VLBA ACQUISITION MEMO #347

MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY

WESTFORD, MASSACHUSETTS 01886

8 January 1993

Telephone: 508-692-4764

Fax: 617-981-0590

To:

VLBA Data Acquisition Group

From:

Alan E.E. Rogers

Subject:

Digital tone extractor normalization

The digital tone extractor firmware has been initially implemented with the following multiplication tables:

1. Input data:

2-bit (sine and magnitude) $[0 \times 73 \text{ bit } 15 = 1]$

Sine/cosine representation:

4-level for data = 00 and 11 2-level for data = 01 and 10

Multiplication table:

(4-level x 4-level reduced multiplication table)

DATA\	0	30	60	90	120	150	180	210	240	270	300	330
11	2	3	3	3	3	2	1	0	0	0	0	1
10	2	2	2	2	2	2	1	1	1	1	1	1
01	1	1	1	1	1	1	2	2	2	2	2	2
00	1	0	0	0	0	1	2	3_	3	3	3	2

Sin φ x data (cos φ x data shifted by 90°)

Harmonic content:

-13, -21, -26 dB for 3rd, 5th, 7th harmonic

(normal signal levels)

Extractor normalization:

 $RSIN = \left[\frac{COUNTMSB *2 + COUNTLSB - 1.5N}{N*1.02} \right]$

where COUNTMSB =

SINMSB

COUNT

COUNTLSB

SINLSB

COUNT

N

clock cycles

= 32 x 10^6 per second

 $= 0 \times 112A8800 \text{ for 9 seconds}$

$$[0 \times 73 \text{ bit } 15 = 0]$$

Sine/cosine representation: 4-level

Multiplication Table: (2-level x 4-level full table)

DATA	0	30	60	90	120	150	180	210	240	270	300	360
1	2	3	3	3	3	2	1	0	0	0	0	1.
0	1	0	0	0	0	1	2	3	3	3	3	2

Harmonic content: -14, -26, -31, dB for 3rd, 5th, 7th harmonic

Extractor normalization:
$$RSIN = \left[\frac{COUNTMSB *2 + COUNTLSB - 1.5N}{N*1.2} \right]$$

This mode is known as the "doubling" mode and is envolved by 0×76 bit 11 = 1.

DATA	0	30	60	90	120	150	180	210	240	270	300	330
1	1	1	1	1	1	1	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	1	1	1	1

Harmonic content: -9, -14, -17 dB for 3rd, 5th, 7th harmonic

Extractor normalization:
$$RSIN = \left[\frac{COUNT *2 - N}{N*0.76} \right]$$

In this "doubling" mode extractor processes 2 phase cal tones.

Not yet implemented in the firmware is the following:

4]

Input data: 2-bit

Sine/cosine: 6-level

Multiplication table: (4-level x 6-level reduced multiplication)

DATA \	0	30	60	90	120	150	180	210	240	270	300	360
11	9	13	15	15	13	9	6	2	0	0	2	6
10	8	9	10	10	9	8	7	6	5	5	6	7
01	7	6	5	5	6	7	8	9	10	10	9	8
00	6	2	0	0	2	6	9	13	15	15	13	9

Harmonic content:

Extractor normalization:

$$\left[\frac{COUNT\ 3*8\ +\ COUNT\ 2*4\ +\ COUNT\ 1*2\ +\ COUNT\ 0\ -7.5N}{N*2.2}\right]$$

Conversion to amplitude and angles:

$$Amp = (RSIN^2 + RCOS^2)^{1/2}$$

PHASE =
$$tan^{-1}(RSIN, RCOS)$$

The normalization factors (1.02, 1.2, 0.76, and 2.2) were calculated using numerical integrations of the gaussian probability distribution, quantized, and weighted by the multiplication table.