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Introduction

The output of the Very Large Baseline Array (VLBA) tape recorders is
made up of 24 differential digital data signals plus a differential clock signal for
each of the channels. The operational bandwidth of these signals is from
100Khz to 4.5Mhz and is transmitted over 100 feet of cable. The VLBA correlator
uses the clock signal from each channel to decode the data signal into a clean
serial data stream. The signals come from the headstack, the collection of
magnetic heads that play and record the data, then are amplified and filtered and
sent to the clock recovery/driver board. An accurate operation of the VLBA
recording/playback system depends on the correlator’s ability to decode the data
stream with the clock recovery board.

This project consists of designing and building a test fixture to characterize
the performance of the clock recovery/driver board in the lab. Two of the 32
channels need to be compared to one another. Given the same data input, each
of the 32 channels should have a similar output, (within the present error-rates).
If the channels have some sort of difference between them, a counter will count
that as an error. An indicator of error rate difference between the channels will
be provided. A maximum error rate of 10 (approximately 22 kHz of the 4.5 MHz
signal) is acceptable. Once this error rate has been detected, an indicator will
flag telling the user that an unacceptable error rate has been detected. It can be
deduced from this information that one of the two data streams are incorrect and
that one of the two clock recovery circuits may not be functioning properly. All

circuit designed must be able to function properly within the bandwidth of the



data signals. A method of simulating the 100’ long cable impedence must also
be designed and implemented.

A computer interface including a Graphical User Interface (GUI) will also
be designed to allow the operator to select the two channels to be compared. A
real time error rate will be displayed at all times to allow the operator to analyze
the error rate at any moment in time. Another option will be available to allow the
user to compare each channel to ali the-other 31 channels. A report file will be

generated containing the data generated from the comparison of all 32 channels.



Clock Recovery/VME Card

The clock recovery board is a significant subsystem to the entire correlator
system at the NRAO. A functioning clock recovery circuit is crucial to the
operation of the VLBA recording/playback system. Because of this, it is
necessary to test the clock recovery circuits to determine if they are functioning
properly.

The purpose of the clock recovery board is to take a serial data stream,
which is out of sync, and to recover a clock signal from it. Once the new clock
has been recovered, the clock is used to re-sync the existing data. This allows a
“noisy” and un-clocked data signal to be input to the clock recovery board and
the data signal will be output from the board re-clocked with minimal noise.

The comparator circuit and all its associated parts are to be wire-wrapped
on a standard VME wire-wrap card. The VME card is being used to house the
test circuit, but its bus is not being utilized. The purpose of the VME card is to
house the test circuit in a concise and organized manner and to provide the test
circuit with VCC and ground. Therefore, the VME card had to be equipped with
the circuit components and all necessary components to interface it with the
computer.

To interface the test circuit with the computer, a GPIB controller was used,
and thus, this had to be mounted to the VME card. However, it was mounted
directly to the HC12 evaluation board which was mounted to the VME card. To
interface the test circuit to the NRAO circuitry, a set of clock recovery connectors

was necessary to input the clock recovery data to the test circuit. To input the



test data stream into the NRAO circuitry, the data has to be input to the parallel
introduce card. This also requires the necessary connectors for the parallel
reproduce. The VME card was also equipped with the 3 Altera chips that were
used to house the multiplexors and the comparator circuit.

The final components that were installed on the VME card were an array
of differential line receivers. Before the data can be compared using the
comparator circuit, the data must be manipulated so that it can be manipulated
by the comparator circuit. The difficulty arises from the fact that the output from
the clock recovery card is differential. Due to this, a differential line receiver must
be used to take this differential data and convert it to single-ended data. This
The line receivers also required D flip-flops, pull up resistors and terminating
resistors to allow them to function correctly. Once the receivers were complete,
the data was single-ended, and thus, able to be compared using the comparator

circuit.



Comparator Circuit

To determine the error rate of the two data signals, an Altera signal
generator was used to produce a data stream. This data stream was injected
into all 32 data signals through the parallel reproduce board which takes the data
stream and amplifies it to be fed into the clock recovery board. Since the same
data stream is to be input to the parallel reproduce board, all 32 differential data
streams coming out of the clock recovery board should be identical. Because of
this fact, the data exiting the differential line receivers are also identical and can
be checked for errors. Theoretically all 32 data streams should be identical and
clocked together. However, if one of the clock recovery circuits is not operating
correctly, the data could be out of sync and incorrect.

Because of the identical data streams, it is possible to do a bit-by-bit
comparison to determine if the output data is identical from all 32 channels. To
perform this analysis, the most appropriate and most obvious method seemed to
be to compare the two data streams directly. it appeared that an XOR gate could
be used to perform this task since the output for an XOR gate is high when a 0 or
1 and 1 or 0 were present. This would allow us to identify a non-identical pair of
data.

The core of the comparator circuit is the XOR gate, however there is some
extra discrete logic necessary to generate an error rate. A 2AM7-bit counter (total
bit counter) is used to count the total number of sets of bits that have been
compared. The 17" bit is used as an “overflow bit” that will tell the HC12 that it

has counted that high. As the total bit counter is counting, a second counter, the



error counter, is also performing a count. This counter is being driven by the
“highs” being output by the XOR gate. The error counter is counting the total
number of errors in the two streams of data. At the output of the error counter is
also a 16-bit latch. When the 17% bit of the total counter overflows, it tells the
latch at the error counter to latch the value in the error counter. The HC12 can
then retrieve this value and determine an error using the value in the error
counter and the highest count the total counter will count to before overflowing.
The HC12 then resets all necessary counters and latches and the process
repeats itself.

The HC12 is to used memory-mapped I/O to access the different
components of the test circuit. Because of this, the comparator circuit has also
been given an address range to call it up without having to confuse it with the
other components of the system. Because of this, a 3:8 decoder was used to do
this. To turn the decoder on, the E-clock has to be high and the read line has to
be low. The A, B, and C bits on the decoder also correspond to address bits
A15, A14, and A13 from the HC12's address bus. The combination that gives 0,
1, O for A15, A14, A13 respectively enables the data to be read by the HC12.
This combination allows the comparator circuit to be enabled with an address
range of $4000 to $4FFF from the HC12. This combination will write a high to
the output pin 2 of the decoder chip. This bit is tied to an array of tri-state buffers
that are connected at the output of the latch. This allows the data to be kept off

of the bus until the HC12 asks for it to be read.



The comparator circuit poses many timing issues that must be accounted
for to allow the comparator circuit to function correctly. If the HC12 tried to ask for
the data before it was correctly latched, the data the HC12 read might have been
incorrect. The error latch had to be equipped with a way to let the HC12 know
that it was latching the data and was not ready to be read. To do this, a 16-bit
counter was used, with the clock input being one of the recovered clock signals
from the clock recovery Board and the high bit on the counter being used as an
overflow line. When the total error counter overflows and tells the latch to latch,
the overflow line resets the counter which has been counting and has a high at
its high bit (overflow bit). This high bit is what is being used to tell the HC12 that
he data is ready. Once the overflow bit comes from the total bit counter, the
“busy” counter begins to count. Once the high bit on the counter goes high, the
HC12 knows that the data is ready to be read. The high bit is also tied through
an inverter to the enable on the busy counter which disables the counter when it
goes high but keeps its last count on the output pins of the counter. Therefore,
the high bit (or busy bit) on the busy counter stays high whenever the data is
valid. The HC12 can retrieve the data at any time that the line is high. Once the
total bit counter overflows again and tells the latch to latch, it again resets the
busy counter. When the busy counter is reset, the high bit is turned low which
enables the counter again due to the enable line seeing a high through the
inverter. The process is continually occurring and thus the HC12 knows only to

retrieve the data when the busy line is high.



The total counter overflow line is also used as a way to ‘write’ the latch
and reset the error counter. However, the error counter must be cleared after the
latch has been latched. To do this, both the error counter and the latch ‘write’
line were tied to the fotal counter overflow line. However, the line that went to the
error counter reset branched from the total counter overflow line and was
equipped with a series of Altera LCELLS between the overflow line and the reset
line. This causes a small delay between when the latch has been written and the
error counter has been reset. This allows the latch to be written before the error
counter is reset so the data is in the counter long enough to be latched.

The latch must also eventually be reset. The method in which this is
performed is by using the HC12. When the HC12 polls the latch for the data, the
address values to access the data contain the bit pattern ‘010.” Because of this,
the 1 can be used to reset the latch. This means the HC12 will read in the data
from the error counter latch and then it will reset the latch using the same

command from the HC12.



Altera Design

One of the requirements of this project was to build a multiplexor to select
two channels, out of thirty-four to compare to each other. One of the options that
presented itself involved a circuit that contained many pieces of discrete logic
interconnected to each other on the back of the wire-wrapped VME board.
Because of the complexity involved and the probability of error involved with wire
wrapping each of the chips to each other, it was easy to decide to look at other
options. The option that we felt fit best for the project was the use of Altera
programmable logic. By using programmable logic, the complexity of the
multiplexors was gone and the size was whatever was needed. After discussion,
it was also decide that there were other parts of the project that would be much
easier to accommodate into an Altera chip. These parts of the project included
the circuit that makes up the comparator circuit and the random bit generator. In
this section we shall discuss the design steps taken in the design of the Altera
portion of the circuit.

The first part of design of which Altera was chosen to implement were the
multiplexors. We were provided with a circuit that could be used as a multiplexor
for all 32 channels. Using Altera to design a new multiplexor as a single circuit
seemed as the best option because of the time it would save and the fact that it
is much less complex than wiring together digital logic. The multiplexors were
written as a text design file in Altera following a basic form and then applying this

form for the rest of the design. Each multiplexor is made up of thirty-four inputs,
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six select lines, which select the correct channel, and one output. The basic form

of the multiplexor looks like this:

IF select[5..0] == B“000000" THEN Output 0 = Input 0;
ELSIF select[5..0] == B"000001" THEN Output 0 = Input 1;

The first line states that if the six select lines contain a binary low, all zeros
then the output is whatever is at the first input (Input 0). Next, if there is a one at
the lowest bit of the select lines (Select 0), then the output is whatever signal is at
the second input signal (Input 1). There are thirty-two more lines like the second
one that serve to select the correct channel.

The next step in the design of the multiplexors was to set two of them up
to be ready to accept data. Each differential signal contains both a channel and
clock signal. To get two different outputs to compare to each other, two
multiplexors were placed together on a single chip with the same inputs going to
each. Next, a new device was built to select first the multiplexor to be used and
next, select the channel to be used. This device has seven input lines with twelve
output lines. If the first input line is low then the top mux gets the information from
the lower six input lines through the first six output lines. If the first input line is
high, then the second mux gets the select data from the lower six input lines
through the last six output lines of the select device. The basic form of this

multiplexor design is illustrated in figure 1.
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Mux 1

Mux 2

Figure 1: Basic Altera Block Diagram

This basic form was followed for both the channel and clock multiplexors with the
names of the inputs changed to match the clock.

During the design of the select device there were problems with keeping
the data from the non-current bits (the lower six if the first input is high and the
higher six if the first input is low) valid. What was happening was whenever the
first input switched from either fow to high or high to low, the data that was
current before the change was no longer valid once the first input changed. At
first, we were unable to get anything at the output of the non-current bits. With
experimentation we were able to get something that looked to work by setting the
non-current bits to their previous value when they were not selected.
Unfortunately this data oscillated between low and high rapidly between the
actual changes in the data. The solution to our problem came by using a D flip
flop as a latch to keep the data in the non-current output bits as valid. The way

that the circuit now looks like in an Altera .gdf file is 32 inputs going into two 32-
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channel multiplexors. There is a third device that is the select box that controls
what each output is.

Two other parts of the project were also implemented in Altera. The first of
these was the comparator circuit, which is connected to the outputs of the
multiplexors. The design of the comparator circuit proved itself to be one of much
complexity with regard to the necessary amount of discrete logic needed to
implement it. Because of this, Altera was used to implement the circuit in an
organized and concise manner. The error and total bit counters were written in
Altera using a .tdf format. A symbol was created for each to simplify the
construction of the circuit in Altera by the use of a .gdf (graphical design file).
This allowed us to easily draw the circuit and insert discrete logic parts wherever
necessary. The latch for the error counter was also written as a .tdf format and
then turned into a symbol. The Altera format allowed for a complete redesign of
the circuit if it did not work. This was possible because of Altera’s simulation
package. This meant the circuit could be tested before it was built. This also
meant that incorrectly wired circuits could be re-wired in the Altera package with
minimal effort and time. The use of Altera for the comparator circuit minimized
the complexity and design time of the comparator circuit.

The next part of the project that was designed in Altera was the random
pattern generator. The test pattern generator for this project is a pseudo-random
bit generator. The output of the test pattern generator is a pseudo random
pattern 256 bits long. After producing the 256-bit pattern the test pattern

generator will repeat this pattern indefinitely. To allow the test pattern to be
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viewed on an oscilloscope a trigger pulse is produced every time the test pattern
repeats. The test pattern generator is implemented using an 8-bit shift register
with taps taken from the outputs of the third and eighth flip-flops, XORed and fed
back into the input of the shift register. In order for this circuit to run the shift
register is loaded with 80 hex upon reset. Once the reset is unasserted, the
external clock runs the shift register producing the test pattern. Every time
contents of the register become 80 hex, the trigger pulse goes high until the
contents of the register are changed with the next clock pulse. The ALTERA
design, the simulation and the actual output of test pattern generator are
contained in the appendices.

Now that everything for the project was designed, it was time to put
everything together and get it to work. The first step in this process was to select
which device to use for the project and then, how many of these devices it would
take to implement the project. At first the total number of input and output pins
were considered to be the basis in deciding which device to use. In the beginning
of the project the design was much simpler and it was totaled to be about 91
inputs and 2 outputs. After the actual design, the size of the circuit came out to
actually be _ inputs and _ outputs. Using this information, we needed an Altera
chip with a lot of input/output pins and looking through the available devices we
felt that we would need an Altera chip with 160 I/O pins. After thinking about it,
we decided that the best option would be to split up the project into several
smaller chips. Based on the facts that we had used them before and that the

programming adapter was available for them, we went with 84 pin Altera chips.
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The first device that was attempted was the EPM7128ALC84 chip that
was used in EE 308, a familiar chip. When trying to get the project to fit onto the
device it kept on failing and refusing to work no matter how many variations were
tried. After with consulting with one of the Professors in the EE department, Dr.
Stephen Bruder, it was evident that the device chosen was not the best fit for the
project. Using Dr. Bruder's advice to choose a device from the Altera flex family,
the new device chosen was the EPF8282ALC84-4 chip from the Altera Flex 8000
family. Using this chip though would require difficult programming steps using
JTAG plus the Flex chip is a destructible SRAM device. In the end, the chip
chosen was the EPM7128SLC84 chip. Simulating the project in Altera and
setting the device setting to the new chip and making sure that it would compile
tested the fit of the new device. This was a very convenient way to test the fit of
the project without actually having the chip. Now it was easier to order the correct
device, knowing what device fit correctly under the specification of 84 pins.

After deciding on the device that we were going to use, the project could
now be split up onto several of the 84 pin Altera devices. Because of the amount
of input pins required and the select control lines and the outputs it was decided
to implement each multiplexor on separate chips. The pins on each chip were
forced to set values in order to be able to change the project without any change
in chip layout. The comparator and the random pattern generator were

implemented onto a third chip.
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GPIB Interface

The GPIB interface provides a standardized interface between to the clock
recovery board test set and the computer. The GPIB interface was chosen due to
design requirement that any interface used for the project should be able use a
computer system assembled from commonly available parts. The customer was
particularly concerned that the interface card should be commonly available and
be able to be controlled by commonly available software. A GPIB interface lends
itself well to filling these requirements. The GPIB interface card can be installed
in any modern computer because it uses a PCi slot and is compatible with any
common operating system. Another point in favor of the GPIB interface is that
Labview has tools that allow the interface to be easily programmed for the
project’s needs. The use of the use of GPIB allows for future expansion of the
test set’s capabilities as part of a computerized workbench. Other options
considered instead of if GPIB were a DAQ card and a RS232 interface. The DAQ
card was not chosen because it was not standardized the way that the GPIB is.
The RS232 interface was not chosen because although it a very standard
interface, it is very slow as compared to the possible 1Mb/s transfer rate of the
GPIB interface.

The design of the GPIB interface is divided into areas of hardware and
software. The hardware portion of the interface consists of a Motorola HC12 and
a National Instruments NAT7210 GBIP controller and its associated interface
circuitry. The HC12 is the central controller of the test set. It selects the two

channels to be compared using the MUX, gathers error count data and controls
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the GPIB interface. The HC12 is interfaced to the rest of the test set using
memory mapped /0. The MUX, the error counter, and the GPIB controller are
read from and written to as if they were memory addresses. In this way the
NAT7210 is configured and controlled using its internal registers.

The hardware setup for the GPIB interface consists of an interface
between the HC12 and the NAT7210. The GPIB controller’s internal registers are
selected using three register select lines that are feed directly into the chip. The
register select line values from 0-7, read, write, and chip select control the
access to the internal registers. The internal registers configure the GPIB
controller and control what the chip does. The HC12 has multiplexed data and
memory lines on the higher order address lines on port A. This makes it
necessary to latch the address data on these lines before the data is output to
memory. The latch is set using the rising edge of the E-clock. The E-clock is a
special clock signal that dictates the timing of the various portions of a memory
access. The output of the latched address lines is then put through a decoder to
generate an active low chip select signal. Any latched address from 1000h to
1700h will generate a chip select signal. Address lines A10-A8 are fed directly
into the NAT7210 register select lines. The R/W line of the HC12 must be fed into
some logic in order to produce separate active low read and write signals for the
GPIB controller. The active low reset signal for the HC12 is inverted so that its
can reset the GPIB controller. In order to simplify the wiring of the circuit and

speed up development, the logic was implemented using ALTERA.
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the test set. The GPIB bus transceivers were wired to the bus controller as
shown in the documentation for the controller chip. The interface between the
controller chip and the HC12 was tested. It was confirmed that the HC12 could
change the values of the internal registers of the controller chip and the values of
these registers could be read back. The wiring for the bus transceivers was
checked thoroughly but proper operation of the transceivers could not be
checked until the controller chip was programmed. An initialization and test
program for the GPIB interface was written for the HC12 using the instructions
contained in chapter 5 of the documentation for the NAT7210 GPIB controller.
Unfortunately the GPIB interface did not operate correctly. The computer was not
able to detect the NAT7210 as listener on the bus. Possible causes for this
problem could include faulty bus transceiver circuitry, improper configuration of
the computer, or a bug in the HC12 firmware. Due to time constraints we were
unable to troubleshoot the interface. Instead we switched to a serial port interface
between the computer and the test set.

In order to save time the serial port interface was used. The HC12 has a
serial port built in which made it unnecessary build any new hardware.
Assistance with use of the serial port and sample code were easily obtained from
Dr. Rison. On the other hand the assistance with the GPIB interface was very
hard to come by. There was nobody on campus or at the NRAO who had any
experience programming the NAT7210. Technical support at National
Instruments refused to provide source code and would only answer specific

programming questions. The serial port was able to provide all the same
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functionality as the GPIB with only the loss of speed and the ability to include the
test set with other GPIB controlled instruments as part of a computer controlled
workbench. Labview also supports serial interfacing with easy to use tools similar
to the one used by the GPIB. This combination of circumstances made the serial
port interface the best overall choice. To conclude, after having dealt with the

GPIB on this project, a DAQ card or serial communication would have made a

simpler and quicker solution.
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RS 232 Interface

As already listed in the previous section about GPIB, it was decided near
the end of the project that using the onboard serial port of the HC12 would be a
more viable option than designing an entire GPIB controller for PC control of the
test interface. One question that could possibly arise is why was the switch so
late and why wasn't RS 232 an option in the beginning? The Usage of GPIB as
the PC interface was decided before the microcontroller to control it. Most
microcontrollers do not have the added features built in as the HC12 evaluation
board that was chosen for the project. In this section the usage of the RS 232
and code from the firmware will be discussed further.

On the Motorola HC12 there are two features meant for use in serial
communications. For use in the project, the SCI (serial communications
interface), which uses the onboard serial port and is compatible with a standard
PC serial port was used. To use the HC12's SCI, it first needs to be set up. To do
this a zero needs to be written to the SCOBDH register (all register addresses are
contained in the header file hc12.h). Next, the baud rate for the port is to be set
up. This is done writing to the SBR12 —0 bits of the SCOBDH and SCOBDL
registers. First, set SB12-0 equal to 8Mhz (HC12's clock speed) divided by 16 *
desired baud rate. For this project a baud rate of 9600 was chosen. Using the
previous equation it is determined that the number to be written to the registers
needs to be (8Mhz/(16*9600)) = 52.083 ~ 52. Now that the baud rate is set up
both the transmitter and receiver need to be enabled by writing to the SCOCR2

register. This register also needs to be written to determine interrupts. For this
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project, no interrupts were chosen. Lastly a hex 00 is written to the SCOCR1
register to enable normal mode with 8bit communications and no parity, standard

serial port communications standards. The following set up code is as follows:

SCOBDH = 0; I* Setup Serial Subsystem */
SC0BDL =52; /* 9600 baud */
SCOCR2 = 0x0C; /* Enable transmitter and receiver, no interrupts */
SCOCR1 = 0x00; [* Normal mode, 8bits, no parity */

After the SCl is setup there are two sets of code to communicate through
the RS 232 serial port. The first is the set of code that enables the HC12 to
transmit data over the port. The first step in transmitting data is to write the data
to be sent to the SCODRL register. In this project the data sent is being sent as a
character. After writing the data to SCODRL a while loop needs to be written to
wait for the transmit data register empty (TDRE, 8™ bit of SCOSR1) to be written.
If the transfer is interrupted, there is an error and ones are present to the lower
four bits of the SCOSRT register. In the program for this project there is an if loop
to check the SCOSR1 register to identify an error.

The next piece of code that is used to communicate through the HC12's
serial port is the code to receive data from the serial port. As with the transmitting
portion of this project, the receive code is written to receive data in character
form. To receive the data, a while loop is written to wait for the data register full
(RDRF, bit 6 of SCOCR1) to be cleared. Next the data can be read from the
SCODRL register. The following piece of code features a character written to the
serial port and then two lines to receive a character from the serial port. The last

lines of code are the error identifier.



22

Char character = c;

[* Transmit Data */

SCODRL = character; I* Send the letter that is stored in character ¥/
while ((SCOSR1 & 0x80) == 0) ; I* Wait for TDRE ¥/
I* Receive Data */
while ((SCOSR1 & 0x20) ==0) ; I* Wait for received character */
character = SCODRL,; /* Read Character from SCODRL */

if ((SCOSR1 & 0x0f) (= 0){
DBug12FNP->printf("Error Detected\n"); I* Error Identifier */}

The firmware, written in C, for the HC12 using the SCI was written using
pieces from the above code. The first part was the setup code. After this the
pieces of code used for transmitting data and for receiving data are used where
they are needed to receive commands from the PC or to send results to the PC.
The next section of this paper features a discussion of the PC side of the

software, which was written in LabView.
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LabView GUI Software

After choosing a type of interface to communicate with the test fixture the
control software for the PC was to be written. This control software was written
using National Instrument's LabView graphical software. LabView was chosen
because it has built in functions to control different kinds of interfaces plus it is
something that the group, giving the group familiarity with the way that it works.

Early in the project LabView was being used to control the project via the
GPIB interface. A test program was written to first initialize the GPIB bus, setting
the PC as the controller with the test set as either talker or listener based on what
was needed at the time. This first GPIB program was written using commands
from the GPIB tools out of the communications toolbox of LabView. GPIB
standard 488 was chosen as opposed to 488.2 because it was more
straightforward and there was no need for the added functionality of the 488.2
standard. The tools used in the test program were GPIB initialize, GPIB read and
GPIB write. These three commands were to be used together with other LabView
tools to build up the rest of the function until the switch to the RS 232 interface.

Fortunately the switch to RS 232 serial communications was no too much
of a switch in the LabView portion of the programming. The basic tools to
accomplish RS 232 are in the same communications toolbox in LabView as part
of the RS 232 tools. The tools that were used included write to serial port, read
from serial port and bytes at serial port. The last mentioned tool was used to
know how many bytes to read from the serial port, and writing that number to the

read from serial port. Using this tool, the amount of bytes read from the serial
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port does not have to be limited or wasted by guessing a number to represent the
number of bytes.

The first program written was for the sole purpose of establishing
communications with the serial communications interface of the HC12. This first
program was an ‘echo’ program. First it writes a character to the serial port. The
HC12 software receives this character and stores it into a character and lastly
sends the character back to the serial port. LabView now reads the character at
the serial port as it is ‘echoed’ back from the HC12, This program was then
changed to provide different outputs based on the character sent to it.

After the test program was written it was time to write the main program in
LabView. The first interface that was originally written for use with GPIB was still
good. In the graphical portion of the project there are two boxes with arrows to
select channels A and B to be compared to each other. Using LabView the
numbers were limited to be between 2 and 34 (the usable channels from the
recorder). These numbers are then written to the serial port and interpreted by
the HC12. The HC12 now uses the memory mapped |O to write the address of
the Multiplexors. The data is now sent to the comparator circuit of the project.
Once the comparator circuit completes receiving its error rate it lets the HC12
know by raising a bit. Next the HC12 takes the error rate stored in memory and
sends it through the serial port to LabView where it is displayed in another box.

The instructions for using the LabView Software are listed on the User
Instruction Manual. All of the information regarding the usage for the LabView

functions such as the RS 232 Write and RS 232 Read functions are included in
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the appendix section. Additional information about the LabView GUI is included

in the User Instructions portion of this paper, which follows the conclusion.
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Conclusion

Overall the completion rate of the project was satisfactory. What was finished
turned out to be:
o VME Board Wrapping complete
» HC12 Modifications Complete
e Altera Logic Written
e Altera JTAG Programmer Complete
¢ All Individual Logic Tested and Functional
o HC12 SCI Initialization Complete
¢ LFSR Logic Design Complete
The parts left to be completed for the project include:
o lLabView Software Started
e Altera Chips to be programmed
o All Devices to be integrated and tested
There were parts of the project that perhaps could have been better
completed using different approaches. One of these of course was the choice for
the computer interface. One of the possibilities in the beginning was the usage of
a Data Acquisition Card controlled by LabView. The customer required the usage
of a GPIB controller in order to have a standard communications device. The
GPIB controller chip was chosen before the HC12 microcontroller so the obvious

option of using it's included serial communications interface did not present itself

until later.
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Another aspect of the project which could have been better conceived was
the Altera implementation. The selection of devices for the project is where
problems arose. The first chip that was to be used could not handle the type of
logic that was required. Going by the advice of a professor the chip was changed
to the Flex family. This chip was selected without much knowledge of how it
worked. The Flex device ended up being useless because it proved very difficult
to program and plus it was built up of destructible SRAM. In the end we found
success with the use of a chip from the MAX 7000S family, almost the same as
the chip that we originally chose, from the MAX 7000A family.

On a positive note, large portions of the project were completed and tested.
Portions of the project required many hours of work. These included the wire
wrapping of the VME board, circuit design and construction, software writing and
design and Altera design. There were many things to learn from this project from
integrating different aspects of electrical engineering to learning about designing

the device to work at 4.5Mhz and learning how data is managed for scientific

use.
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Astronomy Observatory and includes references to necessary equipment located
at the NRAO's Array Operations Center in Socorro, New Mexico. The senior
design group is not responsible for changes made to the program or available

equipment not prepared by them.

Section I: LabView Controller version 1.0

The PC controller for the NRAO Test Fixture is controlled using National
Instruments LabView software as an interactive graphical user interface using the
Serial Communications Interface RS 232 Bus of the HC12 as data acquisition

lines and as a control bus.

Starting the Program:

To start the program, first open the folder with the program file, NRAOTF, in it.
Next double click the file, LabView will automatically start up with the program.

The front panel of the program will appear and is now ready to be used.

Usage:

Now that the program is ready, the two channels to be tested against each other
can now be selected using the two boxes marked Channel A and Channel B
using the arrows to the right of the number. The box is limited to numbers
between 2 and 33, which are the channels associated with the recorder. Once
the channels are selected the program will execute testing once the arrow button

at the upper left of the LabView window is pressed. When the testing is finished,
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the output sample of the error is listed to the left of the channel selectors. A
graphical histogram of the error is an option that may be graphed just below the
error. The selection of the channels to be tested against each other can be
changed at any time and then set to run again using the arrow button. A graphic

of the software panel is below as figure 2.

NRAQ.Clock Recovery Board Test Fixture Application

5r—r
ChamdB
37— |

Figure 2: software front panel

Section II: Altera Programmable Logic

The NRAO test fixture uses three 84 pin Altera programmable logic chips to run
the multiplexors and comparator circuit that select the channels to be tested and
then sample the data to compute the error. These three devices come already
affixed to the VME board that is inserted into the testing rack. The purpose of this
portion of the manual is for the unlikely purpose that one of the chips either
needs to be replaced or re-programmed. This part of the manual goes through

the process of replacing the chip as well as how to re-program a device.
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Removing and Inserting the device(s):

All three of the Altera Programmable logic devices are 84-pin chips inserted into
84-pin sockets. They are in a row and numbered starting from the closest chip to
the digital logic chips on the board as U1, U2 and U3. Each socket has an arrow
pointing to where the top of the chip needs to be for proper operation. There is a
small dot at the top-center of the chip as well as a small indentation in the top-left
corner of the chip to aid in lining up the chip with the socket. The chip should be
removed using a chip puller in order to minimize the chance of physical damage
to the chip and the socket. The chip should be inserted by first aligning the chip
with the arrow at the top of the socket and then gently pushing the chip into place

by pushing it gently at the center.

Programming a Device:

Included with the CDROM disc for this project is the programming files required
to re-program each one of the three devices that make up the project. The three
program files are located on the Altera directory on the CDROM disc. The file for
the chip U1 is titled u1_chanmux.pof and is the programmer file for the channel
multiplexor. The file for chip U2 is u2_clkmux.pof and is the file for the clock
multiplexor. The programmer file for U3 is u3_comparator.pof and is the file
associated with the comparator circuit and random signal generator portion of the
project. To program a device, plug it into the provided JTAG programming
device. In the Altera MAX+plus Il software go to file and then open to select the

correct .pof file. Next select file again and go to name and select set name to
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current file. Lastly, go to the Max_plus {l menu option and select programmer.
Make sure that the JTAG device is plugged in and connected via the parallel port
of the machine. Now the program button can be pressed and MAX+plus [1
software can be closed. It is important that each Altera program not be mistaken
for another. They are nearly identical but have differing pin layouts and if installed

in the incorrect socket will cause the test fixture to malfunction.
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Maintenance Manual

Visual Inspection:

Place the VME board on a piece of foam material to protect the pins on the
underside.

Look for bent pins and loose or missing hardware.

Ensure all components are properly inserted in the VME card

Preparing for Operation:

Take care when inserting male connectors to female counterparts on the VME
card; improper care can damage the connectors or the VME card.

Ensure that the VME card is correctly seated in the VME bus.

When using extender card, take care when inserting extender card into VME bus.

During Operation:

Do not move any external probes around the board during operation due to
potential shorting.

After Operation:

Take care when removing connectors from the VME card; aggressive removal of
connectors may damage them or their point of installation on the VME card.

Take care when removing extender card and VME card from the VME bus.

Storage and Handling:
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Avoid any direct pressure on the underside of the VME card; extreme pressure
can cause damage to the pins increasing the possibility for shorting the circuit or
other permanent damage to the card.

When setting down the VME card, ensure it is sitting on a piece of foam to
prevent damage to the pins.

DO NOT place anything on top of the VME card. This can cause extreme
damage to the card.

When storing the VME card, place a piece of foam to the underside of the card to
prevent damage to the pins during storage.

Routine Maintenance:

When replacing logic devices from the VME card, use proper chip pulling tools;
the lack of use of proper tools may damage the logic devices and the card.
When removing Altera chips for programming, use proper PLD removal tools;

using proper tools will minimize any damage to the Altera chips and Altera
sockets.

In the case of a missing logic device, always consult the schematics as to
the proper installation location on the VME card. DO NOT install any device on

the VME card without consulting the schematics first.



35

Trouble-shooting Guide

If the circuit seems to be working incorrectly (if data rates are

consistently high or error rates are very inconsistent):
Probe the card when the power is turned on to ensure there is a voltage of 5V at

the VCC pins and GND at the gnd pins.

If there are incorrect voltage readings on the VME card or no

voltage readings on the VME card:
Ensure the VME card and VME extender cards are properly seated in the VME

bus to ensure power is being supplied to the circuitry.

If the voltages are correct on the board but the circuitry is not
working properly:
Hook an oscilloscope to the “LSFR” and “Trigger” BNC connectors to display the

output of the LSFR “random signal generator.” The output should look similar to:

Picture

If the output from the LSFR appears to be correct, all the Altera chips should be
functioning correctly. This is concluded because the LSFR is housed in U3
which takes inputs from U2 and U1. Therefore, if U2 and U1 were not working,
U3 would not be giving a correct output. Static shock to an Altera chips can
erase its memory. When the Altera chip is shocked, usually it completely stops
functioning and not just specific functions. The differential line-receivers should
also be functioning correctly; this can be concluded since a “clean” clock signal is

required for the LSFR to function properly.
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If the output of the LFSR appears to be incorrect:
Using an oscilloscope, monitor the output of any one of the differential line

receivers. The output from the clock pin should resemble the following:

Picture

The output from the data pin should resemble the following:
Picture
If the output from the differential line-receiver appears to be incorrect, refer to the

schematics and ensure that it is properly wired.

if the line-receiver is correctly wired:
Look at the inputs to the line receiver and ensure that they resemble the

following:

Clock Input

Picture

Data Input

Picture
If the input appears to be correct:

Replace the differential line-receiver and reinstall a new one while referring to the
schematics for correct installation location.

Once this has been corrected, proceed to check the remainder of the differential
line receivers and correct any errors found in the wiring and/or replace any

damaged line-receivers.
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If the output to the line-receivers is correct:

It may be possible that the Altera chips are not functioning correctly. To check
this, Altera chips U1 and U2 must be checked first. The reason for this is they
are both inputs to U3. So if U1 and U2 are not functioning, U3 will not display a
correct output. Monitor the clock and data output from Altera chips U1 and U2.
This can be one by monitoring the following pins: Data pins: U1, pins 78 and 81;
Clock pins: U2, pins 78 and 81. The output to these pins should resemble the

following:

Data pins

Picture

Clock pins

Picture

If the output appears incorrect, reprogram the appropriate Altera chip(s) (U1 or

U2) using the instructions as detailed in the instruction manual.

If the output of U2 and U2 are correct:
It can be concluded that U3 is not functioning correctly. Reprograms U3 using

the using the instructions as detailed in the instruction manual.

If there are still problems with the circuit:
Check that all connections (including all connections to the computer) are

working properly, all discrete logic chips have Vcc and ground, or try to replace

and reprogram the Altera chips.
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TITLE ®"34 Channel Mux design for Senior Design 7 December 2000%;

SUBDESIGN mux34
{

i0 : INPUT = GND;
il : INPUT = GND;
i2 : INPUT = GND;
i3 : INPUT = GND;
i4 : INPUT = GND;
i5 :+ INPUT = GND;
i6 : INPUT = GND;
i7 : INPUT = GND;
i8 : INPUT = GND;
i9 : INPUT = GND;
ilo0 : INPUT = GND;
i11 : INPUT = GND;
i12 : INPUT = GND;
i13 : INPUT = GND;
il4 : INPUT = GND;
ils : INPUT = GND;
ileé : INPUT = GND;
117 : INPUT = GND;
ils : INPUT = GND;
il9 : INPUT = GND;
i20 : INPUT = GND;
i21 : INPUT = GND;
i22 : INPUT = GND;
i23 : INPUT = GND;
i24 : INPUT = GND;
i25 : INPUT = GND;
i26 : INPUT = GND;
i27 : INPUT = GND;
i28 : INPUT = GND;
i29 : INPUT = GND;
i30 : INPUT = GND;
i31 : INPUT = GND;
i32 : INPUT = GND;
i33 : INPUT = GND;
s0 : INPUT = GND;
sl : INPUT = GND;
s2 : INPUT = GND;
s3 : INPUT = GND;
s4 : INPUT = GND;
s5 : INPUT = GND;
o0 : OUTPUT;

)

BEGIN
IF s[(5..0) == B"000000" THEN o0 = i0;
ELSIF s{5..0] == B*000001" THEN o0 = il;
ELSIF s{5..0] == B"000010" THEN o0 = i2;
ELSIF s[5..01 == B"000011" THEN o0 = i3;
ELSIF s{5..0] == B"000100" THEN o0 = i4;
ELSIF s[5..0] == B"000101" THEN o0 = i5;
ELSIF s[(5..0] == B"000110" THEN o0 = 16;
ELSIF s[5..0] == B"000111" THEN o0 = i7;
ELSIF s{5..0] == B"001000" THEN o0 = i8;
ELSIF s{5..0} == B"001001" THEN o0 = i9;
ELSIF s{5..0] == B*001010" THEN o0 = il0;
ELSIF s[5..0] == B"001011" THEN o0 = ill;
ELSIF s[5..0] == B"001100" THEN 00 = il2;
ELSIF s[S5..0) == B"001101" THEN o0 = il3;
ELSIF s(5..0] == B"001110" THEN o0 = il4;
ELSIF s(5..0] == B"001111" THEN o0 = il5;
ELSIF s{5..0] == B"010000* THEN o0 = i16;
ELSIF s[5..0)] == B"010001* THEN o0 = il7;
ELSIF s(5..0] == B*010010* THEN o0 = il8;
ELSIF s[5..0] == B*010011" THEN o0 = il9;
ELSIF s({5..0] == B"010100" THEN o0 = 120;
ELSIF s{5..0] == B*010101* THEN o0 = 1i21;

ELSIF s(5..0] B*010110% THEN o0 i22;
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ELSIF s{5..0] == B"010111l" THEN o0 = i23;
ELSIF s(5..0] == B"011000" THEN o0 = i24;
ELSIF s{5..0] == B"011001* THEN o0 = i25;
ELSIF s[5..0] == B"011010" THEN o0 = i26;
ELSIF s{5..0] == B"011011* THEN o0 = i27;
ELSIF s[5..0] == B“011100" THEN o0 = i28;
ELSIF s[5..0] == B"011101" THEN o0 = i29;
ELSIF s(5..0] == B"011110* THEN o0 = i30;
ELSIF s[5..0] == B"011111" THEN o0 = i31;
ELSIF s[5..0] == B*100000“ THEN o0 = i32;
ELSIF s[5..0} == B*100001" THEN o0 = i33;

ND IF;
LND

~
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LFSR ‘text’ Design

SUBDESIGN stimgen
(

clock : input;

rst : input;
iftout : output;

g : output;

)

VARIABLE

£f£{8..0]} : DFFE;

shiftin :lcell;

BEGIN

$ff[]l.prm = rst;%
ff[)l.clk = clock;
ff[8] .8=shiftin;
shiftout = ££{0].q;

IF !rst THEN

ffl[l.4 = B*100000000";
ELSE
shiftin=GND XOR shiftout;
££[7).4=££(8]) .q;
££(6]1.4=££[7]).q;
£f£15].4=££(6].q;
f£{4].d=££{5].q;
ff{3].d=shiftout XOR ff(4).q;
££[2].8=£f£f(3]).q;
££{1).4=££([2] .q;
fE£{0).4A=££(1].q;
END IF;

trig={£f£f[{0].q AND !(ff(1).q AND !f£[2].q AND !ff[3].q AND !££(4].q AND !££[5].q AND !ff[6].q
AND !££f(7].q
AND f££({8).q;

D;
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LFSR Logic Test
'(Wave Simulation)
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LFSR Output
(Logic Analyzer Printout)

WaveForms: Trace Data: 1.00 us
Date: 03/21/01 Time: 19:53:08 200 us per division page 1
Red to Blue: 1.95ms Red to Trig: 498.00us Blue to Trig: 1.45ms
1.95ms ]
1

_ _ T X X _

e il L e i b




LFSR *.GDF’ File

o)
74374 _J E";'?:
Do CoOmex oo o1 sobess,
I e e 1] @
02 O lpy o3
L e D4 a—1 Gaes!
04 CO--nal DS as | S
DS CO-ma s o6 i
Ds [CO—tAL o7 ? o
b7 CoO—maa D8 a8 "
& g
GND r— CLK
-.-: [0 T mome O -1 OCTALO-FF
boz1) /ST DAL _ -
== “‘1'50 QBT = CRST foboz!
~:a:: AW CO—nar
NANDZ
' l o~ — BT R Go3e'
-~ e d
NAND
m ona_—— Giozd!

TR2 :}—m% gy sme 3]




Device:

Device Options:
Turbo Bit
Security Bit

D5

D4

D3

GND

D2

D1
RESERVED
RESERVED
vCccC
RESERVED
RESERVED

LSFR Altera Test Pinout

von<mEnmEX

o<t nEwd
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Page 1
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Memory Decoder Schematic
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ByteBlasterMV 10-Pia Female Plug Dimensions
Dimensions are shown in incfies. The spacing between pin certers s 0.1 inch.

0.425 Typ.

//

3 5 9
0.250 Typ.
4 6 10
0.100 Sq. 0.025 Sq.
fe 0.700 Typ.

Color Strip

Table 2 identiftes the 10-pin female plug's pin names for the
corresponding download mode.

Table 2. ByteBlastertM¥ Female Plug’s Pin Names & Dounload Modes

Pin PS Made JTAG Mode
Signal Name Description Signal Name Description
1 DCLK Clock signal TCK Clack signal
2 | eND Signal ground GND Signal ground
3 | CONF_DONE Configuration TDO Data from device
controf
4 | vece Power supply vCCe Power supply
S | nCONFIG Configuration TMS JTAG state
control machine control
6 |- No connect - No connect
7 | nSTATUS Configuration - No connect
status -
8 |- No connect - No connect
9 | DATAD Data to device TDT Data to device
10 | GND Signal ground GND Signal ground

I8  The circuit board must supply Ve and ground to the
ByteBlasterMV cable.

C-14



ByteBlastertV Schematic

ByteBlasterMV Parallel Port Download Cable Data Sheet

vCe

10-Pin Plug Connections
e vee l
vce -Th“c
@ 7
25-Pin Male Header <3
Connections |
4w
D 9 AAA (’)
vce ngc vce
2@z@ 30
> 2 ‘-‘v‘v:z ¢ 1(3
Qs AAA ’ 5
D 8 ‘vAi‘v () 9
: 2,10
10 —<3
a) GND
13 e
N
D 1 2 A ( )
vce
15 % @
1825
GND
Single FLEX Device Configuration with the ByteBlasterfV Cable
FLEX 8000 Device veo vee veo vee
I 1. T §
Itk Stk Stk 1xQ
) 1 weec FLEX 8000 Device
vee [ JoaT s ] 364 . - .
T e r
i T ByteBlastertdV
aso 10-Pin Male Header
(Top View)
Pin1 / vee

a-h

GNO

oeoad
2 —DDanR

C-15



VME Card - General Layout (Top View)

<____ H
(10.85) [ O 1 O A e 1 BNC’s o
/ S e e @1
. Y LT COEIENEAIE IR NEIEIEDEIEIEDESENEIE I § |
Connector szfﬁﬁijﬁifﬁffi """" ‘zo'sz::ZI:IZ::Z:Z::IIZ'I‘-III
ST el IS
Jo| i RIS
Note: Connectors J2 and Jlare ‘data connectors.” JS and J6 are
‘clock connectors’. J2 and J6 contain data and clock from the odd
tracks and J2 and J5 contain data for the even tracks
HC12 and HC12
daughter-board
Differential Line
Receivers
(16,70) (16,55) (16,40)
(1,85) (L1
NRAO Test Fixture
VME Card - General Layout

Page 1 of 2 Francis Martinez
April 4,2001 Revision 0




VME Card - General Layout (Side View)

Wire Wrap Pins ——»

GPIB
connector

Clock recovery
connectors

50 ohm BNC '
connectors

NRAO Test Fixture

VME Card - General Layout
Page 2 of 2 Francis Martinez
April 4,2001 Revision 0




-3

YME Card - 50 obhm drivers

Profile View

Top of Card @ Data 2
Clock 1  Clock2 Datal LSFR Trigger Data2 @ Trigger
[ (o) | L=
@ Datal
61.79)
i ®  ®usas @ Clock 2
7T A () @ Clock 1
s @ O Tm o
o o
NRAO Test Fixture
_ _ 50 ohm drivers
Italics correspond to the signal source Page 1of 1 Francis Martinez
connection on the Altera chips April 4,2001 Revision 0




VME Card - HC12 Daughter-board (underside of HC12)

............
............

............
............

Breg
EEREERLDS
AT T T i TiesyN
3 3

-|.:.']PE4
Reset OO b
PE2 S
-1 JIRQ
PAL L]

PAO

-+ 1DIO1
-.*. DIO2
.1 DIO3
... DI04
-1 EOI
:.:.:DAV

--INDAC

.. {srRQ
-~ ATN

NRAO Test Fixture

VME Card - HC12 Daughter-board
Page 1 of 2 Francis Martinez
April 7,2001 Revision 0




VME Card - HC12 Daughter-board

(63.70) (63,34)

5 ’/

------------
............

............
............

57 42
(57,53)920 (42,53) 920

42-1:PB1I  42-16:PB7 57-11: SRQ
42-2: PB2  42-17:PB5  57-12:ATN
42-3:PBO  42-18:PB4  57-13
42-4: DIO! 42-19:PB3  57-14: GND
42.5: DIO5 42-20: VDD 57-15: PA7
42-6: DIO6 57-1: DIO7  57-16: PA6 1 sl 1
42-7: DIO2 57-2: DIO3  57-17:PA4
42-8: PE4  57-3:DIO8 57-18: PAS Sl
42-9: Reset 57-4: DIO4  57-19: PA3 LTI
42-10: PE2  57-5:EOI  57-20: PA2

42-11: IRQ 57-6: DAV

42-12 57-7: REN

42-13: PAl 57-8: NFRD

42-14: PAO 57-9: NDAC

42:15: PB4 57-10: IFC

NRAO Test Fixture

VME Card - HC12 Daughter-board
Page 2 of 2 Francis Martinez
April 7,2001 Revision 1




vecO—AE——EESR

wrapped to anything.

FFSR
666 |07 2%?832 (66,4 ahy U248
no) [ha—o-%2 2 - R €24 *N/A
o Cowr—=—=— a3 T P
3 =6
U1B C 4=
1501, [CE=0—— 6 26L532_ ern O
151.2) [k -0r—= : 12s 74ALS74 /A
f%)
Ul1C U2B
0
32(1,1)|_Daa -1 10 26L832_‘ 1 (61,2) ®XN/A
pa2 [ o 2> 9
W, [T T
1601, HClR=—T—— 14 LS32_ e OB 74ALST4
" ‘
361, C—— L 213 = **N/A
FESR
586 (589)  U3A (584) 4 U4A
ne)bmr——— 2 26L.532_ N (54,4) U1-29
Ne2)[baa—r— h 13 2 Qs
A -
U3B c 9
s _Clk-2——7 261.832_
ey C-7— % L FESR T TAALSTA. U2-55
FESR
10 361632 nd V4B
32(2,1) Data- T3 _ (53,2)
ney[ mr—— ’j;’\]/jzn 2P U1-30
1l =8
-
Jo2,)|_Clk=3 " —
Jo2 Ok — ’ 15 13 FEsR [T TAALSTA.
. ) U2-30
NRAO Test Fixture
_ . ‘Front-end’ differential line-receivers
* = 8 pin 1000hm DIP resistor p 1 of 9 P ‘< Marti
age 1 O Tancis viartinez
** = The NRAO told us these are not to be tested; therefore, they are not g_ ..
April 1,2001 Revision 2




veco—AR—EESR

FFSR
USA
(49,9} U6A
(49,4)._4
nen[Tmi——-45 26L532. b (45.4) U1-60
102 [ Pa——— ! 2 ) 3
UsB e Q-
o ')=E 252 FFSR E 1
15(3.2) 74ALS74 U2-60
FFSR
UsC 0d UGB
12(3.2) | Datg -3 21 1 12 9
UsD e Q-
1633, Clk 3 —— 14 26L532_ R0 7aaLST4
» 1 _
16(3.2) Clk-37—— 213 U2-36
FESR
(41,9)  UTA (41,4) UBA
a2 26LS32_ : (36.4) U1-57
11(4.2)[ Dag——— h 132 510 Q) -
U7B e Q-
[ [ 6 261832
jzg ;;[%6:»—#‘— 3 - FESR 74ALS74_
U2-27
FFSR
10 U7C 10 ¢y U8B
1280, Dam= T —— " 3 26LS32_ 5 o (35.2) Ul-25
1204,2) [ Da-T—— 11 12 9 -
2
e Q-
prsg P13 74ALS74_
U2-24
NRAO Test Fixture
‘F ) . . . .
ront-end’ differential line-receivers
* = 8 pin 1000hm DIP resistor ) ]
Page 2 of 9 Francis Martinez
April 1,2001 Revision 2




VeCO—AAR—

—EESR

FFSR
U9A
_ a2 P29\ 26LS32_ 244y UL0A
IS | Dag 8 —0 b Q (28,4) Ul-24
N6 [ ir—— ! lg 2 5
USB be Q-
15(5.1) 6 261532 FFSR?!
15(5.2) (T8 7 3 74ALS74 U2-37
FFSR
26532 o 0P
10 _
EIC N | TYT I — " b Q (27,2) U1-56
12(5,2) Data - 97— 2l 1 12 9
1 |
e Q-
16¢5,1) [ ClR-9——— 14 5169]?832‘ 13
1665 2 Tl — ! B FESR TAALS74_ U2-58
FESR
a6 | 9 UUA 244)_ad UI2A
316D~ 2 26L.532_ b Q (204) U135
11(6.2)|_Data - T :; 2 5
3 ~ b=y
U11B c Q-
J56.) [ ClkJ0— 261.S32_
156 T —————— 5 FESR 1 T4ALSTA.
U2-9
FFSR
0 Ullc 10?’ U12B
J2(6,1)[ Data - IT— - 5 261.S32_ b Q (19.2) Ul-58
12(6.2) Data -1 - l 11 12 9
{~ =l8_
U11D © Q
16(6.2)] Clk-T1 — 213 U2-28
NRAOQO Test Fixture

* = 8 pin 100ohm DIP resistor

‘Front-end’ differential line-receivers

Page 3 of 9
April 1, 2001

Francis Martinez
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vecoO—ARR——EESR

FESR
U134 =1 v
(16,6) (169 261.832_ (164140 U144
31¢7.1) [ Da-T7—— b Q (124 Ul-41
3101,2) [ Dap T ! ] g 2 5
3 ~ ey 6
U13B PC Q—
3501, [T 26L.S32_ -
OG- 74A1LS74 U241
FFSR
o, Ul4B
1220.) [ BaE=Tr— 26LS32 S (11,2) Ula
12,2 Dan =T33 2 211 12 Qg )
1! Yol ot
U13D ¢ Q-
1607, [T 14 261532
13
J6(1. 2)_:3 ‘_‘%;T—F FESR T4ALST4. U2
FESR
®.6) (8, 9) ULSA (84) 4 U16A
NE N[ Dap-Ii— 26LS32 (4,4) Ul-4
18.2)[ a1 2 1P 9 )
A A~ ey
U15B C Q-
J58.HLClk - T4 — 26L.832_
. FFSR T4ALS74_
15,2 CITar—— %_Z U2-40
EFSR
10 Uisc 10 U16B
128, ) [ Dag= T 26L.832_ 32 UL6s
128.2) [ Do 12n 12 Qs -
1l —[8
C [
Jo8. [ ——
16(8,2) [ Cl- 37— . 13 13 FEsR 112 TAALSTA_
. ) U2-65
NRAO Test Fixture
R s e . e .
_ ront-end’ differential line-receivers
* = 8 pin 1000hm DIP resistor ) )
Page 4 of 9 Francis Martinez
April 1,2001 Revision 2
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veco—AR—EESR

EFSR
U17A
1.1 BT (68,16) (68.19) 261L.532_ (68,141 4 U18A 6414
s " : -40
oo F‘j\ﬁ B ok o
U17B e g
3500, (O EN 22 | o
1502 ClJar— l25 74A1.874 U2-6
EESR
u17¢ o U18B
12000 (DR T ~ 261532 5 @2 Ul-15
1200.2) [ DA T — i 2 Qg
U17D he i
26LS32
J6(10, ) Ck—17T—= Eji j\/ - m
16(10.2) Cle-TI——2 1 2,3 FFSR. T4A1.874 _ U2-66
EFSR
(60,19)  U19A (60,14) 4 U20A
J1(10,1)_Data=TR— 29 2 261532 D Q (36,14) Ul1-7
1102 Daa =I5 o 3 2 5
U19B o Q-
50 L Clk-18 — 26L.832_
00 ;_;[R—ﬁ T TaALSTA. o
EFSR
10 U19C (Ll U20B
J2(10,1){ Data-T9— 5 26LS32_ 5 (55,12) U170
12(10,2) [P —Ior—— 211 12 Qg -
11 —18
c o
U19D
Jo10.1) [TR=TT— 4 26L.532_ : rpsR 013 TAALST4_
16(10.2)| Clk- 19— 213 U2-67
NRAO Test Fixture
. , ‘Front-end’ differential line-receivers
* = § pin 100ohm DIP resistor ‘ .
Page 5 of 9 Francis Martinez
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veco—AAR——EESR

naLh b8R8

JI(11,2) [ Data - 20—

saLh G2 = 6 261.S32_
15011.2) CCR=2 2 . 1 ]25

L) [(Dam2—>
»
12(11.2)

Jo(t L[ ClR2I—= 14 261.832_
soti 1.2 ClieZIr—— hd 1 ,. 2,3

(43,10)

NP R Ty — 2
N2 z

I5¢12.) CIk-27——) 261.S32_ |
15022 e r— - 5
J2(l2,1) ‘9° 261.532_
12022) Data 21— : 11

[COPNY) IeT I X —
16(12,2)_Clk- 777

* = & pin 100ohm DIP resistor

FESR
51,19) 2%%"5%2 (51,14,.4 U224
— 47,14
1 3 7P s — ul-8
12
3 =l 6
U21B ¢ 4=
FESR ] ! 74A1.874 U2-8
FESR
U21C o U22B
10 |\26LS32__ (46,12)
iol /j 11 zI°P 9 L7
2
11 |
U21D c Tt
FESR J 13 74ALS74_
U2-34
FESR
(43,19)  U23A (43,14) 4 U24A
26LS32_ o (39,14) U1-39
32 2 Q 5 )
kIR Al
U23B S
FESR 11 74ALS74_
U2-39
FFSR
U23C b UMB
(38,12)
—b ol Ul-19
2 11
c Bl
U23D e Q
4 2:361-332— PSR 713 T4ALS74_
) U2-21
NRAO Test Fixture

‘Front-end’ differential line-receivers
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vocO—ARR——EESR

(34,16)
*

JI(13.) {_Data-24
J1(13.2) [ Datg =237~

s [CxE— 6 26L.S32_
15(13.2) [ Clx 28— : 125

J2(13,1)| Daa - 23—
J2(13.2)|_Dawa -257—3

Jo(13.)| Clk -3 —3
J6(13,2)] Clk-237 1

26,16)

11(14.1) 2 26LS32_
5n(14,2) D= T—— 1 3

514, H [ Clk=26— 261.S32_
15014.2) [ Tl 2 5

12040 DI —r
=,

12014,2) (D@ =223

J6(14,1)_CIk - 27T ——
J6(14,2)] Clk-20 —

* = 8 pin 1000hm DIP resistor

FESR
3419 U258 erad U26A
- (30,14)
, 3 0 o U1-66
12
3 =16
U25B ¢ Q—
FESR J !
esR ] 74ALS74 U2-16
FESR
U25C ol U26B
10 261.832_ 28.12)
%l i“ —b Q5 . Ul-61
2
11 =i8
25D PC Q
14 9615332_
1 3 FESR T3 74ALS74_
) U2-69
FFSR
(26,19) U27A (26,14 U28A
(22,14)
TP e U1-67
kI V) hray
U27B pC Q-
FFSR J1 74A1.874_
U2-18
FESR
v27C 10 U28B
10
261.S32_ ,
5 '\“ = Q5 @L12 UL-18
2 11
c Ble_
v, -
15 T = FrSR T 13 T4ALS74_
) U2-19
NRAO Test Fixture

‘Front-end’ differential line-receivers
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3D

EFFSR
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) ane [P 26Ls32_ (17,1440 U304
315, [ Dag 28— - b Q (13,14) Ul-16
11(15.2) [Daa 28— L 1 g 2 5
3 Yal =1 6
U29B ¢ Q=
1515,1) (OB 6 26LS32_ pgep
15(15.2) [CR=Z8— R 74ALST4 U2-20
FFSR
U29C b U30B
12015.1) [ B2 o N\ 261532 b q (12,12) U1-55
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e, [T
s6¢15.0) T— 4 - 13
J6(15.2) Clk-29—— 1 213 FESR TAALST7A_ U2-57
FESR
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Description of NAT7210 GPIB Controller Initialization

1. Ch. 3 contains description of the internal registers and what their bits do.
2. Ch. 5 contains a step by step description of how to initialize and program the
NAT7210.

3. The registers are at offsets 0-7 which are mapped to 0x1000 to 0x1700 in
memory (see 3-2 for register map)

Breakdown of initialization Function

Note: The register at 0x1500 or offset 5 is control register (AUXMR) into which
command codes are written that control certain activities of the NAT7210.

One of the commands that the AUXMR register accepts is a page-in command.
This allows access to hidden registers (shown in bold boxes on the register map)
to be accessed. (For other functions of the AUXMR register see 3-19 to 3-26.)

In addition to commands that are written to the AUXMR register, there are sub-
registers in AUXMR (using the same offset) these registers are selected via the
high order bits of AUXMR. These registers are AUXRA, AUXRB, AUXRE,
AUXRF, AUXRG, AUXRI, and ICR whose functions are detailed on 3-27 to 3-36.

1. Write O0x02 to AUXMR this the command to reset the chip and put it into a
mode

where it is idle so that it can be programmed.

2. Write 0x50 to AUXMR this is the page-in command that allows for access to
the
hidden registers.

3. Wirite 0x81 to ICR2 which is a hidden register at offset 3, 0x1300 this register
puts

the ICR into a mode that allows the NAT7210 to be set to use a 10MHz clock
speed.

The bit set is bit 0 which is called MICR. The high bit 8 is supposed to be set
for the

same reason. See 3-44.

4. Write 0x25 to the ICR at offset 5 at AUXMR with the MICR bit set in ICR2.
Using the table on 3-43 a clock frequency of 10MHz is chosen.

5. Write 0x31 to ADMR at offset 4 or 0x1400 this hex code puts the NAT7210 in
a mode where it can implement one or two logical devices.

6. Write 0x00 to ADR at offset 6, which is the address, register (see 3-8) the
highest



order bit 7 determines whether sub-registers ADRO or ADR1 are written to by
a write

to this register. Bit 6 and bit 5 determine if the device is able to be a listener,
talker or

both. At the address given by bits 4-bit 0. This is the device address. In this
case the

primary address is set to be 1 with talking and listening enabled.

7. Write OXEO to ADR. Since the high bit is set, ADR1 is written to. Bits 6, 5 are
set
disabling talking and listening of the secondary address contained in bits 4-0.
See 3-8
and 3-10.

8. Write 0x00 to SPMR, the serial pole mode register at offset 3, 0x1300. This
register holds the serial poll status byte that is sent over when the device
receives a serial poll. Bit 6 is zero because a serial poll is not being
requested and the other bits are zero for no other reason than its easier that
way. See 3-62.

9. Write 0x70 to the PPR at offset 5, 0x1500. PR is a sub-register of AUXMR.
The highest three bits selects PPR. Bit 4 is set in order to disable the
NAT7210 from responding to serial polls. See 3-58

10,11 see table 5-2 on page 5-10 this table shows the bits that need to be set in
the AUXRB and AUXRI registers to produce various delays for the T1 delay. The
HSTS definition is O for the first byte transferred and 1 for every byte there after.
T1 delay is set to be 2000ns for all bytes so that USTD and TRI do not have to
be changed based on HSTS. For a 2000ns delay TRI=0 and USTD=0.

10.Write 0xAO to AUXRB sub-register of AUXMR at offset 5, 0x1500. This clears
the

TRI bit which it at bit 2.

11. Write OXEO to AUXRI sub-register of AUXMR at offset 5, 0x1500. This clears
the

USTD bit which is at bit 3.

12. Write 0x82 to AUXRA sub-register of AUXMR at offset 5, 0x1500. Clearing
bits 4-2 keeps stuft for an EOS from being used. Setting bit 1 and clearing
causes mode to be selected where there is a RFD hold off after a byte with an
EOL is sent. This asserts the NRFD signal to keep data from being transmitted
to it until a command is sent to the AUXMR to clear it and allow data
transmission. If this gives trouble write 0x80 instead of 0x82 to cause it not to
do RFD hold off. See table 3-28.



13. Write 0x00 to AUXMR at offset 5, 0x1500. This takes the NAT7210 out of idle
mode and its ready for action.

Program Function main()

The program consists of a main loop that runs forever and a series of if
statements that determine if the DIR register should be read at offset 0, 0x1000
and its contents put into a variable.

First a Ox03 is written to AUXMR to take off the RFD hold off if there is one from
the last byte received.

The first if statement tests for if bit 2 of ADSR register at offset 4, 0x1400 is set.
This bit tells if the NAT7210 has been addressed to be an active listener.

The next if statement tests for if bit O of ISR1 at offset 1, 0x1100 has been set.
This bit tells if data has been received.



GPIB.h

/* GPIB header file that defines the internal
* registexrs of the the NAT7210 GPIB controller */

#ifndef _ GPIB_H
f#define _ _GPIB_H

/* the registers are mapped to extenal memory of the HC12

1

* microcontroller from 0x1000 to 0x1800 */

#define
#define
#define
#define
#define
#define
#define
#define
#define
f#fendif

_OFFSET
GPIBO
GPIB1l
GPIB2
GPIB3
GPIB4
GPIBS
GPIB6
GPIB7

(*
(*
(*
(*
(*
(‘*
(*
(*

0x1000
(unsigned
(unsigned
(unsigned
(unsigned
(unsigned
(unsigned
(unsigned
(unsigned

char
char
char
char
char
char
char
char

*) (_OFFSET+0x0000))
*) (_OFFSET+0x0100))
*) (_OFFSET+0x0200))
*) (_OFFSET+0x0300))
*) (_OFFSET+0x0400))
*) (_OFFSET+0x0500))
*) (_OFFSET+0x0600))
*) (_OFFSET+0x0700))

Page 1
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gdemo.c
f#include <hcli2.h>

#include <DBugl2.h>
#include <GPIB.h>
void initialize(void);
void main()

{

char data;

initialize();

while (1)
{
GPIB5=0x03; /* finish handshake */

if ((GPIB4 & 0x04) == 1) /* listener active */

DBuUgl2FNP->printf("I am in the first if loop\n"); /*FRANCIS ADDED THIS LINE
*/ .
{
if ((GPIBl & Ox01l) == 1) /* data received */
DBugl2FNP->printf ("I am in the second if loop\n"):; /*FRANCIS ADDED THIS
LINE*/
{
data=GPIBO;
DBugl2FNP->printf("data=%h\r\n%,data);
}
}
}
}

void initialize()

{

1.GPIB5=0x02; /* write to AUXMR to make sure PON is asserted to put NAT7210
* in an idle state*/
2.GPIB5=0x50; /* put in page-in mode in order to write to hidden register ICR2*/
3.GPIB3=0x81; /* write to ICR2 to set the MICR bit to allow ICR to be set so as
* configure the NAT7210 to run at 10MHz*/
4.GPIB5=0x25; /* write to ICR in order to configure the NAT7210 to run at 1OMHZ*/
5.GPIB4=0x31; /* write to ADMR to set NAT7210 to be in normal dual addressing mode
*/
6.GPIB6=0x01l; /* set device address to be lucky number 1 */
7.GPIB6=0xEO; /* disable secondary addresing */
8.GPIB3=0x00; /* set serial poll status byte to be 0x00 */
9.GPIB5=0x70; /* write the hidden PPR register in order to disable parallel poll
* response */

/* set Tl delay to be 2000ns for all bytes sent */
10.GPIB5=0xA0; /* clear TRI bit of the AUXRB register */
11.GPIB5=0xXE0; /* clear USTD bit of the AUXRI register */

GPIB5=0x49; /*set CHES and NTNL */

GPIBS=0x51; /*issue hldi command*/

12.GPIBS=0x80; /* normal handshake mode */

13.GPIB5=0x00; /* unassert PON in order to enguage controller */
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Serial Port Init

Initializes the selected serial port to the specified settings.

Click the parameters for more information.

flow control ete.
buffer size ——

port humber SERTRL
baud rate - i

data bits -—J_l'_—

stop bits

parity

ertor code

flow control etc.
flow control etc. contains the following parameters.

Input XON/XOFF

See the Handshaking Modes topic for more information.
Default value: FALSE

Input HW Handshake

On the PC and SPARCstation, this parameter corresponds to Request To Send (RTS)
handshaking.

Default value: FALSE

input alt HW Handshake

On the PC, this parameter corresponds to Data Terminal Ready (DTR) handshaking. On the
SPARCstation, this parameter is ignored.
Default value: FALSE

Output XON/XOFF

See the Handshaking Modes topic for more information.
Default value: FALSE

Output HW Handshake

On the PC and SPARCstation, this parameter corresponds to Clear to Send (CTS) handshaking.

Defauit value: FALSE

Output alt HW Handshake

On the PC, this parameter corresponds to Data Set Ready (DSR) handshaking. On the
SPARCstation, this parameter is ignored.
Default value: FALSE

XOFF byte

XOFF byte is the byte used for XOFF (AS).
Default value: 0x13

XON byte

XON byte is the byte used for XON (*Q).
Default value: Ox11E



Parity Error Byte

If the high byte is non-zero, the low byte is the character that is used to replace any parity errors
found when parity is enabled.
Default value: 0

buffer size
buffer size indicates the size of the input and output buffers the VI allocates for communication through

the specified port. You may need to use larger buffers for large data transfers. The buffer size is in bytes.

Default value: 0

port number

See the Port Number topic for a list of valid port numbers.
Default value: 0

baud rate

baud rate is the rate of fransmission.
Default value: 9600

data bits

data bits is the number of bits in the incoming data. The value of data bits is between five and eight.
Defauit value: 8

stop bits

stop bits is O for one stop bit, 1 for one-and-a-half stop bits, or 2 for two stop bits.
Default value: 1 bit

parity

parity is 0 for no parity, 1 for odd parity, 2 for even parity, 3 for mark parity, or 4 for space parity.
Default value: 0

error code

error code is -1 if baud rate, data bits, stop bits, parity, or port number are out of range, or if the
serial port could not be initialized. Check the values of baud rate, data bits, stop bits, parity, and port

number. If these values are valid, verify that the serial port has been initialized. Refer to the Error Code
topic, for a list of error codes.

You can connect errar code to one of the error handler Vis. These Vls can describe the error and give

you options on how to proceed when an error occurs. For more information on using the error handler
Vs, refer to Error Handler Vis.

Some error codes returned by the serial port Vs are platform-specific. Please refer to your system
documentation for a list of error codes.



Serial Port Read

Reads the number of characters specified by requested byte count from the serial port indicated in port
number.

Click the parameters for more information.

post number l__,g._-f-,‘}g string read
requested byte count s efrot code

port number
See the Port Number topic for a list of valid port numbers.

requested byte count

requested byte count specifies the number of characters to be read. If you want to read all of the
characters currently at the serial port, first execute the Bytes at Serial Port VI to determine the exact
number of bytes ready to be read. Then use the byte count output of that VI as the requested byte
count input to the Serial Port Read VL.

string read

The VI returns the bytes read in string read.

error code
If error code is non-zero, an error occurred Refer to the Error Code topic, for a list of error codes.
You can connect error code to one of the error handler Vis. These Vis describe the error and give you

options on how to proceed when an error occurs. For more information on using the error handler Vls,
refer to Error Handler Vls.

Some error codes returned by the serial port Vis are platform-specific. Please refer to your system
documentation for a list of error codes.

I-3



Serial Port Write

Writes the data in string to write to the serial port indicated in port number.
Click the parameters for more information.

port number D{._\.__\_'
string to write -~~~ .’%— etror code

e

ia3a) port number The parameters for serial port numbers depend on the platform that you use: Windows,
Macintosh, or UNIX. Refer to Windows Serial Port Numbers, Macintosh Seria) Port Numbers, or UNIX_
Serial Port Numbers for more Information about each platform.

C225

[ )

=='=a string to write is the data to be written to the serial port. If the number of characters in string to
write is greater than the buffer size specified in Serial Port Init, the number of characters equal to the
buffer size will be written.

22+] If error code is non-zero, an error occurred.

You can connect error code to one of the error handler VIs, which describe the error and give you
options on how to proceed when an error occurs.

Some error codes returned by the serial port VIs are platform-specific. Please refer to your system
documentation for a list of error codes.



