CALIFORNIA INSTITUTE OF TECHNOLOGY

TO VLBA Correlator People

DATE October 24, 1983

FROM

J. Peterson, (M. Ewing)

VLBA CORRELATOR MEMO

VC 003

SUBJECT VLSI Project Status

(This memo was prepared from materials used in a presentation of the JPL VLSI Chip Design work given on 9/29/83.)

VLSI CORRELATOR CHIP INTRODUCTION

MAJOR ISSUES

THE VLSI ADVANTAGE IN LARGE SYSTEMS LIKE THE VLBI CORRELATION PROCESSOR FOR THE VLBA:

- * 50% ELIMINATION IN INTEGRATED CIRCUIT COUNT
- * LIFE COST SAVINGS OF ~ \$720 K

REVIEW THE CORRELATOR CHIP REQUIREMENTS

YIELD AND FAULT COVERAGE

DESIGN METHODOLOGY

COST SUMMARY OF THE CORRELATOR CHIP \$/CHIP

VLSI CORRELATOR CHIP
VLBI SYSTEM STATISTICS
10 STATION - 32 SUBCHANNELS

	with VLSI	without VLSI
# of I/c's	66 K	128 к
# of p.c. boards	440	735
power	29 kw	65 kw
reliability	340 hrs	165 hrs
H/w \$ mp \$ Operational \$/yr. Life cost \$ 6 yrs.	\$1,010 K 790 K 25 K 1,950 K	\$1,445 K 895 K 55 K 2,670 K
	(Δ+720 K)	

of microprocessors in system - 155
Algorithms demand a throughput of 775 million instructions/sec.
3K correlator chips are required (I/C reduction of 20 to 1)

VLSI CORRELATOR CHIP CORRELATOR CHIP REQUIREMENTS

The chip will contain two 8-lag complex correlators. Quantization is either 2-level, 3-level, or 4-level. Oversampling of lx none, 2x, or 4x is available. Multiplier products are pre-scaled (÷8) producing two data streams per lag. (complex)

Data correlation of up to 16 mega-samples per sec. 16 computational elements (CE) per chip.

NMOS technology One watt of power.

VLSI CORRELATOR CHIP CHARACTERISTICS

Dual 8-stage shift register.

Input multiplexer logic for oversampling.

3-multiplier circuits for each computational element 48 million multiplications/ sec per CE

2-prescalers with overflow carries produces a complex data stream.

Each CE requires 625 gates (2,187 transistors) occupies an area of 1.5 x .95 mm 3-micrometer minimum features

Correlator chip implementation requires 10.0 K gates (35 K transistors)

occupies an area of 6 x 3.8 mm

VLSI CORRELATOR CHIP YIELD PROSPECT

Reduction in a wafer yield (y)

Existence of area defects (y_o)

Whole portions of wafer provide no good devices Existence of fatal point defects - defect density (D) Defects are randomly distributed over wafer area

 $y = y_0 e^{-DA}$ A = chip active area $A = 22.8 \text{ mm}^2$ $D = 5 \text{ defects/cm}^2$ $y_0 = .980$

 $y = .980e^{-1.14} = 31%$ for a very large number of wafers

VLSI CORRELATOR CHIP TESTING and FAULT ANALYSIS

$$F = 1 + \frac{1}{DA} \ln \frac{Y_t}{Y_p}$$

y_p = yield at probe

y_t = true yield at 100% fault coverage

F = fractional fault coverage for a given set of
 test vectors

assume $y_t/y_p = 0.9$

$$F = 1 + \frac{1}{1.14}$$
 ln .9 = .91

The fault coverage should be 91%

For high reliability test vectors should guarantee a fault coverage which cover the device's functions, and also the structures used for the circuit implementations
↑ 9000 vectors.

VLSI CORRELATOR CHIP CORRELATOR CHIP DESIGN METHODOLOGY

THREE DESIGN OPTIONS . . .

- * GATE ARRAYS
- * STANDARD CELLS
- * FULLY CUSTOMIZED CHIPS

First two methods attain a high level of automation, speed design time and require little silicon savvy. Fully customized approach requires the artistry of an IC expert.

STRUCTURED CUSTOM CHIP DESIGN -

Custom ICs by silicon compilers software

- * Optimized circuit elements from user-specified inputs
- * Without limited flexibility and inefficient layout

SMALL PROGRAMMABLE LOGIC ARRAYS (PLA) < 30 GATES EACH

VLSI CORRELATOR CHIP CORRELATOR CHIP DESIGN METHODOLOGY STRUCTURED CUSTOM CHIP DESIGN

PRO

- * Reduces the design problem by 2/3 -- saved \$240 K
- Not as optimized as a full custom chip ~0.67.A

* Cost is predictable

- Yield can be improved 31%
- * Bottom-up hierarchical design to 60% cost \$50 K

CON

- * Flexibility & efficient layouts
- * Optimized circuit elements (see CON)

VLSI CORRELATOR CHIP COST SUMMARY OF CHIP

200 4 in.-wafer @ \$500.00/wafer - \$100 K & 20 K chips

Assume 30% usable chips = 6 K chips

fab cost \$100 K package cost \$10.00/chip \$60 K testing \$50 K Total \$210 K $\frac{1}{2}$ \$35.00

> VLSI CORRELATOR CHIP SUMMARY

* VLSI ADVANTAGE FOR THE VLBI PROCESSOR

SAVING OF \$350 K - fewer ICs

\$190 K - design methodology

\$180 K system reliability

- * CORRELATOR CHIP REQUIREMENTS
- * CHIP CHARACTERISTICS
- * YIELD and FAULT COVERAGE
- * DESIGN METHODOLOGY
- * CHIP COST

VLSI CORRELATOR CHIP CROSS-CORRELATION PROCESSOR

-5-

VLSI CORRELATOR CHIP

CORRELATOR BLOCK DIAGRAM

ONE OF TWO 8-LOT COFFILATOR CIRCUITS PER CLIP

BO-7 &B are Blanking Terms from Logs + dolay 'orled' Together

Iterative block

VLSI CORRELATOR CHIP

ARITHMETIC ALGORITHMS

multiplication of binary humbers

ITERATIVE ALGORITHM

VLSI CORRELATOR CHIP FLOOR PLAN

VLSI CORRELATOR CHIP

FULL CUSTOM OR STRUCTURED CUSTOM

FULL-CUSTOM

DESIGN COST - \$360K

\$/CHIP \$27:00

STRUCTURED CUSTOM DESIGN COST - \$120K \$/CHIP - \$35.00

DESIGN 4 = \$240K

Ċ