted into a reference curtent of $4 p$ proximately 0.5 mA via the internal $19.95 \mathrm{k} \Omega$ reinor (in serier with the external 100Ω trimmer). The gain temperature coefficient of the ADS62 is primarily governed by the remperature tracking of the $19.95 \mathrm{k} \Omega$ resistor and the $5 \mathrm{k} / 10 \mathrm{k}$ span resiston this gein T.C. is guaranteed to $3 p p m /{ }^{\circ} \mathrm{C}$. Thus, using the ADS81L (at Sppm/ C) as the 10 volt reterence guarantees a maximum full scale remperacure coelicienc of appiop ois ne commercial ange. The 10 vols refrence aso 9 pplies the offees resistor. The bipoles officet T.C chus depends only on T. C marching of the bipolar offer resistor to the inpus reference resispor and is guaranteed to $3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

figure 13. Low Power 10-Bir CMOS DAC Application

PALCE22V10Z-25

Zero-Power 24-Pin EE CMOS Versatile PAL Device

oistinctive characteristics

- Zero-power CMOS tecnnology
- 15μ A standoy curteni
- 25 ns first-access propagation delay
- Unused product term disable for reduced power consumption
- Industrial Operating Range
- $T C=-45^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$
- $V c c=+45 \mathrm{~V} 10+55 \mathrm{~V}$
- HC- and HCT-compalible inputs and outputs
- Electrically-erasable technology provides reconligurable logic and full testability
- 10 macrocells programmable as registered or combinatorial, and active high or active low to match application needs

GENERAL DESCRIPTION

The PAICE22V10Z is an advanced PAL device buith with zero-power, high-speed. electrically erasable CMOS iechnolony it provites user-programmable logic for replacing conventional zero-power CMOS SSI/MSI gates and tip-llops at a reduced chip count

The PALCE22V102 provides zero slandby power and high speed At $15 \mu \mathrm{~A}$ maximum standby current. the PALCE22V $10 Z$ allows battery powered operation for an extended period.

The PAL device implements the lamliar Boolean logic transfer function, the sum of products. The PAL device is a programmable AND array drving a lixed OR array. The AND arsay is programmed to create cuslomproduct terms, while the OR array sums selecled terms at the oulputs.
The product terms are connected to the lixed OR array with a varied distribulion from 8 to 16 across the outputs (see Block Diagram) The OR sum ol the products leeds

- Varied product term distribution allows up 1016 product terms per output for complex functions
- Global asynchronous reset and synchronous presel for Initializalion
- Power-up reset for Iniltalization and reglster preload for testablity
- Extensive inird-party software and programmer support through FusionPLD partners
- 24-pin SKINNYDIP and 28-pin PLCC packages save space
the output macrocell. Each macrocell can be programmed as regislered or combinatorial, and active high or active low. The output contiguration is delermined by two bits controlling two multiplexers in each macrocell.

AMD's FusionPLD program allows PALCE22VIOZ designs to be implemented using a wide variety of popular industry-standard design tools. By working closely with the FusionPLD partners. AMD certities that the toots the FusionPLD partners. AMO centies that the toots provide accurate. quality suppon. By ensuring that third party tools are availabia, cosis are lowered because a dools for each device. The FusionPLD program also preatly reduces design time since a designer can use a loot that is already installed and tamiliar. Please refer to the PLO Soltware Reterence Guide tor centited devel the PLO Sulum Rel opment systems and the Programmer Relerence Guide for approved programmers.

BLOCK DIAGRAM

CONNECTION DIAGRAMS
Top View
SKINNYDIP

CLKM0 $1^{\text {e }}$	
2	23
3	22
4	21
5	20
6	19
1507	18
8	17
9	16
10	15
$110{ }^{11}$	14
GNOC 12	13

Note:
Pin 1 is marked lor orientation
PIN DESCRIPTION
CLK $=\quad$ Clock
GND \quad Ground
1
IIO \quad Input
NC \quad InputOutput
V \quad No Connect

ORDERING INFORMATION

Industrial Products

AMO programmable logic products for industrial applications are available with several ordering optuons. The order number (Valid Combination) is formed by a combination of these elemenls:
POWER
Z - Zero Power ($15 \mu \mathrm{Alcc}$ standby)
operatnag conditions 1 = Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

PACKAGE TYPE
P = 24-Pin 300-mil Plastic
SKINNYOIP (PO3024) $J=28-$ Pin Plasuc Leaded
speed $-25=25$ ns tPO

- Versati:o
NUMBER OF OUTPUTS \square

Valld Comblnations The Valid Combinations lable lists configurations planned to be supported in volume lor this device availability of spectic valid combinations, and to check on newty released combinations.

FUNCTIONAL DESCRIPTION

The PALCE22V10Z is the zero-power version of the PALCE22V10 it has all the architeclural fealures of the PALCE22V10 in addition the PALCE22V10Z has zero standby power and unused product term disable.

The PALCE22V10Z allows the systems engineer to im plement the design on-chip. by programming EE cells to coningure ANO and OR gates within the device. accord ing to the desired logic funcion. Complex imerconnec wons between gales, which previously required time-consuming layout. are lifted irom the PC board and placed on silicon, where they can be easily modified during prototyping or production.
Produci terms with all connections opened assume the logical HIGH state: product terms connected to both true and complement of any single input assume the logical OW state
The PALCE22VIOZ has 12 inputs and $101 / 0$ macrocells. The macrocell (Figure 1) allows one of lour poten. lial oulpul conligurations: registered outpul or combinatorial ilO. active high or active low (see figure 2). The contiguration choice is made according to the user's design specilication and corresponding program ming of the contiguration bits So_{0} - Si. Multiplexer con trols are connected to ground (0) ihrough a programmable bit, selecting the "o path through ine mutiplexer. Erasing the bir disconnecis the control line from GND and it thats to Vcc (1). selecting the I^{1} ' path

The device is produced wilh a EE cell link al each inpul to the AND gate array. and connections may be selec ively removed by apolying appropriate voltages to the ively removed by applylng appropriate voltages to the
 any cusiomized pattern

Variable Input/Output Pin Ratio

The PALCE22V102 has twelve dedicated input lines. and each macrocell output can be an I/O pin. Buffers tor device inouts have complemenlary outputs to provide ser-programmable input signal polarily. Unused inou pins should be tied to Vcc or GND

Registered Output Configuration

Each macrocell of the PALCE22V 102 includes a O-type lip. llop lor dala storage and synchronization The lliplop is toaded on the LOW-10-HIGH transition of the clock imput in the registered conliguration ($\mathbf{S}_{1}=0$), the array leedback is trom $\overline{\mathbf{O}}$ of the llip.flop.

Combinatorial UO Configuration

Any macrocell can be conigured as combinatonal by setecting the multiplexer path that bypasses the llip-llop $\left(S_{1}=1\right.$). In the combinatorial contiguration the teedback is from the pin.

0 = Programmed EE br

1. Erased (charged) EE bit

Figure 1. Output Logic Macrocell

Registered/Active Low

Renistorad/Active Hagh

CombinatoriaVAcive Low

CombinatoriavActive High
Figure 2. Macrocell Conllguration Options

Programmable Three-State Outputs

Each output has a inree-stale output bulter with threestate conlrol. A product term controls the bulfer, allowing enable and disable to be a tunclion of any product of device inpuls of outpul feedback. The combinatoria output provides a bidirecional VO pin, and may be conligured as a dedicated inpul it the bufler is always disabled.
Programmable Output Polarity
The polarity of each macrocell output can be aclive high or active low, either to match outpul signal needs or to reduce product terms. Programmable polarity allows Boolean expressions to be written in their most compact form (true or inverted). and the output can still be of the desired polarity. It can also save "DeMorganizing" eflons.

Selection is controlled by programmable bil S_{0} in the outpur macrocell, and affects boin registered and combinatorial outpuls. Selection is automatic. based on the design specirication and pin definitions. If the pin definiion and output equation have the same polarity, the out put is programmed to be active high $\left(S_{0}=1\right)$.

Preset/Reset

For initialization, the PALCE22V10Z has additional Presel and Reset product terms. These terms are connected to all registered outputs. When the Synctronous Preset (SP) product term is asserted high. the output registers will be loaded with a HIGH on the next LOW-10HIGH clock transition. When the Asynctronous Reset (AR) product term is asserted high, the output registers will be immediately loaded with a LOW independent of the clock.
Note that preset and reset control the lip-Hop. not the outpur pin. The output level is determined by the output polarity selected

Zero-Standby Power Mode

The PALCE22V10Z features a zero-standiby power mode. When none of the inputs switch for an extended period (typically 50 ns), The PALCE22V10Z will 90 into standby mode, shutting down most of its intemal cir. Cuitry. The current will 9010 alrnost zero (lce $<15 \mu \mathrm{~A}$). The oulputs will maintain the states held belore the device went into the standoy mode.

When any input switches, the internal circuilry is fully enabled and power consumption relums to normal. This reature results in considerable power savings tor operation at low to medium irequencies. This savings is illus trated in the lce vs, frequency graphs.

Product-Term Disable

On a programmed PALCE22V10Z, any product terms hat are not used are disabled. Power is cul oll from these product terms so that they do not draw current. As shown in the lec vs. Irequency graphs, product-1erm dis abling results in considerable power savings. This sav ings is greater at the higher Irequencies.

Power-Up Reset

All flip-flops power-up to a logic LOW for predictable system initialization. Outpuls of Ihe PALCE22V102 will depend on the programmed oulput polarity. The VCC ise must be monotonic and the reset delay tume is 1000 ns maximum.

Register Preload

The registers on the PALCE22V10Z can be preloaded from the output pins to laciliate functional testing of complex state machine designs. This reature allows diect loading of arbitrary states, making il unnecessary to cycle through hong tesi vector sequences to reach a de sired state. In addition, iransitions from illegal slates can e veritied by loading illegal states and observing prope ecovery.

Security Bil

Atter programming and veritication, a PALCE22V102 design can be secured by programming the security EE bit. Once programmed, this bit deleats readback of the internal programmed pattern by a device programmer securing proprietary designs yom compellors. When he securty bil is programmed, the array wilr read as every bit is erased, and preload will be disabled.
The bit can only be erased inconjunction with erasure of he entire paslem.

Programming and Erasing

The PALCE22V10Z can be programmed on standaro ogic programmers. It atso may be erased to reset a pre viously conligured device back to ils virgin state. Era sure is automatically performed by the programming hardware No special erase operation is required.

Quatity and Testability

The PALCE22V10Z offers a very high level of builh-in quality.
The erasability of the CMOS PALCE22V10Z allows di rect testing of the device array to guarantee 100% pro gramming and functional yields

Technology

The high-speed PALCE22V10Z is fabricated will AMD's advanced electrically-erasable (EE) CMOS process. The array connections are formed with proven EE cells. Inputs and oulpuls are designed to be compal ble with HC and HCT devices. This technology provides strong inpul-clamp diodes, output slew-rate control, and a grounded substrate for clean switching

ABSOLUTE MAXIMUM RATINGS

Storage Temperalure
$-65^{\circ} \mathrm{C} 10+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C} 10+125^{\circ} \mathrm{C}$
$-0.5 \mathrm{~V} 10+7.0 \mathrm{~V}$
Uupply Voltage with Respec o Ground

DC Input Voltage
OC Output or I/O Pi
$0.5 \mathrm{~V} 10 \mathrm{Vec}+0.5 \mathrm{~V}$
Voltage
$-0.5 \mathrm{~V} 10 \mathrm{Vcc}+0.5 \mathrm{~V}$
Stalic Discharge Vollage 2001 V
Latchup Current ($T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$) 100 mA
Stresses above those listed under Absolute Maximum Rat ings may cause permanen device lailure. Functionafity at or bove these limís is not impliad Exposure lo Absolute Maximum Ratings for extended periods may affect device reliabul ty. Pragramming conditions may difler.

DC CHARACTERISTICS over INDUSTRIAL operating ranges unle:s otherwise specified

PRELIMINARY						
Parameter Symbol	Parameter Description	Test Conditions		MIn.	Max.	Unit
Vor	Oulpul HIGH Voltage	$\begin{aligned} & V_{W N}=V_{W A} \text { or } V_{L} \\ & V_{C C}=\text { Minin. }^{2} \end{aligned}$	$10 \mathrm{H}=6 \mathrm{~mA}$	3.84		V
			$\mathrm{low}=20 \mu \mathrm{~A}$	$\begin{gathered} V_{c c}- \\ 0.1 \end{gathered}$		V
Va	Output LOW Vohage	$\begin{aligned} & V_{W}=V_{W} \text { or } V_{L} \\ & V_{C C}=\text { Min. } \end{aligned}$	$l \alpha=16 \mathrm{~mA}$		0.5	V
			$10=6 \mathrm{~mA}$		0.33	V
			$1 a=20 \mu \mathrm{~A}$		0.1	\checkmark
VIH	Input HIGH Vohage	Guaranteed Input Logicat HIGH Vothage for all Inputs (Notes 1, 2)		2.0		V
va	Input LOW Voltage	Guaranteed Input Logical LOW Vollage for all inputs (Notes 1, 2)			0.9	V
1 m	Inpul HIGH Leakage Current				10	$\mu \mathrm{A}$
In	Input LOW Leakage Current	$\mathrm{V}_{\mathrm{w}}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }}=$ Max. ($\mathrm{Note}^{\text {3 }}$)			-10	μA
loz\%	Off-State Output Leakage Current HIGH	$\begin{aligned} & V_{\text {out }}=5.5 \text { V. } V_{c c}=\text { Max. } \\ & V_{I N}=V_{H H} \text { or } V_{L}(\text { Note } 3) \end{aligned}$			10	$\mu \mathrm{A}$
lozr	Off-State Output Leakage Current LOW	$\begin{aligned} & V_{\text {our }}=0 \mathrm{~V} . V_{C c}=\text { Max. } \\ & V_{W}=V_{H T} \text { Or } V_{A} \text { (Note 3) } \end{aligned}$			-10	$\mu \mathrm{A}$
Isc	Output Shon-Circuit Current	Vout - 0.5V Vcc = Max. (Note 4)		-30	-150	mA
Icc	Supply Current	Outputs Open (lowt $=0 \mathrm{~mA}$) Vcc = Max.	I=0		15	$\mu \mathrm{A}$
			$\mathrm{f}=25 \mathrm{MHz}$		120	mA

to no
Represerks worsi case of HC and HCT standaros. allowing compalibility with enter.
3. Win leakage is the wors: case of in and lox (ot lin and loz

Not more than one oupul should be shoried at a time and duration of the short-arcuit should not exceed one second VOUT $=0.5 \mathrm{~V}$ has been chosen to avoud test problems caused by lester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditions		Typ.	Unlt
Cwn	Input Capactiance	$\mathrm{V}_{\mathrm{w}}=2.0 \mathrm{~V}$	$\begin{aligned} & V C C=5.0 \mathrm{~V} \\ & \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}=1 \mathrm{MHz} \end{aligned}$	5	pF
Cour	Output Capactance	Vout $=2.0 \mathrm{~V}$		8	

1. These parameters are not 100% lesied. bul are evaluated at mitial chatacterization and at any lime the design is modidied where capaciance may be aflected

SWITCHING CHARACTERISTICS over INDUSTRIAL operating ranges (Note 2)

PRELIMUNARY						
Parameter Symbol	Parameter Description			Min.	Max.	Unit
IPD	Input or Feedback to Combinatorial Output Input Switching when Device is in Standby Mode				25	ns
	Input Switching when Device is not in Standby Mode				20	ns
is	Setup Time Irom Input. Feedback or SP to Clock			15		ns
17	bota lime			0		ns
1 co	inck 10 Output				15	ns
un	Asynchronous Reset to Registered Outpul				25	ns
lapw	Asynchronous Resel Widih			25		ns
tann	Asynchronous Reset Recovery Time			25		ns
tspa	Synchronous Presel Recovery Time			25		ns
Im	Clock Width	LOW		13		ns
Inus		HIGH		13		ns
lmax	$\begin{aligned} & \hline \text { Maximum } \\ & \text { Frequency } \\ & \text { (Nole 3) } \end{aligned}$	External Feedback	1/(ts + lco)	33.3		MHz
		Intemal Feedback (35.7		MHz
Iea	Inout to Output Enable Using Product Term Control				25	ns
Pea	Innut to Output Disable Using Product Term Control				25	ns

Notes.

2. See Switching Test Curcurt tor test conditions
3. These parameters ate not 100% tested, but are evaluated at indial characterization and at any time the design is moditied where trequency may be atfected.

SWITCHING WAVEFORMS

Combinatorial Output

Clock Width

Asynchronous Rese

Registered Output
input

09849.0128

Input to Output Disable/Enable

Synchronous Preset

Notes:

1. $V_{T}=V_{C C R}$
2. Inpun pulse amplitude 0 V to Vcc
3. Inpul fise and lall times 2-5 ns typical.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	inputs	OUTPUTS
	Must be Steady	Will be Steady
01	May Change from H to L .	Wilt be Changing from H 10 L
	May Change fromL to H	Will be Changing from L to H
	Don't Care, Any Change Permilled	Changing. State Unknown
	Does Not Apply	Center Line is High. impedance "OH' State

SWITCHING TEST CIRCUIT

Specification	S_{1}	C	R1	R_{2}	Measured Output Value
tpo. tco	Closed	30 pr	820Ω	820Ω	$\mathrm{Vc} / 2$
lea	$\begin{aligned} & Z \rightarrow H: \text { Open } \\ & Z \rightarrow L: C l o s e d \end{aligned}$				Voc/2
tea	$H \rightarrow Z$: Open L \rightarrow Z: Closed	5 pF			$\begin{aligned} & H \rightarrow Z: V o r-0.5 \mathrm{~V} \\ & L \rightarrow Z: \mathrm{Va}+0.5 \mathrm{~V} \end{aligned}$

ENDUAANCE CHARACTERISTICS

The PALCE22V102 is manulaclured using AMO's advanced Elecirically Erasable process. Thus technology uses an EE cell to replace the luse link used in bipolar

Endurance Characteristics

Symbol	Parameter	Min.	Units	Test Conditions
tor	Min Patlern Data Retention Time	20	Years	Max. Operating Temperalure
N	Min Reprogramming Cycles	100	Cyctes	Normal Programming Conditions

ROBUSTNESS FEATURES

The PALCE22V102.25 has some unique leatures that make it extremely robust. especially when operating in tigh speed design envronments. Inpul clamping circuitry limiss negalive overshool, eliminaling the possi-
bility of fatse clocking caused by subsequent ringing. A special noise filter makes the programming circuitry completely insensitive to any positive overshoot that has a pulse with of less than about 100 ns

INPUT/OUTPUT EQUIVALENT SCHEMATICS

Typical Output

POWER-UP RESET

The power-up reset lealure ensures that all lip-tlops will be reselt to LOW atter the device has been powered up The outout state will depend on the programmed pat. tem. This teature is valuable in simplitying state machine initialization A liming tiagram and parameter chine inilailzalo. A ing diagran and fion of the power up reset and the wide range of ways ion of the power-up reset and the wide range of ways Voc can rise to its steady state. two conditions are

Palameter Symbol	Parameter Descripilion	Max.	Unlt
1P9	Power-up Resel Time	1000	ns
Is	Input or Feedback Selup Time	See Switching Characteristics	
Im	Clock Widih LOW		

Power-Up Resel Wavetorm

quired to

1. The Vcc rise must be monotonic
2. Following reset, the clock input must not be driven trom LO W 10 HIGH until all applicable input and feed rom LOW io HIGH until all applicable inpul and feed back selup times are met.

(4) MOTOROLA

14.8IT BINARY COUNTER AND OSCILLATOR

The MC 140608 is a 14 -stage binary ripple counter with an on-chip oscillator butlet The oscilator coniguration allows design of oither RC or crystai oscillator circuils. Also included on the chip is a reset function
which placess all outputs into the $2 e r o$ stele and disabies the oscillator. A
 Schmitt l'igges action on the ingut line permils very slow inpul rise and lall himes applications include lime detay circuits. counier controls, and tre-
stalic oporation

- Diode Protection on All Inpula
- Supply Vollage Range $=30 \mathrm{~V}$ to 18 V

Capable of Driving Two Low-power TTL Lesds or One Low-power Scnotiky Iti Loac Over ine Rated Temperature Range

- Autfornt Outputs Avalable trom Slages a Through 10 and newing 14
- Coninim.... finser line
- Pin tor fin Replacement lor CD4060
MC14060B

工hamill

ORDERING INFORMATION
MC $14 \times \times \times$ DCP Plastic
MC14xxxBCL Ceamic
MC $14 \times \times \times 80$ SOIC
$T_{A} \quad 55$ to 125 C lor all pachages

MC14060B

Symbol	Parametor	value	Unit	culty to guard aganst damage due
voo	OC Supaly voriaga	$0510 \cdot 180$	v	Hoids However. procaulions mut
$\mathrm{v}_{\text {in }} \mathrm{v}_{\text {out }}$	Input or Outout vortege iOC or Traneionti	05 to VOD 05	\checkmark	be laken to avord applications of any voltage higher than maximum rated
in. lout	inout or Output Curiont (OC or Transionti). Der Pin	- 10	ma	voltages 10 this high-ımpedance cir-
Po	Power Oisappetion, per Packegot	500	mw	curt for oroper operation. $V^{\text {in }}$ and ${ }^{\text {and }}$
$\mathrm{T}_{\mathrm{arg}}$	Storage Temberature	. $6510 \cdot 150$	${ }^{\circ} \mathrm{c}$	range $v_{S S}$ - $\left(v_{\text {in }}\right.$ or $\left.V_{\text {out }}\right)<V_{\text {DD }}$
I_{L}	Leand Temperature ie. Secono Soldering)	260	c	Unused inputs must always de lied

ELECTRICAL CHARACTERISTICS (Vollages Referenced Io V_{SS})

Characteristic	Symbot	$V_{\mathbf{V D}}$	-55 ${ }^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unh
			Min	Max	Min	Trp"	Mox	min	Max	
Outpul Voltage $v_{\text {in }} \cdot V_{O D}$ or 0 0 Level	${ }^{\mathrm{V} O}$	$\begin{aligned} & 50 \\ & 10 \\ & 15 \end{aligned}$	\bar{Z}	$\begin{aligned} & 005 \\ & 005 \\ & 005 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 005 \\ & 005 \\ & 005 \end{aligned}$	$\begin{aligned} & \text { - } \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} 005 \\ 005 \\ 005 \end{array} \\ & 0.0 \end{aligned}$	v
$v_{i n} \text { oorvol itel }$	Voh	$\begin{aligned} & 50 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 495 \\ & 995 \\ & 1495 \end{aligned}$	$\begin{aligned} & I \\ & Z \end{aligned}$	$\begin{aligned} & 495 \\ & 995 \\ & 1495 \end{aligned}$	$\begin{aligned} & \text { 50 } \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \bar{Z} \end{aligned}$	$\begin{aligned} & 495 \\ & 995 \\ & 995 \\ & 1499 \end{aligned}$	=	v
	VIL	$\begin{aligned} & 50 \\ & 10 \\ & 15 \end{aligned}$	च	15 30 40	-	$\begin{aligned} & 225 \\ & 450 \\ & 475 \end{aligned}$	15 30 40	-	15 30 40	v
	$\mathrm{V}_{\text {IH }}$	$\begin{aligned} & 50 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 35 \\ 70 \\ 110 \end{array}$	-	35 10 110	$\begin{array}{r} 275 \\ 550 \\ 825 \\ \hline \end{array}$	-	$\begin{array}{r} 35 \\ 70 \\ 110 \\ \hline \end{array}$	-	v
	vil_{1}	$\begin{aligned} & 50 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 10 \\ 20 \\ 25 \\ \hline \end{array}$	-	$\begin{aligned} & 225 \\ & 450 \\ & 675 \\ & \hline \end{aligned}$	10 20 25	-	10 20 25	vac
$\begin{aligned} & \text { (Vo os vocl } \\ & \text { (Vo- } 10 \text { vacl } \end{aligned}$ $\text { ivo } 15 \mathrm{Vocl}$	VIH	$\begin{aligned} & 50 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 40 \\ & 80 \\ & 125 \end{aligned}$	-	40 80 125	$\begin{aligned} & 275 \\ & 550 \\ & 825 \\ & \hline \end{aligned}$	-	$\begin{array}{r} 40 \\ 80 \\ 125 \\ \hline \end{array}$	-	voc
	${ }^{1} \mathrm{OH}$	$\begin{aligned} & 50 \\ & 50 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 30 \\ -064 \\ 16 \\ 42 \\ \hline \end{array}$	-	24 051 13 34	$\begin{array}{r} 42 \\ -088 \\ 225 \\ 88 \\ \hline \end{array}$	-	17 036 09 09 24	=	mA
	'02	$\begin{aligned} & 50 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 664 \\ & 16 \\ & 82 \\ & \hline \end{aligned}$	-	0.51 13 34	$\begin{aligned} & \hline 088 \\ & 225 \\ & 88 \\ & \hline \end{aligned}$	-	036 09 09 24	-	mA
Inout Current	In	15	-	01	-	. 000001	01	-	$\cdot 10$	${ }_{4}$
$\begin{aligned} & \text { inpur Capacitance } \\ & \text { in } \\ & \text { OI } \end{aligned}$	C_{1}	-	-	-	-	50	75	-	-	pF
Ourescent Current (Per Package)	'00	$\begin{aligned} & 50 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$		$\begin{aligned} & 50 \\ & 10 \\ & 20 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 0005 \\ & 0010 \\ & 0015 \end{aligned}$	$\begin{aligned} & 50 \\ & 10 \\ & 20 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	\sim^{*}
Total Supply Current" IOynamic plus Ourescent Per Package) $1 C_{L} \quad 50 \mathrm{pF}$ on all outpuls. all butters switching)	${ }^{17}$	$\begin{aligned} & 50 \\ & 10 \\ & 15 \end{aligned}$			$\begin{array}{ll} 19 & 10 \\ 1 T & 10 \\ 19 & 0 \end{array}$	$\boldsymbol{\mu}$ AkHz ${ }^{\mu}{ }^{2}$ ant ${ }_{\mu} \mathbf{A k H z}_{1}$	$\begin{aligned} \because 100 \\ : 100 \\ \because 100 \end{aligned}$			$\mu \mathrm{A}$

-Oata labelled Typ is not to be used lor destign purposes but
-The tormulas given are tor the tyoncal characterisics only at 25 C

MC14060B

SWITCHING CHARACTERISTICS $\operatorname{IC}=50$ DF. $T_{A}=20^{\circ} \mathrm{C}$)

Cherscureme	Srmbol	$\begin{aligned} & \text { Voo } \\ & \text { Voc } \end{aligned}$	min	Typa	max	Unn
Outout Arse Time (Counter Ourputs)	TILH	$\begin{aligned} & 50 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 20 \\ & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \\ & 80 \end{aligned}$	\%
Output fall Trme counter Outputsi	ITht	$\begin{aligned} & 50 \\ & 10 \\ & 15 \end{aligned}$	\bar{Z}	$\begin{aligned} & 50 \\ & 30 \\ & 20 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \\ & 80 \end{aligned}$	$n 3$
Propeganion Deviay Time Clock io 04	${ }_{\text {TPLIL }}$	$\begin{aligned} & 50 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 415 \\ & 175 \\ & 125 \\ & \hline \end{aligned}$	$\begin{aligned} & 740 \\ & 300 \\ & 200 \\ & \hline \end{aligned}$	$n 3$
Clock 10014		$\begin{aligned} & 50 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 15 \\ & 07 \\ & 04 \\ & \hline \end{aligned}$	27 13 10	\cdots
cloce Putse Wrath	IWH	$\begin{aligned} & 50 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \\ & \hline \end{aligned}$	-	n
Clock Pulse freauency	'	$\begin{aligned} & 50 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 5 \\ & 14 \\ & 17 \\ & \hline \end{aligned}$	$\begin{gathered} 35 \\ 8 \\ 12 \\ \hline \end{gathered}$	M Hz
Clock Mine and Fem Time	TTH ITHL	$\begin{aligned} & 50 \\ & 10 \\ & 15 \end{aligned}$	No Lumi			n
Resel Pusee Wioun	'w	$\begin{aligned} & 50 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 120 \\ & 60 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 15 \\ & 10 \\ & \hline \end{aligned}$	- -	03
Propegation Dover Time Aleven to On	tP+L	$\begin{aligned} & 50 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 100 \\ & \infty 0 \\ & 00 \end{aligned}$	$\begin{aligned} & 300 \\ & 100 \\ & 100 \end{aligned}$	ns

fIGURE I - MOWER DISSIPATION TESI CIRCUIT ANO WAVEFORM

FIGUAE 2 - SWITCHING TIME TEST CIRCUI ANO WAVEFOAMS

figure 3 - oscillator circuit using ac configuration

figure s - rc oscillator fagouenct as a FUNCTION OF RTC ANO C

figune 7 - typical data fon caystal oscillatce ciacuit

Complete oscilator includes cirsial capacitens ond resistors

Panasonic

General Description
The LCA Series is is s.anded lead pcid rechargeable battery sys. tem The lead cillinun inchargeable (LCR) batlery. will stand up charge in timith seityic., troubles due to abrormal and doep disation or misuse ate werdured 10 a minimum

Applications

- Consumer Applications Cleaners and sppli.1ncm. and as portable power supples
- Communication and Telephone Equipment
Cordesss portable ielu-pliones, and iransceivers
- Otice Equipment

Pontable calculalors, computers. electronic cash registers.

- Memory Back up \& UPS

UPS systems emeremori" cash registers computers.
sequencers

- Tools and Engrire ctart
orgine stant
- Instrument and Medical Equipmen

Electronic instruments. measuring equipment. medical elec
Ponics. and rean delitrilias.

- Photography

Toys and Hobit. stistre: VIF and move lights
Radio controllers il:olor driving. Inths

- Emergency Devices

Lughts, the are buripla amems, communication systems.

Features

- Exceptional deep discharge recovery
- Long service lite. lloal or cyclic
- Starved eleclrotyte
- Charge. discharge. or store in any position
- No corrosive gas generation
- Leakprool design
- Approved as dry corli tor arishipment by Department of Transporiation and laía
- Ul componenil mergonized tall major models) File.
- Temperature Range Summary

Discharge	\vdots	$5^{n}-122^{n} \mathrm{~F}$	$\cdot 15^{\circ}-50^{\circ} \mathrm{C}$
Charge.	\vdots	$32^{\circ}-104^{n} \mathrm{~F}$	$0^{\circ}-40^{\circ} \mathrm{C}$
Storage		$5^{n}-104^{\prime \prime} \mathrm{F}$.1

- Charging method and battery application

RECHARGEABLE SEALED LEAD.ACID batteries

- Cycle Life

Cycie itie is very muct dependent on the depth of the Jischarge

- Float or Back up Life

The expected toat hite at room temperature is approumately B years on the basis of accelerated lests.

-"Shell Life"

Sell-discharge rate is very much dependent on the storage tem. peralute as shown in the graph. Lowert temperatures allow the
batrery to be slored for longer periods (Each ten degree drop batrery to be slored for longer periods. (Each ten degree drop
results in a halving of sell-discharge rate and doubles slorage tesuils in a halving of seth-discharge rate and doubles slorage
time.)

Trickite operalion	Float opperstion
Regulation range of	Requiation range of
6 vot betterios:	
bot tormers.	12 voll batt
13.6 V 1013 gV	136 V 10138

$\begin{aligned} & \text { Model } \\ & \text { Mumber } \end{aligned}$	Nominet	Nominal Capecily		Otmenelans				$\begin{aligned} & \text { Wewght } \\ & \text { (Approx) } \end{aligned}$	Stendard Verminats or Comectors
		$\begin{aligned} & 10 \text { nour } \\ & \text { rono } \end{aligned}$	20 now rove	Lengin	wrodh	H01904	Totel Helghl 		
	(v)	(An)	(An)	(mach (mm)	Inen (mm)	$\operatorname{lnch}(m m)$	nnch (mm)	168. 101	

	6	12	13	382991	0900(24)	$19750)$	216561	05613001	Fastion Iype 183
(CR 12V13P	12	12	13	382971	1874751	197501	2161561	1305900	
ICR 2 zV 2 zP	12	20	22	697176	1304341	2366001	260661	17668001	-
Lct 1912AP	12	is	1.9	0942381	.$^{171892)}$	2336151	243617	1406355	Pressure Comact
LCA GV2 ©	6	22	24	2601861	-130331	38819851	$411(1004)$	1159820	Teston Type 187
tcrevs 4 P	6	30	34	$528(134)$	134343	2361601	$26066)$	1366201	
CCR 12V3.4P	12	30	34	$528(134)$	284671	23661501	$26066)$	27312401	
CCA 6 V 32 P	6	30	32	2608661	130331	4591191	492 (125)	14616501	
${ }^{\text {Can }}$ ¢VAP	E	37	0	278101	180481	$402102)$	4251009	$1881830)$	
LCR 6vapl	6	37	40	278701	-189(48)	4021027	$402(102)$	- 838380	Load mute Type
ICR I2VAPF	12	37	40	276701	$38829 n$	${ }^{402(102)}$	$433(10)$	36516601	faston Type 187
tCR 6V6 SP	6	60	65	$595(151)$	${ }^{134} 184$	370191	$398(100)$	2 Sa(1150)	Fasion Typo 18\% O2 25
ICR 12V6 5P	12	60	65	$595(151)$	$250.645)$	(194)	3941001	485127800	
ICA oviopa	6	88	100	585(151)	197509	370941	3944001	$386(17500$	
ICR Izviop	12	93	100	595(151)	3981011	3701941	4014021	72135001	
ICR 12V170	12	is	17	$713181)$	3000781	6581167	6581671	1376200	Ms Boll ano Nut inde

LCL 12 V 20 P	12	18	20	${ }^{2861851}$	4921235	$650(165)$	6501651	165159	Ms boll and Nut tre
Lct 12 V 24 P	12	22	24	492 (125)	6591651	$689(1 / 5)$	$689(1 / 5)$	192187	
LCL 1203 sap	12	35	36	iscion	65901651	$689(7)$	6 89, 175	${ }^{29} \square_{1} 131$	mb bor ana Nun rpe
LCL 12 V 5 S	12	51	65	$1388350)$	-6selitici	$685(174$	6 essival	419(18)	
LCA I2VEOP	12	70	${ }^{80}$	16.03407	682113	- 2772101	9692461	0001361	ms Bon ano Nur moe
ica izvoop	12	\cdots	100	19 mis08)	1091801	$827210)$	100 (255)	100 gas	
LCR 12vizop	12	104	120	19895051	867128)	8	1004235	150	

ICS 214P	-	21	22	1904631	110351	24868311	2526391	$057(2601$	Prossue Contact
LCS ${ }^{\text {218P }}$	-	21	22	189480)	2656731	28866311	2501634	- 1515201	-
LCs 313p	0	31	32	1894501	2656731	35419031	3579067	- 59,7201	-
LCS. 3seap	-	38	40	18814709	1403591	46(118)	4 69(19)	${ }^{10948901}$	
LCS. 3808	6	36	40	20351.51	188947	4671188^{11}	$469(19)$	- 521690)	-
LCSSA4P	-	${ }^{1}$	43	$188(478)$	12003551	$46 / 1183$	469 (19)	${ }^{1} 1225109$	-
LCS. 416 P	6	41	43	$188,478)$	$203(515)$	462118)	469 (19)	(6, 64740)	-
Lcs 2012 Fa	12	29	30	$402(102)$	219554	31179	$314(798)$	27812501	tasonue Tppe

IFR.1812venc	12	18	19	70920051	-080(24 8)	2386059	238,6051	$154(700)$	DC Prog
ccs zoizvanc	12	20	21	78020071	0 - 9 (24 8)	$243618)$	2 43(618)	15 (1700)	Prossure comer
Lcs zizavenc	12	23	24	$\cdots 17(182)$	OM4 23 es	$242(615)$	2436617	$1208635)$	
ics 2012 Even	12	20	22	114289	31179	6021531	$602(153)$	[Sarris)	

REGULATED DC/DC CONVERTERS 24 PIN DIP

FEATURES:

- HIGH PERFORMANCE TT INPUT FILTER
- SINGLE AND DUAL OUTPUTS
- HIGHLY REGULATED
ISOLATED OUTPUTS
- 100\% BURN IN
- HIGH EFFICIENCY
- HIGH RELIABILITY
- NO EXTERNAL COMPONENTS

SPECIFICATIONS:

- ontput vothae stabumt ocenami las
- output voltace accuracy $\pm 5 \%$
RECULATION line :0 s\%. Mox (aed : 1% Max

- RIPPLE ANO NOSSE
SO mVP. PMas
- MNPNT. OUTPUT ISOLATION 500 VOC M
- operatne temperature
- storage temperature $\rightarrow-70^{\circ} \mathrm{C}$ Io 10 - EFFCIENCY

P.O. BOX 398, PATERSON, N.J. 07544 (201) 345.5885 FAX:(201) 345-1284

National

A to D, D to A

Semiconductor

ADC0808, ADC0809 8-Bit μ P Compatible A/D Converters With 8-Channel Multiplexer

General Description

The ADCO808. ADC0809 data acquisition component is a monolithic CMOS dovice with an 8 -blt analog-to-digital converter. 8 channel multidexer and microproceseor compatiole control ligic The8-bil ND converter uees euccessive approximation as the conversion technique. The converter teatures a high impedance chopper atabilized comparator, a 256 R voltage divider with analog awitch treo mullipiexer can directly access any ol 8 -single-nded ene. log signals.
The device eliminales the need for external zero and fuiliThe device eliminales the need for external zero and fuil is provided by the latched ind diess inpuls and latched TTL TRI.STATE* oulputs.
The design of the ADCOBOB. ADCOEO9 has been optimized by incorporaling the most dessirsble aspects of eeveral ND conversion techniques. The ADC0808. ADC0809 of ars high speed, high accuracy. minimal tomperature ily, and consumes mintmal power. These teatures make inis device icealiy sulted to applications from process and machine control to consumer and eutomotive applice tions For 16 -channel multiplexer with common oulpu isample/hold port) see ADCOE16 data sheet. (See AN-247
tor more intormation for more information

Features

Rosolution - 8-bits

- Total unadjusted error - $\pm 1 / 2$ LSB and ± 1 LSB - No missing codes
- Conversion IIme - 100 нs
- Single supply - $5 \mathrm{~V}_{\mathrm{DC}}$

Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}$ or analog span ajuated volliage reterence

- e-channel multiplexer with latched control logle

Easy interface to all microprocessors. or operates "tano alone
Outputs meet T^{2} L voltage lovel specifications OV to 5 V analog input voltage range with single 5 V Noly

- No zero or full-scale adjust required
- Standard hermetic or molded 28-pin DIP package

Temperature range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ or $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

- Low powar consurnption - 15 mW
- Latchod TRI.STATE* oulput

Absolute Maximum Ratings (Notes 1 and 2)

supoly vaticor(Vec)(\%ote 3)	6.0
Voltegs al Any Pin Except Controt inpute	
Voltapeat Conirol inpute IETART, OE CLOCK, ALE. AOD A, ADD E, ADD C	-0.3V10
Storage Temowraturo Range	- $65^{\circ} \mathrm{C} 10+150^{\circ}$
Package Discupalion sit $T_{A}=25^{\circ} \mathrm{C}$	

Peckeose Dicespenion at $T_{A}=25^{\circ} \mathrm{C} \quad 378 \mathrm{~mW}$
Eeed Temperaturar foridaring 10 accondel

Electrical Characteristics

 unless otherwise atated.

	Parameter	Conditiont	Min	Typ	Max	Units
	A0c0808					
	Total Unadjuated Error	$25{ }^{\circ} \mathrm{C}$			± 112	LSB
	(Note 5)	$\mathrm{T}_{\text {min }} 10 T_{\text {max }}$			$\pm 3 / 4$	LS8
	ADC0809					
	Total Unadjuated Error	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$			± 1	LSE
	(Note 5)	$T_{\text {min }}$ to $T_{\text {max }}$			± 1114	LSB
	input Reastance	From Rett +) to Rell -)	1.0	25		* 0
	Analog input Voltage Range	(Note 4) $\mathrm{V}(+1$ or $\mathrm{V}(-)$	GND-0.10		$v_{\text {cc }}+0.10$	V_{oc}
$\mathbf{V}_{\text {REF }}+1$	Voltaga, Top of Ledder	Measured at Raft +)		$v_{c c}$	$v_{\text {cc }}+0.1$	V
$\frac{V_{\text {REF }+1}+V_{\text {REF }-1}}{2}$	Voltage. Center of Ledder		$\mathrm{VCc}^{12-0.1}$	$\mathrm{Vec} / 2$	$v_{\mathrm{cc}} 12+0.1$	v
$V_{\text {nefl-1 }}$	Voltago, Bottom of Ledder	Measured at Ret(-)	-0.1	0		v
	Comparator Input Current	$\mathrm{t}_{\mathrm{c}}=\mathbf{6 4 0} \mathrm{kHz}$, (Note 6)	-2	± 0.5	2	$\mu \mathrm{A}$

Electrical Characteristics

Oigllal Lovela and DC Specilicatlona: $A D C 0808 \mathrm{CJ} 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{cc}} \leq 5.5 \mathrm{~V}$. $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise noted ADC0808CCJ. ADC0808CCN. and ADC0809CCN $4.75 \leq \mathrm{V}_{C C} \leq 5.25 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$ untess otherwise noted

	Parsmoter	Condiliona	M1n	Typ	Max	Unite
ANALOQ MULTIPLEXEA						
loff(t)	OFF Channel Leakage Current	$\begin{aligned} & V_{C C}=5 V, V_{I N}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {miN }} \text { to } T_{\text {MAX }} \end{aligned}$		10	$\begin{aligned} & 200 \\ & 1.0 \end{aligned}$	$\underset{\mu A}{n A}$
loffi-1	OFF Channel Leakage Current	$\begin{aligned} & V_{C C}=5 V, V_{I N}=0 . \\ & T_{A}=25^{\circ} C \\ & T_{\text {MIN }} \text { to } T_{\text {MAX }} \end{aligned}$	$\begin{array}{r} -200 \\ -1.0 \\ \hline \end{array}$	- 10		$\begin{aligned} & \text { nA } \\ & \mu A \end{aligned}$
CONTROL INPUTS						
$\mathrm{V}_{\text {IMM11 }}$	Logical "1" Input Voltage		$v_{c c}{ }^{-1.5}$			v
V Vinos	Logical "0" Input Voltage				15	v
11×1	Logical "1" Input Current (The Control Inpute)	$V_{\text {IN }}=15 \mathrm{~V}$			1.0	${ }_{\sim}^{*}$
1 Imon	Logical "0" Input Current (The Controt Inputs)	$V_{\text {IN }}=0$	- 1.0			${ }^{*} \mathrm{~A}$
${ }^{\text {lcc }}$	Supply Current	$\mathrm{ICux}^{\text {a }}=040 \mathrm{kHz}$		0.3	3.0	mA

Electrical Characteristics iconunuvor)

Dightal Levels and DC Specilicatiom: $A D C 0808 \mathrm{CJ} 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V},-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ unless otherwise noted $A D C 0808 C C J$, $A D C O B O B C C N$, and $A D C 0809 C C N 4.75 \leq V_{C C} \leq 5.25 \mathrm{~V},-40^{\circ} \mathrm{C} \leq T_{A} \leq+85{ }^{\circ} \mathrm{C}$ unless otherwise noted

	Paramoter	Conditions	min	Typ	Max	UnIIG
DATA OUTPUTS ANO EOC (INTERRUPT)						
$V_{\text {oufil }}$	Logical - 1 " Outpul Voltage	$\mathrm{I}_{0}=-360 \mu \mathrm{~A}$	$\mathrm{v}_{\mathrm{cc}}-04$			v
Vourion	Logical a" Outpul voltage	$\mathrm{I}_{0}=16 \mathrm{~mA}$			045	v
Voution	Logical ${ }^{\circ}$ - Oulpul Vottage EOC	$\mathrm{I}_{0}=12 \mathrm{~mA}$			045	v
	tristate* Output Current	$\begin{aligned} & v_{0}=5 \mathrm{v} \\ & v_{0}=0 \end{aligned}$	-3		3	${ }_{\mu A}^{\mu A}$

Electrical Characteristics

Timing Specilicallone: $V_{C C}=V_{A E F(+)}=5 V_{V}, V_{R E F(-)}=G N D . t_{1}=t_{T}=20$ ns and $T_{A}=25^{\circ} \mathrm{C}$ uniess oinerwise noted.

Symbol	Perametor	Conditions	Min	Typ	Mar	Units
iws	Minimum Start Puise Wiath	(figure 5)		100	200	ns
Iwale	Minimum ALE Pulse wiath	(figure 5)		100	200	ns
t.	Minimum Address Sot-Up Time	(figure 5)		25	50	ns
$\mathrm{in}^{\text {c }}$	Minimum Addiess Hoid Time	(figure 5)		25	50	ns
${ }^{1}$	Analog mux Delay Time From ALE	$\mathrm{R}_{\mathrm{s}}=00$ (Figure 5)		1	2.5	. 3
$\mathrm{t}_{\mathrm{H1},} \mathrm{t}_{\text {mo }}$	OE Control to O Logie State	$C_{L}=50 \mathrm{pF}, \mathrm{F}_{\mathrm{L}}=10 \mathrm{k}$ (Figure 8)		125	250	ns
	OE Control to Hi.z	$C_{L}=10 \mathrm{pF}, \mathrm{A}_{\mathrm{L}}=10 \mathrm{k}$ (Figure 8)		125	250	ns
${ }^{1}{ }_{c}$	Conversion Time	$\mathrm{I}_{\mathrm{c}}=640 \mathrm{kHz}$, (Figure 5) (Note)	90	100	116	4
${ }^{\prime}$	Clock Frequency		10	640	1280	kHz
${ }_{\text {teoc }}$	EOC Dolay time	(figure 5)	0		$8+2 \mathrm{~ms}$	Clock Periods
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Al Control inputs		10	15	DF
$\mathrm{Cout}^{\text {ar }}$	TRISTATE* Output Capacitance	AI TRISTATEP Outputs. (Note 12)		10	15	DF

 wolleoes Con oo aciustod to ochieve inis. Sce fipure is

Functional Description

Multeplozer. The device contains an e-channel alngle ended analog slgnal multiplexer. A particutar Input channel is selected by using the address decoder. Table I shows the input states ior the address ines to solect any low.tomigh transition of the eddress laten onabie signal.

> TABLE I
TABLE I

SELECTEO	ADOAESS LINE		
ANALOO CHANNEL	C	B	A
INO	L	L	L
IN1	L	L	H
IN2	L	H	L
IN3	L	H	H
IN4	H	L	L
IN5	H	L	H
IN6	H	H	L
IN7	H	H	H

CONVERTER CHARACTERISTICS

The Converter

The neart of this single chip data acquiailion system is its b-bit analog-to-digital converter. The converter is designed
glve fest eccurato, and repeatable converslons over a vide range of temperatures. The converter ls paritioned into 3 malor sections: the 256 P tadder notwork, the suc. cesaive approximation register, and ine comparator. The converter's digital outputs are positive true
The 250月 ladder natwork approach (figure 1) was chosen ver the conventional R/2R ledder because of ite inherent monotoniefty, which guarantees no missing algital codes. Monotonicity is particularly importent in closed loop toedback control sysiems. A non-monotonic relationship can cause oscillations that will de calastrophic for the aystem. Additionally. the 256R notwork does not cause load variations on the reference vollage

The bottom reatstor and the top reastor of the ladder natwork in figure 1 are not the same value as the romainder of the network. The difference in these osistors causes the outpul characteriatic to be sym motricel with the zero and full.scale points of the trangte curve. The tiret ourpul $+1 / 2$ LSB and succeeding output transitions occur every i LS8 later up to full-scale.
The successive approximation register (SAA) performs 8 terations to approximate the input voltage. For any SAR
 verter. In the ADC0808. ADC0809, the approximation tecnnique is extended to 8 bits using the 256A nelwork.

FIGURE 1. Reaictor Ledder and 8 witch Tree

Functional Description (Conunuas)

The ND convertor's successive approximetion regiator (SAR) Is reset on the positive edge of the start conversion
(SC) pulse. The conversion is begun on the falling edge of (SC) pulse. The conversion is begun on the falling edge of
the start conversion pulso. A conversion in procese will be interrupted by recalpt of a now start converstion putee. Continuous converslon may be accomplisted by tying the end-of-conversion (EOC) outpul to the SC input. If used in this mode. an external atart conversion pulse should be applled after power up. End-of-converalon will go low totwoen 0 and 8 clock pulses after the rising odge of start conversion.

The mosi importani secrion of ine ND converior is ine comparatior. itis inis section which ie responatiofor the

comparator drift which has the greatest influence on the repentability of the device. A choppor-stabilized com all the convarter raquirements. alto convartor hequramana.
The chopper-atabilized comparator converts the DC input s!onal Into an AC signal. This signal is thon fod through a high gain AC amplitioc and has the DC loval restored. Thie technique limits the drift component of the amplifier since the dilft le a DC component which is not passed by the AC amplilier. This makes the entire AD converter extremely insensitive to temperature, long term drift and input oltseat orrors.
Figure 4 ahows a typlcal arror curve for the ADC0008 as measured using the procedures outlined in AN. 179.

FIOUnE 4. Trploal Ertor Cume

Connection Dlagram
Duablin-Une Package

Timing Diagram

Typical Performance Characteristice

FIGURE 8. Comparator $I_{m} v V_{m}$ $\left(\mathbf{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{mEF}}=\mathrm{sV}\right)$

FIGURE 7. Multipioxer $\boldsymbol{R O N}_{\text {ON }} \backsim V_{\text {m }}$ $\left(V_{c C}=V_{\text {MeF }}=5 \mathrm{~V}\right)$

TRI-STATE ${ }^{\text {© }}$ Test Clircults and Timing Diagrams

Applications Information

operation

1. Retlometric Converalon

The ADC0808. AOC0800 is designed as a complate Data Acquistition System (OAS) tor ratiomotric conversion aystems. In ratiomerric syatems, ithe ohysical variable buing measurod is expresser as a dercenlage ohvilicaie the woltege input to the AOCOBOO is expressed by the equation

$$
\begin{equation*}
\frac{v_{I N}}{v_{14}-v_{2}}=\frac{D_{x}}{0_{\text {max }}-0_{\text {miN }}} \tag{1}
\end{equation*}
$$

$V_{1 M}=$ ingut voltage into the ADCOBOB
$V_{10}=F$ Full-scate voltage
$V_{2}=$ Zero voltege
$D_{x}=$ Dala point being measured
$D_{\text {max }}=$ Meximum data limil
$D_{\text {min }}=$ Minimum data limit
A good example of a ratiometric transoucer is a potemllometer used as a position sensor. The position of the wiper is directiy proportional to the output voltage which is representiod as a proportion of fulliscile. reference requirements are greatly reduced. oliminating a large source of error and cost for many applications. A major advantage of the ADC0808. AOCOBO9 is that the input voltage range is equal to the supply range so the transducers can be connected direcily across the supply and their oulpuls connected directiy into the multiplexer inputs. (Figure 9).

Ratlometric Iransducers such as dolenfiomelers, strain gauges, thermistor bridges. pressure transducers, etc. are sultable for measuring proportional relationshlps; however, many typas of masusements must be reterrec mens a syitem reterence must be used which cetates the full-scaie voltage to the standard volt. For example, it $\mathrm{V}_{C C}=\mathrm{V}_{\text {GEF }}=5.12 \mathrm{~V}$, then the full.scale range is divided in 0256 standard steps. The smallest standard step is 1 LSE which is then 20 mV .

2.0 Resistor Ladider LImitations

The voltages from the resistor ladder are compared to the selected input 8 umes in a conversion. These voltages are couoled to the comparator vis an enalog switchues which is roferenced to the supply. The voltages al the top, center and bottom of the ladder must be controlled to maintain proper operation.

The top of the ladder. Reff +), should not be more positive than the supply, and the boltom of ine ladder. Rolf -) should not be more negative than ground. The center of hobly beceuse the analoo switch thee changes from v.channel switches to P-channel awitches. These llmita Nons are automaticaliy satiatiod in ratiometic aystems and can bee ossily met in ground reterenced syatems.

Figure 10 shows a ground reterenced aystem with a eoparate supply and raterence. In inis sysiem, the sudply must be trimmed to match the relerence voltage. For in stance, If a 5.12 V is used, the supply shiould be ajusteo io the same voltage within 0.1 V .

FIGURE 9. Aathomeite Conworsion Syatem

Appllcations Information (Conitinoor)

The AOCOBOE needs less than a militamp of supply current so developing the supply from the relerence is readily accompilshod. In figure 11 a ground reterenced system shown which generates the sujoly from the relerence. The buffer shown can be an op amp of sufficient drlve to supply the milliamp of suppty current and ihe desired bu capacitor will supply the translant supply current as seen in Figure 12. The LM301 is overcompensated to insure stabillty when loaced by the $10 \mu \mathrm{~F}$ output capacitor.

The tod and bottom ladder voliages cannot exceed $V_{c c}$ and ground. respectively, but they can be symmetrically less then V_{cc} and preater than ground. The center of the ladder voltage should elways be nese the center of the supply. The sensitivity of the converter can be Increased (1.e.. size of the LSB sleps decreased) by using a sym is aymmeitically centered aboult $v_{c d} 2$ since the same current flows in identical resistors. This system whith a 2.5 V reterence allows the L58 bit to be half the size of e SV reference system.

FIOURE 10. Oround Reterenced Conversion Syetem Uating Trimmed Supply

FIOURE 11. Ground Reforenced Converalon Sytien with Relerence Gonerating $V_{c c}$ Supply

FIGURE 12. Typleal Reference and supply Circult

FIOURE 13. Symmetrically Centerad Roferance
3.0 Comverter Equationa

The transition between adjacent codes \mathbf{N} and $\mathrm{N}+1$ is given by:

$$
\begin{aligned}
& V_{I N}=\left\{V_{\text {REF }(+1}-V_{\text {REF }-1}\left[\frac{N}{256}+\frac{1}{512}\right] \pm V_{\text {TUE }}\right\}+V_{\text {AEFI }-1} \\
& \text { The conter of an output code } N \text { Is glven by: } \\
& V_{I N}=\left\{V_{\text {AEF }(+)}-V_{\text {MEF }-1)}\left[\frac{N}{256}\right] \pm V_{\text {TUE }}\right\}+V_{\text {REFI-1 }}
\end{aligned}
$$

$$
\text { The output code } N \text { for en arbitrary input are the integers }
$$

within the range:

$$
N=\frac{V_{I N}-V_{A E E_{1-1}}}{V_{\text {AEF }+1}-V_{\text {MEA }}} \times 256 \pm \text { Absolute Accuracy }
$$

$$
\text { whore: } V_{\text {IN }}=\text { Voltage at comperator input }
$$

$$
V_{\text {MEF }+1}=\text { Voltage at Rel }+1
$$

$$
\begin{aligned}
& V_{\text {merf }-1}=\text { Voltage at Raff -) } \\
& V_{\text {rue }}=T \text { otel uneduated error voltage (typlcally }
\end{aligned}
$$

4.0 Analog Comparator Inputa

The dynamic comparator input cuerent is caused by the periodic awitching of on-chip stray capacitances. These are connected alternately to the output of the resistor ladderiswitch trice notwork and to the comperator input as paft of the operation of the chopper slablized comparator.

The average value of the comparator inpul current virien directly with clock trequency and with V_{IN} as shown in Figure 6.
14 no fller capatior ta signal source impecances are low, the comparator input current should not introduce conv, the comparaior input vient crested by the capacitance discharge will die out belore the comperator output is atrobed.
If indut filter capacitors are dealred tor noise reduction and signal conditioning thay will tend to averago out the oynamic comparator input current. It will then take on the act bles current whome affect ean to predicted conventionally.

Typical Application

microprocesson wtenface table

PAOCESSOR	READ	Whine	INTEMRUPT (COMmENT
0000	M m 矿	WETW\%	inta (thru Ret ciculi)
2003	कD	$\overline{W B}$	InTA (thu Rat Circull
2.00	AD	WE	IVT (Thu Rst Clircult. mode a
scimp	nads	NWDS	sa (thru senee a)
0800	VMA 22 RW	vMA. 2 .fan	

Ordering Information

temperatuae ramge		$-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Error	± 112 Bit Unadiusted	ADC0808CCN	ADC0808CCJ	ADC0808C
	± 1 Bit Unadjusted	ADC0809CCN		
Package Outilin		N28A Molded DIP	J28A Hermotic DIP	J28A Hermatic OIP

5.0 Special-Purpose Components Data Shects

The following special-purpose data sheets follow this page and are ordered as listed. Note that many of these components are widely used throughout the system.

PC Interface Bin
Intel 87C51FA Microcontroller
NEC PS2501-1 Photo Coupler
NEC PS2502-1 Photo Coupler
MAX233 RS-232 Driver/Receiver
MAX695 Microprocessor Supervisory Circuit
HPR 105 DC/DC Converter
OP-15FP Operational Amplifier
Lambda LVS-44-12B Power Supply
Isolated CPU Interface Board
P1602 Surge Arrestor
M26 Antenna Interface
LTC1042 Window Comparator
LT1009 2.5 Volt Reference
Polytron TW1.8-24S5 DC/DC Converter
\section*{M29 Auxiliary Interface}
ADC0808 Analog Multiplexer-A/D Converter ICM7555 General Purpose Timer
AD590 Temperature Transducer
AD581 High Precision 10 V IC Reference
PALCE22V10Z-25 Programmable Array Logic
MC14060B 14-Bit Counter and Oscillator
M28 Power Supply/Battery Module
Lambda VS10-15 Power Supply
Panasonic LCR 12v1.3P Battery

features

- Micropower 1.5 W (1 Sample/Second)
- Wide Supply Range - + $2.8 \mathrm{~V} 10+16 \mathrm{~V}$
- High Accuracy

Centra Etror $\pm 1 m V$ Max
Width Error $\pm 0.15 \%$ Max

- Wide Input Voltage Range
$v+$ to Ground
- TL Outputs with 5V Supply
- Two Independent Ground Referred Control Inputs
- Small Size 8.Pin Minidif

applications

- Fault Detectors
- Goino.Go Testing
- Microprocessor Power Supply Monitor

Window Comparator

DESCRIPTION

The LTC1042 is a monollthic CMOS window comparator manufactured using Linear Technology's enhanced LTCMOS ${ }^{\text {TM }}$ sllicon gate process. Two high impedance voltage inpuls, CENTER and WIDTH12, detine the milddle and width of the comparison window. Whenever the input voltage, $V_{I N}$, is inside the window the WITHIN WINDOW output is high. The ABOVE WINDOW output is high whenever $V_{I N}$ is above the window. By interchanging $V_{\mathbb{N}}$ and CENTER the ABOVE WINDOW output becomes BELOW WINDOW and is high if V_{1} is below the window.
Sampling techniques provide high impedance voltage in puts that can common-mode to both supply rails N^{+}and GND). An important feature of the inputs is their noninteraction. Also the device is effectively "chopper stabilized", giving it extremely high accuracy over all conditions of temperature, power supply and input voltage range.

Another benefit of the sampling techniques used to de sign the LTC1042 is the extremely low power consumption. When the device is strobed, it internally turns on the power to the comparators, samples the inputs, stores the outputs in CMOS latches and then furns off power to the comparators. This all happens in about 80 ss. Average power can be made small, almost arbitrarily, by lowering the strobe rate. The device can be self-strobed using an external RC network or strobed externally by driving the OSC pin with a CMOS gate.

LTC1042

absolute maximum ratings

 Input Voltage.....................

...................... $-40^{\circ} \mathrm{C} 1085^{\circ} \mathrm{C}$
LTC1042M............................... $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$ Output Short Circuit Duration Continuous

PACKAGE/ORDER INFORMATION

	ORDER PART NUMBER
	LTC1042MJ8
	LICIDa2CN8

srmiol	Parameter	TEST CONOTIONS		MN	TVP	max	UNHTS
	Conter Error (Note 2)	$V^{*}=2.8 \mathrm{~V}$ 10 6V(Note 1)	-		$\begin{array}{r} \pm 0.3 \\ +0.05 \\ \hline 0 . \end{array}$	$\begin{gathered} \pm 1 \\ +{ }^{+} 15 \end{gathered}$	\% WHDTMR
		V* $=6 \mathrm{~V}$ to 15V (Note 1)	-		$\begin{aligned} & \pm+ \\ & \pm 005 \end{aligned}$	$\begin{gathered} \pm 3 \\ + \\ 20.15 \end{gathered}$	\% WIDTH/2
	Widith Error (Note 3)	$\mathrm{V}^{\prime}=2.8 \mathrm{~V}$ 106V (Note 11	-		$\begin{aligned} & \pm 0.6 \\ & \pm+ \\ & \pm 01 \end{aligned}$	$\begin{aligned} & 12 \\ & + \\ & 20.3 \end{aligned}$	\% WIOTHR
		$\mathrm{V}^{*}=6 \mathrm{~V}$ to 15V (Note 1)	-		$\pm 2+$	$\begin{aligned} & 26 \\ & +0.3 \\ & 0 \end{aligned}$	\% WIOTHR
laus	Inpul Blas Current	$\begin{aligned} & V^{\cdot}=S V, T_{A}=25^{\circ} \mathrm{C} . O S C=G N D \\ & Y_{m_{1}} \text { CENTER And WIOTHR Inputs } \end{aligned}$			± 03		nA
${ }_{\text {Alw }}$	Average input Resistance	$\mathrm{t}_{5}=1 \mathrm{kHz}$ (Note 4)	\bullet	10	15		M0
	Input Voltage Range		\bullet	GND		V*	v
PSR	Power Supply Range		\bullet	2.8		16	\underline{V}
ISOM)	Power Supply ON Current (Note 5)	$V^{*}=5 \mathrm{~V}$	-		1.2	3	ma
Isofn	Power Supply OFF Current (Nole 5)	$\begin{array}{r} \hline V^{*}=5 \mathrm{~V} \quad \mathrm{LTC} 1042 \mathrm{C} \\ \mathrm{LTC1042M} \end{array}$			$\begin{aligned} & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 5.0 \\ & \hline \end{aligned}$	A
${ }_{0}$	Aesponse Time (Mote 6]	V $=5 \mathrm{~F}$			80	100	$\stackrel{1}{2}$
$\begin{aligned} & v_{o n} \\ & v_{a} \end{aligned}$	Output Levels Logic 1 Output Logical 0 Output	$\begin{aligned} & V^{\cdot}=475 V . \text { Iorr }^{2}=-350 \mathrm{AA} \\ & V^{\circ}=475 V . \tan =1.8 \mathrm{~mA} \end{aligned}$	\bullet	2.4	$\begin{aligned} & 4.4 \\ & 0.25 \end{aligned}$	0.45	V
$\mathrm{R}_{\text {EXT }}$	External Timing Resisior	Resistor Connected betwoen V^{+} and OSC Pin	-	100		10.000	k
t_{5}	Sempling frequency	$\begin{aligned} & V^{*}=5 V T_{A}=25^{\circ} \mathrm{C} \\ & R_{2 x I}=1 \text { IM }^{2} . C_{0 \pi T}=0.1_{A} F \end{aligned}$			5		Hz_{2}

The - denotes the spectications which apoly over the full operating temperalure rango
Hote 1: Applies over inpul voltage range IImil and Inciuces gein
uncertainly
Hote2: Center error $=\left(N_{U}+V_{U} \mid 2-C E N T E R\right]$ (where $V_{U}=$ upper band limit
and $V_{1}=$ lower bend limit).
Nete 3: Wiath error $=N_{U}-V_{L}-2 \times$ WIDTH/2) (where $V_{U}=$ upper band limil and V_{L} a (ower band limiti).

TYPICAL PERFORMANCE CHARACTERISTICS

APPLICATIONS INFORMATION

The LTCI042 uses sampled data techniques to achieve its nique characteristics. It consists of two comparators, each of which has two differential inputs (Figure 1). When the sum of the voltages on a comparator's inputs is positive, the output is high; when the sum is negative, the output is low. The inputs are interconnected such that

Wen (CENTER - WIDTHI2) $\leq V_{I N} \leq$ (CENTER + WIDTHI2) both comparator outputs are low. In this condition $V_{I N}$ is within the window and the WITHIN WINDOW output is high. When $V_{I N}>C E N T E R+W I D T H / 2, V_{I N}$ is above the window and the A8OVE WINDOW output is high.
applications information

RIN vs Sampling Frequency

APPLICATIONS InFORMATION

WInd Powered Battery Charger

A simple wind powered battery charger can be constructed using the new LTC1042, a 12V DC permaneni magnet motor, and low cost power FET transistor.

The OC motor is used as a generator with the voltage output being proportional to its RPM. The LTC1042 monitors the voltage output and provides the following conttol lunctions.

1) If generator voltage output is below 13.8 V , the contro circuit is active and the NiCad battery is charging through the LM334 current source. The lead acid battery is not being charged.
2) If the generator voltage output is between 13.8 V and 15.1V, the 12V lead acid battery is being charged at about a 1 amphour rate (limited by the power FET).
3) If generator voltage exceeds 15.1V (a condition caused by excessive wind speed or 12 V battery being fully charged) then a fixed load is connected thus limiting the generator APM to prevent damage.
This charger can be used as a remote source of power where wind energy is plentiful such as on sailboats or itmote radio repeater sites. Unlike solar powered panels, this system will iunction in bad weather and at night.

LT1009 Series

2.5 Volt Reference

feftures

- 0.2% Initial Tolerance Max
- Guaranteed Temperature Slability
- Maximum 0.6ח Dynamic Impedance
- Wide Operating Current Range
- Directly Interchangeable with LM136 for Improved Pertormance
- No Adjustments Needed for Minimum Temperature Coefticient

applications

- Reterence lor 5 V Systems
- 8 Bit A/D and D/A Reference
- Digital Voltmeters
- Current Loop Measurement and Control Systems
- Power Supply Monitor

DESCRIPTION

The LT1009 is a precision trimmed 2.500 Volt shunt regulator diode featuring a maximum initial tolerance of onty $\pm 5 \mathrm{mV}$. The low dynamic impedance and wide operating current range enhances its versatility. The 0.2% reference tolerance is achieved by on-chip trimming which not only minimizes the initial voitage tolerance but also minimizes the temperature drift.

Even though no adjustments are needed with the LT1009, a third terminal allows the reference voltage to be adjusted $\pm 5 \%$ to calibrate out system errors. In many applications, the LT1009 can be used as a pin-to-pin replacement of the $\mathrm{LM} 136 \mathrm{H}-2.5$ and the external trim network eliminated.

For a lower dritt 2.5 V reference, see the LT1019 data sheet.

U1009 Series

assolute maximum ratings

electaical characteristics

8YMEOL	PMrameter	COMOTITONS		L1009			LIT009C			UMIT8
				MIM	77P	max	MIN		max	
V_{2}	Reverse Brazkdown Voltage	$T_{A}=25^{\circ} \mathrm{C} . \mathrm{I}_{\mathrm{A}}=1 \mathrm{~mA}$		2495	2.500	2.505	2.495	2.500	2.505	V
$\frac{\overline{\Delta V_{2}}}{\Delta I_{n}}$	Revorse Breakdown Change with Currem	$400 \mu A \leq 1 \mathrm{n} \leq 10 \mathrm{~mA}$	-		$\begin{gathered} 2.6 \\ 3 \end{gathered}$	$\begin{aligned} & \hline 6 \\ & 10 \end{aligned}$		${ }_{3}^{26}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	N0
I_{2}	Revorse Oynamic impedance	$\ln =1 \mathrm{ma}$	-		$\begin{aligned} & 0.2 \\ & 0.4 \end{aligned}$	0.6		$\begin{aligned} & 02 \\ & 04 \\ & \hline \end{aligned}$	$\begin{array}{r} 10 \\ 14 \\ \hline \end{array}$	0
$\frac{\Delta V_{2}}{\Delta T o m p}$	Temperature Stabillity Average Temperalure Cootticient	$\begin{aligned} & T_{\text {man }} \leq T_{A} \leq T_{\text {max }} \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C} \text { (Note 1) } \\ & \hline \end{aligned}$	-		$\begin{array}{r} 15 \\ 25 \\ \hline \end{array}$	$\begin{aligned} & 15 \\ & 25 \\ & 35 \\ & \hline \end{aligned}$			25	
$\frac{\Delta V_{2}}{\Delta \text { Tinm }}$	Long Tamm Stabilly	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 0.1{ }^{\circ} \mathrm{C} .1 \mathrm{ln}=1 \mathrm{~mA}$			20			20		ppm/kHr

The - denotes the apecilications which apply over full operating
wimperature range
Mete 1: Average semperature coofticient is detined as the lotal voltape
change divided by the specititict temperature range.

3-28

[^0]: ${ }^{1}$ M29 has an analog multiplexer and ADD converter. See Section 2.11 for details.

[^1]: ${ }^{1}$ P114, Technical Aspects of Data Communications, McNamara, second edition, 1982, Digital Equipment Corporation, Bedford, Mass.

[^2]: -1000n. $\pm 20 \mathrm{Kmo}$

