
Y L'ft x Ĉt-C-OwC-CL VVtfvo -\4-l “ |

Francis Martinez
Matthew Nunez

Steven J. Padilla
Revision 3

May 9, 2001

Contents:
Introduction...1
Clock Recovery/VME Card... 3
Comparator Circuit..5
Altera Design..9
GPIB Interface.. 15
RS 232 Interface...20
LabView GUI Software... 23
Conclusion... 26
User Manual... 28
Maintenance Manual..33
Trouble-shooting Guide.. 35

Appendices:
Appendix A.. Tinning Analysis
Appendix B...System Integration
Appendix C...Altera Design
Appendix D.. VME Layout

Appendix E... 50 Ohm Drivers

Appendix F... HC12 Daughter-board
Appendix G................................Differential Line-receiver Schematics
Appendix H.. NAT7210 Data
Appendix I..LabView Data

Introduction

The output of the Very Large Baseline Array (VLBA) tape recorders is

made up of 24 differential digital data signals plus a differential clock signal for

each of the channels. The operational bandwidth of these signals is from

100Khz to 4.5Mhz and is transmitted over 100 feet of cable. The VLBA correlator

uses the clock signal from each channel to decode the data signal into a clean

serial data stream. The signals come from the headstack, the collection of

magnetic heads that play and record the data, then are amplified and filtered and

sent to the clock recovery/driver board. An accurate operation of the VLBA

recording/playback system depends on the correlator’s ability to decode the data

stream with the clock recovery board.

This project consists of designing and building a test fixture to characterize

the performance of the clock recovery/driver board in the lab. Two of the 32

channels need to be compared to one another. Given the same data input, each

of the 32 channels should have a similar output, (within the present error-rates).

If the channels have some sort of difference between them, a counter will count

that as an error. An indicator of error rate difference between the channels will

be provided. A maximum error rate of 10*3 (approximately 22 kHz of the 4.5 MHz

signal) is acceptable. Once this error rate has been detected, an indicator will

flag telling the user that an unacceptable error rate has been detected. It can be

deduced from this information that one of the two data streams are incorrect and

that one of the two clock recovery circuits may not be functioning properly. All

circuit designed must be able to function properly within the bandwidth of the

I

data signals. A method of simulating the 100* long cable impedence must also

be designed and implemented.

A computer interface including a Graphical User Interface (GUI) will also

be designed to allow the operator to select the two channels to be compared. A

real time error rate will be displayed at all times to allow the operator to analyze

the error rate at any moment in time. Another option will be available to allow the

user to compare each channel to all the-other 31 channels. A report file will be

generated containing the data generated from the comparison of all 32 channels.

2

Clock Recovery/VME Card
The clock recovery board is a significant subsystem to the entire correlator

system at the NRAO. A functioning clock recovery circuit is crucial to the

operation of the VLBA recording/playback system. Because of this, it is

necessary to test the clock recovery circuits to determine if they are functioning

properly.

The purpose of the clock recovery board is to take a serial data stream,

which is out of sync, and to recover a clock signal from it. Once the new clock

has been recovered, the clock is used to re-sync the existing data. This allows a

“noisy” and un-clocked data signal to be input to the clock recovery board and

the data signal will be output from the board re-clocked with minimal noise.

The comparator circuit and all its associated parts are to be wire-wrapped

on a standard VME wire-wrap card. The VME card is being used to house the

test circuit, but its bus is not being utilized. The purpose of the VME card is to

house the test circuit in a concise and organized manner and to provide the test

circuit with VCC and ground. Therefore, the VME card had to be equipped with

the circuit components and all necessary components to interface it with the

computer.

To interface the test circuit with the computer, a GPIB controller was used,

and thus, this had to be mounted to the VME card. However, it was mounted

directly to the HC12 evaluation board which was mounted to the VME card. To

interface the test circuit to the NRAO circuitry, a set of clock recovery connectors

was necessary to input the clock recovery data to the test circuit. To input the

3

test data stream into the NRAO circuitry, the data has to be input to the parallel

introduce card. This also requires the necessary connectors for the parallel

reproduce. The VME card was also equipped with the 3 Altera chips that were

used to house the multiplexors and the comparator circuit.

The final components that were installed on the VME card were an array

of differential line receivers. Before the data can be compared using the

comparator circuit, the data must be manipulated so that it can be manipulated

by the comparator circuit. The difficulty arises from the fact that the output from

the clock recovery card is differential. Due to this, a differential line receiver must

be used to take this differential data and convert it to single-ended data. This

The line receivers also required D flip-flops, pull up resistors and terminating

resistors to allow them to function correctly. Once the receivers were complete,

the data was single-ended, and thus, able to be compared using the comparator

circuit.

4

Comparator Circuit

To determine the error rate of the two data signals, an Altera signal

generator was used to produce a data stream. This data stream was injected

into all 32 data signals through the parallel reproduce board which takes the data

stream and amplifies it to be fed into the clock recovery board. Since the same

data stream is to be input to the parallel reproduce board, all 32 differential data

streams coming out of the clock recovery board should be identical. Because of

this fact, the data exiting the differential line receivers are also identical and can

be checked for errors. Theoretically all 32 data streams should be identical and

clocked together. However, if one of the clock recovery circuits is not operating

correctly, the data could be out of sync and incorrect.

Because of the identical data streams, it is possible to do a bit-by-bit

comparison to determine if the output data is identical from all 32 channels. To

perform this analysis, the most appropriate and most obvious method seemed to

be to compare the two data streams directly. It appeared that an XOR gate could

be used to perform this task since the output for an XOR gate is high when a 0 or

1 and 1 or 0 were present. This would allow us to identify a non-identical pair of

data.

The core of the comparator circuit is the XOR gate, however there is some

extra discrete logic necessary to generate an error rate. A 2A17-bit counter (total

bit counter) is used to count the total number of sets of bits that have been

compared. The 17th bit is used as an “overflow bit” that will tell the HC12 that it

has counted that high. As the total bit counter is counting, a second counter, the

5

error counter, is also performing a count. This counter is being driven by the

“highs” being output by the XOR gate. The error counter is counting the total

number of errors in the two streams of data. At the output of the error counter is

also a 16-bit latch. When the 17th bit of the total counter overflows, it tells the

latch at the error counter to latch the value in the error counter. The HC12 can

then retrieve this value and determine an error using the value in the error

counter and the highest count the total counter will count to before overflowing.

The HC12 then resets all necessary counters and latches and the process

repeats itself.

The HC12 is to used memory-mapped I/O to access the different

components of the test circuit. Because of this, the comparator circuit has also

been given an address range to call it up without having to confuse it with the

other components of the system. Because of this, a 3:8 decoder was used to do

this. To turn the decoder on, the E-clock has to be high and the read line has to

be low. The A, B, and C bits on the decoder also correspond to address bits

A15, A14, and A13 from the HC12’s address bus. The combination that gives 0,

1, 0 for A15, A14, A13 respectively enables the data to be read by the HC12.

This combination allows the comparator circuit to be enabled with an address

range of $4000 to $4FFF from the HC12. This combination will write a high to

the output pin 2 of the decoder chip. This bit is tied to an array of tri-state buffers

that are connected at the output of the latch. This allows the data to be kept off

of the bus until the HC12 asks for it to be read.

6

The comparator circuit poses many timing issues that must be accounted

for to allow the comparator circuit to function correctly. If the HC12 tried to ask for

the data before it was correctly latched, the data the HC12 read might have been

incorrect. The error latch had to be equipped with a way to let the HC12 know

that it was latching the data and was not ready to be read. To do this, a 16-bit

counter was used, with the clock input being one of the recovered clock signals

from the clock recovery board and the high bit on the counter being used as an

overflow line. When the total error counter overflows and tells the latch to latch,

the overflow line resets the counter which has been counting and has a high at

its high bit (overflow bit). This high bit is what is being used to tell the HC12 that

he data is ready. Once the overflow bit comes from the total bit counter, the

“busy” counter begins to count. Once the high bit on the counter goes high, the

HC12 knows that the data is ready to be read. The high bit is also tied through

an inverter to the enable on the busy counter which disables the counter when it

goes high but keeps its last count on the output pins of the counter. Therefore,

the high bit (or busy bit) on the busy counter stays high whenever the data is

valid. The HC12 can retrieve the data at any time that the line is high. Once the

total bit counter overflows again and tells the latch to latch, it again resets the

busy counter. When the busy counter is reset, the high bit is turned low which

enables the counter again due to the enable line seeing a high through the

inverter. The process is continually occurring and thus the HC12 knows only to

retrieve the data when the busy line is high.

7

The total counter overflow line is also used as a way to ‘write’ the latch

and reset the error counter. However, the error counter must be cleared after the

latch has been latched. To do this, both the error counter and the latch ‘write*

line were tied to the total counter overflow line. However, the line that went to the

error counter reset branched from the total counter overflow line and was

equipped with a series of Altera LCELLS between the overflow line and the reset

line. This causes a small delay between when the latch has been written and the

error counter has been reset. This allows the latch to be written before the error

counter is reset so the data is in the counter long enough to be latched.

The latch must also eventually be reset. The method in which this is

performed is by using the HC12. When the HC12 polls the latch for the data, the

address values to access the data contain the bit pattern ‘010.’ Because of this,

the 1 can be used to reset the latch. This means the HC12 will read in the data

from the error counter latch and then it will reset the latch using the same

command from the HC12.

8

Altera Design

One of the requirements of this project was to build a multiplexor to select

two channels, out of thirty-four to compare to each other. One of the options that

presented itself involved a circuit that contained many pieces of discrete logic

interconnected to each other on the back of the wire-wrapped VME board.

Because of the complexity involved and the probability of error involved with wire

wrapping each of the chips to each other, it was easy to decide to look at other

options. The option that we felt fit best for the project was the use of Altera

programmable logic. By using programmable logic, the complexity of the

multiplexors was gone and the size was whatever was needed. After discussion,

it was also decide that there were other parts of the project that would be much

easier to accommodate into an Altera chip. These parts of the project included

the circuit that makes up the comparator circuit and the random bit generator. In

this section we shall discuss the design steps taken in the design of the Altera

portion of the circuit.

The first part of design of which Altera was chosen to implement were the

multiplexors. We were provided with a circuit that could be used as a multiplexor

for all 32 channels. Using Altera to design a new multiplexor as a single circuit

seemed as the best option because of the time it would save and the fact that it

is much less complex than wiring together digital logic. The multiplexors were

written as a text design file in Altera following a basic form and then applying this

form for the rest of the design. Each multiplexor is made up of thirty-four inputs,

9

six select lines, which select the correct channel, and one output. The basic form

of the multiplexor looks like this:

IF select[5..0] = B"000000“ THEN Output 0 = Input 0;
ELS1F select[5..0] == B"000001" THEN Output 0 = Input 1;

The first line states that if the six select lines contain a binary low, all zeros

then the output is whatever is at the first input (Input 0). Next, if there is a one at

the lowest bit of the select lines (Select 0), then the output is whatever signal is at

the second input signal (Input 1). There are thirty-two more lines like the second

one that serve to select the correct channel.

The next step in the design of the multiplexors was to set two of them up

to be ready to accept data. Each differential signal contains both a channel and

clock signal. To get two different outputs to compare to each other, two

multiplexors were placed together on a single chip with the same inputs going to

each. Next, a new device was built to select first the multiplexor to be used and

next, select the channel to be used. This device has seven input lines with twelve

output lines. If the first input line is low then the top mux gets the information from

the lower six input lines through the first six output lines. If the first input line is

high, then the second mux gets the select data from the lower six input lines

through the last six output lines of the select device. The basic form of this

multiplexor design is illustrated in figure 1.

10

11

Figure 1: Basic Altera Block Diagram

This basic form was followed for both the channel and clock multiplexors with the

names of the inputs changed to match the clock.

During the design of the select device there were problems with keeping

the data from the non-current bits (the lower six if the first input is high and the

higher six if the first input is low) valid. What was happening was whenever the

first input switched from either low to high or high to low, the data that was

current before the change was no longer valid once the first input changed. At

first, we were unable to get anything at the output of the non-current bits. With

experimentation we were able to get something that looked to work by setting the

non-current bits to their previous value when they were not selected.

Unfortunately this data oscillated between low and high rapidly between the

actual changes in the data. The solution to our problem came by using a D flip

flop as a latch to keep the data in the non-current output bits as valid. The way

that the circuit now looks like in an Altera .gdf file is 32 inputs going into two 32-

channel multiplexors. There is a third device that is the select box that controls

what each output is.

Two other parts of the project were also implemented in Altera. The first of

these was the comparator circuit, which is connected to the outputs of the

multiplexors. The design of the comparator circuit proved itself to be one of much

complexity with regard to the necessary amount of discrete logic needed to

implement it. Because of this, Altera was used to implement the circuit in an

organized and concise manner. The error and total bit counters were written in

Altera using a .tdf format. A symbol was created for each to simplify the

construction of the circuit in Altera by the use of a .gdf (graphical design file).

This allowed us to easily draw the circuit and insert discrete logic parts wherever

necessary. The latch for the error counter was also written as a .tdf format and

then turned into a symbol. The Altera format allowed for a complete redesign of

the circuit if it did not work. This was possible because of Altera’s simulation

package. This meant the circuit could be tested before it was built. This also

meant that incorrectly wired circuits could be re-wired in the Altera package with

minimal effort and time. The use of Altera for the comparator circuit minimized

the complexity and design time of the comparator circuit.

The next part of the project that was designed in Altera was the random

pattern generator. The test pattern generator for this project is a pseudo-random

bit generator. The output of the test pattern generator is a pseudo random

pattern 256 bits long. After producing the 256-bit pattern the test pattern

generator will repeat this pattern indefinitely. To allow the test pattern to be

12

viewed on an oscilloscope a trigger pulse is produced every time the test pattern

repeats. The test pattern generator is implemented using an 8-bit shift register

with taps taken from the outputs of the third and eighth flip-flops, XORed and fed

back into the input of the shift register. In order for this circuit to run the shift

register is loaded with 80 hex upon reset. Once the reset is unasserted, the

external clock runs the shift register producing the test pattern. Every time

contents of the register become 80 hex, the trigger pulse goes high until the

contents of the register are changed with the next clock pulse. The ALTERA

design, the simulation and the actual output of test pattern generator are

contained in the appendices.

Now that everything for the project was designed, it was time to put

everything together and get it to work. The first step in this process was to select

which device to use for the project and then, how many of these devices it would

take to implement the project. At first the total number of input and output pins

were considered to be the basis in deciding which device to use. In the beginning

of the project the design was much simpler and it was totaled to be about 91

inputs and 2 outputs. After the actual design, the size of the circuit came out to

actually be _ inputs and _ outputs. Using this information, we needed an Altera

chip with a lot of input/output pins and looking through the available devices we

felt that we would need an Altera chip with 160 I/O pins. After thinking about it,

we decided that the best option would be to split up the project into several

smaller chips. Based on the facts that we had used them before and that the

programming adapter was available for them, we went with 84 pin Altera chips.

13

The first device that was attempted was the EPM7128ALC84 chip that

was used in EE 308, a familiar chip. When trying to get the project to fit onto the

device it kept on failing and refusing to work no matter how many variations were

tried. After with consulting with one of the Professors in the EE department, Dr.

Stephen Bruder, it was evident that the device chosen was not the best fit for the

project. Using Dr. Bruder’s advice to choose a device from the Altera flex family,

the new device chosen was the EPF8282ALC84-4 chip from the Altera Flex 8000

family. Using this chip though would require difficult programming steps using

JTAG plus the Flex chip is a destructible SRAM device. In the end, the chip

chosen was the EPM7128SLC84 chip. Simulating the project in Altera and

setting the device setting to the new chip and making sure that it would compile

tested the fit of the new device. This was a very convenient way to test the fit of

the project without actually having the chip. Now it was easier to order the correct

device, knowing what device fit correctly under the specification of 84 pins.

After deciding on the device that we were going to use, the project could

now be split up onto several of the 84 pin Altera devices. Because of the amount

of input pins required and the select control lines and the outputs it was decided

to implement each multiplexor on separate chips. The pins on each chip were

forced to set values in order to be able to change the project without any change

in chip layout. The comparator and the random pattern generator were

implemented onto a third chip.

14

GPIB Interface

The GPIB interface provides a standardized interface between to the clock

recovery board test set and the computer. The GPIB interface was chosen due to

design requirement that any interface used for the project should be able use a

computer system assembled from commonly available parts. The customer was

particularly concerned that the interface card should be commonly available and

be able to be controlled by commonly available software. A GPIB interface lends

itself well to filling these requirements. The GPIB interface card can be installed

in any modern computer because it uses a PCI slot and is compatible with any

common operating system. Another point in favor of the GPIB interface is that

Labview has tools that allow the interface to be easily programmed for the

project’s needs. The use of the use of GPIB allows for future expansion of the

test set’s capabilities as part of a computerized workbench. Other options

considered instead of if GPIB were a DAQ card and a RS232 interface. The DAQ

card was not chosen because it was not standardized the way that the GPIB is.

The RS232 interface was not chosen because although it a very standard

interface, it is very slow as compared to the possible 1 Mb/s transfer rate of the

GPIB interface.

The design of the GPIB interface is divided into areas of hardware and

software. The hardware portion of the interface consists of a Motorola HC12 and

a National Instruments NAT7210 GBIP controller and its associated interface

circuitry. The HC12 is the central controller of the test set. It selects the two

channels to be compared using the MUX, gathers error count data and controls

15

the GPIB interface. The HC12 is interfaced to the rest of the test set using

memory mapped I/O. The MUX, the error counter, and the GPIB controller are

read from and written to as if they were memory addresses. In this way the

NAT7210 is configured and controlled using its internal registers.

The hardware setup for the GPIB interface consists of an interface

between the HC12 and the NAT7210. The GPIB controller’s internal registers are

selected using three register select lines that are feed directly into the chip. The

register select line values from 0-7, read, write, and chip select control the

access to the internal registers. The internal registers configure the GPIB

controller and control what the chip does. The HC12 has multiplexed data and

memory lines on the higher order address lines on port A. This makes it

necessary to latch the address data on these lines before the data is output to

memory. The latch is set using the rising edge of the E-clock. The E-clock is a

special clock signal that dictates the timing of the various portions of a memory

access. The output of the latched address lines is then put through a decoder to

generate an active low chip select signal. Any latched address from 10OOh to

1700h will generate a chip select signal. Address lines A10-A8 are fed directly

into the NAT7210 register select lines. The R/W line of the HC12 must be fed into

some logic in order to produce separate active low read and write signals for the

GPIB controller. The active low reset signal for the HC12 is inverted so that its

can reset the GPIB controller. In order to simplify the wiring of the circuit and

speed up development, the logic was implemented using ALTERA.

16

the test set. The GPIB bus transceivers were wired to the bus controller as

shown in the documentation for the controller chip. The interface between the

controller chip and the HC12 was tested. It was confirmed that the HC12 could

change the values of the internal registers of the controller chip and the values of

these registers could be read back. The wiring for the bus transceivers was

checked thoroughly but proper operation of the transceivers could not be

checked until the controller chip was programmed. An initialization and test

program for the GPIB interface was written for the HC12 using the instructions

contained in chapter 5 of the documentation for the NAT7210 GPIB controller.

Unfortunately the GPIB interface did not operate correctly. The computer was not

able to detect the NAT7210 as listener on the bus. Possible causes for this

problem could include faulty bus transceiver circuitry, improper configuration of

the computer, or a bug in the HC12 firmware. Due to time constraints we were

unable to troubleshoot the interface. Instead we switched to a serial port interface

between the computer and the test set.

In order to save time the serial port interface was used. The HC12 has a

serial port built in which made it unnecessary build any new hardware.

Assistance with use of the serial port and sample code were easily obtained from

Dr. Rison. On the other hand the assistance with the GPIB interface was very

hard to come by. There was nobody on campus or at the NRAO who had any

experience programming the NAT7210. Technical support at National

Instruments refused to provide source code and would only answer specific

programming questions. The serial port was able to provide all the same

18

functionality as the GPIB with only the loss of speed and the ability to include the

test set with other GPIB controlled instruments as part of a computer controlled

workbench. Labview also supports serial interfacing with easy to use tools similar

to the one used by the GPIB. This combination of circumstances made the serial

port interface the best overall choice. To conclude, after having dealt with the

GPIB on this project, a DAQ card or serial communication would have made a

simpler and quicker solution.

19

RS 232 Interface
As already listed in the previous section about GPIB, it was decided near

the end of the project that using the onboard serial port of the HC12 would be a

more viable option than designing an entire GPIB controller for PC control of the

test interface. One question that could possibly arise is why was the switch so

late and why wasn’t RS 232 an option in the beginning? The Usage of GPIB as

the PC interface was decided before the microcontroller to control it. Most

microcontrollers do not have the added features built in as the HC12 evaluation

board that was chosen for the project. In this section the usage of the RS 232

and code from the firmware will be discussed further.

On the Motorola HC12 there are two features meant for use in serial

communications. For use in the project, the SCI (serial communications

interface), which uses the onboard serial port and is compatible with a standard

PC serial port was used. To use the HC12’s SCI, it first needs to be set up. To do

this a zero needs to be written to the SCOBDH register (all register addresses are

contained in the header file hc12.h). Next, the baud rate for the port is to be set

up. This is done writing to the SBR12 -0 bits of the SCOBDH and SCOBDL

registers. First, set SB12-0 equal to 8Mhz (HC12’s clock speed) divided by 16 *

desired baud rate. For this project a baud rate of 9600 was chosen. Using the

previous equation it is determined that the number to be written to the registers

needs to be (8Mhz/(16*9600)) = 52.083 ~ 52. Now that the baud rate is set up

both the transmitter and receiver need to be enabled by writing to the SC0CR2

register. This register also needs to be written to determine interrupts. For this

20

project, no interrupts were chosen. Lastly a hex 00 is written to the SC0CR1

register to enable normal mode with 8bit communications and no parity, standard

serial port communications standards. The following set up code is as follows:

SCOBDH = 0; /* Setup Serial Subsystem *1
SCOBDL = 52; /* 9600 baud 7
SC0CR2 = OxOC; /* Enable transmitter and receiver, no interrupts 7
SC0CR1 = 0x00; /* Normal mode, 8bits, no parity */

After the SCI is setup there are two sets of code to communicate through

the RS 232 serial port. The first is the set of code that enables the HC12 to

transmit data over the port. The first step in transmitting data is to write the data

to be sent to the SC0DRL register. In this project the data sent is being sent as a

character. After writing the data to SC0DRL a while loop needs to be written to

wait for the transmit data register empty (TDRE, 8th bit of SC0SR1) to be written.

If the transfer is interrupted, there is an error and ones are present to the lower

four bits of the SC0SR1 register. In the program for this project there is an if loop

to check the SC0SR1 register to identify an error.

The next piece of code that is used to communicate through the HC12’s

serial port is the code to receive data from the serial port. As with the transmitting

portion of this project, the receive code is written to receive data in character

form. To receive the data, a while loop is written to wait for the data register full

(RDRF, bit 6 of SC0CR1) to be cleared. Next the data can be read from the

SC0DRL register. The following piece of code features a character written to the

serial port and then two lines to receive a character from the serial port. The last

lines of code are the error identifier.

21

22

Char character = c;
/* Transmit Data */

SCODRL = character; /* Send the letter that is stored in character *1
while ((SC0SR1 & 0x80) == 0); /* Wait for TDRE 7

/* Receive Data 7
while ((SC0SR1 & 0x20) == 0); /* Wait for received character 7

character = SCODRL; I* Read Character from SCODRL 7

if ((SC0SR1 & OxOf) != 0){
DBug12FNP->printf(HError Detected\n"); /* Error Identifier 7}

The firmware, written in C, for the HC12 using the SCI was written using

pieces from the above code. The first part was the setup code. After this the

pieces of code used for transmitting data and for receiving data are used where

they are needed to receive commands from the PC or to send results to the PC.

The next section of this paper features a discussion of the PC side of the

software, which was written in LabView.

LabView GUI Software

After choosing a type of interface to communicate with the test fixture the

control software for the PC was to be written. This control software was written

using National Instrument’s LabView graphical software. LabView was chosen

because it has built in functions to control different kinds of interfaces plus it is

something that the group, giving the group familiarity with the way that it works.

Early in the project LabView was being used to control the project via the

GPIB interface. A test program was written to first initialize the GPIB bus, setting

the PC as the controller with the test set as either talker or listener based on what

was needed at the time. This first GPIB program was written using commands

from the GPIB tools out of the communications toolbox of LabView. GPIB

standard 488 was chosen as opposed to 488.2 because it was more

straightforward and there was no need for the added functionality of the 488.2

standard. The tools used in the test program were GPIB initialize, GPIB read and

GPIB write. These three commands were to be used together with other LabView

tools to build up the rest of the function until the switch to the RS 232 interface.

Fortunately the switch to RS 232 serial communications was no too much

of a switch in the LabView portion of the programming. The basic tools to

accomplish RS 232 are in the same communications toolbox in LabView as part

of the RS 232 tools. The tools that were used included write to serial port, read

from serial port and bytes at serial port. The last mentioned tool was used to

know how many bytes to read from the serial port, and writing that number to the

read from serial port. Using this tool, the amount of bytes read from the serial

23

port does not have to be limited or wasted by guessing a number to represent the

number of bytes.

The first program written was for the sole purpose of establishing

communications with the serial communications interface of the HC12. This first

program was an ‘echo’ program. First it writes a character to the serial port. The

HC12 software receives this character and stores it into a character and lastly

sends the character back to the serial port. LabView now reads the character at

the serial port as it is ‘echoed’ back from the HC12. This program was then

changed to provide different outputs based on the character sent to it.

After the test program was written it was time to write the main program in

LabView. The first interface that was originally written for use with GPIB was still

good. In the graphical portion of the project there are two boxes with arrows to

select channels A and B to be compared to each other. Using LabView the

numbers were limited to be between 2 and 34 (the usable channels from the

recorder). These numbers are then written to the serial port and interpreted by

the HC12. The HC12 now uses the memory mapped IO to write the address of

the Multiplexors. The data is now sent to the comparator circuit of the project.

Once the comparator circuit completes receiving its error rate it lets the HC12

know by raising a bit. Next the HC12 takes the error rate stored in memory and

sends it through the serial port to LabView where it is displayed in another box.

The instructions for using the LabView Software are listed on the User

Instruction Manual. All of the information regarding the usage for the LabView

functions such as the RS 232 Write and RS 232 Read functions are included in

24

the appendix section. Additional information about the LabView GUI is included

in the User Instructions portion of this paper, which follows the conclusion.

25

26

Conclusion

Overall the completion rate of the project was satisfactory. What was finished

turned out to be:

• VME Board Wrapping complete

• HC12 Modifications Complete

• Altera Logic Written

• Altera JTAG Programmer Complete

• All Individual Logic Tested and Functional

• HC12 SCI Initialization Complete

• LFSR Logic Design Complete

The parts left to be completed for the project include:

• LabView Software Started

• Altera Chips to be programmed

• All Devices to be integrated and tested

There were parts of the project that perhaps could have been better

completed using different approaches. One of these of course was the choice for

the computer interface. One of the possibilities in the beginning was the usage of

a Data Acquisition Card controlled by LabView. The customer required the usage

of a GPIB controller in order to have a standard communications device. The

GPIB controller chip was chosen before the HC12 microcontroller so the obvious

option of using it’s included serial communications interface did not present itself

until later.

Another aspect of the project which could have been better conceived was

the Altera implementation. The selection of devices for the project is where

problems arose. The first chip that was to be used could not handle the type of

logic that was required. Going by the advice of a professor the chip was changed

to the Flex family. This chip was selected without much knowledge of how it

worked. The Flex device ended up being useless because it proved very difficult

to program and plus it was built up of destructible SRAM. In the end we found

success with the use of a chip from the MAX 7000S family, almost the same as

the chip that we originally chose, from the MAX 7000A family.

On a positive note, large portions of the project were completed and tested.

Portions of the project required many hours of work. These included the wire

wrapping of the VME board, circuit design and construction, software writing and

design and Altera design. There were many things to learn from this project from

integrating different aspects of electrical engineering to learning about designing

the device to work at 4.5Mhz and learning how data is managed for scientific

use.

27

29

Astronomy Observatory and includes references to necessary equipment located

at the NRAO’s Array Operations Center in Socorro, New Mexico. The senior

design group is not responsible for changes made to the program or available

equipment not prepared by them.

Section I: LabView Controller version 1.0

The PC controller for the NRAO Test Fixture is controlled using National

Instruments LabView software as an interactive graphical user interface using the

Serial Communications Interface RS 232 Bus of the HC12 as data acquisition

lines and as a control bus.

Starting the Program:

To start the program, first open the folder with the program file, NRAOTF, in it.

Next double click the file, LabView will automatically start up with the program.

The front panel of the program will appear and is now ready to be used.

Usage:

Now that the program is ready, the two channels to be tested against each other

can now be selected using the two boxes marked Channel A and Channel B

using the arrows to the right of the number. The box is limited to numbers

between 2 and 33, which are the channels associated with the recorder. Once

the channels are selected the program will execute testing once the arrow button

at the upper left of the LabView window is pressed. When the testing is finished,

30

the output sample of the error is listed to the left of the channel selectors. A

graphical histogram of the error is an option that may be graphed just below the

error. The selection of the channels to be tested against each other can be

changed at any time and then set to run again using the arrow button. A graphic

of the software panel is below as figure 2.

NRAQ.Clock Recovery Board Test Fixture Application

ChamdA
5 r — r

ChamdB
3?— I

Figure 2: software front panel

Section II: Altera Programmable Logic

The NRAO test fixture uses three 84 pin Altera programmable logic chips to run

the multiplexors and comparator circuit that select the channels to be tested and

then sample the data to compute the error. These three devices come already

affixed to the VME board that is inserted into the testing rack. The purpose of this

portion of the manual is for the unlikely purpose that one of the chips either

needs to be replaced or re-programmed. This part of the manual goes through

the process of replacing the chip as well as how to re-program a device.

Removing and Inserting the device(s):

All three of the Altera Programmable logic devices are 84-pin chips inserted into

84-pin sockets. They are in a row and numbered starting from the closest chip to

the digital logic chips on the board as U1, U2 and U3. Each socket has an arrow

pointing to where the top of the chip needs to be for proper operation. There is a

small dot at the top-center, of the chip as well as a small indentation in the top-left

corner of the chip to aid in lining up the chip with the socket. The chip should be

removed using a chip puller in order to minimize the chance of physical damage

to the chip and the socket. The chip should be inserted by first aligning the chip

with the arrow at the top of the socket and then gently pushing the chip into place

by pushing it gently at the center.

Programming a Device:

Included with the CDROM disc for this project is the programming files required

to re-program each one of the three devices that make up the project. The three

program files are located on the Altera directory on the CDROM disc. The file for

the chip U1 is titled u1_chanmux.pof and is the programmer file for the channel

multiplexor. The file for chip U2 is u2_clkmux.pof and is the file for the clock

multiplexor. The programmer file for U3 is u3_comparator.pof and is the file

associated with the comparator circuit and random signal generator portion of the

project. To program a device, plug it into the provided JTAG programming

device. In the Altera MAX+plus II software go to file and then open to select the

correct .pof file. Next select file again and go to name and select set name to

31

32

current file. Lastly, go to the Max_plus il menu option and select programmer.

Make sure that the JTAG device is plugged in and connected via the parallel port

of the machine. Now the program button can be pressed and MAX+plus II

software can be closed. It is important that each Altera program not be mistaken

for another. They are nearly identical but have differing pin layouts and if installed

in the incorrect socket will cause the test fixture to malfunction.

33

Maintenance Manual

Visual Inspection:

Place the VME board on a piece of foam material to protect the pins on the
underside.

Look for bent pins and loose or missing hardware.

Ensure all components are properly inserted in the VME card

Preparing for Operation:

Take care when inserting male connectors to female counterparts on the VME
card; improper care can damage the connectors or the VME card.

Ensure that the VME card is correctly seated in the VME bus.

When using extender card, take care when inserting extender card into VME bus.

During Operation:

Do not move any external probes around the board during operation due to
potential shorting.

After Operation:

Take care when removing connectors from the VME card; aggressive removal of
connectors may damage them or their point of installation on the VME card.

Take care when removing extender card and VME card from the VME bus.

Storage and Handling:

Avoid any direct pressure on the underside of the VME card; extreme pressure

can cause damage to the pins increasing the possibility for shorting the circuit or

other permanent damage to the card.

When setting down the VME card, ensure it is sitting on a piece of foam to
prevent damage to the pins.

DO NOT place anything on top of the VME card. This can cause extreme
damage to the card.

When storing the VME card, place a piece of foam to the underside of the card to
prevent damage to the pins during storage.

Routine Maintenance:

When replacing logic devices from the VME card, use proper chip pulling tools;

the lack of use of proper tools may damage the logic devices and the card.

When removing Altera chips for programming, use proper PLD removal tools;
using proper tools will minimize any damage to the Altera chips and Altera
sockets.

In the case of a missing logic device, always consult the schematics as to

the proper installation location on the VME card. DO NOT install any device on

the VME card without consulting the schematics first.

34

35

Trouble-shooting Guide
If the circuit seems to be working incorrectly (if data rates are
consistently high or error rates are very inconsistent):
Probe the card when the power is turned on to ensure there is a voltage of 5V at

the VCC pins and GND at the gnd pins.

If there are incorrect voltage readings on the VME card or no
voltage readings on the VME card:
Ensure the VME card and VME extender cards are properly seated in the VME

bus to ensure power is being supplied to the circuitry.

If the voltages are correct on the board but the circuitry is not
working properly:
Hook an oscilloscope to the “LSFR” and “Trigger” BNC connectors to display the

output of the LSFR “random signal generator.” The output should look similar to:

Picture

If the output from the LSFR appears to be correct, all the Altera chips should be

functioning correctly. This is concluded because the LSFR is housed in U3

which takes inputs from U2 and U1. Therefore, if U2 and U1 were not working,

U3 would not be giving a correct output. Static shock to an Altera chips can

erase its memory. When the Altera chip is shocked, usually it completely stops

functioning and not just specific functions. The differential line-receivers should

also be functioning correctly; this can be concluded since a “clean” clock signal is

required for the LSFR to function properly.

36

If the output of the LFSR appears to be incorrect:
Using an oscilloscope, monitor the output of any one of the differential line

receivers. The output from the clock pin should resemble the following:

Picture

The output from the data pin should resemble the following:

Picture

If the output from the differential line-receiver appears to be incorrect, refer to the

schematics and ensure that it is properly wired.

If the line-receiver is correctly wired:
Look at the inputs to the line receiver and ensure that they resemble the

following:

Clock Input
Picture

Data Input

Picture

If the input appears to be correct:

Replace the differential line-receiver and reinstall a new one while referring to the

schematics for correct installation location.

Once this has been corrected, proceed to check the remainder of the differential

line receivers and correct any errors found in the wiring and/or replace any

damaged line-receivers.

37

If the output to the line-receivers is correct:

It may be possible that the Altera chips are not functioning correctly. To check

this, Altera chips U1 and U2 must be checked first. The reason for this is they

are both inputs to U3. So if U1 and U2 are not functioning, U3 will not display a

correct output. Monitor the clock and data output from Altera chips U1 and U2.

This can be one by monitoring the following pins: Data pins: U1, pins 78 and 81;

Clock pins: U2, pins 78 and 81. The output to these pins should resemble the

following:

Data pins

Picture

Clock pins

Picture

If the output appears incorrect, reprogram the appropriate Altera chip(s) (U1 or

U2) using the instructions as detailed in the instruction manual.

If the output of U2 and U2 are correct:
It can be concluded that U3 is not functioning correctly. Reprograms U3 using

the using the instructions as detailed in the instruction manual.

If there are still problems with the circuit:
Check that all connections (including all connections to the computer) are

working properly, all discrete logic chips have Vcc and ground, or try to replace

and reprogram the Altera chips.

Timing Analysis
ciock _ n _ n _

Ttl Cntr l |< E } (T E
I|

~U~L

O X E

“ L T T .

>dXZ

h_n_
|

O X I

“LTL

XZXZ

1 _ T L

O X E

U l _

O X E

j" " L T L
1
S

X E X E

~LTL

JGEXJE

~i_n_
O X I

n
XZXZ

U T L

O D (Z X

Error Cntr 2 X X 0 X i X 1 X o “T

ID G 3 < D a H X D z x z x Z X Z X16 Count 8 .X.?. X 7 X 8 D C Z X

Busy

T V" " ' i ---- " 1V 3 _V '........r---
1|j

HC12 Addr -]-----------

A _

XX — —

A

'“ XTOO

X

v

A

” TY ~
Bus

I
HC12 Data j

.. ... A ... _A_.

Bus/Tri- i XX X 3
State Buffers j

i
{
1j
1|
j

*A 16 bit total error counter and 8 bit “busy” counter were
used here to allow the reader to see two overflow cycles
which would be impossible to show using the real counters Revision 0: 03/18/01

System Integration

______________ Bus______
Altera Signal

Generator
(LSFR - .wdf;

Parallel
Reproduce

Board

50-ohm
Drivers

0x1000-
0x1700

ip.-Flops

GPIB
Controller HC12

Windows
Computer

Line
Receivers

and
32 Data/Clock

Muxes
& Addr.
Latches

0x2000-0x2100

100’ Simulated Cable
Impedence

Busy

Comparator
Circuit

Error and
Total Bit
Counters

Latches/
50-ohm Tri-State
Drivers Buffers

0x4000-0x4FFF

Revision 3: 03/18/01

System Integration

* The muxes are also equipped with decoder circuitry (0x2000-0x2100)
The circuit is to be assembled and wire wrapped to a VME bus card Revision 6: 03/18/01

From Muxes

XOR

<
a
a
Q

C3

c3
Q

Line
Recei

vers
Q
o'o
TO

Clock A

Error
Counter

L-Cell

sO
■E<u>O O

Total Bit
Counter

Latch
Tri-State.
Buffer TOc

CO

2

8>—bo
count

Revision 0: 03/07/01

Com
parator Circuit

Block
D

iagram

Channel 0

Clunnel I

Cliannel2

Clunncl 3

Channel 4

Gunnel 5

Clunnel 6

Clunnel 7

Clunnel 8

Clunnel 9

Cliannel 10

Clunnel 11

Cliannel 12

G u n n e l 13

Clunnel 14

Cluimel 15

Cliannel 16

Cliannel 17

Cliannel 18

Cliannel 19

Cliannel 20

Cliannel 21

Cliannel 22

Cliannel 23

Cliannel 24

Clunnel 25

Cliannel 26

Channel 27

Clunnel 28

Clunnel 29

Clunnel 30

Clunnel 31

Clunnel 32

Clunnel 33

Select 0

Select 1

Select 2

Select 3

Select 4

Select 5

UI 78

25

58

Clwniiel A

Gunnel B

40

70

37

66

67

63

f Si
I 3

o

38

26

54

54

76*

73

V cciiH

A13

AI4

AI3

AI2

EClk

Read

Reset A

Clock A

Enuhle B

Reset B

Clock B

Clock 0 29

Ckick 1 56

Clock 2 77*

Clock 3 30

Clock 4 60

Ck>ck5 36

Clock 6 12*

Clock 7 24

C kK k 8 37

Clock 9 58

Clock 10 9

Clock 11 28

Clock 12 41

Ckick 13 4

Clock 14 40

Clock 15 65

Ckick 16 6

Ckick 17 66

Clock 18 7

Clock 19 67

Ckick 20 8

Clock 21 34

Clock 22 39

Clock 23 21

Clock 24 16

Clock 25 69

C kK k 26 18

Clock 27 19

Ckick 28 49*

Clock 29 57

Ckick 30 64

C kK k 31 22

C kK k 32 63

Clock 33 23

Select 0 62

Select 1 61

Select 2 25

Select 3 70

Select 4 15

Select 5 35

Select 6 13

U2

O

EP
F8

28
2A

LC
84

-4

78

38

Clock A

Ckick B

V c c itu

Data I

Data 2

Clock I

Clock 2

U3

BNC Cluck I

BNC Clock 2

BNC Data 1

BNC Data 2

Busy

ECU

Read

Shiftout

Stiingen_nact

Trigger

A15

AI4

A13

AI2

AH

AIO

A9

A8

70

50

29

30

39

*3 OOu
ftc
P3

!
76*

60

23

77*

28

80

59

38

26

Latch 0

Latch 1

Latch 2

Latch 3

Latch 4

Laich5

Lotch6

Latch 7

Latch 8

Latch 9

Latch 10

Latch II

Latch 12

Latch 13

Latch 14

Latch 15

Vccint

'<7

76*

54

35*

73

Enable A

Reset A

Ckick s A

Enable B

April 19, 2001 Steve Padilla
Senior Design Rev. 4

Altera Chip layout
31 Ckick a B

* = Changed since last revision

TITLE "34 Channel Mux design for Senior Design 7 December 2000“
SUBDESIGN mux34 (

i0 INPUT = GND
il INPUT = GNDi2 INPUT = GND
i3 INPUT = GNDi4 INPUT = GND
i5 INPUT - GND
i6 INPUT = GND
i7 INPUT = GND
i8 INPUT = GND
i9 INPUT = GND
ilO INPUT = GND
ill INPUT = GND
il2 INPUT = GND
il3 INPUT = GND
il4 INPUT = GND
il5 INPUT = GND
il6 INPUT = GND
il7 INPUT = GND
il8 INPUT = GND
il9 INPUT = GND
i20 INPUT = GNDi21 INPUT = GND
i22 INPUT = GND
i23 INPUT = GND
i24 INPUT = GND
i25 INPUT = GND
i26 INPUT = GND
i27 INPUT = GND
i28 INPUT = GNDi29 INPUT = GND
i30 INPUT = GND
i31 INPUT = GND
i32 INPUT = GND
i33 INPUT = GND
sO INPUT = GND
si INPUT = GND
s2 INPUT = GND
s3 INPUT = GND
s4 INPUT = GND
s5 INPUT = GND
oO OUTPUT;

)
BEGIN

IF s [5 0] == B"000000" THEN oO = i0;
ELS IF s 5. .0] == BM000001“ THEN oO = il;ELS IF s 5. .0] == B" 000010" THEN oO = i2;
ELSIF s 5. .0] == B"000011" THEN o0 = i3;
ELSIF s 5. .0] == BB000100" THEN oO = i4;ELSIF s 5. .0] == B”000101" THEN oO = i5;
ELSIF s 5. .0] == B" 000110" THEN oO = i6;
ELSIF s 5. -0] == B"000111" THEN oO = i7;
ELSIF s 5. .0] == B"001000" THEN oO = i8;
ELSIF s 5. .0] == B"001001" THEN oO = i9;
ELSIF s 5. .0] == B"001010" THEN oO = ilO
ELSIF s 5 ..0] == B"001011" THEN oO = ill
ELSIF s 5. .0] == B”001100" THEN oO = il2
ELSIF s 5. .0] == B“001101" THEN oO = il3
ELSIF s 5. .0] == B"001110" THEN oO = il4
ELSIF s 5. .0] = = B"001111" THEN oO = il5
ELSIF s 5. .0] == B"010000” THEN oO = il6
ELSIF s 5. .0] == B"010001" THEN oO = il7
ELSIF s 5 ..0] == B"010010" THEN oO = il8
ELSIF s 5. .0] == BM010011" THEN oO = il9
ELSIF s 5. -0] == B"010100" THEN oO = i20
ELSIF s 5. .0] == B"010101" THEN oO = i21
ELSIF s 5. -0] == B"010110" THEN oO = i22

ELSIF s [5. .0] == B"010111" THEN o0 = i23
ELSIF s [5. .0] == B"011000" THEN oO = i24
ELSIF s [5. .0] == B"011001" THEN oO = i25
ELSIF s [5. .0] == B “011010" THEN oO = i26
ELSIF s [5. .0] == B"011011" THEN oO = i27
ELSIF s [5. -0} == BM 011100" THEN oO = 128
ELSIF s [5. .0] == B"011101" THEN oO = i29
ELSIF s [5 ..0] == B"011110" THEN oO = i30
ELSIF s [5. .0] == B"011111" THEN oO = i31
ELSIF s [5. • 0] == B"100000" THEN oO = i32
ELSIF s [5. -0] == B “100001" THEN oO = i33

ND IF;
2ND;

Data Multiplexor (contained in U l)
01

o Clock Multiplexor (contained in U2)

Oilal

^.M ntpw w tO it Sdmgon.RoMl

T L

r 0 ^

—<1 "" *0;—-Cl " ̂ 1~**
l£C U ICCU LCEU IXEU. LCEU.

»•» i
id„eomp4«w#30 ■
iiS.mJ talar# tdjeoop

n}.e«a|NitiNt

A15
AH
A13
AI2
All
A10

c = >

At c z z > -t*ia -

_XmtecM3.c w n p *«W <5 >

lteaum

.Mnpuawou . Bu<y C D ---OOTro

IE

74374
01 01
02 02
03 03
04 04
OS OS
04 Q »
07 a t
M a t
OEN
CLK

w3.MHiparater94« i

-sf

rt.caapt/atorOJ* *
v3.«omfMfttsr*M *

-7 4 1 3 9 ,
YON > -

A YIN >
B Y2N 5 -
C Y3N 3 -
01 Y4N > -
Q2AN YSN J -
Q2BN YtN > -

Y7N b -

' Ulch_1S

1 LMCtl_U

Lridu M

l»ich_12
Uicfi.1t

Ulcfi.tO

L*!ch_9

L U C tlJ

LUChJ
U H h _t

LaichJ

U W l j l

UlehJJ
Ulct|_2

a— C D Uleh.l

— I ~> Laich.0

,M09«M«92S
Mj.Miwp ir»Mr # H

jiw piw tnrtiy

JŴIMlWtH
tjbmtiiim**

.liwpmlwtlT

.M op ifa m ttt

9

Comparator Circuit (contained in U3)

LFSR 'text' Design
SUBDESIGN stimgen
clock
rst

: input;
: input;
: output;
: output;

iftout
—ig
VARIABLE
ff[8..0] : DFFE;
shiftin :Icell;

BEGIN
%ff[].prn = rst;%
ff[].elk = clock;
ff[8].d=shiftin;
shiftout = ff[0].q;
IF !rst THEN

ff[].d = B"100000000";
ELSE
shiftin=GND XOR shiftout;
ff[7].d=ff[8].q;
ff[6].d=ff[7] .q;
ff[5].d=ff[6].q;
ff[4].d=ff[5].q;
ff[3].d=shiftout XOR ff[4).q;
ff[2].d=ff[3].q;
ff[1].d=ff[2].q;
f f (0] . d= f f [1] . q ;
END IF;
trig=!ff[0].q AND !ff[l].qAND !ff[2].qAND !ff[3].qAND !ff[4].qAND !ff[5].qAND !ff[6] q
AND Iff[7].q
AND ff[8].q;
D;

c

N
am

e:

j
2.

22
2u

s
4.

44
4u

s
6.

66
6u

s
8.

88
8u

s
11

.11
 u

s
13

.3
32

us
CM■'tco

X
cn
co

x
LFSR Logic Test

(Wave Simulation)

CO
COX
CO00
CM

OJ

[
i n

X
CM
CO

— O o> COin i : j : j : —v. o Zz m a> ~S =* O O S' S' c-<

LFSR Output

M
C-l

LFSR'.GDF' File

&£•»'
£*.*

&*•]*!

S*«m!

T/R2 I--------- >- « W T **^> 0 -

C-j

LSFR Altera Test Pinout

UntitledDevice: EPM7064LC44-7
Device Options:

Turbo Bit = ON
Security Bit - OFF

R R
E E
S S

E E E
R R

V G G G c G V V
D D D c N N N L N E E
6 7 0 c D D D K D D D

/ 6 5 4 3 2 1 44 43 42 41

1iI1 o
l

^

i

D5 7 39 RESERVED
D4 8 38 RESERVED
D3 9 37 RESERVED

GND 10 36 RS2
D2 11 35 VCC
D1 12 EPM7064LC44--7 34 RSI

RESERVED 13 33 RSO
RESERVED 14 32 RESERVED

VCC 15 31 RESERVED
RESERVED 16 30 GND
RESERVED 17 29 /C S

18 19 20 21 22 23 24 25 26 27 28

D T R R G V / C / R R
/ / / S N C W R R E E
C R W T D C S S S

2 T E E
R R
V V
E E
D D

P a g e 1

C-1

Memory Decoder Schematic

oq

CM CM

C-13

Mi
cro

Sim

Co
rp

or
ati

on

Pa
ge

Si

ze
:

20
Fa

irb
an

ks

Irv
ine

, C
A

92
71

8
71

4-
77

0-
30

22

ByteBlasterMV 10-Pin Female Plug Dimensions

Dimensions are shown in inches. Thespadng between pin centers is 0.1 inch.

0.425 Typ. ______

0.250 Typ.

Tabic 2 identifies the 10-pin female plug’s pin names for the
corresponding download mode.

Table 2. ByteBlasterMV Female Plug's Pin Names & Download Modes

Pin PS Mode JTAG Mode

Signal Name Description Signal Name Description

t DCLK Clock signal TCK Clock signal
2 GND Signal ground GND Signal ground
3 C0NF_D0NE Configuration

control
TDO Data from device

4 VCC Power supply VCC Power supply
5 nCONFIG Configuration

control
TMS JTAG state

machine control
6 - No connect - No connect
7 nSTATUS Configuration

status
— No connect

8 - No connect - No connect
9 DATAO Data to device TDI Data to device

to GND Signal ground GND Signal ground

IGP The circuit board must supply Vcc and ground to the
ByteBlasterMV cable.

■2 f
□ 0 0 0 0
000

0.100 Sq.

0.700 Typ.

C-14

ByteBlasterMVSchematic

ByteBlasterMV Parallel Port Download Cable Data Sheet

25-Pin Male Header
Connections

O
O

cz>

o
cz>
o

o
o 18-25

10-Pin Plug Connections
vcc J

<ID
<=J
<ZJ

I
GND

Single FLEX Device Configuration with the ByteBlasterMV Cable

FLEX 8000 Device vcc vcc

ByteBlasterMV
10-Pin Male Header
(Top View)

VME Card - General Layout (Top View)
<--------BNC’s

(70,85) (70,1)

GPIB
Connector

HC12 and HC12
daughter-board

32

J6

(20,2,

(20,2j

(1,1)

J1
iu)
J5

Note: Connectors J2 and Jlare ‘data connectors.’ J5 and J6 are
‘clock connectors’. J2 and J6 contain data and clock from the odd

tracks and J2 and J5 contain data,for the..£ven..trac.ks

Differential Line
Receivers

d.i)

NRAO Test Fixture
VME Card - General Layout
Page 1 of 2 Francis Martinez
April 4, 2001 Revision 0

VME Card - General Layout (Side View)

Clock recovery
connectors

Wire Wrap Pins

GPIB
connector

50 ohm BNC
connectors

NRAO Test Fixture
VME Card - General Layout
Page 2 of 2 Francis Martinez
April 4, 2001 Revision 0

VME Card - 50 ohm drivers

Top of Card

Clock 1 Clock 2 Datal LSFR Trigger

(U3-42)

(61,79)

fU3-48)
A A -

(U3-41) • W
A A

(U3-50)

(U3-40i • W

• •
(U3-43)

Italics correspond to the signal source

connection on the Altera chips

Data 2

Profile View

© Data 2

© Trigger

© LSFR

© Datal

© Clock 2

© Clock 1

NRAO Test Fixture
50 ohm (drivers
Page 1 of 1 Francis Martinez
April 4,2001 Revision 0

VME Card - HC12 Daughter-board (underside of HC12)

Reset

PE2

PA1

PE4

IRQ
PAO

g

t" m co < < < U 0, CL,

© 1 % S S3< < < CL. PL, Ai

DI01
DI02
DI03
DI04
EOI
DAV
NFRD
NDAC
EFC
SRQ
ATN

NRAO Test Fixture
VME Card - HC12 Daughter-board
Page 1 of 2 Francis Martinez
April 7,2001 Revision 0

VME Card - HC12 Daughter-board

(63,70),

(57,53)
57

20

42-1: PBl 42-16: PB7 57-11: SRQ
42-2: PB2 42-17: PB5 57-12:ATN
42-3: PB0 42-18: PB4 57-13
42-4: DIOl 42-19: PB3 57-14: GND
42-5: DI05 42-20: VDD 57-15: PA7
42-6: DI06 57-1: DI07 57-16: PA6
42-7: DI02 57-2: DI03 57-17: PA4
42-8: PE4 57-3: DI08 57-18: PA5
42-9: Reset 57-4: DI04 57-19: PA3
42-10: PE2 57-5: EOI 57-20: PA2
42-11: IRQ 57-6: DAV
42-12 57-7: REN
42-13: PA1 57-8: NFRD
42-14: PA0 57-9: NDAC
42:15: PB4 57-10: IFC

(63,34)

42
(42,53) # 2 0

NRAO Test Fixture
VME Card - HC12 Daughter-board
Page 2 of 2 Francis Martinez
April 7,2001 Revision 1

VCCO—

J 1(1.1) PData -_K
JU1.2) ("Data • A/ _J-

(66,6)

jsd.nrcik-tc
JS(l.2)rcTk-Qr

j2(i.nrpKtrnr:
nd.pr m n r

j6(i.nrciirT
J6(1.2)f Clk- 1L

Jl(2,l)n5ata
Ji(2.2)[SOr

J5r2.nrc irrr
J5(2.2)[[ciOZ;

■12(2,l)r~Data --3__
J2f2.2)rData -IE

J6(2.1)f Clk-3
J6(2.2)f Clk- 3/

(58,6)
3 1

(66,9)
2

10

-2C

14

(58,9)
2

-*C

10

J4_
15,

U1A
26LS32_

ip
U1B
26LS32.

12

U1C

U3A
26LS32_
►3

112

U3B
26LS32_

U3C
26LS32_
11

12

U3D
26LS32_
13

(66,4.

FFSR
\.4\ 4 A U2A

D

>C

FFSRI1

(62,4)
5

-24ALS24.
FFSR

FFSR
(53,4) 4 A

D

>C

FFSR 9 1

(54,4)
5

UL.

74ALS74

FFSR
U4B

D

>C

FFSR V13

(53,2)

74ALS74_

* = 8 pin lOOohm DIP resistor

** = The NRAO told us these are not to be tested; therefore, they are not
wrapped to anything.

**N/A

•**N/A

26LS32_ (61,2)
> 11 12 D Q 9
JL2

U1D
11>C Q

26LS32_
,------ FFSR Y13 74AT <574

**N/A

■**N/A

Ul-29

U2-55

•Ul-30

■U2-30

NRAO Test Fixture
‘Front-end’ differential line-receivers
Page 1 of 9 Francis Martinez
April 1,2001 Revision 2

ji(3.dCS3C
J 1(3.2) rData~̂ lZ

J 5 f3 .1) |~ C l k - 4

J5(3.2)|~Clk -_4£

_____, (49,6)

VCCO-- ^r-

J2(3,i)[Diir2m>
J2n.2)r5ata • V ~>~

J6(3,l)rClk̂ L
J6(3.2)rcik- 5/

Jl(4.1)rD a ta -6 _
J 1 (4.2) rDaa^~S7!

jS(4.nrcik-6:
J5(4>2)(~r:rk- 6r

J2(4.i)p g rr~
J2(4^[55ZE

J6(4.1)rcik -7
J6(4.2)l~Clk- 7/

(41,6)

.FFSR

(49,9;
2

Jo

10

-2C

14

(41.9)
2

-*0

10

JJL
15,

U5A
26LS32_

112

U5B
26LS32_

12
U5C

U7A
26LS32_
►3

112

U7B
26LS32_

U7C
26LS32.
11

12
U7D
26LS32_
13

(49,4

FFSR
.r a wa

t>C Q

FFSR V1'

(45,4)
5

6

74ALS74

FFSR

FFSR
(41A) T L _ U8A

D (36,4)
Q 5

>C QJ2_

ffsr Tt 74ALS74_

FFSR
in U8B

D Q

>C Q

(35.2)

F F S R V13 74ALS74_

* = 5 lOOohm DIP resistor

•Ul-60

26LS32_ i _
(44,2)

> 11 12D Q9
PL2

U5D
il >C Q

26LS32
i------ FFSR V13 74AI.S74

U2-60

Ul-36

U2-36

Ul-57

U2-27

Ul-25

U2-24

NRAO Test Fixture
‘Front-end* differential line-receivers
Page 2 of 9 Francis Martinez
April 1, 2001 Revision 2

11 ris. i i . x —
J1 (5.2) rtntn ■ M 1 ----^ ----

vcco— W -

J5(5.1) fT ik - * .n— ^
J5(5.2) [c E IB Z Z Z m — ^

J2(5.1) r Data - 0
J2(5.2) C D a532Z Z rD — ^

JGcs.nrcikTo
J6(5.2ll~~Clk- 3/ - J — ^

r- (24,6)
Jl(6 .1)f Untn ■ 111 -----g-—
J1 (6.2)fnam. IIW I --

J5(6. n fn 'lIc .lO —1----;g -
J5(6.2)m ik - iW t— S

J2(6,1 ̂ |~*T5ntn - II — I—

J 2 (6 . 2) - 1 w ~ 1—

J6(6.1)QJ|jLii l _ _ 3— ^
J6(6.2)f cik- 1 . ' J 3 — ^

FFSR

(32,9;
2

-20

10

14

(249;
2

■*0

10

-14_
15,

U9A
26LS32_

U9B
26LS32.

]2
U9C

U11A
26LS32.
3

U11B
26LS32.

U11C
26LS32_
ll

12
U11D
26LS32.
13

FFSR

(39 4A
D Q

>C Q

FFSR V 1

(28,4)

74ALS74
FFSR

FFSR

f244J 4 A U12A
D Q

>C Q

FFSR V 1

(20,4)
5

LG—

74ALS74_

FFSR

T A U12B
D Q

>C Q

FFSR V 13

.am .

74ALS74_

* —= 8 pin lOOohm DIP resistor

-Ul-34

U2-37

26LS32_ r„u;,w__
D Q

(27,2)

r 11 12 9
J2

$ & 2
11>C Q

FFSR Y 13 74ALS74

Ul-56

U2-58

Ui-35

U2-9

Ul-58

U2-28

NRAO Test Fixture
‘Front-end’ differential line-receivers
Page 3 of 9 Francis Martinez
April 1, 2001 Revision 2

vccO—

J 1(7.1) r~D'ata -_L2Z
j K7,2)

jsf7.»rcik-nr
J5(7.2)r c i k - 12T

J2(7.l)f~ D a a n T :
J2(7.2)l~Data - 13L

J6(7.1)r c ik -T 3 :
J6(7.2)r c ik - ML.

ji(8.nrp^rnT:
Jl(8.2)i~~bata - I4Z!

J5(8.n[~Clk- I4~
J5(8,2)f~cik- 13T

J2(8,l)rpata - 15

J2(8.2) fPata^TSZ!

J6(8.1)fc ik -L S :
J6(8.2)(~Clk- IV:

(8,6)

3 *

J.ESE

JL

10

-2c

14

(8,9)
2

-k:

■*c

10

J4.
15,

U13A
26LS32.

,,23
U13B
26LS32_

112
U13C

U15A
26LS32.
>3
L2

U15B
26LS32_

(16,4,
FFSR
:~7L_U14A

(12,4)

FFSR

5

6__

■2.4ALS7.4
FFSR

FFSR

(8,4) 4 A U16A

ff s r T i

(4,4)
5

Lfi—

74ALS74

* -= 5 p m lOOohm DIP resistor

“Ul-41

26LS32_ (11,2)

V
12

D Q 9

U13D
26LS32_

11 >C Q

FFSR I 13 74 AT.5374

U2-41

Ul-2

U2-4

•Ul-4

U2-40

U15C
FFSR

I k . m6B26LS32 (3.2)
12 D Q 9

U15D
26LS32_

11 >C Q 8

FFSR V 13 74ALS74_
> 13 I ...

Ul-65

U2-65

NRAO Test Fixture
‘Front-end’ differential line-receivers
Page 4 of 9 Francis Martinez
April 1, 2001 Revision 2

vcc

JU9.1)p5a5r iA
J 1 (9,2) P Data -1ft/ i----^ ----

J5f9.nr a n g :
J5(9,2)rciir~r5z:

J2(9.1) f l)nrn. l V
J2(9.2)ptotn- \ ')l ~~l--^

j6(io.D[2iEzn:
j6(io.2)[~cikn7r

jKio.nrDStmir:
Jl(10.2)rData- IS/~

J5(10.1) [32321
J5(10.2)[cSZiSI

(60,16)

3 T

J2(10.nn E ^ r
J2M0.2)f Data - 19Z,

j6no.nfrnr. K)
J6(10.2)r c ik - lW J— ^

-EESBL

r<55./p;
2

U17A
26LS32_

-20

U17B
26LS32_

10

-2c

14

(60,19) U19A
2

■2C

10 U19C

JL i.
15,

(63,
FFSR

1/4) 4 A U 18A

D Q

>C Q

FFSR V 1

(64,14)
5

±

74ALS74

FFSR

(60,

FFSR ----1
KL U20B

Jjc _ 5 pin lOOohm DIP resistor

•Ui-40

I2
U17C
26LS32_

FFSR

“ ^ 1 . . U18B
D Q

(63,12)

} 11 12 9

U17D 11 >C Q
26LS32

£ n 1 FFSR Y 13 74ALS74

U2-6

Ul-15

U2-66

26LS32_
D Q

(56,14)
2 5

3 >C Q JL_U19B
26LS32_

FFSR T 1 74ALS74_

Ul-7

U2-7

 ̂ 26LS32_ (55,12)
> 11 12 D Q 9
12

il >C Q 8
U19D
26LS32_

FFSR V 13 74ALS74_

Ul-70

U2-67

NRAO Test Fixture
‘Front-end* differential line-receivers
Page 5 of 9 Francis Martinez
April 1,2001 Revision 2

vcc

jifn.np5aSTflr
J U11,2) f~Data - 20Z_

(51,16)

J5 f ll.l)p C lk - lQ :

j5(ii.2)[2Er2E

J2(l 1.1)1 " ^ - i>l

J2(11 natn-2l7~ T >

J6(11.1)[cEDE
J6(11 .2)QcE2IZI

Ji(i2.nra5nz:
J 1(12.2) f ^ a ta -1111

J5(12.1)CoEI2I
J5(12.2)0322:

i2(\2,i)rm rrm
J2(12.2)rPata-2̂ /_

J6(i2.nrc iim :
J6(12,2)CcE232:

(43,16)

ZZl Z

FFSR

{51,19)
2

U21A
26LS32_

3
12

U21B
26LS32_

12

U21C
10

14

(43,19) U23A
26LS32_

Jo

3

U23B
26LS32_

10 U23C
26LS32_

-LL
15,

11

U23D26LS32_
13

FFSR
, 7 ^ U22A
D Q

>C Q

FFS R V 1

(47,14)

JiALSM-
FFSR

FFSR
I'*?, 74) 4 A U24A

D Q

>C Q

(39,14)
5

U_

FFSR Vl 74ALS74,

FFSR

U U24B
D Q

■>C Q

FFSR V 13

C38,I2)

74ALS74_

* = 5 pin lOOohm DIP resistor

Ul-8

U2-8

26LS32_ _ _ IU W _
(46,12)

12
D Q 9

U21D
26LS32_

II >C Q

FFSR V 13 74 AT .5574

Ul-37

U2-34

■Ul-39

U2-39

•Ul-19

U2-21

NRAO Test Fixture
‘Front-end’ differential line-receivers
Page 6 of 9 Francis Martinez
April 1,2001 Revision 2

G
-7

JK 13.1)f D ata-2A -------■
J 1(13.2) f~TWn ■ U) ^ ----

vcco— ^ r

J5(13.1)[C EZH :
J5(13.2)fc 'lk -S 4 T

J2(13.1) fPaTn - H -1—
J2(13.2) C S 3 2 2 Z 3 Z 3 — ^

J6C 13.1) I Clk - :»h -J
J6(13,2)|~Clk- 25L

J 1(14.1)1 jjatn -)(i _■>

J 1(14.2) [~Data - %) __3-

(26.16)

J5(14.1)[HEZ2S:
J5(14.2)[cE2E:

J2(14 ,l)r P a ta -2 7 _ :

J2(14.2)f~bata - 27/.'

J6(14,1)0222:
J6(14.2) f Clk- 27/

■EFSR

f34,19) 26LS32_

U25B
26LS32.

10

-2c

14

(26, 19) U27A
26LS32_

-*G

3

U27B
26LS32_

10 U27C
26LS32.

14
15,

11

U27D
26LS32.
13

FFSR

(34.14} 4A ^26A
D Q

>C Q

FFSR V

(30,14)
5

6

-7-4ALS74

FFSR

(26, 14) 4 A U28A

T D Q

-3->C Q

FFSR 11

(22,14)
5

UL_

74ALS74_

FFSR

m1 U28B

D Q

>C Q

(21, 12)

FFSR '13 74ALS74.

* —= 8 pin lOOohm DIP resistor

Vi-66

|12

U25C
26LS32_

FFSR
U26B

D Q
(28,12)

> 11 12 9
[jL2

U25D
11 >C Q

26LS32
 ̂ 1 FFSR V13 74ALS74

U2-16

Ul-61

U2-69

Ul-67

U2-18

•Ul-18

U2-19

NRAO Test Fixture
‘Front-end’ differential line-receivers
Page 7 of 9 Francis Martinez
April 1,2001 Revision 2

/CCO----- ^ r -

i m < n p S i a . ') k

j i (i5.2) rsssscz i—

J5 (I5 J)[Ic 3EZ2HIZZZZD—
J5(15.2)f~Clk - 3W ^

J2 flS .n l Datn - !<W - j — ^
J2(15,2) p M t n . / w ~~3—

J6 f is .n (~cIiT35:
J6(15.2)CcE2SZ:

JI(16.nrDatn - m J-
J 1(16.2) FPatn - ■tit/

(9.16)

J5(16.nf~Cik"^> -3— -g -
J5(16.2) [c E Z 2 n Z 3 ^ D — ^

J206.1) r~Datn • AI
J 2(16,2) f l W n - I W -i— S 2

J6d6.Drcik.-AI _)-
J6(16.2)f~c[ic- U/

.fESE

f/7,79;
2

10

-2c

14

(9,19)
2

10

A±
15,

U29A
26LS32_

3
_I2

U29B
26LS32_

12

U29C

U 31C

FFSR
(J7,/<f).4 j) V30A

>C Q

FFSR V 1

(13.14)
5

6

.7.4ALS7.4,.

FFSR

FFSR

* — 8 pin lOOohm DIP resistor

Ul-16

U2-20

26LS32_ I Ul J
D Q

>C Q

(12.12)

U29D
26LS32

12
11

9

iL .

FFSR V 13 74ALS74.> 13 1
UL2

U31A
FFSR

(9,14) _ U32A
26LS32_

D Q

>C Q

(5.14)

U31B
26LS32_

2
1

5

JL_

FFSR Y 1 74ALS74_
? 5 1. ...

Ul-55

U2-57

Ul-20

U2-64

 ̂ 26LS32_
D

(4,12)

? 11 12 Q 9

11 >C Q 8
U31D
26LS32_

FFSR Y13 74ALS74_

Ul-21

U2-22

NRAO Test Fixture
‘Front-end’ differential line-receivers
Page 8 of 9 Francis Martinez
April 1, 2001 Revision 2

01<£>

Description of NAT7210 GPIB Controller Initialization
1. Ch. 3 contains description of the internal registers and what their bits do.
2. Ch. 5 contains a step by step description of how to initialize and program the

NAT7210.
3. The registers are at offsets 0-7 which are mapped to 0x1000 to 0x1700 in

memory (see 3-2 for register map)

Breakdown of initialization Function

Note: The register at 0x1500 or offset 5 is control register (AUXMR) into which
command codes are written that control certain activities of the NAT7210.

One of the commands that the AUXMR register accepts is a page-in command.
This allows access to hidden registers (shown in bold boxes on the register map)
to be accessed. (For other functions of the AUXMR register see 3-19 to 3-26.)

In addition to commands that are written to the AUXMR register, there are sub
registers in AUXMR (using the same offset) these registers are selected via the
high order bits of AUXMR. These registers are AUXRA, AUXRB, AUXRE,
AUXRF, AUXRG, AUXRI, and ICR whose functions are detailed on 3-27 to 3-36.

1. Write 0x02 to AUXMR this the command to reset the chip and put it into a
mode
where it is idle so that it can be programmed.

2. Write 0x50 to AUXMR this is the page-in command that allows for access to
the

hidden registers.

3. Write 0x81 to ICR2 which is a hidden register at offset 3, 0x1300 this register
puts

the ICR into a mode that allows the NAT7210 to be set to use a 10MHz clock
speed.

The bit set is bit 0 which is called MICR. The high bit 8 is supposed to be set
for the

same reason. See 3-44.

4. Write 0x25 to the ICR at offset 5 at AUXMR with the MICR bit set in ICR2.
Using the table on 3-43 a clock frequency of 10MHz is chosen.

5. Write 0x31 to ADMR at offset 4 or 0x1400 this hex code puts the NAT7210 in
a mode where it can implement one or two logical devices.

6. Write 0x00 to ADR at offset 6, which is the address, register (see 3-8) the
highest

H-

order bit 7 determines whether sub-registers ADRO or ADR1 are written to by
a write

to this register. Bit 6 and bit 5 determine if the device is able to be a listener,
talker or

both. At the address given by bits 4-bit 0. This is the device address. In this
case the

primary address is set to be 1 with talking and listening enabled.

7. Write OxEO to ADR. Since the high bit is set, ADR1 is written to. Bits 6, 5 are
set
disabling talking and listening of the secondary address contained in bits 4-0.

See 3-8
and 3-10.

8. Write 0x00 to SPMR, the serial pole mode register at offset 3,0x1300. This
register holds the serial poll status byte that is sent over when the device
receives a serial poll. Bit 6 is zero because a serial poll is not being
requested and the other bits are zero for no other reason than its easier that
way. See 3-62.

9. Write 0x70 to the PPR at offset 5, 0x1500. PR is a sub-register of AUXMR.
The highest three bits selects PPR. Bit 4 is set in order to disable the
NAT7210 from responding to serial polls. See 3-58

10,11 see table 5-2 on page 5-10 this table shows the bits that need to be set in
the AUXRB and AUXRI registers to produce various delays for the T1 delay. The
HSTS definition is 0 for the first byte transferred and 1 for every byte there after.
T1 delay is set to be 2000ns for all bytes so that USTD and TRI do not have to
be changed based on HSTS. For a 2000ns delay TRI=0 and USTD=0.

10. Write OxAO to AUXRB sub-register of AUXMR at offset 5, 0x1500. This clears
the
TRI bit which it at bit 2.

11 .Write OxEO to AUXRI sub-register of AUXMR at offset 5, 0x1500. This clears
the
USTD bit which is at bit 3.

12. Write 0x82 to AUXRA sub-register of AUXMR at offset 5, 0x1500. Clearing
bits 4-2 keeps stuff for an EOS from being used. Setting bit 1 and clearing
causes mode to be selected where there is a RFD hold off after a byte with an
EOI is sent. This asserts the NRFD signal to keep data from being transmitted
to it until a command is sent to the AUXMR to clear it and allow data
transmission. If this gives trouble write 0x80 instead of 0x82 to cause it not to
do RFD hold off. See table 3-28.

H-

13. Write 0x00 to AUXMR at offset 5, 0x1500. This takes the NAT7210 out of idle
mode and its ready for action.

Program Function main()

The program consists of a main loop that runs forever and a series of if
statements that determine if the DIR register should be read at offset 0, 0x1000
and its contents put into a variable.

First a 0x03 is written to AUXMR to take off the RFD hold off if there is one from
the last byte received.

The first if statement tests for if bit 2 of ADSR register at offset 4, 0x1400 is set.
This bit tells if the NAT7210 has been addressed to be an active listener.
The next if statement tests for if bit 0 of ISR1 at offset 1, 0x1100 has been set.
This bit tells if data has been received.

H-

GPIB.h
/* GPIB header file that defines the internal
* registers of the the NAT7210 GPIB controller */

#ifndef __GPIB_H
#define GPIB H 1
/* the registers are mapped to extenal memory of the
* microcontroller from 0x1000 to 0x1800 */

#define ..OFFSET
#define GPIB0
#define GPIBl
#define GPIB2
#define GPIB3
#define GPIB4
#define GPIB5
#de£ine GPIB6
#define GPIB7
#endi£

0x1000
(unsigned char
(unsigned char
(unsigned char
(unsigned char
(unsigned char
(unsigned char
(unsigned char
(unsigned char

(_OFFSET+0x0000))
(_pFFSET+0x0100))
(_OFFSET+0x0200))
(_OFFSET+0x0300))
(_OFFSET+0x0400))
(_OFFSET+ 0x0 500))
(_OFFSET+0x0600))
(_OFFSET+OxQ7 00))

HC12

Page 1

H-4

#include <hcl2.h>
#include <DBugl2.h>
#include <GPIB.h>
void initialize (void) ?
void main()

<
char data;
initialize () ;
while (1)

{
GPIB5=0x03; /* finish handshake */
if ((GPIB4 & 0x04) ==s 1) /* listener active */
DBugl2FNP->printf("I am in the first if loop\nn); /*FRANCIS ADDED THIS LINE

*/
{
if ((GPIB1 & 0x01) s=s l) /* data received */

DBugl2FNP~>printf ("I am in the second if loop\nM); /*FRANCIS ADDED THIS
LINE*/

{
data=GPIB0;
DBugl2FNP->printf ("data=%h\r\n" ,data);

>
>

}
}

void initialize()
{

1.GPIB5=0x02; /* write to AUXMR to make sure PON is asserted to put NAT7210
* in an idle state*/

2.GPIB5=0x50; /* put in page-in mode in order to write to hidden register ICR2*/
3.GPIB3=0x81; /* write to ICR2 to set the MICR bit to allow ICR to be set so as

* configure the NAT7210 to run at 10MHz*/
4.GPIB5=0x25; /* write to ICR in order to configure the NAT7210 to run at 10MHz*/
5.GPIB4=0x31; /* write to ADMR to set NAT7210 to be in normal dual addressing mode

* /
6.GPIB6=0x01; /* set device address to be lucky number 1 */
7 .GPIB6=0xE0; /* disable secondary addresing */
8.GPIB3=0x00; / * set serial poll status byte to be 0x00 */
9.GPIB5*=0x70; /* write the hidden PPR register in order to disable parallel poll

* response */
/* set Tl delay to be 2000ns for all bytes sent */

10.GPIB5=0xA0; /* clear TRI bit of the AUXRB register */
H-GPIB5=0xE0; /* clear USTD bit of the AUXRI register */
GPIB5=0x49; /*set CHES and NTNL */
GPIB5=0x51; /*issue hldi command*/
12.GPIB5=:0x80; /* normal handshake mode */
13.GPIB5=0x00; /* unassert PON in order to enguage controller */

g d e x o o .c

Page 1

H

Serial Port Init
Initializes the selected serial port to the specified settings.

Click the parameters for more information.
flow control etc.

buffer size
port number

baud rate
data bits
stop bits

parity

error code

BBS flow control etc.
flow control etc. contains the following parameters.

E D Input XON/XOFF
See the Handshaking Modes topic for more information.
Default value: FALSE

D EI Input HW Handshake
On the PC and SPARCstation, this parameter corresponds to Request To Send (RTS)
handshaking.
Default value: FALSE

□ED Input alt HW Handshake
On the PC, this parameter corresponds to Data Terminal Ready (DTR) handshaking. On the
SPARCstation, this parameter is ignored.
Default value: FALSE

M l Output XON/XOFF
See the Handshaking Modes topic for more information.
Default value: FALSE

buJ Output HW Handshake
On the PC and SPARCstation, this parameter corresponds to Clear to Send (CTS) handshaking.
Default value: FALSE

D EI Output alt HW Handshake
On the PC, this parameter corresponds to Data Set Ready (DSR) handshaking. On the
SPARCstation, this parameter is ignored.
Default value: FALSE

D O XOFF byte
XOFF byte is the byte used for XOFF (AS).
Default value: 0x13

BE] XONbyte
XON byte is the byte used for XON (AQ).
Default value: 0x11E

I- l

lOiiiJJ Parity Error Byte
If the high byte is non-zero, the iow byte is the character that is used to replace any parity errors
found when parity is enabled.
Default value: 0

GBD buffer size
buffer size indicates the size of the input and output buffers the VI allocates for communication through
the specified port. You may need to use larger buffers for large data transfers. The buffer size is in bytes.
Default value: 0

E H port number
See the Port Number topic for a list of valid port numbers.
Default value: 0

D EI baud rate
baud rate is the rate of transmission.
Default value: 9600

DSI data bits
data bits is the number of bits in the incoming data. The value of data bits is between five and eight.
Default value: 8

ta d stop bits
stop bits is 0 for one stop bit, 1 for one-and-a-half stop bits, or 2 for two stop bits.
Default value: 1 bit

BED parity
parity is 0 for no parity, 1 for odd parity, 2 for even parity, 3 for mark parity, or 4 for space parity.
Default value: 0

IM 3! error code
error code is -1 if baud rate, data bits, stop bits, parity, or port number are out of range, or if the
serial port could not be initialized. Check the values of baud rate, data bits, stop bits, parity, and port
number. If these values are valid, verify that the serial port has been initialized. Refer to the Error Code
topic, for a list of error codes.

You can connect error code to one of the error handler Vis. These Vis can describe the error and give
you options on how to proceed when an error occurs. For more information on using the error handler
Vis, refer to Error Handler Vis.

Some error codes returned by the serial port Vis are platform-specific. Please refer to your system
documentation for a list of error codes.

1-2

Serial Port Read
Reads the number of characters specified by requested byte count from the serial port indicated in port
number.

Click the parameters for more information.
port number

requested byte count
1 string read
error code

port number
See the Port Number topic for a list of valid port numbers.

S 3 requested byte count
requested byte count specifies the number of characters to be read. If you want to read all of the
characters currently at the serial port, first execute the Bytes at Serial Port VI to determine the exact
number of bytes ready to be read. Then use the byte count output of that VI as the requested byte
count input to the Serial Port Read VI.

4bc string read
The VI returns the bytes read in string read.

HE] error code
If error code is non-zero, an error occurred Refer to the Error Code topic, for a list of error codes.

You can connect error code to one of the error handler Vis. These Vis describe the error and give you
options on how to proceed when an error occurs. For more information on using the error handler Vis,
refer to Error Handler Vis.

Some error codes returned by the serial port Vis are platform-specific. Please refer to your system
documentation for a list of error codes.

1-3

Serial Port Write
Writes the data in string to write to the serial port indicated in port number.

Click the parameters for more information.

port number------ U w
string lo w r i t e - laii3 ------ error code

port number The parameters for serial port numbers depend on the platform that you use: Windows,
Macintosh, or UNIX. Refer to Windows Serial Port Numbers, Macintosh Serial Port Numbers, or UNIX
Serial Port Numbers for more Information about each platform.

string to write is the data to be written to the serial port; If the number of characters in string to
write is greater than the buffer size specified in Serial Port Init, the number of characters equal to the
buffer size will be written.

If error code is non-zero, an error occurred.

You can connect error code to one of the error handler Vis, which describe the error and give you
options on how to proceed when an error occurs.

Some error codes returned by the serial port Vis are platform-specific. Please refer to your system
documentation for a list of error codes.

I-<

it553

