VLBA ACQUISITION MEMO #249

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

HAYSTACK OBSERVATORY

WESTFORD, MASSACHUSETTS 01886

1 April 1991

Telephone: 508-692-4764 Fax: 617-981-0590

To: VLBA Data Acquisition Group

From:	Alan E.E. Rogers		
	Edwin F. Nesman		

Subject: Proposed redesign of the formatter A/D buffer module

Introduction

The present A/D buffer module includes a 32x32 cross-point switch for the sampler to recorder track assignments. It also contains the multi- and demulti-plex logic for fan-in and fanout. The block diagram is shown in drawing #54202-K-1/3. The cross-point switch uses analog chips as large digital cross-point switches were not available when the formatter was designed in 1987/88. The analog switch does have some limitations due to the high capacitance of the elements (see VLBA Acquisition Memo #235). A redesigned module would use a digital switch to remove all restrictions on the track assignments as well as including added capabilities, like phase calibration tone extraction.

We suggest that a new A/D board design is better than separate A/D and Pcal extractor boards for the following reasons:

- 1] Present cabling arrangement to the front of the module can be preserved.
- 2] You do not have to have an expanded system. Only one A/D/Pcal board is required for the support of one recorder.
- 3] In an expanded system there is the redundancy of two identical boards.
- 4] Only one new board need be designed.

Proposed new block diagram

The new block diagram shown in preliminary drawing 54202-K, Rev. 2 would perform all the same tasks as the original module as well as including phase calibration extraction (see VLBA Acquisition Memo #248 for details) with the following performance specifications:

Tone frequencies:	D.C. to 16 MHz in 10 KHz steps (D.C. used for sampler threshold measurements)
Number of tones: (simultaneously)	4 with 4-bit sine/cosine table 8 with 2-bit sine/cosine table 16 with 1-bit sine/cosine table
	or any combination requiring no more than 32 (32-bit) accumulating counters.

Input switch to tone extractions:	32x16 cross-point switch so that any tone extractor input can be connected to any sampler output. Also tone extractors can be connected to a fixed 0 or 1 for test and table loading.
Maximum time to change input selection:	1 millisecond
Maximim time to load tables with new frequencies:	1 second
Maximum accumulation period:	120 seconds
Dead time between accumulation periods:	< 10 ms
E 1 11 11 1	

Flexibility examples:

- 1] 8 tone extractors (in 1-bit sine/cosine table mode) looking at 4010 KHz in USB sign bit ouputs + 8 tone extractors looking at 3990 KHz in LSB sign bit outputs. This could extract the central phase cal tones in all the 8 MHz bandwidth outputs for 8 BBCs.
- 2] 4 tone extractors (in 4-bit mode) looking at 10, 1010, 2010, 3990 KHz sine and magnitude bits from a single 4 MHz USB output.
- 3] 4 tone extractors (in 2-bit mode) looking at 10 KHz from 4 USB sign and magnitude bit outputs + 4 tone extractors looking at threshold levels of the sine and magnitude bits of the same 4 USB outputs.

Number <u>Required</u>	Approx. Board <u>Area Sq. Inch</u>	Cost
8	6	120
2	5	200
32	$6/22^{1}$	$550/225^{1}$
1	1	100
100	$\frac{20}{38/54^1}$	<u>500</u> 1470/1145 ¹
	Number <u>Required</u> 8 2 32 1 100	Number RequiredApprox. Board Area Sq. Inch 8 6 2 5 32 $6/22^1$ 1 1 100 $\frac{20}{38/54^1}$

Engineering design time and replication cost

We estimate 6 man-months for engineering (including firmware), a prototype materials and services cost of about \$5000, and a replication cost of about \$3500, per board. It would probably take nine months to one year from now until we have a fully tested prototype.

¹Using LSI counters instead of one Xilinx chip for 16 counters.

