
VLBA Correlator Memo
VC 035 *********************

VLBA CORRELATOR:
REVIEW OF BLOCK-I I CORRELATOR CONTROL

T. J. Pearson

January 2, 1985

The following notes are baaed on discussion with D. Rogstad on December 7, 1984.
Some of the text has been extracted from the comments in the Forth code.

OVERVIEW
Figure 1 (System Level Siting Diagram) shows the hardware layout of the Block-II

Correlator. The station hardware and Correlator/Tensor hardware are interfaced to the
VAX-11/780 by two DR70 (16-bit parallel) interfaces on a single Massbus. The Corre-
lator Control Program (VCOROP) is written in Forth and communicates with the VMS
operating system via the Forth kernel. All VMS instructions, system services, and library
routines are available to the Forth programmer. The operator interface consists of an op-
erator console (hardcopy terminal) which is used for starting up the Correlation process,
and a workstation (graphics terminal with attached printer) which is used for controlling
and monitoring the correlation of a single experiment. When two separate experiments
(called "groups") are to be processed simultaneously, two workstations are used.

Figure 2 (Software Interfaces and Data Flow Diagram) shows the top-level software
organization. All communication with the hardware is carried out in the main Control and
Model Program, started up from the operator console. Each group is processed as a VMS
subprocess of the main program, communicating with the main program via a "global
section" (shared common). Correlation parameters are read from a Correlation Control
Record (CCR file), set up in advance; for Mark-Hi this can be generated automatically
from the station log files. Output data for this group are saved on disk in a Post-Correlation
Record (PCR file).

For time sequencing the correlator control program uses the VAX/VMS Asynchronous
System Trap (AST) mechanism, and an understanding of this mechanism is required for
understanding the program operation. An AST is a software-simulated interrupt to a
user-defined service-routine. An AST enables a process to be notified asynchronously with
respect to its execution of the occurrence of a specific event. For example, a process may
request an AST when an I/O operation is completed, or at a specific time of day. When
the event occurs, the operating system interrupts the normal execution of the process
and executes the user-specified routine. When that routine exits, the system resumes the
process where it was interrupted.

M A I N PROCESS
Figure 3 shows the top-level structure of the main process (VCOROP) and one subpro-

cess (GROUP1). When the program is started up, control is passed to the Forth command
interpreter (NTRPRETO), which waits for a command from the operator. When a com-
mand is received, it is processed and the process waits for the next command (see Figure
4). Most commands merely set flags which are interpreted by the routines that execute

Block-II Correlator Page 2

in reponse to ASTs. These ASTs are established by the operator "INITIALIZE" com-
mand. The INITIALIZE command issues an I/O request to the station hardware asking
it to return the current (tape) time, specifying that an AST is required on completion and
specifying PROCESS as the AST routine. The station hardware returns the time on the
next 1-sec tick (we shall assume that this "time read interval" [TRI] is always 1 sec in what
follows, but it does not have to be). When it has finished its execution (described below),
PROCESS sends a command buffer (filled with hardware requests by other routines) to the
hardware and queues another read request. Thus the PROCESS routine is executed once
every second on the second, synchronously with the master clock to which the tapes axe
synchronized. Typically PROCESS takes less than 0.1 sec; whatever happens, it mustn't
take more than 1 sec!

A variety of other routines are executed in response to ASTs queued by PROCESS
(Figure 5). These typically take longer than 1 sec to complete, and so they are interrupted
by PROCESS. This requires PROCESS to run at a higher priority (AST level) than the
other routines; PROCESS runs at "supervisor" level while the others run at "user" level.

PROCESS (T21): Supervisor level AST routine for executing the correlation control
process. This AST is the I/O completion routine for the station time-read QIO request
setup in PROCSTAT and actually queued in PROCTRAN. The station H/W does not
return from this request until the next time-read interrupt, which occurs once each Time-
Read-Interval (TRI). A TRI has been set to be the same interval as required to correlate
4 x 106 bits, or 1 second at the 4 Megabit/sec correlation rate.

TMODAST (T22): AST routine to call TONEMOD module for determining the
phase parameters to run the tone-tracker within the Processor H/W. It is executed in
MAIN process, and queued in the PROCESS AST when the appropriate TRI counters so
indicate (typically every 37 sec).

GMODAST (T23): AST routine to call GEOMMOD program for calculating the delay
and phase parameters to run the Processor H/W. It is executed in MAIN process, and
queued in the PROCESS AST when the appropriate TRI counters so indicate (typically
every 31 sec). GEOMMOD determines the coefficients of a cubic interpolation which is
evaluated by the hardware.

STNSTAST (T24): AST routine to check the station status error summary words
for errors, write out any group 0 status or error log, and signal the appropriate group
subprocess if status information must be sent. Executed in MAIN process (typically every
41 sec).

CORSTAST (T25): AST routine to check the correlator status error summary words
for errors, write out any group 0 status or error log, and signal the appropriate group
subprocess if status information must be sent. Executed in MAIN process (typically every
43 sec).

PRERRAST (T26): PRocessor-ERRor AST routine to check the I/O status words
for all the I/O between the VAX and the processor stations and correlator hardware. This
is run in the MAIN process in supervisor mode.

GROUP SUBPROCESS
Each group subprocess has a similar structure to the main process; it is normally wait-

Block-II Correlator Page 3

ing for commands from an operator (Forth interpreter), from which state it is interrupted
to execute various AST routines set up by the PSTART command.

EVENTAST (T31): Event Flag test AST for initiating the various routines to be
executed within each group when the corresponding event flags are set. If a given routine's
flag is set, the routine is queued to execute as a USER mode AST. This is to insure
that these operations will complete with more priority than operator initiated operations.
Executed in a GROUP subprocess.

1. SAVE AND SET ORIGINS: Execute the word for saving the various background
origin addresses on the RETURN stack. Using the AST parameter, set the GROUP
origins.

2. CHECK IF MODEL STILL GOOD: Loop through the various geometric model times
and test if the master clock time is still before the stop times of all the delay models
being used. Set the model okay control flag for any channel model still running.

3. UPDATE MODEL TABLES: Check the end-of-scan control flag and the model initial-
ize flag to determine if new scan parameters should be loaded or a model initialization
should be performed. The T32 AST is queued, as needed, to perform these operations.

4. SEND MODELS TO PCR: Check the flags which indicate whether the tone models,
geometric models or tensor configuration tables need to be written to the output
file. This will occur at the update intervals (when the tone or geometric models are
recalculated) or when any of the tensor configuration parameters change. If any of
these tables need to be written to the output file, then queue the T33 AST which will
actually output them.

5. CHECK STATION ERRORS: Check the flag which indicates if any errors were re-
ceived on the last read from the station H/W. If there are station errors, then queue
the T34 AST which will check their severity and take the appropriate actions depend-
ing on that severity.

6. CHECK CORRELATOR ERRORS: Check the flag which indicates if any errors were
received on the last read from the correlator H/W and/or tensor board. If there are
correlator or tensor board errors, then queue the T35 AST to check their severity and
take the appropriate action depending on that severity.

7. PROCESS TENSOR DATA: Check the flag which indicates if there is any new tensor
data to process. This will occur whenever the tensor H/W outputs to the computer.
If there is tensor data to process, then queue the T36 AST which will actually do the
processing. This may include such operations as writing the tensor data to the output
file and updating the information on the display terminal.

8. PROCESS STATION DATA: Check the flag which indicates if there is any new station
data to process. This will occur whenever the stations H/W outputs to the computer.
If there is station data to process, then queue the T37 AST which will actually do the
processing. This will include such operations as writing phase calibrator data to the
output file and updating the information on the display terminal.

9. PROCESS CORRELATOR DATA: Check the flag which indicates if there is any new
correlator data to process. This will occur whenever the correlator H / W or tensor
board output to the computer. If there is correlator data to process, then queue
the T38 A S T which will actually do the processing. This will include such things as

Block-II Correlator Page 4

writing data to the output file, updating the information on the display terminal, and
fringe searchwg.

10. PROVIDE GROUP CONTROL: Check the flag which indicates if any control func-
tions are to be performed for this user group. These include operations like IDLE, but
executed from within the processor program due to some event rather than executed
by the operator from the keyboard. Various messages from the main process are also
included. If there are any of these type events, as indicated by bits in the GCTFLGO,
then queue the T39 AST to handle them.

11. REQUEUE THE EVENTAST ROUTINE (T31 AST): If the group event AST is still
ON, then requeue this AST to execute again at a real-time interval in the future
(given by DELTIME). Otherwise (if the group event AST has been turned off), do
not requeue the AST. This will cause no data to be output or processed until a START
is again issued for the group (the group and the group event AST are turned ON) at
which time this AST (EVENTAST) will again be queued.
MODINIAST (T32): AST routine to perform the initialization operations on the Tone

and Geometric models when any of their input parameters change. Model table status flags
are set when table parameters are changed. These status flags are checked to see if the
tables need initialization before the new values can be used. The MODINITL routine is
called to perform the actual function. New scans are read from the correlation control
record if the time is appropriate and the processor is in the automode.

MODOUTAST (T33): AST routine to output the Tone Models and Geometric Delay
and Phase Models to the output file. It executes the routine MODTOPCR with the correct
origins.

STNERRAST (T34): AST routine to process any severe status errors in the station
hardware.

CORERRAST (T35): AST routine to process any severe status errors in the correlator
hardware.

TSRDATAST (T36): AST routine for handling of the data that is dumped from the
Tensor hardware.

STNDATAST (T37): AST routine for handling of the data that is dumped from the
Station hardware.

CORDATAST (T38): AST routine for handling of the data that is dumped from the
Correlator hardware.

GCNTRLAST (T39): AST routine for control of the user group state from inside of
the AST routines, in contrast to operations coming from the operator keyboard.

SysT&t* L e v e u . • s m o ^ D ^ a g e a n a

T "T

— -t- — •
! i i p i " T T r '

1 - 4 - . - f 4 - i • j - - I

o f t RATOR
UjOfL^TATlOK)

r b - h

v
STATUS

I ' T

— r • - • • —*'— • t-
+ 4 4 4

H ; C R T
• r
o p e w r D R -
LJoaX^TAlioO

—J.—t
! !

V f
i - e

Tt

,.(biOTl?PU AKJv?
J ^ P E u . E ^ f c S A t t

! i

j.... _
• \

: j - ! '

V?\

, ' M /

i ' C j o W e ^ T j o f O j

i

4 WX£R* AO*.

r _P~ .—j—•
SVSTEH.

optaAToit

-4—
j I
f" " '

1 - t • 4~ ! i
. . . j . . . i

H M K)

SoFTUJAfcE- .IMTEKFAGE & . . AKJD . ,P*V7A F UPlO
i

•V' —- — . . . - . r

- .. I. .

Vl

i

' , ; !

- t ; I • !
I I ' ! • i-. i -

, - I

V C o R o P J)
r • • ; r ' ~J y"""

Iv^AIIJ p r o c e s s

1 P^O&RAH
UOA-D

:

• I*

C ^ b x T P)

- s p a u j k ;

» -1

L O * D

I

S u B P v ^ c e s ^ i t i

T l G l I ^
J s J T R P R B T l

Cj^^bA/v foO

• X

Ly 2 S :

K5T. KDOTir^e^

i

d S z Z D

* - i t *
t ; '

* I

« • i : : ** , i
1

I r

(IflfArt AM D

tMT&RP^eT

Com^AiJD

h e

4 J

