
VLASS Project Memo #15

VLASS Imaging Project: Proposed Workflow

John J. Tobin, Josh Marvil, Juergen Ott, and Sanjay Bhatnagar (Project
Director)

May 18, 2020

1 Introduction

The VLASS Imaging Project (VIP) has developed a new workflow for the creation of Single
Epoch (SE) continuum images from the Very Large Array Sky Survey (VLASS). We have
implemented this workflow outside the pipeline framework as CASA scripts using standalone
calls to tclean, other CASA tasks, and external scripts that were required to support the
new workflow. As such, this workflow must now be implemented into the pipeline and VLASS
Workflow System to support SE Continuum processing in a production environment. This
workflow is appropriate for VLASS images that contain sources with peak intensities up to
∼500 mJy beam−1, additional heurstic development is required for images containing brighter
sources.

The major departure of the VIP Imaging workflow is that VLASS will no longer make use
of the automasking algorithm in tclean and will instead use static masks that are generated
from the VLASS Epoch 1 Quicklook component catalog and a mask generated as part of the
workflow. The additional mask is created using the pyBDSF package (source-finding software
widely used in radio astronomy community), to mask sources missed in the conservatively
produced Quicklook component catalog.

The script which performs the recommended workflow is available from:
https://gitlab.nrao.edu/jmarvil/vlass-imaging-project/-/blob/master/vip script.py

The script is also in Section 5 of this document, annotated with comments indicating the
code associated with the steps outlined in Section 3.

2 Summary of Major Recommendations

2.1 Masking

The imaging workflow will no longer use the auto-masking algorithm as implemented in tclean.
This was found to be a culprit for the frequent divergence of images in the testing of the original
imaging pipeline.

1

Masking of sources is still essential to the proper deconvolution of images, and we will use
two tiers of masking. A Tier-1 mask is generated from the component catalog generated from
the VLASS Quicklook images. This component catalog is conservatively generated, avoiding
the inclusion of significant artifacts and does not include QA rejected images. The Tier-1 mask
will be used for model creation, enabling proper setting of weights, RFI flagging, and self-
calibration. The Tier-2 mask is then generated after self-calibration, from the image produced
after an initial cleaning of the self-calibrated data using the Tier-1 mask. This enables the
Tier-2 mask to include fainter sources and extended structure missing from the Tier-1 mask.
The creation of the Tier-2 mask requires the use of pyBDSF to identify additional components
not included in the Tier-1 mask and create the final mask, a linear combination of the Tier-1
and Tier-2 masks that is used to complete the imaging process.

2.2 Point Spread Functions

The tclean task in CASA uses the AW-Projection algorithm to compute the wide-band PSFs at
the pointing center, where the PB has no frequency dependence. The wide-band PSF computed
at this location is therefore appropriate for single-pointing wide-band imaging. Mosaic imaging
spreads the PB’s frequency dependence to the entire mosaic region and renders the PSF as
computed by default in tclean inaccurate for wide-band continuum mosaic imaging (the PB
frequency dependence gets embedded in the PSF, which in-turn leads to wide-spread error in
the wide-band modeling of the sky emission).

The AW-Projection implementation in CASA allows switching-off of the frequency-dependent
PBs and we first compute the PSF using the parameter wbawp=False. Then in subsequent
imaging steps, we replace the PSF generated for the images (which must use wbawp=True for
imaging) with the PSF created using wbawp=False. However, with the current implementa-
tion in CASA the generation of the PSF with wbawp=False and the images with wbawp=True

requires different Convolution Function Caches (CFCaches).
Note that it is preferable for CASA to handle these PSF issues internally. This would

eliminate the need for two CFCaches and the PSF replacement workaround, but development
priorities will prevent these issues from being solved until after CASA 6.2. Thus, the pipeline
must work around the CASA limitation for the the implementation of this workflow.

2.3 Convolution Function Caches

CFCache are an integral part of the deconvolution process using the gridder=’awproject’.
These cannot currently be accessed efficiently using the Lustre file system and are accessed
from /mnt/scratch/cfcache on the VLASS cluster nodes. As implemented in CASA 5.6.3,
two CFCaches are needed one for the creation of the PSF with wbawp=False and another
CFCache created with wbawp=True for the deconvolution of the images.

2.4 Image and Pixel Size

The image sizes are recommended to be 16384x16384 and the pixel size is still recommended
to be 0.′′6 per pixels. This larger image size is in part driven by our recommendation to lower

2

the pblimit parameter from 0.2 to 0.02 to reduce the image truncation at low primary beam
levels and the larger images avoid the effects of aliasing.

While we recommend these larger images at present, the pixel size and image sizes are
still being investigated to determine if smaller pixels (and hence larger images) are needed or
if the image size could be modestly reduced. The issue being that PSF oversampling with
a 0.′′6 cell size is on the border of what is typically considered acceptable, especially at the
highest frequencies of S-band (4 GHz). If we require 3 pixels to sample the main lobe of the
PSF, considering the central wavelength of S-band, the PSF is sampled with 3 pixels using 0.′′6
pixels, but at the high frequency end of the band, 0.′′43 pixels are needed to sample the PSF
with 3 pixels. The choice here is important because it will also dictate the image size and PSF
sampling for the coarse cubes.

2.5 Self-Calibration and Statistical Weights

Use of self-calibration was planned for the VLASS SE imaging pipeline previously, but as part
of VIP we confirm that it is a necessity for producing the highest quality images, even in
low-dynamic range fields. The method of calculating statistical weights is recommended to be
changed from the current method (time dependent and per spectral window) to channelized
weights (time independent and per channel). The new heuristics are helpful for obtaining
accurate flux densities toward bright sources.

2.6 Configurable Parameters

While the VIP team has made strides to determine parameters that will work for a large
number of images, it is very likely that there will be images that require parameter adjustments
to enable successful imaging. As such, we have identified a number of parameters that must
be exposed to the pipeline for manipulation by the Data Analysts for running the imaging
workflows. Furthermore, further optimization of some parameters is still being explored and
the recommended values may change as further parameter studies are conducted.

Imaging parameters:

• robust: default=1 or 1.5, changed at different points in the workflow
• imsize: default=16384
• cfcache: CFCache location
• cell: pixel size default=0.6′′

• uvtaper: default=”
• uvrange: default=’<12km’
• nsigma: default=3.0
• niter: default=20000
• scales: default=[0,5,12]
• cycleniter: default=5000
• cyclefactor: default=3
• pblimit: default=0.02

Self-calibration:

• Task gaincal, parameter combine: default=’spw,field’

3

• Task gaincal, parameter spw: default=’’

• Task gaincal, parameter solint: default = ’inf’

• Task gaincal, parameter minsnr: default = ’5.0’

• Task applycal, parameter interp: default= ’nearest’

• Task applycal, parameter spwmap: default=[2]*18

Statistical Weighting (task statwt):

• Parameter combine: default=’field,scan,state,corr’

• Parameter chanbin: default=1

• Parameter timebin: default=’1yr’

• Parameter datacolumn: default=’residual data’

Tier-2 Mask Creation:

• Input image: default=’image’ alternate ’residual’

• Do artifact rejection: default=’True’

3 Proposed Workflow

The VIP has developed a recipe for the flow of the pipeline incorporating the changes recom-
mended for the successful deconvolution of VLASS data. A high-level outline of the recipe is
provided below, and further details of each step are found in subsections below. The necessary
steps resulting from the VIP study are 3 through 14, and the other steps are straightforward
operations that the pipeline already performs.

1. Import data (standard pipeline)

2. Split data from full VLASS MS, reset weights (standard pipeline)

3. Create uniform and robust PSFs using wbawp=False (new procedure)

4. Make Tier-1 mask from QL catalog (new procedure)

5. Make uniform weight image with 3′′ taper, fill model column (new procedure)

6. RFI flagging using vlass-imaging mode (standard pipeline)

7. Run Statwt on residual data (recommend task modifications)

8. Self-calibration (recommend task modifications)

9. Create new uniform and robust PSFs using wbawp=False (new procedure)

10. Make new uniform weight image, tapered to 3′′ and smooth to 5′′ (new procedure)

11. Create Tier-2 mask from smoothed image using pyBDSF (new procedure)

12. Combine Tier-1 mask with Tier-2 mask (new procedure)

4

13. Make robust weight image, cleaned using Tier-1 mask (new procedure)

14. Resume robust image using combined mask, finishing deconvolution (new procedure)

15. PB Correct images (standard pipeline)

16. Make RMS images (standard pipeline)

17. Cutout images (standard pipeline)

18. Analyze Alpha (standard pipeline)

19. Export Products (standard pipeline)

3.1 Step 3: Create Uniform and Robust PSFs using wbawp=False

As discussed in section 2.1, CASA 5.6.3 by default creates a PSF for an awproject mosaic
image that is not optimal. Thus, PSFs need to be created with the tclean parameter wbawp

set to False. These PSFs must then be used to replace the PSFs that are generated for
the images themselves. These PSFs require separate CFCaches for their creation. The image
PSFs are replaced by first initializing an image with no cleaning (analogous to iter0 in pipeline
imaging), deleting the *.psf.tt* files associated with the image, and replacing them with the
wbawp=False PSFs. Then, tclean can be restarted and deconvolution begun.

3.2 Step 4: Create Tier-1 Mask from Quicklook Component Catalog

The VLASS Quicklook component catalog (/home/vlass/packages/VLASS1Q.fits) is used to
generate a first mask for the cleaning required for steps 5, 10 and 13. The code used by VIP to
generate the mask is located at /home/vlass/packages/vip/mask-from-catalog/mask from catalog.py.
This function is imported into CASA and run within the CASA environment, producing a mask
file that can be used in imaging. A typical call is:

mask from catalog(inext=’iter0.psf.tt0’, outext="QLcatmask.mask",

catalog search size=2.0).
The parameter inext is simply an input CASA image the spans the full field of view where

masks should be drawn; the input image is only used to obtain the image center, outext is the
name of the output mask, and catalog search size is the circle (or is it a box) size to search
for catalog components for masking.

3.3 Step 5: Create Uniform Weight image with Tapering and Fill
Model Column

An initial sky model is required in order to perform steps 6, 7, and 8 and an initial image is
created from the data to generate this model. This image is created using uniform weighting,
but tapered to 3′′. The use of uniform weighting is recommended here because the positive
sidelobe levels are reduced with uniform weighting with respect to robust=1.0 weighting;
tapering ensures that we do not undersample the resulting PSF of the image.

5

Cleaning should go down to 20σ or 1% of the image peak flux to avoid cleaning deconvolution
artifacts around bright sources, but also clean sufficient flux per row to create a good enough
sky model for RFI flagging, computation of weights, and self-calibration.

Once deconvolution is complete, the model column of the measurement set needs to be
filled. Writing to the model column must be done serially; however, CASA 6.1 internally solve
the problems associated with tclean writing the model column in parallel mode. Currently
in CASA 5.6.3, writing the model is slow in serial because tclean still must perform many
computations, in addition to the act of writing to disk.

3.4 Step 6: Run RFI Flagging

With the model column written, RFI flagging can take place on the residual data. The pipeline
task hifv checkflag (checkflagmode=’vlass-imaging’) incorporates the desired heuristics
already and fits within the recommended workflow. An alternative RFI flagging heuristic was
used in VIP to avoid dependence on the pipeline; we are not recommending adoption of these
heuristics.

3.5 Step 7: Run statwt

Statistical weights need to be properly calculated for the VLASS data, which requires a sky
model in order to properly weight the data and not down weight bright sources. Thus, VIP
still desires to run statwt on the residual data (data column minus model). The current
implementation of statwt (time dependent and per spw) in the pipeline may be insufficient for
the needs of VLASS as demonstrated in imaging tests. Instead, running statwt in channelized
mode (time independent) can yield superior results and enable VLASS imaging to have better
flux density accuracy on bright sources. Our recommended call to statwt is:

statwt(vis=vis, combine=’field,scan,state,corr’, chanbin=1,timebin=’1yr’,

datacolumn=’residual data’).
It is preferable provide the ability to run statwt in both the way it has been run and in

channelized mode with a parameter setting.

3.6 Step 8: Run Self-Calibration

Self-calibration of VLASS data is essential for correcting some imaging artifacts that are present
in the data. We recommend only small changes to the self-calibration task currently defined in
the pipeline. An example tasks gaincal and applycal call are:

gaincal(vis=vis, caltable=’g.0’,gaintype=’G’, calmode=’p’,

refant=refantlist, combine=’field,spw’, minsnr=5)

applycal(vis=vis, calwt=False, applymode=’calonly’, gaintable=’g.0’, spwmap=18*[2],

interp=’nearest’).
Following are the main changes we recommend:

6

1. Increase the value of the minsnr parameter from 1 to 5. This will ensure that poor solu-
tions are not applied to the data. We will use the applycal option applymode=’calonly’

which will not flag data for which the self-calibration solutions are flagged and will leave
the data as-is. The solutions with the setting of combine=’field,spw’ will create solu-
tions per row in the VLASS image and gaintype=’G’ will create a solution per polariza-
tion.

2. Change the interpolation mode for task applycal to simply nearest instead of nearestPD.
The ’PD’ mode appended to the interp argument for the task applycal is not recom-
mended here because the phase solutions are scaled with frequency. While ’PD’ is ap-
propriate for tropospheric phase distortions that increase as ∼ ν1, it is not appropriate
the ionosphere, which is likely a main contributor to phase variations in S-band, where
the variations increase as ν−1, nor is it appropriate for electronic phase changes which
we presume do not scale with frequency. gaintype=’G’ seems most appropriate for S-
band because phase variations are most likely to be due to the ionosphere and can be
polarization dependent and some polarization-dependent primary beam uncertainties are
absorbed into the self-calibration solutions.

3.7 Step 9: Create new uniform and robust PSFs with wbawp=False

After running the task statwt, RFI flagging, and self-calibration, new PSFs must be created
with wbawp=False. This because the additional flagging and re-weighting of the data are ex-
pected to alter the PSF, necessitating the creation of new PSFs to use in the final deconvolution.
A new PSF for the uniform weighted image tapered to 3′′ is required, as is a new PSF for the
robust value to be used in the final imaging (robust = 1). Note that robust=1.5 was origi-
nally planned for VLASS SE imaging, however, early-on VIP adopted robust=1, but we still
expect this workflow to work with robust=1.5.

3.8 Step 10: Make new uniform weight image

A new uniform weighted image, tapered to 3′′ must be generated from the corrected data,
cleaning down to 3σ. This image is required to create the Tier-2 mask from self-calibrated
data. The self-calibrated data will have the highest degree of image artifact reduction and the
uniform weighting will produce the lowest positive sidelobes.

3.9 Step 11: Create Tier-2 mask using pyBSDF

The creation of the Tier-2 mask uses the uniform weight image created in Step 10 and smooths
it with a 5′′ Gaussian. The smoothed image will enable better sidelobe rejection and aid in the
detection of low-surface brightness features in the mask. We recommend that the Tier-2 mask
be derived from the restored image, but we also recommend that an option be present to create
the the mask from the residual image if desired.

To create the Tier-2 mask, the program pyBDSF (https://www.astron.nl/citt/pybdsf/)
is run on the smoothed image from the call:
subprocess.call([’run bdsf.py’, imagename base+’iter1b.image.smooth5.fits’],

env=’PYTHONPATH’:’’).

7

This runs an external instance of pyBDSF outside the CASA environment to generate the
Tier-2 mask. We are currently running pyBDSF on Python 2.7, but the package is available
compatible with Python 3.

The output from pyBDSF does include some false positives that need to be rejected whenever
possible. To do this, we use a script edit pybdsf islands.py which is called via:
edit pybdsf islands(catalog fits file=imagename base+’iter1b.image.smooth5.cat.fits’).

The filtered mask is then turned into a CASA mask image using the same program that
generated the Tier-1 mask via:

mask from catalog(inext=inext,outext="secondmask.mask",

catalog fits file=imagename base+’iter1b.image.smooth5.cat.edited.fits’,

catalog search size=2.0).
The parameter inext is the PSF image, required to match the mask’s coordinate system

to that of the images it will be applied to, outext is the desired name of the output mask,
catalog fits file is the table of mask positions with filtering applied to reject likely artifacts,
and catalog search size is the radius in degrees to search for matches. This is set to 2.0◦

because the images can be up to 2◦×2◦.

3.10 Step 12: Combine Tier-1 and Tier-2 Masks

We then take the union of the Tier-1 and Tier-2 masks in order to recover any sources that
may have been filtered out or missed in the Tier-2 mask generation process. This combined
mask represents the final mask that will be used for cleaning the VLASS SE cont images.

3.11 Step 13: Create Image with robust=1 weighting using Tier-1
Mask

Next, the generation of the actual image product begins with the creation of the robust=1

image. The PSF used in this image needs to be replaced with the robust=1 PSF generated
using wbawp=False in Step 9. The cleaning of this image is started with only the Tier-1 mask.
This is because not all artifacts are rejected from the Tier-2 mask and starting with the Tier-
1+Tier-2 mask from the start can lead to imaging problems. This image is cleaned down to
3σ.

3.12 Step 14: Resume Cleaning Robust=1 Image with Tier-1+Tier-
2 Mask

Once cleaning has completed on the robust=1 image using the Tier-1 mask, cleaning is resumed
using the Tier1+Tier2 mask. The image is then cleaned down to 3σ, representing what will
become the final image product.

3.13 Steps 15-19: Final Product Creation

Following Step 14, the final processing is performed on the images to create the products.
These steps already exist in the pipeline and their use was not examined by VIP. The images

8

are primary beam corrected (Step 15), the RMS image is generated (Step 16), the 1◦×1◦ image
is cut out of the full 2◦×2◦ image (Step 17), the spectral index of the brightest source is recorded
(Step 18), and the 1◦×1◦ image and RMS image are exported as FITS files (Step 19).

4 Summary

The VIP recommended workflow will require changes to the previously planned SE imaging
recipe and the VIP team is available for consultation in the development process. Steps are
added in comments that refer to the VIP workflow steps outlined in Section 3.

9

5 Script

The script which performs the recommended workflow is available from:
https://gitlab.nrao.edu/jmarvil/vlass-imaging-project/-/blob/master/vip script.py

vis = ’VLASS1.2.sb36484946.eb36542800.58574.4235612037_ptgfix_split.ms’

phasecenter = ’J2000 13:32:4.836 +16.30.0.0000’

field = ’’

spw = ’’

antenna = ’’

scan = ’’

imagename_base = ’VIP_’

imsize = 16384

cell = ’0.6arcsec’

reffreq = ’3.0GHz’

uvrange = ’<12km’

intent = ’OBSERVE_TARGET#UNSPECIFIED’

wprojplanes = 32

usepointing = True

cfcache=’/mnt/scratch/cfcache/cfcache_spw2-17_imsize16384_cell0.6arcsec_w32_conjT.cf’

cfcache_nowb=’/mnt/scratch/cfcache/cfcache_spw2-17_imsize16384_cell0.6arcsec_w32_conjT_psf_wbawp_False.cf’

inext=’iter0.psf.tt0’

import os

import re

import shutil

import subprocess

execfile(’/home/vlass/packages/vip/mask-from-catalog/mask_from_catalog.py’)

execfile(’/users/jmarvil/scripts/edit_pybdsf_islands.py’)

def run_tclean(image_iter, datacolumn=’data’, cfcache=cfcache, scales=[0],\

robust=1.0, uvtaper=’’, niter=0, gain=0.1, nsigma=2.0, \

cycleniter=5000, cyclefactor=3, mask=’’, savemodel="none", calcres=True,\

calcpsf=True, parallel=True):

if mask: mask = imagename_base+mask

tclean(vis=vis, field=field, spw=spw, uvrange=uvrange, datacolumn=datacolumn,\

imagename=imagename_base+image_iter, imsize=imsize, \

antenna=antenna, scan=scan, intent=intent, \

cell=cell, phasecenter=phasecenter, reffreq=reffreq, gridder="awproject",\

wprojplanes=wprojplanes, cfcache=cfcache, conjbeams=True, \

usepointing=usepointing, rotatepastep=5.0, pblimit=0.02, deconvolver="mtmfs",\

scales=scales, nterms=2, smallscalebias=0.4, weighting="briggs",\

robust=robust, uvtaper=uvtaper, niter=niter, gain=gain, threshold=0.0,\

nsigma=nsigma, cycleniter=cycleniter, cyclefactor=cyclefactor, usemask="user",\

mask=mask, restart=True, savemodel=savemodel, calcres=calcres, calcpsf=calcpsf,\

parallel=parallel)

def replace_psf(old,new):

for this_tt in [’tt0’,’tt1’,’tt2’]:

shutil.rmtree(imagename_base+old+’.psf.’+this_tt)

shutil.copytree(imagename_base+new+’.psf.’+this_tt, imagename_base+old+’.psf.’+this_tt)

shutil.rmtree(imagename_base+old+’.workdirectory’)

def replace_rflag_levels():

for infile,indev in zip([’fdev.txt’,’tdev.txt’],[’freqdev’,’timedev’]):

with open(infile,’r’) as in1:

instring = in1.readlines()

dev = eval(instring[0])

dev_median = str(np.median(np.array(dev[indev])))

10

pattern=re.compile(’(\[[\d\.]*,[\d\.]*,)([\d.]*)(\])’)

s=re.sub(pattern,’\\1bla\\3’,instring[0])

s2=re.sub(’bla’,str(dev_median),s)

with open(infile,’w’) as out1:

out1.write(s2)

#Steps are added in comments that refer to the VIP workflow steps outlined in Section 3.

Step 3: create uniform psfs with wbawp=False

run_tclean(’iter0’, cfcache=cfcache_nowb, robust=-2.0, uvtaper=’3arcsec’, calcres=False)

Step 3: create robust psfs with wbawp=False

run_tclean(’iter0b’, cfcache=cfcache_nowb, calcres=False)

Step 4: make mask from QL catalog

mask_from_catalog(inext=inext,outext="QLcatmask.mask",catalog_search_size=1.5)

Step 5: initialize iter1, no cleaning

run_tclean(’iter1’, robust=-2.0, uvtaper="3arcsec")

Step 5: replace iter1 psf with no_WBAP

replace_psf(’iter1’,’iter0’)

Step 5: clean with mask down to 3 sigma using no scales, uniform weighting (further mitigates divergence)

this is a temporary image used for flagging, statwt and selfcal

run_tclean(’iter1’, robust=-2.0, uvtaper="3arcsec", niter=20000, nsigma=5.0,\

mask="QLcatmask.mask", calcres=False, calcpsf=False)

Step 5: resume iter1 to save model

run_tclean(’iter1’, calcres=False, calcpsf=False, savemodel=’modelcolumn’, parallel=False)

Step 6: RFI Flagging; node that the pipeline should not adopt

the heuristics utilized below, these were used to avoid dependence

on the pipeline for VIP.

flagdata(vis=vis, mode=’rflag’, datacolumn=’residual_data’,timedev=’tdev.txt’,\

freqdev=’fdev.txt’,action=’calculate’)

replace_rflag_levels()

flagdata(vis=vis, mode=’rflag’, datacolumn=’residual_data’,timedev=’tdev.txt’,\

freqdev=’fdev.txt’,action=’apply’,extendflags=False)

flagdata(vis=vis, mode=’extend’, extendpols=True, growaround=True)

#Step 7: Run statwt in channelized mode on residual_data

statwt(vis=vis,combine=’field,scan,state,corr’,chanbin=1,timebin=’1yr’,\

datacolumn=’residual_data’)

Step 8: selfcal

gaincal(vis=vis,caltable=’g.0’,gaintype=’G’,calmode=’p’,refant=’0’,combine=’field,spw’,minsnr=5)

applycal(vis=vis,calwt=False,applymode=’calonly’,gaintable=’g.0’,spwmap=18*[2], interp=’nearest’)

Step 9: create uniform psfs with wbawp=False using corrected column

run_tclean(’iter0c’, datacolumn=’corrected’, cfcache=cfcache_nowb, robust=-2.0,\

uvtaper=’3arcsec’, calcres=False)

Step 9: create robust psfs with wbawp=False using corrected column

run_tclean(’iter0d’, datacolumn=’corrected’, cfcache=cfcache_nowb, calcres=False)

11

Step 10: initialize iter1b, no cleaning, using corrected column

run_tclean(’iter1b’, datacolumn=’corrected’, robust=-2.0, uvtaper="3arcsec")

Step 10: replace iter1b psf with no_WBAP

replace_psf(’iter1b’,’iter0c’)

Step 10: clean with mask down to 3 sigma using no scales, uniform weighting, using corrected column

this is a temporary image used for Tier-2 masking

run_tclean(’iter1b’, datacolumn=’corrected’, robust=-2.0, uvtaper="3arcsec", niter=20000,\

nsigma=5.0, mask="QLcatmask.mask", calcres=False, calcpsf=False)

Step 11: make Tier-2 mask from iter1 image after smoothing

imsmooth(imagename=imagename_base+"iter1b.image.tt0", major=’5arcsec’, minor=’5arcsec’,\

pa=’0deg’, outfile=imagename_base+"iter1b.image.smooth5.tt0")

exportfits(imagename=imagename_base+"iter1b.image.smooth5.tt0",\

fitsimage=imagename_base+"iter1b.image.smooth5.fits")

subprocess.call([’/users/jmarvil/scripts/run_bdsf.py’,\

imagename_base+’iter1b.image.smooth5.fits’],env={’PYTHONPATH’:’’})

Step 11: turn 5" smooth results back into component catalog and then to mask, using artifact rejection

edit_pybdsf_islands(catalog_fits_file=imagename_base+’iter1b.image.smooth5.cat.fits’)

mask_from_catalog(inext=inext,outext="secondmask.mask",\

catalog_fits_file=imagename_base+’iter1b.image.smooth5.cat.edited.fits’,\

catalog_search_size=1.5)

Step 12: combine Tier-1 and Tier-2 order masks

immath(imagename=[imagename_base+’secondmask.mask’,imagename_base+’QLcatmask.mask’],\

expr=’IM0+IM1’,outfile=imagename_base+’sum_of_masks.mask’)

im.mask(image=imagename_base+’sum_of_masks.mask’,mask=imagename_base+’combined.mask’,\

threshold=0.5)

Step 13: initialize iter2, no cleaning

run_tclean(’iter2’, datacolumn=’corrected’)

Step 13: replace iter2 psf with no_WBAP

replace_psf(’iter2’,’iter0d’)

Step 13: resume iter2 with QL mask

run_tclean(’iter2’, datacolumn=’corrected’, scales=[0,5,12], nsigma=3.0, niter=20000,\

cycleniter=3000, mask="QLcatmask.mask", calcres=False, calcpsf=False)

Step 14: iter2 with combined mask

os.system(’rm -rf *.workdirectory’)

os.mkdir(’iter2_intermediate_results’)

os.system(’cp -r *iter2* iter2_intermediate_results’)

shutil.rmtree(imagename_base+’iter2.mask’)

shutil.copytree(imagename_base+’combined.mask’,imagename_base+’iter2.mask’)

run_tclean(’iter2’, datacolumn=’corrected’, scales=[0,5,12], nsigma=3.0, niter=20000,\

cycleniter=3000, mask="", calcres=False, calcpsf=False)

os.system(’rm -rf *.workdirectory’)

Revision History

12

Revision Date Author(s) Description

1.0 2020-05-07 J. Tobin, J. Mar-
vil, J. Ott., S.
Bhatnagar

Original

13

