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Introduction

The output of the Very Large Baseline Array (VLBA) tape recorders is 

made up of 24 differential digital data signals plus a differential clock signal for 

each of the channels. The operational bandwidth of these signals is from 

100Khz to 4.5Mhz and is transmitted over 100 feet of cable. The VLBA correlator 

uses the clock signal from each channel to decode the data signal into a clean 

serial data stream. The signals come from the headstack, the collection of 

magnetic heads that play and record the data, then are amplified and filtered and 

sent to the clock recovery/driver board. An accurate operation of the VLBA 

recording/playback system depends on the correlator’s ability to decode the data 

stream with the clock recovery board.

This project consists of designing and building a test fixture to characterize 

the performance of the clock recovery/driver board in the lab. Two of the 32 

channels need to be compared to one another. Given the same data input, each 

of the 32 channels should have a similar output, (within the present error-rates). 

If the channels have some sort of difference between them, a counter will count 

that as an error. An indicator of error rate difference between the channels will 

be provided. A maximum error rate of 10*3 (approximately 22 kHz of the 4.5 MHz 

signal) is acceptable. Once this error rate has been detected, an indicator will 

flag telling the user that an unacceptable error rate has been detected. It can be 

deduced from this information that one of the two data streams are incorrect and 

that one of the two clock recovery circuits may not be functioning properly. All 

circuit designed must be able to function properly within the bandwidth of the
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data signals. A method of simulating the 100* long cable impedence must also 

be designed and implemented.

A computer interface including a Graphical User Interface (GUI) will also 

be designed to allow the operator to select the two channels to be compared. A 

real time error rate will be displayed at all times to allow the operator to analyze 

the error rate at any moment in time. Another option will be available to allow the 

user to compare each channel to all the-other 31 channels. A report file will be 

generated containing the data generated from the comparison of all 32 channels.
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Clock Recovery/VME Card
The clock recovery board is a significant subsystem to the entire correlator 

system at the NRAO. A functioning clock recovery circuit is crucial to the 

operation of the VLBA recording/playback system. Because of this, it is 

necessary to test the clock recovery circuits to determine if they are functioning 

properly.

The purpose of the clock recovery board is to take a serial data stream, 

which is out of sync, and to recover a clock signal from it. Once the new clock 

has been recovered, the clock is used to re-sync the existing data. This allows a 

“noisy” and un-clocked data signal to be input to the clock recovery board and 

the data signal will be output from the board re-clocked with minimal noise.

The comparator circuit and all its associated parts are to be wire-wrapped 

on a standard VME wire-wrap card. The VME card is being used to house the 

test circuit, but its bus is not being utilized. The purpose of the VME card is to 

house the test circuit in a concise and organized manner and to provide the test 

circuit with VCC and ground. Therefore, the VME card had to be equipped with 

the circuit components and all necessary components to interface it with the 

computer.

To interface the test circuit with the computer, a GPIB controller was used, 

and thus, this had to be mounted to the VME card. However, it was mounted 

directly to the HC12 evaluation board which was mounted to the VME card. To 

interface the test circuit to the NRAO circuitry, a set of clock recovery connectors 

was necessary to input the clock recovery data to the test circuit. To input the
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test data stream into the NRAO circuitry, the data has to be input to the parallel 

introduce card. This also requires the necessary connectors for the parallel 

reproduce. The VME card was also equipped with the 3 Altera chips that were 

used to house the multiplexors and the comparator circuit.

The final components that were installed on the VME card were an array 

of differential line receivers. Before the data can be compared using the 

comparator circuit, the data must be manipulated so that it can be manipulated 

by the comparator circuit. The difficulty arises from the fact that the output from 

the clock recovery card is differential. Due to this, a differential line receiver must 

be used to take this differential data and convert it to single-ended data. This 

The line receivers also required D flip-flops, pull up resistors and terminating 

resistors to allow them to function correctly. Once the receivers were complete, 

the data was single-ended, and thus, able to be compared using the comparator 

circuit.

4



Comparator Circuit

To determine the error rate of the two data signals, an Altera signal 

generator was used to produce a data stream. This data stream was injected 

into all 32 data signals through the parallel reproduce board which takes the data 

stream and amplifies it to be fed into the clock recovery board. Since the same 

data stream is to be input to the parallel reproduce board, all 32 differential data 

streams coming out of the clock recovery board should be identical. Because of 

this fact, the data exiting the differential line receivers are also identical and can 

be checked for errors. Theoretically all 32 data streams should be identical and 

clocked together. However, if one of the clock recovery circuits is not operating 

correctly, the data could be out of sync and incorrect.

Because of the identical data streams, it is possible to do a bit-by-bit 

comparison to determine if the output data is identical from all 32 channels. To 

perform this analysis, the most appropriate and most obvious method seemed to 

be to compare the two data streams directly. It appeared that an XOR gate could 

be used to perform this task since the output for an XOR gate is high when a 0 or 

1 and 1 or 0 were present. This would allow us to identify a non-identical pair of 

data.

The core of the comparator circuit is the XOR gate, however there is some 

extra discrete logic necessary to generate an error rate. A 2A17-bit counter (total 

bit counter) is used to count the total number of sets of bits that have been 

compared. The 17th bit is used as an “overflow bit” that will tell the HC12 that it 

has counted that high. As the total bit counter is counting, a second counter, the
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error counter, is also performing a count. This counter is being driven by the 

“highs” being output by the XOR gate. The error counter is counting the total 

number of errors in the two streams of data. At the output of the error counter is 

also a 16-bit latch. When the 17th bit of the total counter overflows, it tells the 

latch at the error counter to latch the value in the error counter. The HC12 can 

then retrieve this value and determine an error using the value in the error 

counter and the highest count the total counter will count to before overflowing. 

The HC12 then resets all necessary counters and latches and the process 

repeats itself.

The HC12 is to used memory-mapped I/O to access the different 

components of the test circuit. Because of this, the comparator circuit has also 

been given an address range to call it up without having to confuse it with the 

other components of the system. Because of this, a 3:8 decoder was used to do 

this. To turn the decoder on, the E-clock has to be high and the read line has to 

be low. The A, B, and C bits on the decoder also correspond to address bits 

A15, A14, and A13 from the HC12’s address bus. The combination that gives 0, 

1, 0 for A15, A14, A13 respectively enables the data to be read by the HC12. 

This combination allows the comparator circuit to be enabled with an address 

range of $4000 to $4FFF from the HC12. This combination will write a high to 

the output pin 2 of the decoder chip. This bit is tied to an array of tri-state buffers 

that are connected at the output of the latch. This allows the data to be kept off 

of the bus until the HC12 asks for it to be read.
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The comparator circuit poses many timing issues that must be accounted 

for to allow the comparator circuit to function correctly. If the HC12 tried to ask for 

the data before it was correctly latched, the data the HC12 read might have been 

incorrect. The error latch had to be equipped with a way to let the HC12 know 

that it was latching the data and was not ready to be read. To do this, a 16-bit 

counter was used, with the clock input being one of the recovered clock signals 

from the clock recovery board and the high bit on the counter being used as an 

overflow line. When the total error counter overflows and tells the latch to latch, 

the overflow line resets the counter which has been counting and has a high at 

its high bit (overflow bit). This high bit is what is being used to tell the HC12 that 

he data is ready. Once the overflow bit comes from the total bit counter, the 

“busy” counter begins to count. Once the high bit on the counter goes high, the 

HC12 knows that the data is ready to be read. The high bit is also tied through 

an inverter to the enable on the busy counter which disables the counter when it 

goes high but keeps its last count on the output pins of the counter. Therefore, 

the high bit (or busy bit) on the busy counter stays high whenever the data is 

valid. The HC12 can retrieve the data at any time that the line is high. Once the 

total bit counter overflows again and tells the latch to latch, it again resets the 

busy counter. When the busy counter is reset, the high bit is turned low which 

enables the counter again due to the enable line seeing a high through the 

inverter. The process is continually occurring and thus the HC12 knows only to 

retrieve the data when the busy line is high.
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The total counter overflow line is also used as a way to ‘write’ the latch 

and reset the error counter. However, the error counter must be cleared after the 

latch has been latched. To do this, both the error counter and the latch ‘write* 

line were tied to the total counter overflow line. However, the line that went to the 

error counter reset branched from the total counter overflow line and was 

equipped with a series of Altera LCELLS between the overflow line and the reset 

line. This causes a small delay between when the latch has been written and the 

error counter has been reset. This allows the latch to be written before the error 

counter is reset so the data is in the counter long enough to be latched.

The latch must also eventually be reset. The method in which this is 

performed is by using the HC12. When the HC12 polls the latch for the data, the 

address values to access the data contain the bit pattern ‘010.’ Because of this, 

the 1 can be used to reset the latch. This means the HC12 will read in the data 

from the error counter latch and then it will reset the latch using the same 

command from the HC12.
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Altera Design

One of the requirements of this project was to build a multiplexor to select 

two channels, out of thirty-four to compare to each other. One of the options that 

presented itself involved a circuit that contained many pieces of discrete logic 

interconnected to each other on the back of the wire-wrapped VME board. 

Because of the complexity involved and the probability of error involved with wire 

wrapping each of the chips to each other, it was easy to decide to look at other 

options. The option that we felt fit best for the project was the use of Altera 

programmable logic. By using programmable logic, the complexity of the 

multiplexors was gone and the size was whatever was needed. After discussion, 

it was also decide that there were other parts of the project that would be much 

easier to accommodate into an Altera chip. These parts of the project included 

the circuit that makes up the comparator circuit and the random bit generator. In 

this section we shall discuss the design steps taken in the design of the Altera 

portion of the circuit.

The first part of design of which Altera was chosen to implement were the 

multiplexors. We were provided with a circuit that could be used as a multiplexor 

for all 32 channels. Using Altera to design a new multiplexor as a single circuit 

seemed as the best option because of the time it would save and the fact that it 

is much less complex than wiring together digital logic. The multiplexors were 

written as a text design file in Altera following a basic form and then applying this 

form for the rest of the design. Each multiplexor is made up of thirty-four inputs,
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six select lines, which select the correct channel, and one output. The basic form 

of the multiplexor looks like this:

IF select[5..0] =  B"000000“ THEN Output 0 = Input 0;
ELS1F select[5..0] == B"000001" THEN Output 0 = Input 1;

The first line states that if the six select lines contain a binary low, all zeros 

then the output is whatever is at the first input (Input 0). Next, if there is a one at 

the lowest bit of the select lines (Select 0), then the output is whatever signal is at 

the second input signal (Input 1). There are thirty-two more lines like the second 

one that serve to select the correct channel.

The next step in the design of the multiplexors was to set two of them up 

to be ready to accept data. Each differential signal contains both a channel and 

clock signal. To get two different outputs to compare to each other, two 

multiplexors were placed together on a single chip with the same inputs going to 

each. Next, a new device was built to select first the multiplexor to be used and 

next, select the channel to be used. This device has seven input lines with twelve 

output lines. If the first input line is low then the top mux gets the information from 

the lower six input lines through the first six output lines. If the first input line is 

high, then the second mux gets the select data from the lower six input lines 

through the last six output lines of the select device. The basic form of this 

multiplexor design is illustrated in figure 1.

10



11

Figure 1: Basic Altera Block Diagram 

This basic form was followed for both the channel and clock multiplexors with the 

names of the inputs changed to match the clock.

During the design of the select device there were problems with keeping 

the data from the non-current bits (the lower six if the first input is high and the 

higher six if the first input is low) valid. What was happening was whenever the 

first input switched from either low to high or high to low, the data that was 

current before the change was no longer valid once the first input changed. At 

first, we were unable to get anything at the output of the non-current bits. With 

experimentation we were able to get something that looked to work by setting the 

non-current bits to their previous value when they were not selected. 

Unfortunately this data oscillated between low and high rapidly between the 

actual changes in the data. The solution to our problem came by using a D flip 

flop as a latch to keep the data in the non-current output bits as valid. The way 

that the circuit now looks like in an Altera .gdf file is 32 inputs going into two 32-



channel multiplexors. There is a third device that is the select box that controls 

what each output is.

Two other parts of the project were also implemented in Altera. The first of 

these was the comparator circuit, which is connected to the outputs of the 

multiplexors. The design of the comparator circuit proved itself to be one of much 

complexity with regard to the necessary amount of discrete logic needed to 

implement it. Because of this, Altera was used to implement the circuit in an 

organized and concise manner. The error and total bit counters were written in 

Altera using a .tdf format. A symbol was created for each to simplify the 

construction of the circuit in Altera by the use of a .gdf (graphical design file).

This allowed us to easily draw the circuit and insert discrete logic parts wherever 

necessary. The latch for the error counter was also written as a .tdf format and 

then turned into a symbol. The Altera format allowed for a complete redesign of 

the circuit if it did not work. This was possible because of Altera’s simulation 

package. This meant the circuit could be tested before it was built. This also 

meant that incorrectly wired circuits could be re-wired in the Altera package with 

minimal effort and time. The use of Altera for the comparator circuit minimized 

the complexity and design time of the comparator circuit.

The next part of the project that was designed in Altera was the random 

pattern generator. The test pattern generator for this project is a pseudo-random 

bit generator. The output of the test pattern generator is a pseudo random 

pattern 256 bits long. After producing the 256-bit pattern the test pattern 

generator will repeat this pattern indefinitely. To allow the test pattern to be
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viewed on an oscilloscope a trigger pulse is produced every time the test pattern 

repeats. The test pattern generator is implemented using an 8-bit shift register 

with taps taken from the outputs of the third and eighth flip-flops, XORed and fed 

back into the input of the shift register. In order for this circuit to run the shift 

register is loaded with 80 hex upon reset. Once the reset is unasserted, the 

external clock runs the shift register producing the test pattern. Every time 

contents of the register become 80 hex, the trigger pulse goes high until the 

contents of the register are changed with the next clock pulse. The ALTERA 

design, the simulation and the actual output of test pattern generator are 

contained in the appendices.

Now that everything for the project was designed, it was time to put 

everything together and get it to work. The first step in this process was to select 

which device to use for the project and then, how many of these devices it would 

take to implement the project. At first the total number of input and output pins 

were considered to be the basis in deciding which device to use. In the beginning 

of the project the design was much simpler and it was totaled to be about 91 

inputs and 2 outputs. After the actual design, the size of the circuit came out to 

actually be _ inputs and _  outputs. Using this information, we needed an Altera 

chip with a lot of input/output pins and looking through the available devices we 

felt that we would need an Altera chip with 160 I/O pins. After thinking about it, 

we decided that the best option would be to split up the project into several 

smaller chips. Based on the facts that we had used them before and that the 

programming adapter was available for them, we went with 84 pin Altera chips.
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The first device that was attempted was the EPM7128ALC84 chip that 

was used in EE 308, a familiar chip. When trying to get the project to fit onto the 

device it kept on failing and refusing to work no matter how many variations were 

tried. After with consulting with one of the Professors in the EE department, Dr. 

Stephen Bruder, it was evident that the device chosen was not the best fit for the 

project. Using Dr. Bruder’s advice to choose a device from the Altera flex family, 

the new device chosen was the EPF8282ALC84-4 chip from the Altera Flex 8000 

family. Using this chip though would require difficult programming steps using 

JTAG plus the Flex chip is a destructible SRAM device. In the end, the chip 

chosen was the EPM7128SLC84 chip. Simulating the project in Altera and 

setting the device setting to the new chip and making sure that it would compile 

tested the fit of the new device. This was a very convenient way to test the fit of 

the project without actually having the chip. Now it was easier to order the correct 

device, knowing what device fit correctly under the specification of 84 pins.

After deciding on the device that we were going to use, the project could 

now be split up onto several of the 84 pin Altera devices. Because of the amount 

of input pins required and the select control lines and the outputs it was decided 

to implement each multiplexor on separate chips. The pins on each chip were 

forced to set values in order to be able to change the project without any change 

in chip layout. The comparator and the random pattern generator were 

implemented onto a third chip.
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GPIB Interface

The GPIB interface provides a standardized interface between to the clock 

recovery board test set and the computer. The GPIB interface was chosen due to 

design requirement that any interface used for the project should be able use a 

computer system assembled from commonly available parts. The customer was 

particularly concerned that the interface card should be commonly available and 

be able to be controlled by commonly available software. A GPIB interface lends 

itself well to filling these requirements. The GPIB interface card can be installed 

in any modern computer because it uses a PCI slot and is compatible with any 

common operating system. Another point in favor of the GPIB interface is that 

Labview has tools that allow the interface to be easily programmed for the 

project’s needs. The use of the use of GPIB allows for future expansion of the 

test set’s capabilities as part of a computerized workbench. Other options 

considered instead of if GPIB were a DAQ card and a RS232 interface. The DAQ 

card was not chosen because it was not standardized the way that the GPIB is. 

The RS232 interface was not chosen because although it a very standard 

interface, it is very slow as compared to the possible 1 Mb/s transfer rate of the 

GPIB interface.

The design of the GPIB interface is divided into areas of hardware and 

software. The hardware portion of the interface consists of a Motorola HC12 and 

a National Instruments NAT7210 GBIP controller and its associated interface 

circuitry. The HC12 is the central controller of the test set. It selects the two 

channels to be compared using the MUX, gathers error count data and controls
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the GPIB interface. The HC12 is interfaced to the rest of the test set using 

memory mapped I/O. The MUX, the error counter, and the GPIB controller are 

read from and written to as if they were memory addresses. In this way the 

NAT7210 is configured and controlled using its internal registers.

The hardware setup for the GPIB interface consists of an interface 

between the HC12 and the NAT7210. The GPIB controller’s internal registers are 

selected using three register select lines that are feed directly into the chip. The 

register select line values from 0-7, read, write, and chip select control the 

access to the internal registers. The internal registers configure the GPIB 

controller and control what the chip does. The HC12 has multiplexed data and 

memory lines on the higher order address lines on port A. This makes it 

necessary to latch the address data on these lines before the data is output to 

memory. The latch is set using the rising edge of the E-clock. The E-clock is a 

special clock signal that dictates the timing of the various portions of a memory 

access. The output of the latched address lines is then put through a decoder to 

generate an active low chip select signal. Any latched address from 10OOh to 

1700h will generate a chip select signal. Address lines A10-A8 are fed directly 

into the NAT7210 register select lines. The R/W line of the HC12 must be fed into 

some logic in order to produce separate active low read and write signals for the 

GPIB controller. The active low reset signal for the HC12 is inverted so that its 

can reset the GPIB controller. In order to simplify the wiring of the circuit and 

speed up development, the logic was implemented using ALTERA.
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the test set. The GPIB bus transceivers were wired to the bus controller as 

shown in the documentation for the controller chip. The interface between the 

controller chip and the HC12 was tested. It was confirmed that the HC12 could 

change the values of the internal registers of the controller chip and the values of 

these registers could be read back. The wiring for the bus transceivers was 

checked thoroughly but proper operation of the transceivers could not be 

checked until the controller chip was programmed. An initialization and test 

program for the GPIB interface was written for the HC12 using the instructions 

contained in chapter 5 of the documentation for the NAT7210 GPIB controller. 

Unfortunately the GPIB interface did not operate correctly. The computer was not 

able to detect the NAT7210 as listener on the bus. Possible causes for this 

problem could include faulty bus transceiver circuitry, improper configuration of 

the computer, or a bug in the HC12 firmware. Due to time constraints we were 

unable to troubleshoot the interface. Instead we switched to a serial port interface 

between the computer and the test set.

In order to save time the serial port interface was used. The HC12 has a 

serial port built in which made it unnecessary build any new hardware.

Assistance with use of the serial port and sample code were easily obtained from 

Dr. Rison. On the other hand the assistance with the GPIB interface was very 

hard to come by. There was nobody on campus or at the NRAO who had any 

experience programming the NAT7210. Technical support at National 

Instruments refused to provide source code and would only answer specific 

programming questions. The serial port was able to provide all the same
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functionality as the GPIB with only the loss of speed and the ability to include the 

test set with other GPIB controlled instruments as part of a computer controlled 

workbench. Labview also supports serial interfacing with easy to use tools similar 

to the one used by the GPIB. This combination of circumstances made the serial 

port interface the best overall choice. To conclude, after having dealt with the 

GPIB on this project, a DAQ card or serial communication would have made a 

simpler and quicker solution.
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RS 232 Interface
As already listed in the previous section about GPIB, it was decided near 

the end of the project that using the onboard serial port of the HC12 would be a 

more viable option than designing an entire GPIB controller for PC control of the 

test interface. One question that could possibly arise is why was the switch so 

late and why wasn’t RS 232 an option in the beginning? The Usage of GPIB as 

the PC interface was decided before the microcontroller to control it. Most 

microcontrollers do not have the added features built in as the HC12 evaluation 

board that was chosen for the project. In this section the usage of the RS 232 

and code from the firmware will be discussed further.

On the Motorola HC12 there are two features meant for use in serial 

communications. For use in the project, the SCI (serial communications 

interface), which uses the onboard serial port and is compatible with a standard 

PC serial port was used. To use the HC12’s SCI, it first needs to be set up. To do 

this a zero needs to be written to the SCOBDH register (all register addresses are 

contained in the header file hc12.h). Next, the baud rate for the port is to be set 

up. This is done writing to the SBR12 -0  bits of the SCOBDH and SCOBDL 

registers. First, set SB12-0 equal to 8Mhz (HC12’s clock speed) divided by 16 * 

desired baud rate. For this project a baud rate of 9600 was chosen. Using the 

previous equation it is determined that the number to be written to the registers 

needs to be (8Mhz/(16*9600)) = 52.083 ~ 52. Now that the baud rate is set up 

both the transmitter and receiver need to be enabled by writing to the SC0CR2 

register. This register also needs to be written to determine interrupts. For this
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project, no interrupts were chosen. Lastly a hex 00 is written to the SC0CR1 

register to enable normal mode with 8bit communications and no parity, standard 

serial port communications standards. The following set up code is as follows:

SCOBDH = 0; /* Setup Serial Subsystem *1
SCOBDL = 52; /* 9600 baud 7
SC0CR2 = OxOC; /* Enable transmitter and receiver, no interrupts 7
SC0CR1 = 0x00; /* Normal mode, 8bits, no parity */

After the SCI is setup there are two sets of code to communicate through 

the RS 232 serial port. The first is the set of code that enables the HC12 to 

transmit data over the port. The first step in transmitting data is to write the data 

to be sent to the SC0DRL register. In this project the data sent is being sent as a 

character. After writing the data to SC0DRL a while loop needs to be written to 

wait for the transmit data register empty (TDRE, 8th bit of SC0SR1) to be written. 

If the transfer is interrupted, there is an error and ones are present to the lower 

four bits of the SC0SR1 register. In the program for this project there is an if loop 

to check the SC0SR1 register to identify an error.

The next piece of code that is used to communicate through the HC12’s 

serial port is the code to receive data from the serial port. As with the transmitting 

portion of this project, the receive code is written to receive data in character 

form. To receive the data, a while loop is written to wait for the data register full 

(RDRF, bit 6 of SC0CR1) to be cleared. Next the data can be read from the 

SC0DRL register. The following piece of code features a character written to the 

serial port and then two lines to receive a character from the serial port. The last 

lines of code are the error identifier.
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Char character = c;
/* Transmit Data */

SCODRL = character; /* Send the letter that is stored in character *1 
while ((SC0SR1 & 0x80) == 0); /* Wait for TDRE 7

/* Receive Data 7
while ((SC0SR1 & 0x20) == 0); /* Wait for received character 7

character = SCODRL; I* Read Character from SCODRL 7

if ((SC0SR1 & OxOf) != 0){
DBug12FNP->printf(HError Detected\n"); /* Error Identifier 7}

The firmware, written in C, for the HC12 using the SCI was written using 

pieces from the above code. The first part was the setup code. After this the 

pieces of code used for transmitting data and for receiving data are used where 

they are needed to receive commands from the PC or to send results to the PC. 

The next section of this paper features a discussion of the PC side of the 

software, which was written in LabView.



LabView GUI Software

After choosing a type of interface to communicate with the test fixture the 

control software for the PC was to be written. This control software was written 

using National Instrument’s LabView graphical software. LabView was chosen 

because it has built in functions to control different kinds of interfaces plus it is 

something that the group, giving the group familiarity with the way that it works.

Early in the project LabView was being used to control the project via the 

GPIB interface. A test program was written to first initialize the GPIB bus, setting 

the PC as the controller with the test set as either talker or listener based on what 

was needed at the time. This first GPIB program was written using commands 

from the GPIB tools out of the communications toolbox of LabView. GPIB 

standard 488 was chosen as opposed to 488.2 because it was more 

straightforward and there was no need for the added functionality of the 488.2 

standard. The tools used in the test program were GPIB initialize, GPIB read and 

GPIB write. These three commands were to be used together with other LabView 

tools to build up the rest of the function until the switch to the RS 232 interface.

Fortunately the switch to RS 232 serial communications was no too much 

of a switch in the LabView portion of the programming. The basic tools to 

accomplish RS 232 are in the same communications toolbox in LabView as part 

of the RS 232 tools. The tools that were used included write to serial port, read 

from serial port and bytes at serial port. The last mentioned tool was used to 

know how many bytes to read from the serial port, and writing that number to the 

read from serial port. Using this tool, the amount of bytes read from the serial
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port does not have to be limited or wasted by guessing a number to represent the 

number of bytes.

The first program written was for the sole purpose of establishing 

communications with the serial communications interface of the HC12. This first 

program was an ‘echo’ program. First it writes a character to the serial port. The 

HC12 software receives this character and stores it into a character and lastly 

sends the character back to the serial port. LabView now reads the character at 

the serial port as it is ‘echoed’ back from the HC12. This program was then 

changed to provide different outputs based on the character sent to it.

After the test program was written it was time to write the main program in 

LabView. The first interface that was originally written for use with GPIB was still 

good. In the graphical portion of the project there are two boxes with arrows to 

select channels A and B to be compared to each other. Using LabView the 

numbers were limited to be between 2 and 34 (the usable channels from the 

recorder). These numbers are then written to the serial port and interpreted by 

the HC12. The HC12 now uses the memory mapped IO to write the address of 

the Multiplexors. The data is now sent to the comparator circuit of the project. 

Once the comparator circuit completes receiving its error rate it lets the HC12 

know by raising a bit. Next the HC12 takes the error rate stored in memory and 

sends it through the serial port to LabView where it is displayed in another box.

The instructions for using the LabView Software are listed on the User 

Instruction Manual. All of the information regarding the usage for the LabView 

functions such as the RS 232 Write and RS 232 Read functions are included in
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the appendix section. Additional information about the LabView GUI is included 

in the User Instructions portion of this paper, which follows the conclusion.
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Conclusion

Overall the completion rate of the project was satisfactory. What was finished 

turned out to be:

• VME Board Wrapping complete

• HC12 Modifications Complete

• Altera Logic Written 

• Altera JTAG Programmer Complete 

• All Individual Logic Tested and Functional

• HC12 SCI Initialization Complete

• LFSR Logic Design Complete 

The parts left to be completed for the project include:

• LabView Software Started

• Altera Chips to be programmed

• All Devices to be integrated and tested 

There were parts of the project that perhaps could have been better 

completed using different approaches. One of these of course was the choice for 

the computer interface. One of the possibilities in the beginning was the usage of 

a Data Acquisition Card controlled by LabView. The customer required the usage 

of a GPIB controller in order to have a standard communications device. The 

GPIB controller chip was chosen before the HC12 microcontroller so the obvious 

option of using it’s included serial communications interface did not present itself 

until later.



Another aspect of the project which could have been better conceived was 

the Altera implementation. The selection of devices for the project is where 

problems arose. The first chip that was to be used could not handle the type of 

logic that was required. Going by the advice of a professor the chip was changed 

to the Flex family. This chip was selected without much knowledge of how it 

worked. The Flex device ended up being useless because it proved very difficult 

to program and plus it was built up of destructible SRAM. In the end we found 

success with the use of a chip from the MAX 7000S family, almost the same as 

the chip that we originally chose, from the MAX 7000A family.

On a positive note, large portions of the project were completed and tested. 

Portions of the project required many hours of work. These included the wire 

wrapping of the VME board, circuit design and construction, software writing and 

design and Altera design. There were many things to learn from this project from 

integrating different aspects of electrical engineering to learning about designing 

the device to work at 4.5Mhz and learning how data is managed for scientific 

use.
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Astronomy Observatory and includes references to necessary equipment located 

at the NRAO’s Array Operations Center in Socorro, New Mexico. The senior 

design group is not responsible for changes made to the program or available 

equipment not prepared by them.

Section I: LabView Controller version 1.0

The PC controller for the NRAO Test Fixture is controlled using National 

Instruments LabView software as an interactive graphical user interface using the 

Serial Communications Interface RS 232 Bus of the HC12 as data acquisition 

lines and as a control bus.

Starting the Program:

To start the program, first open the folder with the program file, NRAOTF, in it. 

Next double click the file, LabView will automatically start up with the program. 

The front panel of the program will appear and is now ready to be used.

Usage:

Now that the program is ready, the two channels to be tested against each other 

can now be selected using the two boxes marked Channel A and Channel B 

using the arrows to the right of the number. The box is limited to numbers 

between 2 and 33, which are the channels associated with the recorder. Once 

the channels are selected the program will execute testing once the arrow button 

at the upper left of the LabView window is pressed. When the testing is finished,
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the output sample of the error is listed to the left of the channel selectors. A 

graphical histogram of the error is an option that may be graphed just below the 

error. The selection of the channels to be tested against each other can be 

changed at any time and then set to run again using the arrow button. A graphic 

of the software panel is below as figure 2.

NRAQ.Clock Recovery Board Test Fixture Application

ChamdA
5 r — r

ChamdB
3?— I

Figure 2: software front panel

Section II: Altera Programmable Logic

The NRAO test fixture uses three 84 pin Altera programmable logic chips to run 

the multiplexors and comparator circuit that select the channels to be tested and 

then sample the data to compute the error. These three devices come already 

affixed to the VME board that is inserted into the testing rack. The purpose of this 

portion of the manual is for the unlikely purpose that one of the chips either 

needs to be replaced or re-programmed. This part of the manual goes through 

the process of replacing the chip as well as how to re-program a device.



Removing and Inserting the device(s):

All three of the Altera Programmable logic devices are 84-pin chips inserted into 

84-pin sockets. They are in a row and numbered starting from the closest chip to 

the digital logic chips on the board as U1, U2 and U3. Each socket has an arrow 

pointing to where the top of the chip needs to be for proper operation. There is a 

small dot at the top-center, of the chip as well as a small indentation in the top-left 

corner of the chip to aid in lining up the chip with the socket. The chip should be 

removed using a chip puller in order to minimize the chance of physical damage 

to the chip and the socket. The chip should be inserted by first aligning the chip 

with the arrow at the top of the socket and then gently pushing the chip into place 

by pushing it gently at the center.

Programming a Device:

Included with the CDROM disc for this project is the programming files required 

to re-program each one of the three devices that make up the project. The three 

program files are located on the Altera directory on the CDROM disc. The file for 

the chip U1 is titled u1_chanmux.pof and is the programmer file for the channel 

multiplexor. The file for chip U2 is u2_clkmux.pof and is the file for the clock 

multiplexor. The programmer file for U3 is u3_comparator.pof and is the file 

associated with the comparator circuit and random signal generator portion of the 

project. To program a device, plug it into the provided JTAG programming 

device. In the Altera MAX+plus II software go to file and then open to select the 

correct .pof file. Next select file again and go to name and select set name to
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current file. Lastly, go to the Max_plus il menu option and select programmer. 

Make sure that the JTAG device is plugged in and connected via the parallel port 

of the machine. Now the program button can be pressed and MAX+plus II 

software can be closed. It is important that each Altera program not be mistaken 

for another. They are nearly identical but have differing pin layouts and if installed 

in the incorrect socket will cause the test fixture to malfunction.
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Maintenance Manual

Visual Inspection:

Place the VME board on a piece of foam material to protect the pins on the 
underside.

Look for bent pins and loose or missing hardware.

Ensure all components are properly inserted in the VME card

Preparing for Operation:

Take care when inserting male connectors to female counterparts on the VME 
card; improper care can damage the connectors or the VME card.

Ensure that the VME card is correctly seated in the VME bus.

When using extender card, take care when inserting extender card into VME bus.

During Operation:

Do not move any external probes around the board during operation due to 
potential shorting.

After Operation:

Take care when removing connectors from the VME card; aggressive removal of 
connectors may damage them or their point of installation on the VME card.

Take care when removing extender card and VME card from the VME bus.

Storage and Handling:



Avoid any direct pressure on the underside of the VME card; extreme pressure 

can cause damage to the pins increasing the possibility for shorting the circuit or 

other permanent damage to the card.

When setting down the VME card, ensure it is sitting on a piece of foam to 
prevent damage to the pins.

DO NOT place anything on top of the VME card. This can cause extreme 
damage to the card.

When storing the VME card, place a piece of foam to the underside of the card to 
prevent damage to the pins during storage.

Routine Maintenance:

When replacing logic devices from the VME card, use proper chip pulling tools; 

the lack of use of proper tools may damage the logic devices and the card.

When removing Altera chips for programming, use proper PLD removal tools; 
using proper tools will minimize any damage to the Altera chips and Altera 
sockets.

In the case of a missing logic device, always consult the schematics as to 

the proper installation location on the VME card. DO NOT install any device on 

the VME card without consulting the schematics first.
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Trouble-shooting Guide
If the circuit seems to be working incorrectly (if data rates are 
consistently high or error rates are very inconsistent):
Probe the card when the power is turned on to ensure there is a voltage of 5V at

the VCC pins and GND at the gnd pins.

If there are incorrect voltage readings on the VME card or no 
voltage readings on the VME card:
Ensure the VME card and VME extender cards are properly seated in the VME 

bus to ensure power is being supplied to the circuitry.

If the voltages are correct on the board but the circuitry is not 
working properly:
Hook an oscilloscope to the “LSFR” and “Trigger” BNC connectors to display the 

output of the LSFR “random signal generator.” The output should look similar to:

Picture

If the output from the LSFR appears to be correct, all the Altera chips should be 

functioning correctly. This is concluded because the LSFR is housed in U3 

which takes inputs from U2 and U1. Therefore, if U2 and U1 were not working, 

U3 would not be giving a correct output. Static shock to an Altera chips can 

erase its memory. When the Altera chip is shocked, usually it completely stops 

functioning and not just specific functions. The differential line-receivers should 

also be functioning correctly; this can be concluded since a “clean” clock signal is 

required for the LSFR to function properly.
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If the output of the LFSR appears to be incorrect:
Using an oscilloscope, monitor the output of any one of the differential line

receivers. The output from the clock pin should resemble the following:

Picture

The output from the data pin should resemble the following:

Picture

If the output from the differential line-receiver appears to be incorrect, refer to the 

schematics and ensure that it is properly wired.

If the line-receiver is correctly wired:
Look at the inputs to the line receiver and ensure that they resemble the 

following:

Clock Input
Picture

Data Input 

Picture

If the input appears to be correct:

Replace the differential line-receiver and reinstall a new one while referring to the 

schematics for correct installation location.

Once this has been corrected, proceed to check the remainder of the differential 

line receivers and correct any errors found in the wiring and/or replace any 

damaged line-receivers.
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If the output to the line-receivers is correct:

It may be possible that the Altera chips are not functioning correctly. To check 

this, Altera chips U1 and U2 must be checked first. The reason for this is they 

are both inputs to U3. So if U1 and U2 are not functioning, U3 will not display a 

correct output. Monitor the clock and data output from Altera chips U1 and U2. 

This can be one by monitoring the following pins: Data pins: U1, pins 78 and 81; 

Clock pins: U2, pins 78 and 81. The output to these pins should resemble the 

following:

Data pins 

Picture 

Clock pins 

Picture

If the output appears incorrect, reprogram the appropriate Altera chip(s) (U1 or 

U2) using the instructions as detailed in the instruction manual.

If the output of U2 and U2 are correct:
It can be concluded that U3 is not functioning correctly. Reprograms U3 using 

the using the instructions as detailed in the instruction manual.

If there are still problems with the circuit:
Check that all connections (including all connections to the computer) are

working properly, all discrete logic chips have Vcc and ground, or try to replace 

and reprogram the Altera chips.
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System Integration

* The muxes are also equipped with decoder circuitry (0x2000-0x2100)
The circuit is to be assembled and wire wrapped to a VME bus card Revision 6: 03/18/01
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TITLE "34 Channel Mux design for Senior Design 7 December 2000“
SUBDESIGN mux34 (

i0 INPUT = GND
il INPUT = GNDi2 INPUT = GND
i3 INPUT = GNDi4 INPUT = GND
i5 INPUT - GND
i6 INPUT = GND
i7 INPUT = GND
i8 INPUT = GND
i9 INPUT = GND
ilO INPUT = GND
ill INPUT = GND
il2 INPUT = GND
il3 INPUT = GND
il4 INPUT = GND
il5 INPUT = GND
il6 INPUT = GND
il7 INPUT = GND
il8 INPUT = GND
il9 INPUT = GND
i20 INPUT = GNDi21 INPUT = GND
i22 INPUT = GND
i23 INPUT = GND
i24 INPUT = GND
i25 INPUT = GND
i26 INPUT = GND
i27 INPUT = GND
i28 INPUT = GNDi29 INPUT = GND
i30 INPUT = GND
i31 INPUT = GND
i32 INPUT = GND
i33 INPUT = GND
sO INPUT = GND
si INPUT = GND
s2 INPUT = GND
s3 INPUT = GND
s4 INPUT = GND
s5 INPUT = GND
oO OUTPUT;

)
BEGIN

IF s [5 0] == B"000000" THEN oO = i0;
ELS IF s 5. .0] == BM000001“ THEN oO = il;ELS IF s 5. .0] == B" 000010" THEN oO = i2;
ELSIF s 5. .0] == B"000011" THEN o0 = i3;
ELSIF s 5. .0] == BB000100" THEN oO = i4;ELSIF s 5. .0] == B”000101" THEN oO = i5;
ELSIF s 5. .0] == B" 000110" THEN oO = i6;
ELSIF s 5. -0] == B"000111" THEN oO = i7;
ELSIF s 5. .0] == B"001000" THEN oO = i8;
ELSIF s 5. .0] == B"001001" THEN oO = i9;
ELSIF s 5. .0] == B"001010" THEN oO = ilO
ELSIF s 5 ..0] == B"001011" THEN oO = ill
ELSIF s 5. .0] == B”001100" THEN oO = il2
ELSIF s 5. .0] == B“001101" THEN oO = il3
ELSIF s 5. .0] == B"001110" THEN oO = il4
ELSIF s 5. .0] = = B"001111" THEN oO = il5
ELSIF s 5. .0] == B"010000” THEN oO = il6
ELSIF s 5. .0] == B"010001" THEN oO = il7
ELSIF s 5 ..0] == B"010010" THEN oO = il8
ELSIF s 5. .0] == BM010011" THEN oO = il9
ELSIF s 5. -0] == B"010100" THEN oO = i20
ELSIF s 5. .0] == B"010101" THEN oO = i21
ELSIF s 5. -0] == B"010110" THEN oO = i22



ELSIF s [5. .0] == B"010111" THEN o0 = i23
ELSIF s [5. .0] == B"011000" THEN oO = i24
ELSIF s [5. .0] == B"011001" THEN oO = i25
ELSIF s [5. .0] == B “011010" THEN oO = i26
ELSIF s [5. .0] == B"011011" THEN oO = i27
ELSIF s [5. -0} == BM 011100" THEN oO = 128
ELSIF s [5. .0] == B"011101" THEN oO = i29
ELSIF s [5 ..0] == B"011110" THEN oO = i30
ELSIF s [5. .0] == B"011111" THEN oO = i31
ELSIF s [5. • 0] == B"100000" THEN oO = i32
ELSIF s [5. -0] == B “100001" THEN oO = i33

ND IF; 
2ND;



Data Multiplexor (contained in U l)
01



o Clock Multiplexor (contained in U2)
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Comparator Circuit (contained in U3)



LFSR 'text' Design
SUBDESIGN stimgen
clock
rst

: input;
: input;
: output; 
: output;

iftout 
—ig
VARIABLE
ff[8..0] : DFFE;
shiftin :Icell;

BEGIN
%ff[].prn = rst;% 
ff[].elk = clock; 
ff[8].d=shiftin; 
shiftout = ff[0].q;
IF !rst THEN

ff[].d = B"100000000";
ELSE
shiftin=GND XOR shiftout; 
ff[7].d=ff[8].q; 
ff[6].d=ff[7] .q; 
ff[5].d=ff[6].q; 
ff[4].d=ff[5].q; 
ff[3].d=shiftout XOR ff[4).q; 
ff[2].d=ff[3].q; 
ff[1].d=ff[2].q; 
f f (0 ] . d= f f [ 1 ] . q ;
END IF;
trig=!ff[0].q AND !ff[l].qAND !ff[2].qAND !ff[3].qAND !ff[4].qAND !ff[5].qAND !ff[6] q 
AND Iff[7].q 
AND ff[8].q;
D;

c
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LSFR Altera Test Pinout

UntitledDevice: EPM7064LC44-7
Device Options:

Turbo Bit = ON
Security Bit - OFF
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Memory Decoder Schematic
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ByteBlasterMV 10-Pin Female Plug Dimensions

Dimensions are shown in inches. Thespadng between pin centers is 0.1 inch.

0.425 Typ. ______

0.250 Typ.

Tabic 2 identifies the 10-pin female plug’s pin names for the 
corresponding download mode.

Table 2. ByteBlasterMV Female Plug's Pin Names & Download Modes

Pin PS Mode JTAG Mode

Signal Name Description Signal Name Description

t DCLK Clock signal TCK Clock signal
2 GND Signal ground GND Signal ground
3 C0NF_D0NE Configuration

control
TDO Data from device

4 VCC Power supply VCC Power supply
5 nCONFIG Configuration

control
TMS JTAG state 

machine control
6 - No connect - No connect
7 nSTATUS Configuration

status
— No connect

8 - No connect - No connect
9 DATAO Data to device TDI Data to device

to GND Signal ground GND Signal ground

IGP The circuit board must supply Vcc and ground to the 
ByteBlasterMV cable.

■2 f
□  0 0 0 0  
000

0.100 Sq. 

0.700 Typ.

C-14



ByteBlasterMVSchematic

ByteBlasterMV Parallel Port Download Cable Data Sheet

25-Pin Male Header 
Connections

O
O

cz>

o
cz>
o

o
o 18-25

10-Pin Plug Connections 
vcc J

<ID 
<=J 
<ZJ

I
GND

Single FLEX Device Configuration with the ByteBlasterMV Cable

FLEX 8000 Device vcc vcc

ByteBlasterMV 
10-Pin Male Header 
(Top View)



VME Card - General Layout (Top View)
<--------BNC’s

(70,85) (70,1)

GPIB
Connector

HC12 and HC12 
daughter-board

32

J6

(20,2,

(20,2j

(1,1)

J1
iu)
J5

Note: Connectors J2 and Jlare ‘data connectors.’ J5 and J6 are 
‘clock connectors’. J2 and J6 contain data and clock from the odd

tracks and J2 and J5 contain data,for the..£ven..trac.ks

Differential Line 
Receivers

d.i)
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VME Card - General Layout (Side View)

Clock recovery 
connectors

Wire Wrap Pins

GPIB
connector

50 ohm BNC 
connectors
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VME Card - 50 ohm drivers

Top of Card

Clock 1 Clock 2 Datal LSFR Trigger

(U3-42)

(61,79)

fU3-48)
A  A -

(U3-41) •  W
A  A

(U3-50)

( U3-40i •  W

•  •
(U3-43)

Italics correspond to the signal source 

connection on the Altera chips

Data 2

Profile View

© Data 2

© Trigger

© LSFR

© Datal

© Clock 2

© Clock 1

NRAO Test Fixture 
50 ohm (drivers
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VME Card - HC12 Daughter-board (underside of HC12)

Reset

PE2

PA1

PE4

IRQ
PAO

g

t" m co < < <  U 0, CL,

© 1 % S  S3<  <  <  CL. PL, Ai

DI01
DI02
DI03
DI04
EOI
DAV
NFRD
NDAC
EFC
SRQ
ATN
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VME Card - HC12 Daughter-board

(63,70),

(57,53)
57

20

42-1: PBl 42-16: PB7 57-11: SRQ
42-2: PB2 42-17: PB5 57-12:ATN
42-3: PB0 42-18: PB4 57-13
42-4: DIOl 42-19: PB3 57-14: GND
42-5: DI05 42-20: VDD 57-15: PA7
42-6: DI06 57-1: DI07 57-16: PA6
42-7: DI02 57-2: DI03 57-17: PA4
42-8: PE4 57-3: DI08 57-18: PA5
42-9: Reset 57-4: DI04 57-19: PA3
42-10: PE2 57-5: EOI 57-20: PA2
42-11: IRQ 57-6: DAV
42-12 57-7: REN
42-13: PA1 57-8: NFRD
42-14: PA0 57-9: NDAC
42:15: PB4 57-10: IFC

(63,34)

42
(42,53) # 2 0

NRAO Test Fixture 
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VCCO—

J 1(1.1) PData -_K 
JU1.2) ("Data • A/ _J-

(66,6)

jsd.nrcik-tc
JS(l.2)rcTk-Qr

j2(i.nrpKtrnr:
nd.pr m n r

j6(i.nrciirT
J6(1.2)f  Clk- 1L

Jl(2,l)n5ata
Ji(2.2)[SOr

J5r2.nrc irrr
J5(2.2)[[ciOZ;

■12(2,l)r~Data --3__ 
J2f2.2)rData -IE

J6(2.1)f  Clk-3 
J6(2.2)f  Clk- 3/

(58,6)
3 1

(66,9) 
2

10

-2C

14

(58,9) 
2

-*C

10

J4_
15,

U1A
26LS32_

ip
U1B
26LS32.

12

U1C

U3A
26LS32_
►3

112

U3B
26LS32_

U3C
26LS32_
11

12

U3D
26LS32_
13

(66,4.

FFSR 
\.4\ 4 A  U2A

D 

>C

FFSRI1

(62,4)
5

-24ALS24.
FFSR

FFSR
(53,4) 4 A

D 

>C 

FFSR 9 1

(54,4)
5

UL.

74ALS74

FFSR
U4B

D 

>C

FFSR V13

(53,2)

74ALS74_

* =  8 pin lOOohm DIP resistor

** = The NRAO told us these are not to be tested; therefore, they are not 
wrapped to anything.

**N/A

•**N/A

26LS32_ (61,2)
> 11 12 D Q 9
JL2

U1D
11>C Q

26LS32_
,------ FFSR Y13 74AT <574

**N/A

■**N/A

Ul-29

U2-55

•Ul-30

■U2-30

NRAO Test Fixture 
‘Front-end’ differential line-receivers 
Page 1 of 9 Francis Martinez 
April 1,2001 Revision 2



ji(3.dCS3C
J 1(3.2) rData~̂ lZ

J 5 f3 .1 ) |~ C l k - 4  

J5(3.2)|~Clk -_4£

_____, (49,6)

VCCO-- ^r-

J2(3,i)[Diir2m> 
J2n.2)r5ata • V ~>~

J6(3,l)rClk̂ L
J6(3.2)rcik- 5/

Jl(4.1)rD a ta -6 _  
J 1 (4.2) rDaa^~S7!

jS(4.nrcik-6: 
J5(4>2)(~r:rk- 6r

J2(4.i)p g rr~
J2(4^[55ZE

J6(4.1)rcik -7
J6(4.2)l~Clk- 7/

(41,6)

.FFSR

(49,9; 
2

Jo

10

-2C

14

(41.9) 
2

-*0

10

JJL
15,

U5A
26LS32_

112

U5B
26LS32_

12
U5C

U7A
26LS32_
►3

112

U7B
26LS32_

U7C
26LS32.
11

12
U7D
26LS32_
13

(49,4

FFSR
.r a  wa

t>C Q 

FFSR V1'

(45,4)
5

6

74ALS74

FFSR

FFSR
(41A) T L _ U8A

D (36,4)
Q 5

>C QJ2_

ffsr Tt 74ALS74_

FFSR
in U8B

D Q 

>C Q

(35.2)

F F S R  V13 74ALS74_

* =  5 lOOohm DIP resistor

•Ul-60

26LS32_ i _
(44,2)

> 11 12D Q9
PL2

U5D
il >C Q

26LS32
i------ FFSR V13 74AI.S74

U2-60

Ul-36

U2-36

Ul-57

U2-27

Ul-25

U2-24
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11 ris. i i . x —  
J1 (5.2) rtntn ■ M 1 ----^ ----

vcco— W -

J5(5.1) fT ik  - * .n— ^  
J5(5.2) [ c E IB Z Z Z m — ^

J2(5.1) r  Data - 0
J2(5.2) C D a532Z Z rD — ^

JGcs.nrcikTo
J6(5.2ll~~Clk- 3/ - J — ^

r-  (24,6) 
Jl(6 .1)f Untn ■ 111 -----g-—
J1 (6.2)fnam. IIW I --

J5(6. n fn 'lIc .lO  —1----;g -
J5(6.2)m ik -  iW t— S

J2(6,1 ̂ |~*T5ntn - II — I—  

J 2 ( 6 . 2 ) - 1 w ~ 1—

J6(6.1)QJ|jLii l _ _ 3— ^  
J6(6.2)f  cik- 1 . ' J 3 — ^

FFSR

(32,9; 
2

-20

10

14

(249; 
2

■*0

10

-14_
15,

U9A
26LS32_

U9B
26LS32.

]2
U9C

U11A
26LS32.
3

U11B
26LS32.

U11C
26LS32_
ll

12
U11D
26LS32.
13

FFSR 

(39 4A
D Q 

>C Q 

FFSR V 1

(28,4)

74ALS74
FFSR

FFSR

f244J 4 A U12A
D Q 

>C Q 

FFSR V 1

(20,4)
5

LG—

74ALS74_

FFSR

T A  U12B
D Q 

>C Q

FFSR V 13

.am .

74ALS74_

* —= 8 pin lOOohm DIP resistor

-Ul-34

U2-37

26LS32_ r„u;,w__
D Q

(27,2)

r 11 12 9
J2

$ & 2
11>C Q

FFSR Y 13 74ALS74

Ul-56

U2-58

Ui-35

U2-9

Ul-58

U2-28
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vccO—

J 1(7.1) r~D'ata -_L2Z
j K7,2)

jsf7.»rcik-nr
J5(7.2)r c i k -  12T

J2(7.l)f~ D a a n T : 
J2(7.2)l~Data - 13L

J6(7.1)r c ik -T 3 :
J6(7.2)r c ik -  ML.

ji(8.nrp^rnT:
Jl(8.2)i~~bata - I4Z!

J5(8.n[~Clk- I4~ 
J5(8,2)f~cik- 13T

J2(8,l)rpata  - 15 

J2(8.2) fPata^TSZ!

J6(8.1)fc ik -L S : 
J6(8.2)(~Clk- IV:

(8,6)

3 *

J.ESE 

JL

10

-2c

14

(8,9)
2

-k:

■*c

10

J4.
15,

U13A
26LS32.

,,23
U13B
26LS32_

112
U13C

U15A
26LS32.
>3
L2

U15B
26LS32_

(16,4,
FFSR
:~7L_U14A

(12,4)

FFSR

5

6__

■2.4ALS7.4
FFSR

FFSR

(8,4) 4 A U16A

ff s r T i

(4,4)
5

Lfi—

74ALS74

* -=  5  p m  lOOohm DIP resistor

“Ul-41

26LS32_ (11,2)

V
12

D Q 9

U13D
26LS32_

11 >C Q

FFSR I 13 74  AT.5374

U2-41

Ul-2

U2-4

•Ul-4

U2-40

U15C
FFSR

I k .  m6B26LS32 (3.2)
12 D Q 9

U15D
26LS32_

11 >C Q 8

FFSR V 13 74ALS74_
> 13 I ...

Ul-65

U2-65
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vcc

JU9.1)p5a5r iA
J 1 (9,2) P Data -1ft/ i----^ ----

J5f9.nr a n g :
J5(9,2)rciir~r5z:

J2(9.1) f l )nrn. l V 
J2(9.2)ptotn- \ ')l ~~l--^

j6(io.D[2iEzn:
j6(io.2)[~cikn7r

jKio.nrDStmir: 
Jl(10.2)rData- IS/~

J5( 10.1) [32321
J5(10.2)[cSZiSI

(60,16)

3 T

J2(10.nn E ^ r  
J2M0.2)f  Data - 19Z,

j6no.nfrnr. K)
J6(10.2)r c ik -  lW J— ^

-EESBL

r<55./p; 
2

U17A
26LS32_

-20

U17B
26LS32_

10

-2c

14

(60,19) U19A 
2

■2C

10 U19C

JL i.
15,

(63,
FFSR

1/4 ) 4  A U 18A

D Q 

>C Q

FFSR V 1

(64,14)
5 

±

74ALS74

FFSR

(60,

FFSR ----1
KL U20B

Jjc _ 5  pin lOOohm DIP resistor

•Ui-40

I2
U17C
26LS32_

FFSR 

“ ^ 1 . . U18B
D Q

(63,12)

}  11 12 9

U17D 11 >C Q
26LS32

£ n  1 FFSR Y 13 74ALS74

U2-6

Ul-15

U2-66

26LS32_
D Q

(56,14)
2 5

3 >C Q JL_U19B
26LS32_

FFSR T 1 74ALS74_

Ul-7

U2-7

 ̂ 26LS32_ (55,12)
> 11 12 D Q 9
12

il >C Q 8
U19D
26LS32_

FFSR V 13 74ALS74_

Ul-70

U2-67
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vcc

jifn.np5aSTflr 
J U11,2) f~Data - 20Z_

(51,16)

J5 f ll.l)p C lk - lQ :

j5(ii.2)[2Er2E

J2(l 1.1)1 " ^ - i>l

J2( 11 natn-2l7~ T >

J6(11.1)[cEDE 
J6( 11 .2)QcE2IZI

Ji(i2.nra5nz:
J 1(12.2) f ^ a ta  -1111

J5(12.1)CoEI2I 
J5( 12.2)0322:

i2(\2,i)rm rrm
J2(12.2)rPata-2̂ /_

J6(i2.nrc iim :
J6(12,2)CcE232:

(43,16)

ZZl Z

FFSR

{51,19) 
2

U21A
26LS32_

3
12

U21B
26LS32_

12

U21C
10

14

(43,19) U23A
26LS32_

Jo

3

U23B
26LS32_

10 U23C
26LS32_

-LL
15,

11

U23D26LS32_
13

FFSR 
, 7 ^  U22A
D Q 

>C Q

FFS R V 1

(47,14)

JiALSM-
FFSR

FFSR
I'*?, 74) 4 A U24A

D Q 

>C Q

(39,14)
5

U_

FFSR Vl 74ALS74,

FFSR

U  U24B
D Q 

■>C Q 

FFSR V 13

C38,I2)

74ALS74_

* =  5  pin lOOohm DIP resistor

Ul-8

U2-8

26LS32_ _ _ IU W _
(46,12)

12
D Q 9

U21D
26LS32_

II >C Q

FFSR V 13 74  AT .5574

Ul-37

U2-34

■Ul-39

U2-39

•Ul-19

U2-21
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G
-7

JK 13.1)f D ata-2A -------■
J 1(13.2) f~TWn ■ U )  ^ ----

vcco— ^ r

J5(13.1)[C EZH : 
J5(13.2)fc 'lk -S 4 T

J2(13.1) fPaTn - H  -1—
J2( 13.2) C S 3 2 2 Z 3 Z 3 — ^

J6C 13.1) I Clk - :»h -J  
J6(13,2)|~Clk- 25L

J 1(14.1)1 jjatn - )(i _■> 

J 1(14.2) [~Data - % )  __3-

(26.16)

J5(14.1)[HEZ2S:
J5(14.2)[cE2E:

J2(14 ,l)r P a ta -2 7 _ :  

J2(14.2)f~bata - 27/.'

J6( 14,1)0222:
J6( 14.2) f  Clk- 27/

■EFSR

f34,19) 26LS32_

U25B
26LS32.

10

-2c

14

(26, 19) U27A
26LS32_

-*G

3

U27B
26LS32_

10 U27C
26LS32.

14
15,

11

U27D
26LS32.
13

FFSR

(34.14} 4A  ^26A
D Q 

>C Q

FFSR V

(30,14)
5 

_6_

-7-4ALS74

FFSR

(26, 14) 4 A U28A

T D Q

-3->C Q 

FFSR 11

(22,14)
5

UL_

74ALS74_

FFSR

m1  U28B

D Q 

>C Q

(21, 12)

FFSR '13 74ALS74.

* —=  8 pin lOOohm DIP resistor

Vi-66

|12

U25C
26LS32_

FFSR
U26B

D Q
(28,12)

> 11 12 9
[jL2

U25D
11 >C Q

26LS32
 ̂ 1 FFSR V13 74ALS74

U2-16

Ul-61

U2-69

Ul-67

U2-18

•Ul-18

U2-19
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/CCO----- ^ r -

i m < n p S i a . ' ) k

j i (i5.2) rsssscz i—

J5 (I5 J)[Ic 3EZ2HIZZZZD—  
J5(15.2)f~Clk - 3W ^

J2 flS .n l Datn - !<W - j — ^  
J2(15,2) p M t n . / w  ~~3—

J6 f is .n (~cIiT35:
J6(15.2)CcE2SZ:

JI(16.nrDatn - m J- 
J 1(16.2) FPatn - ■tit/

(9.16)

J5(16.nf~Cik"^> -3— -g -
J5( 16.2) [c E Z 2 n Z 3 ^ D — ^

J206.1) r~Datn • AI 
J 2(16,2) f l W n - I W  -i— S 2

J6d6.Drcik.-AI _)- 
J6( 16.2)f~c[ic- U/

.fESE

f/7,79; 
_2_

10

-2c

14

(9,19) 
2

10

A±
15,

U29A
26LS32_

3
_I2

U29B
26LS32_

12

U29C

U 31C

FFSR
(J7,/<f).4 j) V30A

>C Q 

FFSR V 1

(13.14)
5

_6_

.7.4ALS7.4,.

FFSR

FFSR

* — 8 pin lOOohm DIP resistor

Ul-16

U2-20

26LS32_ I Ul J
D Q 

>C Q

(12.12)

U29D
26LS32

12
11

9

iL .

FFSR V 13 74ALS74.> 13 1
UL2

U31A
FFSR 

(9,14) _ U32A
26LS32_

D Q 

>C Q

(5.14)

U31B
26LS32_

2
1

5

JL_

FFSR Y 1 74ALS74_
? 5  1. ...

Ul-55

U2-57

Ul-20

U2-64

 ̂ 26LS32_
D

(4,12)

? 11 12 Q 9

11 >C Q 8
U31D
26LS32_

FFSR Y13 74ALS74_

Ul-21

U2-22
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Description of NAT7210 GPIB Controller Initialization
1. Ch. 3 contains description of the internal registers and what their bits do.
2. Ch. 5 contains a step by step description of how to initialize and program the 

NAT7210.
3. The registers are at offsets 0-7 which are mapped to 0x1000 to 0x1700 in 

memory (see 3-2 for register map)

Breakdown of initialization Function

Note: The register at 0x1500 or offset 5 is control register (AUXMR) into which 
command codes are written that control certain activities of the NAT7210.

One of the commands that the AUXMR register accepts is a page-in command. 
This allows access to hidden registers (shown in bold boxes on the register map) 
to be accessed. (For other functions of the AUXMR register see 3-19 to 3-26.)

In addition to commands that are written to the AUXMR register, there are sub
registers in AUXMR (using the same offset) these registers are selected via the 
high order bits of AUXMR. These registers are AUXRA, AUXRB, AUXRE, 
AUXRF, AUXRG, AUXRI, and ICR whose functions are detailed on 3-27 to 3-36.

1. Write 0x02 to AUXMR this the command to reset the chip and put it into a 
mode
where it is idle so that it can be programmed.

2. Write 0x50 to AUXMR this is the page-in command that allows for access to 
the

hidden registers.

3. Write 0x81 to ICR2 which is a hidden register at offset 3, 0x1300 this register 
puts

the ICR into a mode that allows the NAT7210 to be set to use a 10MHz clock 
speed.

The bit set is bit 0 which is called MICR. The high bit 8 is supposed to be set 
for the

same reason. See 3-44.

4. Write 0x25 to the ICR at offset 5 at AUXMR with the MICR bit set in ICR2. 
Using the table on 3-43 a clock frequency of 10MHz is chosen.

5. Write 0x31 to ADMR at offset 4 or 0x1400 this hex code puts the NAT7210 in 
a mode where it can implement one or two logical devices.

6. Write 0x00 to ADR at offset 6, which is the address, register (see 3-8) the 
highest

H-



order bit 7 determines whether sub-registers ADRO or ADR1 are written to by 
a write

to this register. Bit 6 and bit 5 determine if the device is able to be a listener, 
talker or

both. At the address given by bits 4-bit 0. This is the device address. In this 
case the

primary address is set to be 1 with talking and listening enabled.

7. Write OxEO to ADR. Since the high bit is set, ADR1 is written to. Bits 6, 5 are 
set
disabling talking and listening of the secondary address contained in bits 4-0. 

See 3-8 
and 3-10.

8. Write 0x00 to SPMR, the serial pole mode register at offset 3,0x1300. This 
register holds the serial poll status byte that is sent over when the device 
receives a serial poll. Bit 6 is zero because a serial poll is not being 
requested and the other bits are zero for no other reason than its easier that 
way. See 3-62.

9. Write 0x70 to the PPR at offset 5, 0x1500. PR is a sub-register of AUXMR. 
The highest three bits selects PPR. Bit 4 is set in order to disable the 
NAT7210 from responding to serial polls. See 3-58

10,11 see table 5-2 on page 5-10 this table shows the bits that need to be set in 
the AUXRB and AUXRI registers to produce various delays for the T1 delay. The 
HSTS definition is 0 for the first byte transferred and 1 for every byte there after.
T1 delay is set to be 2000ns for all bytes so that USTD and TRI do not have to 
be changed based on HSTS. For a 2000ns delay TRI=0 and USTD=0.

10. Write OxAO to AUXRB sub-register of AUXMR at offset 5, 0x1500. This clears 
the
TRI bit which it at bit 2.

11 .Write OxEO to AUXRI sub-register of AUXMR at offset 5, 0x1500. This clears 
the
USTD bit which is at bit 3.

12. Write 0x82 to AUXRA sub-register of AUXMR at offset 5, 0x1500. Clearing 
bits 4-2 keeps stuff for an EOS from being used. Setting bit 1 and clearing 
causes mode to be selected where there is a RFD hold off after a byte with an 
EOI is sent. This asserts the NRFD signal to keep data from being transmitted 
to it until a command is sent to the AUXMR to clear it and allow data 
transmission. If this gives trouble write 0x80 instead of 0x82 to cause it not to 
do RFD hold off. See table 3-28.

H-



13. Write 0x00 to AUXMR at offset 5, 0x1500. This takes the NAT7210 out of idle 
mode and its ready for action.

Program Function main()

The program consists of a main loop that runs forever and a series of if 
statements that determine if the DIR register should be read at offset 0, 0x1000 
and its contents put into a variable.

First a 0x03 is written to AUXMR to take off the RFD hold off if there is one from 
the last byte received.

The first if statement tests for if bit 2 of ADSR register at offset 4, 0x1400 is set. 
This bit tells if the NAT7210 has been addressed to be an active listener.
The next if statement tests for if bit 0 of ISR1 at offset 1, 0x1100 has been set. 
This bit tells if data has been received.
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GPIB.h
/* GPIB header file that defines the internal
* registers of the the NAT7210 GPIB controller */

#ifndef __GPIB_H
#define GPIB H 1
/* the registers are mapped to extenal memory of the
* microcontroller from 0x1000 to 0x1800 */

#define ..OFFSET 
#define GPIB0 
#define GPIBl 
#define GPIB2 
#define GPIB3 
#define GPIB4 
#define GPIB5 
#de£ine GPIB6 
#define GPIB7 
#endi£

0x1000
(unsigned char 
(unsigned char 
(unsigned char 
(unsigned char 
(unsigned char 
(unsigned char 
(unsigned char 
(unsigned char

(_OFFSET+0x0000)) 
(_pFFSET+0x0100)) 
(_OFFSET+0x0200)) 
(_OFFSET+0x0300)) 
(_OFFSET+0x0400)) 
(_OFFSET+ 0x0 500)) 
(_OFFSET+0x0600) ) 
(_OFFSET+OxQ7 00))

HC12
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#include <hcl2.h>
#include <DBugl2.h>
#include <GPIB.h> 
void initialize (void) ? 
void main()

<
char data; 
initialize () ; 
while (1)

{
GPIB5=0x03; /* finish handshake */ 
if ((GPIB4 & 0x04) ==s 1) /* listener active */
DBugl2FNP->printf("I am in the first if loop\nn); /*FRANCIS ADDED THIS LINE

*/
{
if ((GPIB1 & 0x01) s=s l) /* data received */

DBugl2FNP~>printf ("I am in the second if loop\nM); /*FRANCIS ADDED THIS
LINE*/

{
data=GPIB0;
DBugl2FNP->printf ( "data=%h\r\n" ,data);

>
>

}
}

void initialize()
{

1.GPIB5=0x02; /* write to AUXMR to make sure PON is asserted to put NAT7210
* in an idle state*/

2.GPIB5=0x50; /* put in page-in mode in order to write to hidden register ICR2*/
3.GPIB3=0x81; /* write to ICR2 to set the MICR bit to allow ICR to be set so as

* configure the NAT7210 to run at 10MHz*/
4.GPIB5=0x25; /* write to ICR in order to configure the NAT7210 to run at 10MHz*/
5.GPIB4=0x31; /* write to ADMR to set NAT7210 to be in normal dual addressing mode

* /
6.GPIB6=0x01; /* set device address to be lucky number 1 */
7 .GPIB6=0xE0; /* disable secondary addresing */
8.GPIB3=0x00; / *  set serial poll status byte to be 0x00 */
9.GPIB5*=0x70; /* write the hidden PPR register in order to disable parallel poll

* response */
/* set Tl delay to be 2000ns for all bytes sent */

10.GPIB5=0xA0; /* clear TRI bit of the AUXRB register */
H-GPIB5=0xE0; /* clear USTD bit of the AUXRI register */
GPIB5=0x49; /*set CHES and NTNL */
GPIB5=0x51; /*issue hldi command*/
12.GPIB5=:0x80; /* normal handshake mode */
13.GPIB5=0x00; /* unassert PON in order to enguage controller */

g d e x o o .c
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Serial Port Init
Initializes the selected serial port to the specified settings.

Click the parameters for more information.
flow control etc.

buffer size 
port number 

baud rate 
data bits 
stop bits 

parity

error code

BBS flow control etc.
flow control etc. contains the following parameters.

E D  Input XON/XOFF
See the Handshaking Modes topic for more information. 
Default value: FALSE

D EI Input HW Handshake
On the PC and SPARCstation, this parameter corresponds to Request To Send (RTS) 
handshaking.
Default value: FALSE

□ED Input alt HW Handshake
On the PC, this parameter corresponds to Data Terminal Ready (DTR) handshaking. On the 
SPARCstation, this parameter is ignored.
Default value: FALSE

M l  Output XON/XOFF
See the Handshaking Modes topic for more information.
Default value: FALSE

buJ Output HW Handshake
On the PC and SPARCstation, this parameter corresponds to Clear to Send (CTS) handshaking. 
Default value: FALSE

D EI Output alt HW Handshake
On the PC, this parameter corresponds to Data Set Ready (DSR) handshaking. On the 
SPARCstation, this parameter is ignored.
Default value: FALSE

D O  XOFF byte
XOFF byte is the byte used for XOFF (AS). 
Default value: 0x13

BE] XONbyte
XON byte is the byte used for XON (AQ). 
Default value: 0x11E
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lOiiiJJ Parity Error Byte
If the high byte is non-zero, the iow byte is the character that is used to replace any parity errors 
found when parity is enabled.
Default value: 0

GBD buffer size
buffer size indicates the size of the input and output buffers the VI allocates for communication through 
the specified port. You may need to use larger buffers for large data transfers. The buffer size is in bytes. 
Default value: 0

E H  port number
See the Port Number topic for a list of valid port numbers.
Default value: 0

D EI baud rate
baud rate is the rate of transmission.
Default value: 9600

DSI data bits
data bits is the number of bits in the incoming data. The value of data bits is between five and eight. 
Default value: 8

ta d  stop bits
stop bits is 0 for one stop bit, 1 for one-and-a-half stop bits, or 2 for two stop bits.
Default value: 1 bit

BED parity
parity is 0 for no parity, 1 for odd parity, 2 for even parity, 3 for mark parity, or 4 for space parity.
Default value: 0

IM 3! error code
error code is -1 if baud rate, data bits, stop bits, parity, or port number are out of range, or if the 
serial port could not be initialized. Check the values of baud rate, data bits, stop bits, parity, and port 
number. If these values are valid, verify that the serial port has been initialized. Refer to the Error Code 
topic, for a list of error codes.

You can connect error code to one of the error handler Vis. These Vis can describe the error and give 
you options on how to proceed when an error occurs. For more information on using the error handler 
Vis, refer to Error Handler Vis.

Some error codes returned by the serial port Vis are platform-specific. Please refer to your system 
documentation for a list of error codes.
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Serial Port Read
Reads the number of characters specified by requested byte count from the serial port indicated in port 
number.

Click the parameters for more information.
port number 

requested byte count
1 string read 
error code

port number
See the Port Number topic for a list of valid port numbers.

S 3  requested byte count
requested byte count specifies the number of characters to be read. If you want to read all of the 
characters currently at the serial port, first execute the Bytes at Serial Port VI to determine the exact 
number of bytes ready to be read. Then use the byte count output of that VI as the requested byte 
count input to the Serial Port Read VI.

4bc string read
The VI returns the bytes read in string read. 

HE] error code
If error code is non-zero, an error occurred Refer to the Error Code topic, for a list of error codes.

You can connect error code to one of the error handler Vis. These Vis describe the error and give you 
options on how to proceed when an error occurs. For more information on using the error handler Vis, 
refer to Error Handler Vis.

Some error codes returned by the serial port Vis are platform-specific. Please refer to your system 
documentation for a list of error codes.
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Serial Port Write
Writes the data in string to write to the serial port indicated in port number. 

Click the parameters for more information.

port number------ U w
string lo w r i t e - laii3 ------ error code

port number The parameters for serial port numbers depend on the platform that you use: Windows, 
Macintosh, or UNIX. Refer to Windows Serial Port Numbers, Macintosh Serial Port Numbers, or UNIX 
Serial Port Numbers for more Information about each platform.

string to write is the data to be written to the serial port; If the number of characters in string to 
write is greater than the buffer size specified in Serial Port Init, the number of characters equal to the 
buffer size will be written.

If error code is non-zero, an error occurred.

You can connect error code to one of the error handler Vis, which describe the error and give you 
options on how to proceed when an error occurs.

Some error codes returned by the serial port Vis are platform-specific. Please refer to your system 
documentation for a list of error codes.
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