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I n t r o d u c t i o n . Two level (1-bit) and four level (2-bit) quantization schemes have been adopted 
in the design of the VLBA recording system. Four level quantization of the sampled signals is to 
be the primary mode of operation. For such coarsely quantized samples, if the true correlation is 
not close to zero then nonlinear corrections must be applied to the correlator outputs in order to 
obtain accurate estimates of the true correlation of the signals. For the four level case, accurate 
and economical correction formulae (e.g., polynomial or rational function approximations) are not 
available in the literature; that is the primary reason that I've written this memorandum. 

In the traditional cross correlation spectrometer design, with post-correlation frequency analy-
sis, quantization corrections are applied after correlation, but before applying the discrete Fourier 
transform operation (see Fig. 3-9 in [5]). In the design now under consideration for the VLBA (the 
'FX' correlator), the Fourier transform operation is to precede cross multiplication. For this case, 
(after some data averaging) Fourier transformation back to the lag domain, followed by quantiza-
tion correction, and followed by another Fourier transform, evidently are required if quantization 
corrections are to be applied. 

In addition to presenting correction formulae—in the form of polynomial and rational 
functions—I'll also write down expressions for the correlator output for the case of non-identical 
quantization thresholds, since these formulae seem not to appear in the published literature. These 
results are neither very interesting nor illuminating, but, since I have them in hand, I want to record 
them for posterity. 

O u t p u t of t h e T w o - B i t C o r r e l a t o r . The operation of the idealized four level, or two-bit, 
quantizer is described by a step function q with values of ± 1 and dbn and steps at abscissae a > 0, 
6 < 0, and 0 : 

«(*) = < 

+ n , for x > a, 
+ 1 , for 0 < x < a, 
- 1 , for b < x < 0 , 
—n, for x < b. 

For the case at hand, a two-input cross correlator, there are two quantization functions, 91 and 
92—one for each data stream—with threshold abscissae a,- said 6j. For input signals x(t) and y(t), 
the correlator output is -fa X^fcLi 9i(x(*k))tf2(y(tfc))- For the case of zero-mean jointly stationary 
Gaussian input signals x and y, of unit variance and with cross correlation coefficient p, the expected 
value ru(p) of the correlator output is a weighted integral of the function 

1 1 (x*-2pzy+y'\ 
(1) 

with piecewise constant weights as shown in Figure 1. This expectation, 

/
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/ V i ( * ) < l 2 { y ) 9 ( x , y , p ) < l x d y , ( 2 ) 
•00 J—00 

can be expressed in terms of the bivariate normal integral (see [1, p. 936 ff.] for properties of the 
bivariate normal integral), 

/•oo roo 
L(/», *,/>)= / / g(x,yiP)dxdy. (3) 

Jh Jh 
Explicitly, referring to Equations 2 and 3, one has, by inspection, ru{p) = n2[L(&i, &2>/>) + 
L(h, a2 , p)- L(bi, -00, p)+I(ai, &2, p)+L(ax, a2 , p) - L(ai , -00, p) - L(-00, &2, p)- L{-00, a 2 , p) + 
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Figure 1. The expected value of the correlator output is a weighted integral of 

. . i 
g{x,yt p)- e \ r / . 

2 * < / l - p2 

The piecewise constant weights are illustrated here. 

L(-00,-00,p)] + n[-2X(6i,62,/>) - 2L(&i,a2,p) + L(&i,-oo,p) + 2£(&!,0,p) - 2£(ai,&2 ,p) -
2L(ai, a2 , p )+L(a i , -00, p )+2L(ai , 0, p )+L( -oo , &2, p ) + £ ( - o o , o2 , p ) - 2 L ( - o o , 0, p)+2L(0,62 , p ) + 
2£(0, a 2 ,p) - 2£(0 , -oo ,p ) ] + X(6i,62 ,p) + £(&i,a2 ,p) - 2£(&i,0,p) + L{aub2,p) + L(aua2lp) -
2£(ai , 0, p) - 2Z(0,62, p) - 21(0, a2 , p) + 4L(0,0, p). This simplifies to 

r u(p) = ( n - l )2[Z(ai , a 2 , p) + L(ai , &2, p) + L{bx, a 2 , p) + , &2, p) + 1] 
+ 2(n - l ) [£(a i ,0 ,p) + £(&!, 0,p) + £ (a 2 , 0 ,p ) + L(&2,0,p)] 

- n(n - l)[Q(ai) + Q(bx) + Q(a2) + Q(62)] + - arcsin p , 
v 

where « ( * ) = ^ J T e " * " <« = § ( l - erf = 1 erfc ^ j . 
For the case of identical quantization functions, qi = g2, and symmetrically placed quantizer 

threshold abscissae, a = —b = vo, Equation 4 simplifies to 

r«(p) = ( n - l)2[£(v0 , t>0,p) + 2£(v0, -t>o,p) + ^(-wo, - v 0 , p ) ] 

+ 4(n - 1)[JL(VO , 0, p) + L ( - v 0 , 0, p)] - n 2 + 1 + - arcsin p . ® 
7T 

This is equivalent to the expression given by Hagen and Farley in [6], 

r«(p) = 

I j T { ( „ _ i)2 (c-"o3/(i+*) + e - 2 / a - ) ) + 4(n - l)e-«o3/(2(i-*a)) + 2 } . (5') 

Now going back to the case of non-identical quantization thresholds, a formula equivalent to Equation 
4 is 

r„(p) = r„(0) + J j ( n - l ) 2 ( ^ (a i , a 2 , x ) + flr(6i,62,*) + 0(<»i, -&2,*) + g(a2,-bux)) 

+ 2(n - l ) ( f f (a i ,0 ,x) + <K*i> 0,x) + flf(a2,0,x) + g(b2,0,x)) + ^ 7 = = } <**, (4') 
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Figure 2. Plots of the reciprocal D — l / t j of the correlator efficiency, for n = 3 and n = 4, as a function of the 
quantizer threshold setting VQ. (Adapted from Bowers and Klingler, [4].) (The dotted line cases are not considered 
in this memorandum.) 

where, for conciseness, I haven't written out the exponentials in full. This integral representation 
follows from a theorem due to Price [7]: the mth derivative of the expected correlator output (for 
input signals of unit variance) is given by = ( ^ q ^ ^ t , . This method of derivation also is 
used in [6]. 

Note that for non-identical quantization thresholds ru(0) ^ 0 and ru(—1) ^ —ru(l), in general.1 

For identical thresholds, the normalized correlator output is obtained by dividing the correlator 
output by r«(l) , the expected value of the correlator output for p = 1. For p — 1 and identical 
quantization thresholds, Equations 5 and 5' reduce to r u ( l ) = n2 — (n2 — l)erf We'll name this 
normalized output r: r(p) = ru(p)/ru( 1) is the normalized, expected correlator output. 

C o r r e l a t o r Eff ic iency. For \p\ <C 1 and identical thresholds, the signal-to-noise ratio relative 
to that of an ideal analog correlator—i.e., the so-called correlator efficiency rj—assuming band-
limited noise equi-distributed over a rectangular band, and assuming sampling at the Nyquist rate, 
is given by 

dr 

P=o 

The maximum value of rj, namely ij « 0.8825, occurs at n « 3.336, t>o « 0.9816. As shown in 
Table 1 and in Figure 2, this is a rather broad maximum. For n held fixed at n = 3 or n = 4, and 
the threshold level vq chosen optimally, rj stays approximately equal to 0.88. For n an integer, the 
optimal efficiency occurs at n = 3. 

1Onehasr t t(0) = ( n - l ) 2 [ l + Q(a1)Q(a2) + Q(a1)Q(62) + Q(61)Q(a2) + g ( 6 i ) Q ( 6 2 ) - g ( a 1 ) - Q ( 6 1 ) - Q ( a 2 ) - - Q ( 6 2 ) ] , 
r u ( l ) = (n-l)2[Q(max(a1 ,a2)) + Q(a1)+g(a2)+Q(max(61 ,62))]-(n-l)[(n-2)(Q(a1)+Q(a2))+n(Q(6i) + Q(62))] + 

2 , 1 . , ^ 2 f / ° » i f o 1 > - f c 2 \ fO, i f a 2 > - & i \ i 
n + I , A N D R U ( - I ) _ ( N - 1 ) I _ g ( a i ) . Q ^ ) , otherwise J + t l - Q ( « 9 ) - Q ( 6 i ) f otherwise / J " 
(n - l ) [n(Q( a i ) + <?(a2)) + (n + 2)(Q(&!) + <9(63))] + n 2 - 2. 
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TABLE 1 . 
Optimal Quantization Thresholds 

n vo rj 
3 

3.3358750 
4 

0.99568668 
0.98159883 
0.94232840 

0.8811539496 
0.8825181522 
0.8795104597 

Best S t ra ight -Line Approx imat ions . The relative error curve corresponding to the best 
linear minimax1 approximation p to p = r - 1 over the range 0 < r < r(/>max) has its extrema at r — 0, 
r = r(pm a x), and it has a single zero at some intermediate point in that interval. Approximations 
of this type are shown in Table 2 (for n — 4 and vq chosen optimally, as in line 3 of Table 1). 

TABLE 2 . 
Best Linear Minimax Approximations 

Pmax p(r) max 
0 < r < r ( P m „ ) 

p - p(r(p)) 
P 

0.1 1.1368324r 1.44 x 10~4 

0.2 1.1363416r 5.76 x 10"4 

0.3 1.1355232r 1.30 x 10"3 

0.4 1.1343733r 2.31 x 10"3 

0.5 1.1328754r 3.62 x 10"3 

0.6 1.1309772r 5.29 x 10-3 

0.7 1.1285298r 7.45 x 10"3 

0.8 1.1251166r 1.04 x 10"2 

0.9 1.1191837r 1.57 x 10~2 

1.0 1.0641069r 6.41 x 10~2 

These straight-line approximations are relevant to the FX spectral processor design if one chooses 
not to Fourier transform from the frequency domain to the lag domain to apply a quantization 
correction. This is because the minimax errors tabulated above indicate, as a function of the 
maximum correlation one wishes to consider, the degree to which it is valid to assume that there 
exists a linear relation between the values of the true cross correlation function and those of the 
Fourier transform of the cross spectrum obtained at the output of the FX processor. 

Best Ra t iona l M i n i m a x Approximat ions . I haven't constructed an exhaustive table of 
rational approximations, but for n = 4 and for t>o chosen optimally, the following two—one an 
eleventh degree polynomial approximation in r, but the other just the quotient of a third degree 
polynomial and a first degree polynomial in r2 , multiplied by r—are examples of interesting best 
rational minimax approximations, valid for \p\ < 0.95: 

p(r) =1.1371289r- 5.261628 x 10~2r3 + 1.32608 x 10 _ 1r 5 

- 5.664224 x 10 _ 1 r 7 + 9.861185 x 10_ 1r9 - 6.5297935 x 1(T V 1 , v J 

and 
v 1.1369813 - 1.2487891r2 + 4.5380174 x 10"2r4 - 9.1448344 x 10~3r6 

= 1 - 1.0617975r2 r ' ( 8 ) 

With (7) the maximum relative error is 1.17 x 10~4, but with (8) it is 2.77 x 10~5—about four times 
smaller. 

The degree of a rational function R = p/q is usually defined to be the degree / of the numerator, 
plus the degree m of the denominator. I + m + 1 is the number of coefficients essential in order to 
define R (the number is not / + m -1-2, because of cancellation). If we factor out an r in (7), to get 

p(r) =(1.1371289-5.261628 x 10~2r2 + 1.32608 x 10_ 1r4 

(7') 
- 5.664224 x 1 0 _ 1 r 6 + 9.861185 x l O " 1 ^ - 6.5297935 x 1 0 _ 1 r 1 0 ) r , 

1A so-called minimax approximation is one which minimizes the maximum error, in absolute value, over the interval 
of approximation. And here I'm considering relative error, rather than absolute error. 
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then we have a polynomial of degree 5 in r2 , which is also a rational function of degree 5. But in 
(8) we have a superior approximation which is based on a rational function of degree 4 in r 2 . This 
illustrates a common feature of rational approximations: that frequently a rational approximation is 
superior to a polynomial approximation of the same, or even higher, degree. (8) is the best rational 
approximation of degree 4, over the range \p\ < 0.95. 

Remarks . 
• In VLBA Correlator Memorandum No. 74, John Benson mentions that the FX simulator 

program uses a default quantizer threshold setting v<j = .674<r. The quantizer output levels are 
not given in the memo, but in talking with John I learned that the effective relative weights are 
±1 ,±2; this corresponds to n = 2, in the terminology of the present memo. Thus, from Equation 6 
above, the efficiency rj of the simulator's (default) quantization scheme is « .82183. The ratio of that 
number to the efficiency corresponding to optimal quantization (n « 3.336, vo « .9816) is 93.1%. I'd 
recommend that the simulator program be modified to use a higher efficiency quantization scheme 
since, in the final design, one certainly wouldn't want to do it as it's done now. 

• With the FX design, a further loss in efficiency results from data segmentation. The amount 
of loss depends on the shape of the data window: more highly concentrated data windows (i.e., 
heavier tapering) lead to greater loss, but most of this loss can be recovered by employing sufficient 
overlap. For typical data windows, almost all of the lost efficiency can be recovered with 50% to 
65% overlap of the data segments; further, in our application we should never need very heavy 
tapering—so, although there would be significant losses with no overlap, 50% overlap would suffice 
to recover almost all of the loss. I'll cover this in another memo. 

• After a look at an earlier draft of this memo, Jon Romney pointed out that I hadn't considered 
the effect of moving the quantizer transition from —1 to +1 away from the abscissa x = 0. It 
would be straightforward to include such a shift in Equation 4, but I haven't done so. Since it's 
unlikely that the VLBA design will employ phase shifting to alleviate the effects of asymmetric 
quantizer thresholds, we may have to consider the point that Jon raised and we may have to do 
some quantitative work on asymmetries, to gain peace of mind. 

• After a look at an earlier draft of this memo, John Granlund questioned why, in the sec-
tion on rational approximations to the two-bit analog of the Van Vleck correction, I hadn't given 
approximations for the cases n = 3 and n « 3.336, since these values of n lead to higher efficiency 
than the case n = 4. For n = 3, and vq chosen optimally as in line 1 of Table 1, the approximation 

_ 1.1347043 - 3.0971312r2 + 2.9163894r4 - .89047693r6 

1 — 2.6892104r2 + 2.4736683r4 — .72098190r6 

yields a maximum relative error of 1.51 x 10~4. For n « 3.336 and vo chosen optimally as in line 2 
of Table 1, the approximation 

1.1329552 — 3.1056902r2 + 2.9296994r4 — .90122460r6 

~ 1 - 2.7056559r2 + 2.5012473r4 - .73985978r6 r ' ' ' 

yields a maximum relative error of 1.46 x 10~4. And for n = 4, and vq chosen optimally as in line 3 
of Table 1, the approximation 

_ 1.1368256 - 3.0533973r2 + 2.8171512r4 - .85148929r6 

1 - 2.6529114r2 + 2.4027335r4 - .70073934r6 r ' 

yields a maximum relative error of 1.50 x 10~4. These three approximations are valid for all | r | < 1. 
To obtain higher accuracy I would need to split the range of approximation into two or more parts 
(I can easily do so, on request, if anyone needs better approximations). With the FX design, I don't 
see any need to restrict the choice to integer weights (though for a lag-domain digital correlator 
non-integer weights are pretty much ruled out, and n = 4 might be easier to implement in hardware 
than n = 3). 

• For any of the standard quantization schemes—i.e., two-level, three-level, multi-level, hybrid 
cases, or whatever—one can neatly express the correlator ouput in terms of the bivariate normal 
integral, as I've done for the four-level case in Equations 4 and 5. 
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